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Abstract

PyCSP is a Python package for the analysis and simplification of chemically
reacting systems, using algorithms based on the Computational Singular Per-
turbation (CSP) theory. It provides tools for the local characterization of the
chemical dynamics, enabled by the recognition of a convenient projection ba-
sis which carries out a timescale-based uncoupling. The tools supplied within
the package allow one to identify the rate-controlling chemical reactions, the
intrinsic chemical timescales, the driving chemical timescale and indicators
of the system’s explosive or dissipative propensity. Possible applications are
the analysis of numerical simulations of reacting flows, and the reduction of
chemical kinetics models, based on the CSP information. This manuscript
provides a brief overview of the foundations of CSP, a description of the li-
braries, and demonstrations of the features implemented in PyCSP with code
examples, along with practical advices and guidelines for users.
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Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: MIT
Programming language: Python
Supplementary material: Code documentation and Python scripts employed to
generate the figures.
Nature of problem:
The evermore increasing availability of high-performance computing resources, and
the compelling need for more advanced and sustainable energy conversion devices,
based on unconventional combustion regimes and alternative fuels, are driving to-
wards an unprecedented massive production of data in numerical simulations of
reacting flows. The research questions behind the production of such huge datasets
are typically related to (i) the fundamental understanding of combustion phenom-
ena, and (ii) the development of reduced order models and/or turbulence-chemistry
interaction sub-grid scale (closure) models, both with the aim of accelerating large
scale simulations of real combustion devices.
Solution method:
Both categories of research questions can widely benefit from the numerical tools
available in PyCSP. The computational singular perturbation (CSP) framework
allows one to extract concise information from chemically reacting systems, au-
tomatically and at reasonable cost. This is especially useful when the dataset
is so massive and the number of degrees of freedom so large, i.e., hundreds of
species/reactions per cell, that even a visual inspection becomes unmanageable.
PyCSP offers a fast, user-friendly implementation of numerous analysis tools, en-
abling a more systematic data processing and, ultimately, providing the user with
a deeper physical understanding of the problem under investigation. Moreover,
the CSP theoretical framework can be exploited to generate reduced order mod-
els (ROMs), tailored to and to be employed in specific applications, in order to
drastically reduce the computational cost of a numerical simulation, while retain-
ing accuracy in global observables. The ROM is in the form of a skeletal kinetic
mechanism of adjustable fidelity, or an adaptive chemistry integrator.
Additional comments including restrictions and unusual features:
PyCSP relies on Cantera, an open-source suite of tools for problems involving chem-
ical kinetics, thermodynamics, and transport processes, to efficiently incorporate
detailed chemical thermo-kinetics models into the CSP calculations.

1. Introduction

The role of combustion in the ongoing energy transition is far from being
secondary. Even though the main motivation driving such crucial process
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for mankind is the replacement of fossil fuels with renewable energy sources,
the act of burning will remain a dominant energy conversion process. Hy-
drogen, hydrogen-based energy carriers (e.g. ammonia, synthetic methane,
methanol, etc.), biomasses, and synthetic fuels, will play a central role in
many large-scale applications, from energy-intensive industries to aviation,
whose electrification does not appear to be a viable solution. The combus-
tion of novel fuels requires fundamental studies to enable predictive mod-
elling, and, in turn, to improve combustion efficiency, stability, thus safety
and reliability of practical devices.

Flows in combustion chambers are characterized by strong interplays be-
tween turbulence, mixing and chemical reactions, that interact over a wide
dynamic range of space and time scales. Detailed chemical kinetic mecha-
nisms describe the conversion of reactants into products through thousands of
elementary steps, often acting over a wide spectrum of disparate timescales
which can range from nanoseconds to minutes. Since modelling the fluid
dynamics of a practical system is a challenge of its own, the small-scale
flowfield-chemistry interaction is doubtlessly the largest obstacle that keeps
numerical simulations of practical combustion devices on the ambitious side.
This is the reason why direct numerical simulations (DNS) of the reactive
Navier-Stokes equations are practically limited to small and geometrically
simple domains, being solely devoted at capturing small-scale phenomena in
an attempt to improve their fundamental understanding. Indeed, when it
comes to engineering applications, especially in the context of robust design
of combustion devices, the DNS approach becomes impractical, due to the
typically large spatial dimensions of the domains, the highly turbulent nature
of the flow, and the number of simulations required to identify optimal con-
figurations. In such cases, the only tractable computational approaches for
turbulent combustion are those involving fully or partially modeled spatial
frequencies, i.e., Reynolds-averaged Navier-Stokes (RANS) and large eddy
(LES) simulations, which however require closure rules for the subgrid-scale
interactions. A universally accepted closure model, capable of describing
turbulence-chemistry interaction in a wide range of combustion regimes, is
still not available [1].

Fundamental understanding is at the heart of modelling. Commonly,
DNS datasets of canonical configurations are employed to develop closure
and reduced order models. Such datasets are huge and contain a plethora
of information: each computational cell of a typically 3D mesh provides val-
ues for primitive state variables such as temperature, pressure, velocity, and
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composition (∼10÷100 species), at each integration time-step. Fortunately,
the true system’s dynamics, that has to be understood, evolves with a much
smaller number of degrees of freedom. In fact, the action of the components
of the model that generate fast time-scales effectively constrains the evolution
of the system within an embedding of low-dimensional manifolds [2, 3]. The
existence of manifolds paves the way to both (i) a more effective information
retrieval and, in turn, physical understanding, and (ii) the development of
reduced order models.

