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A B S T R A C T

One of the key enabling solutions to in-orbit extract information from Earth Observation images is given by
deep learning techniques. However, the accuracy of these algorithms is strictly related to the availability of
large datasets of satellite images for training purposes. Limitations on the available transmission bandwidth in
the orbital context may prevent the possibility to downlink all acquired images to a node where centralized
training happens. Instead, Federated Learning (FL) could be fruitfully leveraged in this scenario, since it
provides for each satellite to train a local model only with its own dataset, and then to share its trained
model with a central server, which receives models trained by the different satellites and aggregates them
into a new global model being eventually shared with all the satellites, and this repeats until convergence
is reached. However, because communication with a node acting as a central parameter server may be still
limited by short visibility time, the described process may need a long time because of limited communication
windows, negatively impacting the time needed to reach model convergence. For this reason, we propose
a communication strategy to support a completely distributed learning technique to train a deep learning
model in-orbit, by leveraging the fact that satellites may form a network thanks to the potential availability
of Inter-Satellite Links (ISLs) within and between orbital planes. Our proposal is different from a FL approach
since we provide for each satellite to receive all the information needed to calculate an updated global model
by itself, without leaning on a central parameter server. Numerical results show that distributed learning
outperforms FL in number of learning rounds completed in the unit time, allowing for reaching validation
accuracy convergence in a shorter time, as it has been verified on a land coverage classification task based on
the EuroSAT dataset.
1. Introduction

Orbital Edge Computing [1] (OEC) is a solution providing for lever-
aging computational capacity available on board of satellites to process
data directly in-orbit. This technique would enable a paradigm shift
with respect to what happens today, providing for satellites gathering
information and storing it in their memories until they fly over a ground
station, when all stored information are downlinked for processing on
the Earth. However, data downlink may require a high data rate, since
a high amount of data shall be transmitted to the ground station during
short visibility time, and this poses a problem for future satellites, since
data rate is limited by the amount of power available on board, thus, by
the dimension and masses of solar panels and batteries. Thanks to the
ability to process data on board, OEC can benefit several applications,
like mega-LEO constellations [2], Non-Terrestrial Networks (NTNs) [3,
4] and Space–Air–Ground Integrated Networks (SAGINs) devoted to
5G [5] and to 6G [6]. Furthermore, OEC can be fruitfully leveraged
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also in the context of Earth Observation (EO) constellations, since by
processing acquired images on board, it is possible to downlink to
ground only the information actually useful to the application [7–
12]. For example, in an hypothetical flooding detection application,
thanks to OEC it would be possible to determine on-board whether
there is a flooding in a certain region or not, and only transmit this
information on ground, instead of downlinking the full image to be then
elaborated by the ground station. In particular, when OEC is available
in a constellation where satellites constitute a communication network
thanks to ISLs, this solution shows a reduction in operating cost [13], in
time to make gathered information available on ground [13–16], and
in energy to be used on ground stations to process data [17].

Under the application viewpoint, one of the key enabling solutions
to extract information from acquired images, both on satellites and
on ground, is given by deep learning techniques [7,18]. However,
the accuracy of these algorithms is strictly related to the availability
vailable online 6 July 2024
389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2024.110625
Received 21 December 2023; Received in revised form 10 June 2024; Accepted 1 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

uly 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:vincenzo.eramo@uniroma1.it
https://doi.org/10.1016/j.comnet.2024.110625
https://doi.org/10.1016/j.comnet.2024.110625
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110625&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Networks 251 (2024) 110625F. Valente et al.
of large datasets for training purposes [19]. In case of EO-related
applications, these datasets involve the availability of a high number of
satellite images on the device where model are trained. For example,
in this scenario we would have to transfer all the acquired images to
the training node (i.e., a ground station or a specific satellite), where
model training is executed. However, this would again require for a
high amount of bandwidth, i.e., high transmission data rate to transfer
a high amount of data in a short visibility time. Another solution could
be given by making satellite sharing their own datasets in such a way
that each satellite can train the model by itself on a dataset given by the
union of its own dataset and the ones appertaining to the other satellites
in the constellation. However, this solution can be again limited by the
available bandwidth and by the computational capacity available on-
board, since training a model on a larger dataset requires an increased
computational effort. Instead, Centralized federated learning can be
fruitfully leveraged in this scenario, since this technique provides for
each satellite to train a local model only with its own dataset, and then
to share its trained model with a central server, which receives models
trained by the different satellites and aggregates them into a new global
model which is finally shared with all the satellites, and this repeats
until convergence is reached [20]. It is important to underline that
this solution is more appropriate in the orbital environment because
only the models are shared instead of all datasets, and models have a
reduced size with respect to datasets of satellite images. Furthermore,
local training happens with a reduced amount of data (i.e., a single
satellite dataset, being obviously smaller than the union of the datasets
appertaining to all satellites). However, because communication with a
ground station (or, in general, with a node acting as a central parameter
server) is limited by short visibility time, local model gathering and
consequent global model transmission to all satellites may need a
long time because of limited communication windows, and this has a
negative impact on the time needed to reach model convergence, which
is strictly related to the completion of these model sharing rounds.
Applications of decentralized federated learning solutions are not suited
in satellite network environments; in fact their serial local training and
the needed to serially transfer the local models between satellites make
them slow in convergence time.

For this reason, in this work we propose and investigate a dis-
tributed learning solution where satellites share their own models
among themselves, without leaning on a central parameter server.
When each satellite has received the models related to all the other
satellites, it autonomously aggregate them in a new global model,
which will be locally trained. Then, new local models are again shared
among satellites to start a new iteration, and this procedure goes on
until reaching model convergence. In particular, the novel contribution
of this work can be found in the following points:

• We propose a completely distributed learning-based strategy to
train a deep learning model in orbit, by leveraging the fact that
satellites may form a network thanks to the potential availability
of ISLs within and between orbital planes. Our proposal is dif-
ferent from a traditional federated learning approach since our
strategy does not rely on a central parameter server; it is also
different from a decentralized federated because the local models
can be in parallel trained and that leads to better performance in
training convergence time.

• We evaluate the proposed solution in a real orbital scenario,
in particular by focusing on the impact that constellation and
application design-related parameters have on its performance,
in comparison with state-of-the-art federated learning-based so-
lutions. Results show that the proposed solution outperforms the
federated learning ones in terms of weight distribution time; for
instance this time is improved by 80% in a scenario with 12
satellites and 2 orbital planes.
2

• We also carry out the comparison in a real training case with data
extrapolated by the EuroSAT dataset [21]. The comparison pa-
rameters are the typical ones that is the convergence time and the
test accuracy; we obtain test accuracy of 80% with convergence
time of 1,25 h and 1,69 h for the proposed and learning federated
solutions respectively, that is to say that the distributed learning
solution allows for a reduction by 26% of the convergence time
with respect the federated learning solution.

The rest of the paper will be organized as follows. Related works are
discussed in Section 2; we introduce the network and application model
in Section 3; Section 4 is devoted to the definition of the distributed
learning solution; Section 5 shows the numerical results to compare
the proposed solution with state-of-the-art, federated-learning based
benchmarks and, finally, Section 6 concludes the paper retracing the
main results of the work.

2. Related works

In this work, we focus on the advantage that an appropriate leverage
of networks made by satellites endowed with on-board processing
capability can bring to in-orbit machine learning applications dedicated
to Earth Observation. For this reason, the proposed research can be
associated to literature dedicated to NTNs and SAGINs, as well as
to edge computing in satellite constellations, with a special focus on
studies on the EO applications and on how machine learning can be
leveraged within EO constellations.

As far as NTNs and SAGINs are concerned, strategies to deal with
latency appears to be one of the most explored topics in literature. For
example, a solution to guarantee real-time communications in mega-
constellations is illustrated in [22], whose authors propose a strategy
based on appropriate flow allocation and on cloud or satellite relay
servers. Instead, Zhang at al. [3] underline how latency, jitter, unstable
routing and limited network reachability may pose an issue in the
integration of LEO mega-constellations and ground networks, and for
this reason they propose an optimal solution to integrate these net-
works with minimum latency and stable routing. Furthermore, several
works propose applications of Artificial Intelligence in this context. For
example, deep reinforcement learning is leveraged in [23] for traffic
offloading purposes in a highly dynamic topology and traffic scenarios
like orbital ones. Furthermore, AI applications to NTNs and SAGINs are
particularly considered in the context of 6G. Thang et al. [24], leverages
AI in the integration of NTNs and terrestrial networks enhancing the
energy efficiency of maritime networks. Chen et al. [25], focuses on
the performance evaluation of federated learning techniques in LEO
constellations for 6G. Finally, the advantage of leveraging a satellite
network in the EO missions context is underlined by [26], where a
solution to improve timeliness of EO data by taking advantage of
mega-constellations is proposed.