To this end, the computational singular perturbation (CSP) method seeks
the slow invariant manifolds (SIMs) developing in complex systems of non-
linear singularly-perturbed ODEs and PDEs by locally reformulating the un-
derlying dynamics in terms of new state variables, which are linear combina-
tions of the original ones, and whose time-evolutions are decoupled from each
other. This projection operation allows to systematically identify features of
the vector field which could not be investigated in the original state space,
such as: the existence of fast/slow timescales, which in turn define fast/slow
subspaces, the dimension and directions of the SIM, and the cause-effect re-
lationships among the “causing” physical processes (convective or diffusive
transport, chemical reactions) and the “effects” on the physical state vari-
ables. The CSP theory and the derived algorithmic tools are comprehensively
described in [4, 5].

PyCSP is an open-source Python package for the analysis and reduction of
complex chemically reacting systems using CSP. It consolidates years of de-
velopments and experience with CSPTk, a Fortran 90 code devoted to CSP and
employed in numerous works by the author’s group [6, 7, 8, 9, 10, 11, 12, 13]
and other groups [14, 15, 16, 17, 18], which however was never publicly dis-
tributed. The typical investigation settings in which PyCSP is anticipated to
be useful are (i) the post-process of massive reacting flows datasets, as done
in [10, 14, 16, 19, 20] (ii) the generation of reduced order models (ROMs)
in the form of skeletal kinetic mechanisms, as in [11, 12, 21], and (iii) the
development of numerical techniques that exploit SIMs and ROMs for accel-
erating reacting flows computations on the fly, as in [22]. The basic features
of PyCSP consist in the local timescale characterization, the identification
of the slow manifold and the chemical processes, i.e., species and reactions,
associated with the fast and slow systems, the identification of a represen-
tative of the driving chemical timescale based on the tangential stretching
rate theory [23] and its associated chemical processes. On top of the basic
features, additional modules offer the implementation of an adaptive stiff
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ODE solver and a mechanism simplification algorithm, both based on the
CSP decomposition. The PyCSP package is aimed at researchers in the field
of chemistry, combustion and engineering, providing them access to detailed
but synthetic information about complex and otherwise unmanageable chem-
ical systems. The package is designed to be accessible to inexperienced users,
providing user-friendly examples of all the available features, while also of-
fering the possibility of customization and expansion towards more advanced
applications.

2. Software features

To leading order, the CSP decomposition is an eigen-decomposition of the
(N+1)-by-(N+1) Jacobian matrix of the local chemical source term ω̇(T, Yi),
where T is temperature and Yi are the N species mass fractions of a given
state point. The aforementioned operation yields the CSP kernel, which is
an object containing: the eigen-values, hence the chemical time-scales, i.e.
the inverse of the eigen-values, the eigen-modes, i.e. the right eigen-vectors,
and their amplitudes, computed as a projection of the vector field ω̇ onto
the left eigen-vectors1. Once the CSP kernel is available, the application
of a convenient criterion [6] determines how many of the (N+1) modes are
exhausted, i.e., have an approximately zero amplitude. The number M of
exhausted modes corresponds to the number of degrees of freedom lost by
the trajectory, i.e. the trajectory has no components in the directions along
which the exhausted (fast) time-scales act, and the dimension of the SIM
is (N + 1) −M . The availability of the CSP kernel and the number of ex-
hausted modes, i.e., the fast/slow decomposition, allows one to compute the
cause-effect relationships between the physical processes, e.g. chemical reac-
tions, and the thermo-chemical state variables, distinguishing the processes
that constrain the system to the SIM from those that evolve the dynamics
along the SIM. To this end, the user may choose to retrieve various sets of
importance/participation indices (of a process to a mode and/or a subspace),
whose algorithmic description and interpretation is detailed in [4, 5]. Also
available in PyCSP is the Tangential Stretching Rate (TSR) index [23, 8], in
both the ODE and PDE versions. The latter requires the user to feed the

1Note that in the partial differential equations (PDEs) version of CSP, the projected
vector field is (ω̇ + L), where L is the transport term contribution (convection and/or
diffusion).
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computed diffusion and/or convection terms of the species and energy equa-
tions. The TSR is a weighted average of all the eigenvalues, with weights that
depend on the mode amplitudes (with or without transport). Based on the
value and the sign of the TSR, one can readily characterize the explosive/dis-
sipative nature of the chemical (or chemical-transport) dynamics, identified
by the positive/negative sign, and estimate the truly active chemical time
scale, which is the inverse of the TSR.

2.1. Software Architecture

PyCSP is written in Python 3. Most of the implemented methods de-
pend on NumPy. The thermo-kinetic data management is performed with
Cantera [24], which is an open source, object-oriented suite of tools for han-
dling kinetics, thermodynamics and transport models and data. The core ob-
jects in the PyCSP package are the CanteraThermoKinetics and CanteraCSP

classes. The CanteraCSP class inherits attributes and methods from the
CanteraThermoKinetics class2, which is in turn a derived class of Cantera’s
Solution class [24] through multilevel inheritance, and extends them by
adding CSP-related class methods. Hence, the constructor for this class is
equivalent to the constructor of Cantera’s Solution class. Indeed, Cantera
is employed as a mean to efficiently incorporate detailed chemical thermo-
kinetics models into the CSP calculations. This choice was made to ease the
chemical model interpretation and to comply with a well-established stan-
dard. Moreover, this allows to inherit Cantera’s wide availability of model
reactors, such as zero-dimensional reactors, one-dimensional flames, reactor
networks, multi-phase mixtures and catalytic combustion. More specifically,
the two PyCSP’s base classes provide the following major features:

- CanteraThermoKinetics: computes the chemical source term, the gen-
eralized stoichiometric matrix and the numerical Jacobian matrix of
the chemical source term, in both the constant pressure and constant
volume versions, for a given solution object. In essence, this class as-
sembles kinetics-related quantities which are not directly available in
Cantera.