Moving on research related to in-orbit edge computing applications,
two main research strands can be identified, related to satellite edge
computing supporting either terrestrial mobile users or EO missions.
As far as the first area of research is concerned, an investigation on
how Mobile Edge Computing can be extended to SAGINs has been
proposed in [27], with a particular focus on challenges, architecture
and technologies needed to achieve this goal. Instead, scheduling strate-
gies and architecture to leverage satellite edge computing in Internet
of Things (IoT) have been studied in [28]. AI applications have been
considered also in this context [29], where deep imitation learning is
leveraged in a task offloading and caching strategy to optimize the task
completion time and the satellite resource usage. As far as support of
EO missions is concerned, European Space Agency 𝛷-Sat −1 Mission [7]
demonstrated the feasibility of processing data on a satellite by means
of AI techniques. However, several research works focus on the gains
that can be obtained by combining satellite networks and OEC capabil-
ities. In particular, authors of [13] proposed a strategy able to jointly
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allocate resource and place processing in networks of EO satellites
having on-board processing capability to optimize the total operating
cost to be paid for data transmission, storage and processing. The same
authors proposed in [17] a heuristic-based strategy to minimize the
energy consumption on Earth due to image processing by leveraging the
possibility of in-orbit processing, given the limitations on bandwidth,
memory, processing capacity and energy on board of satellites. Instead,
an improvement in EO data timeliness can be obtained by means
of load-balancing within EO constellations where satellites have the
possibility to process data directly in-orbit [14].

On the same research strand, it is possible to identify a high in-
terest in federated learning techniques in LEO satellites, which can
be fruitfully applied in the EO mission context. In the satellite net-
work environments, centralized federated learning solutions have been
proposed and evaluated. The decentralized ones [30] have not had
applications [20] because their ineffectiveness in this context, being
based on both a serial local training and model transfer between
satellites.

A comprehensive presentation of the state-of-the-art centralized fed-
erated learning strategies in mega-LEO constellations is given by [20],
where three federated learning scenarios in orbital environment are
discussed, depending on the availability of links between a node acting
as a parameter server (where local models are aggregated to up-
date a global model) and the satellites, as well as the communication
opportunities within the constellation itself. In particular, the paper
identifies the scenario where inter-orbital ISLs are available as the most
promising for further research. The same authors proposed a deeper
investigation of the three federated learning scenarios in further works.
In particular, in case of sporadic connection possibilities to a parameter
server, as it happens in case no ISL is available or only a ground station
takes part to the federated learning process, an asynchronous federated
learning strategy has been proposed in [31]. However, the convergence
speed of such a scheme may be compromised by model staleness. As
explored in [32], a solution to this problem can be given by leveraging
the predictability in communication opportunities with the ground
station, which allows for the proposal of a scheduling algorithm to
optimally decide when the model parameter exchange between ground
stations and satellites shall happen. Instead, in [33], authors focused
on the case in which only intra-orbital ISLs are available, proposing a
communication scheme enabling synchronous federated learning with a
parameter server placed on the ground or in a satellite not appertaining
to the constellation.

To the best of our knowledge, no study in literature proposed
a distributed learning strategy in constellations of satellite endowed
with on-board processing capability and interconnected by means of
ISLs. A distributed learning approach has been evaluated [34] in the
context of the prediction of processing capacities in network function
virtualization (NFV). However, this solution is based on the fact that
topology is static in time, while this is not true in case of orbital
environment, where the availability of inter-orbital ISLs and links
between satellites and ground stations changes in time because of the
satellites and Earth relative motion. For this reason, the distributed
learning strategy available in literature cannot be applied in the context
of satellite constellations for EO, and an appropriate solution needs to
be proposed and investigated.

3. Network modeling

The satellite network scenario is reported in Fig. 1.
The main parameters introduced in the paper are reported in Ta-

ble 1. We consider to have a constellation of 𝑁𝑆𝑎𝑡 satellites, equally
distributed over 𝑁𝑜𝑝 orbital planes. In this scenario, we will assume
ach orbit to be circular, with altitude ℎ𝑝, inclination 𝑖𝑝 and right

ascension of the ascending node 𝛺𝑝, for 𝑝 ∈ [0,… , 𝑁𝑜𝑝 −1]. We assume
that the 𝑖th satellite, with 𝑖 ∈ [0,… , 𝑁𝑆𝑎𝑡 − 1], appertain to the orbital
plane 𝑝 = ⌊𝑖 ⋅𝑁 ∕𝑁 ⌋ and occupies the position 𝐫 (𝑡) at time 𝑡 in the
3

𝑖 𝑜𝑝 𝑆𝑎𝑡 𝑖
Table 1
Network model parameters.