- CanteraCSP: computes the CSP kernel (timescales, CSP modes and
mode amplitudes), the number of exhausted modes, the tangential

2The names of the classes emphasize the fact of being sub-classes of Cantera’s classes.
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stretching rate, the CSP indices (API, TPI, importance indices), the
CSP pointers.

Two additional classes are provided, that work on instances of the CanteraCSP
class, namely:

- CSPsimplify: analyzes a database of thermochemical states and gen-
erates simplified kinetic mechanisms as described in [21].

- CSPsolver: integrates in time the set of stiff chemical ODEs using a
Python implementation of the CSP solver described in [25, 22]. The
CSP solver exploits the local CSP fast/slow decomposition to explicitly
and adaptively integrate the slow time scales, while the contribution of
the terms producing the fast time scales is taken into account at the
end of each integration step as a correction.

Figures 1 and 2 illustrate the software architecture.

Figure 1: PyCSP classes hierarchy: sub-classes of cantera.Solution.

2.2. Software Functionalities

The PyCSP functionalities can be grouped into 3 categories: analysis,
model reduction, and time integration. All of the functionalities rely on the
CSP kernel, which is a state function, i.e., depends on and requires only a
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Figure 2: PyCSP additional classes.

thermo-chemical state, e.g. temperature, pressure (or density), and chem-
ical composition3. A Cantera-compliant input file, containing the thermo-
kinetic model parameters, is required as well4. The property of the ker-
nel of being a state function is prescribed in the logical structure of the
code: once an instance of CanteraCSP is created (calling the constructor
gas = canteraCSP(’input.yaml’)), a hard bound with the thermo-chemical
state is created as well, and a CSP kernel is associated to a specific state5.
In other words, the kernel computation is hidden: the user is only allowed
to retrieve it, using the get kernel() method, and the returned kernel al-
ways conforms to the present state (accessible and editable via the base class
attributes, e.g., gas.Y and gas.TP). When the CSP kernel, or any derived
object, is queried, the code computes the kernel only if the state (or any
other class attributes, such as the Jacobian options) has been changed. This
hard bound was created to avoid inconsistencies among subsequent calls to
methods relying on the CSP kernel and to minimize the number of kernel
computations. The following code snippet exemplifies the kernel query:

1 import PyCSP.Functions as csp

3An exception is made for the analysis of reaction-transport problems, which requires
additional information from the transport operators.

4This data is imported from a YAML file. Such files are typically freely available or
may be created by converting Chemkin-format files.

5Note that the thermo-chemical state is an attribute of the base class Solution
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2 #instantiate CSP object

3 gas = csp.CanteraCSP(’hydrogen.yaml’)

4 #set the gas state (temperature , pressure , composition)

5 T = 1000

6 P = 101325

7 gas.TP = T, P

8 gas.set_equivalence_ratio (1.0, ’H2’, ’O2:1, N2 :3.76’)

9 #set Jacobian options: constant pressure Jacobian

10 gas.constP = P

11 #retrieve the CSP kernel:

12 #eigen -values , right/left eigen -vectors , and amplitudes

13 lam ,R,L,f = gas.get_kernel ()

Now, suppose to modify the state temperature.

1 #set a new temperature

2 T = 1100

3 gas.TP = T, P

4 #retrieve the CSP kernel:

5 lam ,R,L,f = gas.get_kernel ()

The get kernel() method will sense the change in an attribute of gas, and
will recompute the CSP kernel before returning it. All the PyCSP function-
alities automatically update the CSP kernel, if needed, and operate on the
stored kernel directly, so that the user does not need to retrieve it.

The kernel calculation is the eigen-problem6 of the Jacobian matrix of
the chemical source term. The Jacobian matrix calculation requires the user
to define the thermodynamic problem type, i.e., either a constant pressure
or a constant volume problem (see the gas.constP attribute in the code
snippet above). Both the Jacobian and the source term are attributes of the
CanteraThermoKinetics class, which is the CanteraCSP parent class, hence
they are always accessible as gas.jacobian and gas.source.

The main PyCSP functionalities are described here below, category wise.

2.3. Analysis

The purpose of the CSP analysis is to extract information from the local
dynamics of a thermo-chemical state. The most basic information offered by
the CSP analysis is the dimension M of the fast subspace, i.e., the number
of exhausted modes. The method calc exhausted modes() returns M. This
information is already remarkably valuable, because it reveals (i) the number

6the numpy.linal.eig method is used, which is based on LAPACK’s geev.
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(N + 1) −M of true degrees of freedom of the dynamics (the lower M , the
higher-dimensional the trajectory, the faster the chemical activity), whose
inspection helps to single out the dynamically significant regimes (minima of
M); (ii) the fastest time scale of the slow dynamics τM+1 (accessible as the
M+1-th element of the timescales array, gas.tau[M]).

Many levels of information can be retrieved using the calc CSPindices()

method, namely: amplitude/timescale participation indices, fast/slow im-
portance indices, species classification (fast/slow)7. Another realm of the
CSP analysis is the tangential stretching rate (TSR) analysis. The meth-
ods calc TSR() and calc TSRindices() are devoted to the computation of
the TSR, i.e., a representative of the driving chemical time scale, and the
amplitude/timescale participation indices to the TSR8.

2.4. Model reduction

The tools offered by the CSP theory, specifically the fast/slow impor-
tance indices, are exploited to provide a fully automated algorithm capable
of producing families of skeletal mechanisms, tailored on a user-fed database
of chemical states. The algorithm, presented in [21] and reported in Fig.3,
retains the most important species/reactions to the local active dynamics,
whose kernel is identified by the TSR-active species. The user is only re-
quested to provide a representative database of states and the original de-
tailed mechanism. A series of thresholds can be applied sequentially to gen-
erate a family of skeletal mechanisms of higher to lower fidelity and size. The
relevant methods of the CSPsimplify class are process dataset(), which
builds the set of importance indices over the chemical states database as
a pre-process, and simplify mechanism(thr), which outputs species and
reactions of the skeletal mechanism resulting from the threshold thr.

7the mathematical definition and a detailed description of such indices is provided in
[4, 5]. In short, the participation index quantifies the contribution of a reaction to the
amplitude of a mode or to the magnitude of a timescale; the importance index quantifies
the contribution of a reaction to the rate of formation/consumption of a species, in either
the fast or the slow subspace; the species classification associates a species to either the
fast or the slow subspace based on the value of its CSP pointer.

8the TSR-API/TPI quantify the participation of a reaction to the driving mode/-
timescale
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Figure 3: CSP-TSR simplification algorithm [21].

2.5. Time integration

The availability of the CSP objects makes it straightforward to build
an adaptive time-integration scheme for stiff chemistry. The CSP solver,
detailed in [22], exploits the projection basis defined by the Jacobian eigen-
directions, and the partitioning into fast and slow components, to build a
local non-stiff reduced order model, freed of the fast time-scales, which is
explicitly integrated in time with a pace larger than that provided by implicit
solvers. The CSPsolver class provides an implementation of the scheme
for homogeneous problems9. The front-end methods are self-explanatory:
set integrator() and set initial value() are used to feed the relevant
options and the initial condition, respectively, while integrate() advances
the state in time by one time-step.

9This implementation can be readily employed in transport/reactions operator-splitting
schemes.
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3. Illustrative Examples

The package contains multiple usage examples of all the classes. Examples
are limited to homogeneous reactors and laminar flames datasets, however
one can CSP-analyze and/or simplify feeding any databases of thermochem-
ical states (temperature, pressure, species composition) and flow properties
(diffusion and/or convection fluxes) produced in any reacting flow simula-
tions, e.g., laminar and well-resolved turbulent flames, i.e., fine-LES and
DNS10.

3.1. Basic usage

To create a CanteraCSP object, a detailed chemical kinetic mechanism is
required. In this example, the detailed chemistry is supplied by a 53-species,
325-reactions, kinetic scheme designed for methane oxidation [26], through
the file gri30.yaml. The instantiation of a CanteraCSP object called gas is:

1 import PyCSP.Functions as csp

2 gas = csp.CanteraCSP(’gri30.yaml’)

Note that the whole set of Cantera’s Solution class methods are also avail-
able11. The CSP analysis requires a thermochemical dataset. In the follow-
ing, the Cantera’s ideal gas reactor is employed to generate the data. The
CSP analysis is performed on-the-fly, along with the time integration.

1 #set the initial mixture state (with Cantera ’s methods)

2 gas.TP = 1000, ct.one_atm

3 gas.set_equivalence_ratio (1.0, ’CH4’, ’O2:1, N2 :3.76’)

4

5 #set Jacobian options: constant volume Jacobian

6 rho = gas.density

7 gas.constRho = rho

8

9 #set Cantera constant volume 0-D reactor model

10 r = ct.IdealGasReactor(gas)

11 sim = ct.ReactorNet ([r])

12 states = ct.SolutionArray(gas , extra=[’t’])

13

10the application of the CSP concepts to modeled or averaged simulations datasets
requires the availability of the sub-grid contribution to the chemical source term in order
to obtain meaningful results.

11A complete list and description of such methods is available at
https://cantera.org/documentation/index.html, in the Python section.
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14 #create storage arrays

15 evals ,Revec ,Levec ,fvec ,M = ([] ,[] ,[] ,[] ,[])

16

17 #integrate ODE with Cantera

18 sim.set_initial_time (0.0)

19 while sim.time < 1000:

20 sim.step()

21 states.append(r.thermo.state , t=sim.time)

22 #Perform CSP analysis on current state and append

23 lam ,R,L,f = gas.get_kernel ()

24 exhM = gas.calc_exhausted_modes(rtol =1.0e-3,atol =1.0e-10)

25 evals.append(lam)

26 Revec.append(R)

27 Levec.append(L)

28 fvec.append(f)

29 M.append(exhM)

The choice of the relative and absolute tolerances for the exhausted modes
calculation is up to the user. The lower the tolerances, the more sensitive is
the criterion, the less modes will be declared as fast12. The reactor behav-
ior in time is reported in Fig.4. The fundamental CSP observables, namely
eigenvalues (inverse of timescales) and exhausted modes, are shown in Figs.5
and 6. To aid the results interpretation, their evolution against the integra-
tion timestep counter13 is also reported, in order to appreciate the dynamics
in the rapid (in physical time) transients.

The number of exhausted modes M is an indicator of the local exhausted
degrees of freedom of the dynamics. A low M indicates that a large number
of modes is active and that chemistry is faster: this occurs during ignition,
which is a transition from the initial manifold of dimension ∼ 25 to the
attractive equilibrium manifold. When approaching equilibrium, M grows to
eventually include all modes, meaning that the dynamics is fully exhausted.

The eigenvalues in Fig.5 are plotted in Λ formulation, following the defini-
tion Λ := Sign(λ)∗Log10|1+λ|, to appreciate their magnitude and sign simul-

12In the exhausted modes criterion[6], δyifast < yierror = εirely
i + εiabs, i = 1, . . . , Ns + 1

represent the contribution of the fast modes to the i-th variable rate-of-change. Practical
experience suggests that relative tolerances in the range 10−2/−4 and absolute tolerances
in 10−8/−12 are appropriate choices.