Set or parameter Description

𝑁𝑠𝑎𝑡 number of satellites
𝑁𝑜𝑝 number of orbital planes
ℎ𝑝 orbit altitude
𝑖𝑝 orbit inclination
𝛺𝑝 orbit right ascension of the ascending node
𝑖 index in [0,… , 𝑁𝑠𝑎𝑡 − 1] representing a satellite
𝑝𝑖 orbital plane occupied by the 𝑖th satellite, with

𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1]
𝐫𝑖(𝑡) position vector of the 𝑖th satellite, with 𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1]
ℎ𝑝 altitude of satellites on the 𝑝th orbital plane, with

𝑝 ∈ [0,… , 𝑁𝑜𝑝 − 1]
𝑇𝑝 period of motion of satellites on the 𝑝th orbital plane, with

𝑝 ∈ [0,… , 𝑁𝑜𝑝 − 1]
𝑅𝐸 Earth’s radius
𝜇𝐸 Earth’s gravitational constant
𝐺 antenna gain
𝑐 speed of light
𝜈𝑡𝑥 carrier frequency
𝑃 transmission power
𝑅𝑖,𝑗 transmission data rate between 𝑖th and 𝑗th satellite, with

𝑖, 𝑗 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1], 𝑖 ≠ 𝑗
𝐵 transmission bandwidth
𝑘𝐵 Boltzmann’s constant
𝑇𝑠 system noise temperature
𝑁𝐺𝑆 number of ground stations
𝑔 index in [0,… , 𝑁𝐺𝑆 ] representing a ground station
𝐫𝐺𝑆𝑔

(𝑡) position vector of the 𝑔th ground station, with
𝑔 ∈ [0,… , 𝑁𝐺𝑆 − 1]

𝑇𝐺𝑆 ground station rotation period, i.e., Earth’s sidereal day
𝑇 repeat cycle time
𝐸𝑙𝑚𝑖𝑛 minimum elevation angle

ECI reference frame. Satellite motion repeats with a period depending
on the altitude ℎ𝑝 of the orbit it occupies, i.e., 𝑇𝑝 = 2𝜋

√

(

𝑅𝐸 + ℎ𝑝
)3 ∕𝜇𝐸 ,

with 𝑝 ∈ [0,… , 𝑁𝑜𝑝 − 1], where 𝑅𝐸 is the Earth’s radius (assuming,
without loss of generality, a perfectly spherical Earth) and 𝜇𝐸 is the
Earth’s gravitational constant.

We can define the distance between the 𝑖th and 𝑗th satellite at time
𝑡, with 𝑖, 𝑗 ∈ [0,… , 𝑁𝑆𝑎𝑡 − 1], 𝑖 ≠ 𝑗, with the following expression:

𝑑(𝑖, 𝑗, 𝑡) = |𝐫𝑖(𝑡) − 𝐫𝑗 (𝑡)| (1)

The distance between two satellites at time 𝑡 allows us to determine
whether an ISL is available or not. In fact, in general an ISL between the
𝑖th satellite and the 𝑗th satellite at time 𝑡 is available if the following
condition is verified:

𝑑(𝑖, 𝑗, 𝑡) ≤ 𝑑𝑚𝑎𝑥(𝑖, 𝑗) (2)

where 𝑑𝑚𝑎𝑥(𝑖, 𝑗) represents the maximum distance between the 𝑖th and
𝑗th satellite at which communication is possible. Under the assumption
of Additive White Gaussian Noise channel, this can be calculated as:

𝑑𝑚𝑎𝑥(𝑖, 𝑗) =
𝐺 𝑐
4𝜋𝜈𝑡𝑥

√

√

√

√

√

𝑃
(

2
𝑅𝑖,𝑗
𝐵 − 1

)

𝑘𝐵𝑇𝑠𝐵
(3)

where 𝐺 is the antenna gain, 𝑐 is the speed of light, 𝜈𝑡𝑥 is the carrier
frequency, 𝑃 is the transmission power, 𝑅𝑖,𝑗 is the transmission data
rate between the satellites, 𝐵 is the bandwidth, 𝑘𝐵 is the Boltzmann’s
constant, 𝑇𝑠 is the system noise temperature.

From Fig. 1 we notice that two types of ISLs can be distinguished in
the network topology: intra-orbital and inter-orbital reported with red
and green colors, respectively. The intra-orbital links connect satellites
located in the same orbital plane; conversely the inter-orbital links
connect satellites located in different orbital planes. Next we describe
the characteristics of the two types of links.

Since all satellites on a same circular orbit move with the same

angular velocity, the intra-orbital links does not change their distance
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Fig. 1. Satellite network scenario.
over time and contribute to a stable network topology. The availability
of intra-orbital link does not depend on the time and it can be verified
more easily than from the application of the expression (2). From
knowledge of orbital parameters and in particular angular velocity, we
can easily identify simple conditions for the availability of intra-orbital
links. They are available if and only if the following two conditions are
verified for any couple of adjacent satellites in the orbit:

⎧

⎪

⎨

⎪

⎩

2
(

𝑅𝐸 + ℎ𝑝
)

sin
( 2𝜋𝑁𝑜𝑝

𝑁𝑆𝑎𝑡

)

≤ 𝑑𝑚𝑎𝑥(𝑖, 𝑗)
(

𝑅𝐸 + ℎ𝑝
)

cos
( 2𝜋𝑁𝑜𝑝

𝑁𝑆𝑎𝑡

)

> 𝑅𝐸 ,

for any 𝑖 ∈ [0,… ,
𝑁𝑆𝑎𝑡
𝑁𝑜𝑝

− 1], 𝑗 = (𝑖 + 1) mod
𝑁𝑆𝑎𝑡
𝑁𝑜𝑝

(4)

where the first condition ensures that the line of sight distance between
two adjacent nodes is smaller than the maximum distance at which
communication is possible, as defined in Eq. (3), while the second
condition ensures that the line of sight does not intersect the Earth. If
these are satisfied for any couple of satellites in the orbit, intra-orbital
ISLs are always active, otherwise, they are always unavailable. Please
notice that we are assuming intra-orbital ISLs to be potentially available
only between a satellite and its adjacent nodes in the orbit.

The inter-orbital links change their distance because of the move-
ment of the satellites on orbital planes with different inclinations. For
this reason the availability of these links is intermittent but predictable
according to the study over time of the availability expression (2)
where 𝑑𝑚𝑎𝑥(𝑖, 𝑗) is expressed by (3) and 𝑑(𝑖, 𝑗, 𝑡) depend on the position
vectors 𝐫𝑖(𝑡) and 𝐫𝑗 (𝑡) and consequently by the orbital parameters. The
predictability of link unavailability allows for a-priori assessment of its
impact on the performance of the distributed procedure.

As far as ground segment is concerned, we consider 𝑁𝐺𝑆 ground
stations on the Earth enabled to receive data from the constellation.
Each ground station moves with the Earth, thus, its position in time
𝐫𝐺𝑆𝑔

(𝑡), with 𝑔 ∈ [0,… , 𝑁𝐺𝑆 ], changes periodically with a period equal
to the sidereal day, 𝑇𝐺𝑆 = 86164 s. Thus, the entire system constituted
by all satellites and ground stations is periodic, with a period 𝑇 =
𝑙𝑐𝑚

(

𝑇𝐺𝑆 , 𝑇0,… , 𝑇𝑁𝑜𝑝−1

)

where 𝑙𝑐𝑚 denotes the least common multiple.
We assume that communications between the 𝑖th satellite and the 𝑔th
ground station are possible when the elevation angle of the satellite
with respect to the ground station (i.e., the angle between the tangent
4

plane to the Earth surface containing the ground station and the vector
Earth center-satellite vector) is higher than a minimum elevation 𝐸𝑙𝑚𝑖𝑛.
This translates in the following condition:

𝜋
2
− arccos

( 𝐫𝐺𝑆𝑔
(𝑡) ⋅ 𝐫𝑖(𝑡)

|𝐫𝐺𝑆𝑔
(𝑡)||𝐫𝑖(𝑡)|

)

≥ 𝐸𝑙𝑚𝑖𝑛,

∀𝑖 ∈ [0,… , 𝑁𝑆𝑎𝑡 − 1], 𝑔 ∈ [0,… , 𝑁𝐺𝑆 − 1]

(5)

where 𝐫𝐺𝑆𝑔
(𝑡) ⋅ 𝐫𝑖(𝑡) represents the scalar product between the position

vector of the ground station and of the satellite, respectively, and 𝐸𝑙𝑚𝑖𝑛
is in radiant. It is important to underline that, in case a satellite is able
to communicate with more than a ground station at a time, we assume
that it is connected with only one of them.