13Cantera’s default stiff-ODE’s time-integrator is CVODE [27]. The methods used in
CVODE are variable-order, variable-step multistep methods, hence the counter shows a
nonlinear mapping to the physical time. Note that smaller steps are taken in the fastest
transients of the dynamics.
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taneously. Note that eigenvalues smaller than 100 (very slow and conserved
modes) are collapsed onto the y=0 axis. Positive eigenvalues are associated
to an explosive behavior of the mixture. The (M+1)-th eigenvalue evolution
is reported in orange. It represents the fastest of the slow timescales. All the
eigenvalues with larger magnitude (regardless of the sign14) are declared as
fast/exhausted. In the plots of Fig.5, these are the eigenvalues underneath
the orange one. The magnitude of the (M+1)-th eigenvalue changes accord-
ing to the value of M . A low value of M implies a faster dynamics, i.e., a
larger (M + 1)-th eigenvalue, and a larger number of slow scales.

Figure 4: Temperature (black) and selected species against time.

The identification of a representative of the driving chemical timescale,
i.e., the TSR, will be shown in the following section, which contains more
detailed examples of code usage and results interpretation.

3.2. Analysis of a homogeneous reactor

The capabilities of the Tangential Stretching Rate and the related TSR
Participation Indices are demonstrated in the analysis of a simple homoge-

14it can be shown that such eigenvalues are always negative.
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Figure 5: Eigenvalues (grey, in Λ formulation), M+1-th eigenvalue (orange) against num-
ber of integration timestep (left) and time (right)

Figure 6: Number of exhausted modes (orange) against number of integration timestep
(left) and time (right). Temperature is also reported in (left).

neous problem, involving a hydrogen/air mixture. In particular, two test-
cases are investigated: a low-temperature and a high-temperature oxida-
tion. The detailed chemistry is supplied by a 12-species, 33-reactions, ki-
netic scheme designed for hydrogen and carbon monoxide oxidations [28].
The different initial conditions activate two distinct oxidation paths, known
in literature as below- and above-crossover regimes [29, 30, 31]. In both cases,
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the slow initiation reaction, which generates the first radicals, is15:

H2 + O2 −→ HO2 + H (Rb 10)

However, based on the mixture initial temperature, the ignition process is
characterized by a competition between the chain branching reaction:

H + O2 −→ O + OH (Rf 1)

and the chain terminating three-body collision:

H + O2 + M −→ HO2 + M (Rf 9)

which produces a rather inactive radical (HO2) instead of two active radicals
(O and OH).
Above the crossover temperature, which is pressure-dependent (∼950 K at
1 atm for stoichiometric mixtures), the chain branching reaction dominates.
However, below the crossover temperature, the two reactions compete and
the chain branching process is inhibited. In this low-temperature regime,
another oxidation process takes place, namely a thermal runaway caused by
the very slow, slightly exothermic reactions:

H2 + HO2 −→ H2O2 + H (Rb 18)

2 HO2 −→ H2O2 + O2 (Rf 15)

which generate H2O2 and in turn activate the alternative chain branching
path:

H2O2 + M −→ 2 OH + M (Rf 16).

The two analyzed test cases are isobaric (1 atm), stoichiometric H2/air mix-
tures at the initial temperatures of 750 K and 1200 K. The dataset are
generated using Cantera, which integrates in time the batch reactor model.
Table 1 reports the reactions that are referred to in this section.

The PyCSP code syntax for this example is reported in the following, sup-
posing that a dataset of states {T, P, Yi} is available, e.g., has been produced
using Cantera’s IdealGasConstPressureReactor :

15the reactions numbering follows the kinetic mechanism ordering and is summarized in
table 1
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Table 1: Chemical reactions legend.

R - 1: H + O2 ←→ O + OH
R - 2: O + H2 ←→ H + OH
R - 3: H2 + OH ←→ H2O + H
R - 8: H + OH +M ←→ H2O +M
R - 9: H + O2 + M←→ HO2 + M
R - 10: H2 + O2 ←→ HO2 + H
R - 15: 2 HO2 ←→ H2O2 + O2

R - 16: H2O2 + M←→ 2 OH + M
R - 18: H2 + HO2 ←→ H2O2 + H

1 #create CanteraCSP object from mechanism file

2 gas = csp.CanteraCSP(’hydrogen.yaml’)

3

4 #set constant pressure Jacobian

5 gas.constP = P

6

7 #for each state in the dataset , compute CSP quantitites:

8 for state in dataset:

9 gas.set_stateYT(state)

10 lam , R, L, f = gas.get_kernel ()

11 NofDM = gas.calc_exhausted_modes(rtol =1.0e-4,atol =1.0e

-12)

12 tsr = gas.calc_TSR ()

13 tsrapi = gas.calc_TSRindices(type=’amplitude ’)

3.2.1. Above crossover auto-ignition

Figure 7 shows the systems’ eigenvalues evolution against integration
time-step (left) and time (right) for the T0=1200 K case. The eigenvalues are
plotted in Λ formulation, following the definition Λ := Sign(λ)∗Log10|1 +λ|.
Typical features of the eigenvalues can be observed: (i) their magnitude
(and sign) changes in time because the problem is non-linear; (ii) a couple
of positive eigenvalues exists, whose merging happens approximately in cor-
respondence of the maximum temperature rate of increase, i.e. the ignition
delay time, which is τign ≈ 4.5 × 10−5; (iii) 4 dormant modes, associated to
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4 zero eigenvalues16 (collapsed onto the zero axis in the plots), correspond-
ing to the 4 conservation laws (3 elements plus enthalpy), make the total
number of meaningful eigenvalues equal to 9. The conservation laws, in fact,
induce a rank-deficiency in the Jacobian matrix, which translates into zero
eigenvalues.