4. Proposed distributed learning solution

We propose a purely distributed learning solution where each satel-
lite stores the global training model, train it locally with its data and
distributes the weights towards all of the other satellites so that the
global model can be updated. We show in Fig. 2 an example of the
proposed solution in the case of three satellites where each of them
stores the global training model whose the weights 𝐰𝐺 are updated
by averaging the weights 𝐰𝑖 (𝑖 = 1, 2, 3) of the local models of all of
the satellites (weights update phase). The global model is trained with
the local data 𝐃𝑖 (𝑖 = 1, 2, 3) collected in the satellite. Each satellite
must exchange the weights 𝐰𝑖 (𝑖 = 1, 2, 3) of its neural network, sharing
it with the other satellites via a weight distribution process (weight
distribution phase). The satellites receive the weights of the various
local models and update the weights of the global one with a merge
of the weights.

The execution times of the three phases are reported in Fig. 3 where
we report the repeat cycle time 𝑇 that is the repetition time of the
satellite network topology; in fact despite the rotation of the Earth
and the movement of satellites around the Earth it is possible to prove
that satellites reach the same position at instants that are a repeat
cycle time 𝑇 apart. From Fig. 3 we notice how the distributed learning
algorithm is applied in 𝑁𝑟 rounds in a repeat cycle time where in
each round the weight update, local training and weight distribution
phases are executed. We denote with 𝜎𝑙, 𝜏𝑙 and 𝛿𝑙 the duration of the
weight update, local training and weight distribution phases of the 𝑟th
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Fig. 2. An example of the proposed distributed algorithm with three satellites.
Fig. 3. Description of the weight distribution, weight update and local training phases in the distributed learning algorithm.
round respectively. Finally we assume that in each local training phase
𝑁𝑒𝑝 epochs are executed. We highlighted the difference between the
proposed distributed learning solution and the synchronous centralized
federated one [33]. This second solution is reported in Fig. 4 and it is
based on: (i) a global training model implemented in a Ground Station;
(ii) the distribution of the global training model from the GS to all
of the satellites; (iii) the local training of the model in each satellite
by using the collected data; (iv) the distribution of the local models
from the satellites to the GS so that the GS can merge them in the
global learning model with updated weights. From Fig. 4 we can notice
how the centralized federated algorithm is based on the execution of
𝑁𝑟𝐹 rounds where in each round are involved two weights distribution
phases that, because of the intermittent network links, leads to an
increase of the round time and consequently to an decrease in the
training convergence time with respect to our proposed distributed
learning solution.

Decentralized federated learning solutions have been also proposed
in literature [30] in which the global model is trained in turn by the
satellites. They are not considered in this paper because they require
in each round both a serial local training and a transfer of the global
model between satellites and for this reason they are very slow because
of the intermittent links of the satellite network.
5

Next we describe the weight update and local training phase of
our proposed distributed learning solution in Section 4.1. Finally the
weight distribution phase is reported in Section 4.2. Two options of the
proposed distributed learning procedure are illustrated in Section 4.3.

4.1. Weight update and local training phase

The main parameters of the learning model are reported in Table 2.
Thus, we assume that each 𝑖th satellite, with 𝑖 ∈ [0,… , 𝑁𝑆𝑎𝑡−1], has

its own dataset 𝐷𝑖, containing a number of samples |𝐷𝑖|, and a local
model represented by the vector 𝐰𝑟,𝑒

𝑖 , containing the local values for
weights at the 𝑒th learning epoch of the 𝑟th distributed learning round,
with 𝑟 ∈ [0,… , 𝑁𝑟], 𝑒 ∈ [0,… , 𝑁𝑒𝑝] and 𝑁𝑒𝑝 representing the maximum
number of local learning epochs, i.e., the maximum number of times
the local model goes through updates over the local dataset during
the round. As previously stated, each 𝑟th round, with 𝑟 ∈ [1,… , 𝑁𝑟],
starts with each 𝑖th satellite sharing its most updated version of locally
trained model, i.e., the local model after 𝑁𝑒𝑝 epochs at the end of the
previous round, denoted with 𝐰𝑟−1,𝑁𝑒𝑝

𝑖 , with all the other satellites. We
assume that 𝐰0,𝑁𝑒𝑝

𝑖 is the local model on the 𝑖th satellite before any
distributed learning round occurs. Once each satellite has received the
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Fig. 4. Phase Description in the centralized federated learning algorithm.
Table 2
Application model parameters.

Set or parameter Description

𝑁𝑟 number of distributed learning rounds
𝑁𝑒𝑝 number of local learning epochs
𝐷𝑖 dataset of the 𝑖th satellite, with 𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1]
|𝐷𝑖| number of samples in the dataset of the 𝑖th satellite, with

𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1]
𝐰𝑟,𝑒

𝑖 local model on the 𝑖th satellite, at the 𝑒th local training
epoch of 𝑟th distributed learning round, with
𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1], 𝑟 ∈ [0,… , 𝑁𝑟], 𝑒 ∈ [0,… , 𝑁𝑒𝑝]

𝐰𝑟
𝐺 global model at the beginning of 𝑟th distributed learning

round, with 𝑟 ∈ [0,… , 𝑁𝑟]
𝐹𝑖 local loss function on the 𝑖th satellite, with 𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1]

local models of all the remaining ones, the global model can be locally
obtained as:

𝐰𝑟
𝐺 =

𝑁𝑠𝑎𝑡−1
∑

𝑖=0

|𝐷𝑖|
∑𝑁𝑠𝑎𝑡−1

𝑖=0 |𝐷𝑖|
𝐰𝑟−1,𝑁𝑒𝑝
𝑖 (6)

and the local model on the 𝑖th satellite during the 𝑟th round before any
local learning epoch (i.e., 𝑒 = 0) is set as:

𝐰𝑟,0
𝑖 = 𝐰𝑟

𝐺 , ∀𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1] (7)

Finally, each 𝑖th satellite trains its local model by applying the
gradient descent technique considering only the local dataset for 𝑁𝑒𝑝
epochs. After local training, the local model will be:

𝐰𝑟,𝑁𝑒𝑝
𝑖 = 𝐰𝑟,0

𝑖 − 𝜂
𝑁𝑒𝑝−1
∑

𝑘=0
∇𝐹𝑖

(

𝐰𝑟,𝑘
𝑖

)

, ∀𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1] (8)

with 𝜂 representing the learning rate, and ∇𝐹𝑖 the gradient operator
applied on the function 𝐹𝑖 representing a local loss function, i.e., a loss
function evaluated only on the samples of the 𝑖th satellite dataset.

4.2. Weight distribution phase

Next we describe the Weight Distribution Phase in which each
satellite sends its weight to all other satellites. The main pseudo code
of the proposed algorithm proposed in this phase is reported in Alg.
1. The main parameters and sets have been previously defined except
for the event list 𝐸 of events. In particular, 𝐸 is an ordered list where
events are ordered by their occurrence time, with the earliest event
occupying the first position, i.e., being the 𝐸[0] element of the list.
Each event 𝜀 ∈ 𝐸 is characterized by an event type denoted by 𝜀.type,
whose value is ‘link-on’ if the event represents the fact that two nodes
reached a relative position such that they are close enough to allow data
transmission, it is equal to ‘link-off’ if the event represents two nodes
reaching a relative position such that their distance is not enough to
6

enable communication, or it is equal to ‘transfer_completed’ to indicate
that data transmission between two nodes is completed. Furthermore,
each 𝜀 event is also associated with a list of involved nodes 𝜀.𝑁 and
a time at which the event happens 𝜀.𝑡. Finally, in case the event is
‘link-on’ or ‘link-off’, the event is also associated to a property 𝜀.𝐿𝑂𝑇
indicating the time at which the link will be unavailable in case the
event type is ‘link-on’, or the time at which the link became available in
case the event type is ‘link-off’ ; instead, in case the event type is ‘trans-
fer_completed’, the event is associated to a property 𝜀.𝑊 representing the
models memorized on both the nodes involved in the data transfer after
the transmission ends. At the beginning, the event list contains only
‘link-on’ and ‘link-off’ events that can be obtained by orbital mechanics,
propagating node positions in time and evaluating their distances as
discussed in Section 3. In particular, we evaluate these events only
during a repeat cycle 𝑇 , since because of the periodicity of both satellite
and Earth motion, what happens in a repeat cycle will be repeated the
same in the following ones.

Moving to the discussion of the different algorithm steps described
in Alg. 1, in Line 1 we initialize:

• a boolean auxiliary variable 𝑒𝑥𝑖𝑡 indicating whether the local
model distribution phase is completed or not;

• an auxiliary variable 𝛬𝑖,𝑗 whose value is zero if at the current
event time no link is available between the 𝑖th and 𝑗th node, with
𝑖, 𝑗 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1], and is different from zero when the link is
available, with the specific value indicating the time at which link
will become unavailable;

• an auxiliary list 𝑀𝑖 for each 𝑖th node, with 𝑖 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1],
containing local models currently kept in memory on the 𝑖th node.