The TSR, in the same logarithmic formulation employed for the eigenval-
ues, is plotted as a red symbol on top of the eigenvalues. With the exception
of the very first time-steps, the TSR tracks the positive eigenvalue, denot-
ing the explosive propensity of the system, whose characteristic time scale
is O(1/106) s. After the merging, the TSR tracks the eigenvalues associated
to mode #8 first, and mode #9 then, following it until equilibrium. This
means that the system evolves and approaches equilibrium according to the
dissipative scale equal to 1/λ9. Mode #9 is also the unique slow mode (M=8,
not shown) from time-step #1300 to equilibrium.

The extremely short ignition delay time and the explosive nature of the
system since the very beginning are clues of the above-crossover regime of
this test-case. However, more insights on the physics of the problem may be
obtained by resorting to the TSR participation indices, which identify the
processes involved in the energy carrying, TSR-important, modes, i.e. the
dominant reactions. Figure 8 shows the TSR participation indices against
time. As expected, in the very first stages Rb-10 is the dominant reaction,
being the initiation step. Immediately after, the chain branching reaction
Rf-1 takes the lead (∼ 70 %), while the chain terminating reaction Rf-9 has
a negligible participation index (not shown). This behavior is typical of the
above-crossover regime. To a minor extent, chain branching reaction Rf-2
(O + H2 −→ H + OH) and, very close to ignition (t ≈ 4e-5 s) , chain
carrying reaction Rf-3 (H2 + OH −→ H2O + H ) share the remaining ∼
30 % of importance. These three reactions are known as shuffle reactions,
and constitute the submechanism that describes the rapid H-O-OH radical
conversion in the radical pool.

After ignition, the recombination reaction Rf-8 (H + OH +M −→ H2O
+M) becomes the leading process, which becomes counter-balanced by its

16The numerical values may slightly differ from an exact zero because a double precision
representation can properly resolve eigenvalues only in a range that spans approximately
fifteen orders of magnitude, hence the smallest (dormant) eigenvalues are too close to zero
to be resolvable within machine accuracy [32]. However these are always negligibly small
and their number is known a-priori, being equal to the number of elements.
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reverse reaction (Rb-8) when approaching equilibrium.

Figure 7: Eigenvalues (grey, in Λ formulation), TSR (red, in Ω formulation) and temper-
ature evolution against number of integration timestep (a) and time (b). Above crossover
regime.

Figure 8: TSR Participation Indices against time. Above crossover regime.

3.2.2. Below crossover auto-ignition

Figure 9 shows the systems’ eigenvalues evolution against integration
time-step (left) and time (right) for the T0=750 K case. Differently to the
previous case, the positive eigenvalue becomes large with a long delay, and
the ignition delay itself is extremely large (τign ≈ 73.6 s). However, the
post-ignition behavior of the eigenvalues resembles the previous case one.
Again, TSR tracks the positive eigenvalue until merging, then follows λ9.
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More insights may be obtained from Fig.10, that shows the time evolu-
tion of the TSR participation indices, plotted with 3 different degrees of
magnification, so as to appreciate their evolution far and close to ignition.
As expected, the initiation reaction Rb-10 is again the leading process in
the first instants. Then, reaction Rb-18 takes the lead, followed by Rf-16
and Rf-15, perfectly resembling the alternative ignition path, typical of the
below-crossover regime. Noteworthy, Rf-1 and Rf-9 have similar importance
indices, since they compete, preventing the chain branching process typical
of high-temperature mixtures. Then, after a long time delay, Rf-1 eventually
becomes the most important process, in correspondence of the maximum
temperature increase and positive eigenvalues merging. Figure 11 shows the
same indices plotted against the number of integration time-step, to allow
a comparison with the eigenvalues/TSR evolution of Fig.9 (left). Interest-
ingly, the positive eigenvalue starts increasing around time-step #900, which
corresponds to the couple Rf-1/Rf-9 overtaking Rf-16 as the most important
reactions. Interestingly, the sharpest positive eigenvalue growth happens be-
tween time-steps #1000 and #1400, where the chain terminating reaction
Rf-9 is the leading process, with Rf-1 slightly less important. However, the
maximum temperature rate and the eigenvalues merging correspond to Rf-1
being the reaction with the largest participation index.

Figure 9: Eigenvalues (grey, in Λ formulation), TSR (red, in Ω formulation) and temper-
ature evolution against number of integration timestep (a) and time (b). Below crossover
regime.

In conclusion, the TSR analysis allowed to reveal the active chemical
time scales and the reactions participating to the active modes. The latter
are in complete agreement with the physical expectations in both cases, i.e.
above and below crossover, where substantially different chemical pathways
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Figure 10: TSR Participation Indices against time, with different degrees of magnification.
Below crossover regime.

are taken. In addition, the TSR participation indices may be even used to
identify the regimes. For example, by inspecting the relative participation of
reactions Rf-1 and Rf-9, one can infer whether the mixture experienced an
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Figure 11: TSR Participation Indices against number of time-step. Below crossover regime.

above- or below-crossover ignition, and which is the crossover temperature,
which is a function of pressure. Figure 12 (left) shows the difference between
P ωτ̃

Rf-1 and P ωτ̃
Rf-9, averaged over the branching region of the auto-ignition, com-

puted for a set of stoichiometric batch reactor solutions obtained at different
initial temperature and pressure. For a fixed pressure, it can be observed
that the two indices are equal, i.e. their difference is zero, up to a certain
initial temperature, where they start to differ in favor of a larger P ωτ̃

Rf-1. When
the two are equal, the regime may be labeled as below-crossover, while P ωτ̃

Rf-1

larger than P ωτ̃
Rf-9 is a typical behavior encountered in above-crossover regimes.

The temperature at which the regime changes may be denoted as crossover
temperature. Note that, increasing pressure, the initial temperature where
reaction Rf-1 starts to participate more than Rf-9, i.e. the crossover tem-
perature, shifts towards higher temperatures. This behavior is clearly visible
in Fig.12 (right), which resembles the analytic expression for the crossover
temperature defined in [33].

3.3. Analysis of a laminar flame

The recognition of patterns in multi-dimensional reacting flows, e.g. ex-
plosive layers and flame fronts, is typically done manually, by visual inspec-
tion of primitive state variables, such as Temperature or radical species con-
centrations. The CSP analysis, instead, is capable of returning a topology
of the reacting field based on CSP observables, such as the number of ex-
hausted modes or the TSR, which can be used for feature identification and
tracking. It is hereby reported an example of how to perform a TSR analysis
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Figure 12: Difference between Pωτ̃
Rf-1 and Pωτ̃

Rf-9 with increasing initial temperature T0, for
different pressure values p0 (left); estimated crossover temperature against the analytical
expression proposed in [33](right)

of pre-computed data of the ignition of an unsteady laminar flamelet, evolv-
ing in time in the mixture fraction space. The unsteady laminar flamelet
model represents the competition between chemical kinetics and molecular
diffusion processes in a flame structure which is locally one-dimensional, and
depends only on time and on the coordinate normal to the flame front. This
description is the basis of many models for turbulent combustion, under the
hypothesis that the flame is thin compared to other flow and wrinkling scales.
In place of the physical normal coordinate, the mixture fraction z is com-
monly employed, which measures the local fuel/oxidizer ratio. The mapping
between the physical space and the mixture fraction space is embedded in the
scalar dissipation rate χ := 2D(∂z/∂x)2, which controls the diffusive terms
in the flamelet evolution equations [1].

The dataset consists of thermochemical states (species and temperature,
stateYT), and diffusive fluxes of species and temperature (diffY and diffT),
the latter needed to compute the extended (to transport) TSR. In general,
this analysis can be performed supplying either the diffusive fluxes, the con-
vective fluxes, or both simultaneously. The kinetic mechanism [34], contain-
ing 12 species and 33 reversible reactions, is designed for syngas combustion.
More details on the dataset and the results can be found in [8]. The time
evolution of the flamelet temperature is reported in Fig.13 (left): the ini-
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tial condition (1000 K uniform temperature) ignites and evolves towards the
steady solution with a peak temperature of 2000 K. The scalar field of the
HCO mass fraction, which is a known marker of the flame front, is shown
in the Z-time space in Fig.13 (right). A visual inspection of the flame front
does not highlight any peculiar role of transport in the ignition dynamics.

Figure 13: Time evolution of Temperature in the mixture fraction space. The represented
snapshots are taken at t = (3, 3.6, 3.8, 3.91, 3.95, 4, 4.06, 4.1, 5) × 10−3 s (left); scalar
field of the HCO mass fraction in the Z-time space (right).

The relevant code lines for the TSR analysis of this dataset are:

1 #loop over data points

2 for i in range(begin ,end):

3 gas.constP = Pressure[i]

4 stateYT = np.append(Y[i],Temp[i])

5 rhsdiffYT = np.append(diffY[i],diffTemp[i])

6 gas.set_stateYT(stateYT)

7 TSR , NofDM = gas.calc_TSR(getM=True)

8 TSRext , NofDMext = gas.calc_extended_TSR(getMext=True ,

diff=rhsdiffYT)

The main outcomes of the analysis are the scalar fields of M (exhausted
modes) and TSR, in both the chemical and extended versions. As detailed
in [8], the comparison of the CSP objects related to the chemical source term
alone and to the chemical plus transport (i.e., extended) right hand side,
sheds light on the role of transport on the ignition dynamics. Figure 14 shows
one possible visualization of the TSR fields. A positive TSR is a marker for
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chemical ignition, while a positive extended TSR is a marker for transport-
supported ignition, i.e. where diffusion plays a significant role in the explosive
regime (deflagration front). In the specific case presented in [8] and shown in
Fig.14, ignition starts at the most-ignitable mixture fraction (Zign ' 0.5) and
is initially chemically-driven (green area in Fig.14), then, as soon as kinetics
creates spatial non-uniformities, diffusion steps in and propagates heat and
mass outwards with respect to Zign. The reaction–diffusion wave (red area in
Fig.14) travels towards leaner mixtures and a peak temperature is reached
at Z ' 0.055.

1800 
1700 1600 

1500 
1400 

auto-ignition
1300

1200

deflagration

Figure 14: Time evolution of a laminar flamelet in the Z-time space. Locus of posi-
tive chemical TSR (green), of positive extended TSR (red), contour-lines of Temperature
(gray).

3.4. Simplification of a detailed kinetic mechanism

A typical mechanism simplification workflow using the CSPsimplify class
is demonstrated in the size reduction of the 53-species GRI3.0 chemical re-

25



action mechanism [26]. The simplification task is performed by feeding the
algorithm with a database of thermochemical states describing the time evo-
lution of a constant pressure homogeneous reactor initialized with a stoichio-
metric mixture of methane CH4 and air at 1000 K at ambient pressure.

The dataset is generated with Cantera. The CSPsimplify class object
simplifier is then created and associated to this dataset:

1 import PyCSP.Functions as csp

2 import PyCSP.Simplify as simp

3 dtl_mech = csp.CanteraCSP(’gri30.yaml’)

4 #init simplifier

5 simplifier = simp.CSPsimplify(dtl_mech ,dataset)

The simplification settings are specified afterwards. Specifically, the TSR
is in charge of automatically identifying the local target species. The inert
species N2 is manually added to this set. The detailed listing and description
of all the settings is available in the user’s manual.

1 #simplifier settings

2 simplifier.TSRtargetset = True

3 simplifier.TSRtol = 0.5

4 simplifier.targetset = {’N2’}

5 simplifier.problemtype = ’constP ’

6 simplifier.scaled = False

7 simplifier.csprtol = 1.0e-2

8 simplifier.cspatol = 1.0e-8

The dataset processing consists in the calculation and storage (in dedi-
cated class attributes) of the fast/slow importance indices:

1 simplifier.process_dataset ()

The simplification algorithm is finally launched with a given threshold
thr and the simplified mechanism is then created by instantiating a new
CanteraCSP object:

1 species , reactions = simplifier.simplify_mechanism(thr)

2 simp = csp.CanteraCSP(thermo=’IdealGas ’, kinetics=’

GasKinetics ’, species=species , reactions=reactions)

The execution of the simplify mechanism method for a range of thresh-
olds between 0 and 1 returns the simplified mechanisms whose errors on
the ignition delay time with respect to the detailed mechanism (in the same
ignition problem) are shown in Fig.15 (left) as a function of the number
of retained species. The ignition delay time is computed as the peak heat
release rate. As the figure shows, the smaller mechanism obtained has 19
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species and an error of 3% on the ignition delay time. Note that the error
is non-monotonic, due to the effect of partially removing clusters of species.
Comprehensive tests are advisable on homogeneous problems having differ-
ent initial conditions than the training dataset one, such as the one shown in
Fig.15 (right), which depicts the ignition delay error of the 19-species skeletal
mechanism over a range of conditions.

Figure 15: Relative error on ignition delay time versus number of retained species (left);
error of the 19-species mechanism in different temperature T and equivalence ratio φ
conditions (right)

3.5. Time integration of a homogeneous reactor

This example shows how to integrate a homogeneous reactor with the
CSPsolver class.

1 import PyCSP.Solver as cspS

2

3 #create an instance of CSPsolver (gas is an instance of

CanteraCSP)

4 solver = cspS.CSPsolver(gas)

5 solver.set_integrator(cspRtol =1e-2,cspAtol =1e-8,factor =0.2)

6 solver.set_initial_value(y0 ,t0)

7

8 #advance in time with CSP solver

9 while solver.t < t_end:

10 solver.integrate ()
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The relevant difference with classic Cantera’s integration is the set integrator

method, which is used to set the CSP solver parameters, namely the ex-
hausted modes tolerances and a safety factor γ on the time step magnitude,
which is automatically estimated. Each call to integrate() performs the
following series of operations (see [22] for more details): it computes the
CSP kernel, it applies a first algebraic radical correction to approach the
local manifold, it evaluates the number of exhausted modes, it builds the
slow projection matrix, it integrates the slow dynamics with a 4-th order
Runge-Kutta explicit scheme with a time step dt = γ τM+1, it computes a
second algebraic radical correction to approach the new manifold and ob-
tain the state at time t + dt. Figure 16 shows homogeneous reactor ODE
solutions obtained with the CSP solver versus the Cantera’s implementation
of CVODE. The initial mixture is ambient pressure, stoichiometric, hydro-
gen/air at 1200 K. The CSP solver is as accurate as CVODE, but advances
in time with larger time steps.

Figure 16: Temperature and H mass fraction as solutions of a homogeneous reactor,
obtained with CVODE (blue) and CSP solver (magenta).

4. Conclusions and future developments

PyCSP is a Python package which provides tools for the analysis and re-
duction of chemically reacting systems. It is aimed at researchers in the field
of chemistry, combustion and engineering, who face the need to synthesize the
information contained in massive simulation datasets and/or reduce the com-
putational expense of such simulations using reduced order models. PyCSP
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exploits advanced algorithms based on computational singular perturbation
to offer opportunities for feature identification and model reduction.

The PyCSP user is presented with several application examples, allowing
rapid computation and investigation of typical cases, such as ideal reactors
and multi-dimensional flames, facilitated by the inheritance of Cantera’s
Solution class methods.

The CSP theory has already been employed to analyze other categories
of multi-scale systems, e.g., biological kinetics models, pharmacokinetics [35,
36, 37], and catalytic systems [38], while other research fields might benefit
in the future from the application of the CSP analysis, such as the phoretic
self-propulsion in synthetic micro-swimmers [39, 40]. Computational models
for such systems share obvious similarities with chemical models for the ox-
idation of fuels. The PyCSP tools are readily extendable to the analysis of
biological systems, provided that a kinetic mechanism description is available
in a Cantera-compliant format. Moreover, the PyCSP package is potentially
extendable in the following directions:

• The implementation of algorithms, e.g., based on Artificial Intelligence,
devoted to the automatic classification/recognition of reacting flow pat-
terns, supported by the outcomes of a CSP analysis, is advisable.

• The CSP observables are state functions. The training of an artifi-
cial neural-network (ANN) capable of predicting the TSR would al-
low, in example, a cheap on-the-fly calculation of the chemical driving
timescale.

• The CSP analysis is intrinsically local, making it favourable to dis-
tribute the analysis of many state points to different processors. This
practice would be of major interest when the analyzed dataset consists
of millions or billions of data points, such as in reacting DNS.

Contributions in the aforementioned directions are warmly welcome.
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