In particular, before the algorithm starts, we assume no link is
already available, since no link-on event has been considered, yet, and
we assume each node has in its memory its own local model only, since
no data transfer happened, yet.

After auxiliary variable initialization, next steps will be repeated
either until event list is not empty or the variable exit is True. In
particular, we first extract the earliest event in time 𝜀 from the event
list and remove it from the list (Lines 3–4). Then, we set auxiliary
variables 𝑡, 𝑖, 𝑗 to be equal to the event time, and to the first and
second nodes involved in the event, respectively (Lines 5–6). Following
steps depend on the event type. In case of ‘link-on’ event, since a new
link is available, we set 𝛬𝑖,𝑗 to be equal to the link-off time (Line
8). Furthermore, we assume that as soon as a link becomes available,
the two connected nodes try to share the models in their memories
following Alg. 2, which will be discussed in detail further on. In case
model transmissions are possible, a transfer completed event is added
to the event list (Line 9). Instead, in case of ‘transfer_completed’ event,
we first update the lists of received models on both nodes involved
in the exchange (Line 11) and then we check if each satellite in the
constellation has local models of all satellites in its memory (Lines 12–
19. In case all satellites have all the local models, auxiliary variable
𝑒𝑥𝑖𝑡 is set to True. Furthermore, we assume that as soon as a node has
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received local models, it tries to share them with other nodes, again
leveraging Alg. 2 (Lines 20–24).
Algorithm 1: Distributed Learning Algorithm

Input: 𝐸, 𝑁𝑠𝑎𝑡, 𝑅𝑖,𝑗 ∀𝑖, 𝑗 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1]
1 Initialize: 𝑒𝑥𝑖𝑡 ← 𝐹𝑎𝑙𝑠𝑒, 𝛬𝑖,𝑗 ← 0, 𝑀𝑖 ← {𝐰0,𝑁𝑒𝑝

𝑖 }, ∀𝑖, 𝑗 ∈ [0,… , 𝑁𝑆 − 1];
2 while 𝐸 ≠ ∅ ∧ 𝑒𝑥𝑖𝑡 ≠ 𝐹𝑎𝑙𝑠𝑒 do
3 𝜀 ← 𝐸[0] //Extract earliest event ;
4 𝐸 ← 𝐸 − {𝜀} //Remove the extracted event from the event list ;
5 𝑡 ← 𝜀.𝑡 //Extract the event time;
6 𝑖 ← 𝜀.𝑁[0], 𝑗 ← 𝜀.𝑁[1] //Extract linked nodes;
7 if 𝜀.type is ‘link-on’ then
8 𝛬𝑖,𝑗 ← 𝜀.𝐿𝑂𝑇 //Set the link-off time;
9 Add Transfer Complete Event(𝐸, 𝑖, 𝑗, 𝑀𝑖, 𝑀𝑗 , 𝑅𝑖,𝑗 , 𝛬𝑖,𝑗)

//Apply Alg.2;
10 else if 𝜀.type is ‘transfer_completed’ then
11 𝑀𝑖 ← 𝑀𝑖 ∪ {𝜀.𝑊 }, 𝑀𝑗 ← 𝑀𝑗 ∪ {𝜀.𝑊 } //Update the list of

received models on both the sharing nodes;
12 for 𝑛 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1] do
13 if |𝑀𝑛| == 𝑁𝑠𝑎𝑡 then
14 𝑒𝑥𝑖𝑡 ← 𝑇 𝑟𝑢𝑒 //All of the satellites have received all local

models;
15 else
16 𝑒𝑥𝑖𝑡 ← 𝐹𝑎𝑙𝑠𝑒 //At least a satellite has not received all

local models, yet ;
17 𝑏𝑟𝑒𝑎𝑘;
18 end
19 end
20 for 𝑛 ∈ {𝑖, 𝑗} do
21 for 𝑚 ∈ [0,… , 𝑁𝑠𝑎𝑡 − 1] do
22 Add Transfer Complete Event(𝐸, 𝑖, 𝑗, 𝑀𝑛, 𝑀𝑚, 𝑅𝑛,𝑚,

𝛬𝑛,𝑚) //Apply Alg.2;
23 end
24 end
25 else if 𝜀.type is ‘link-off’ then
26 𝛬𝑖,𝑗 ← 0 //Set the link as unavailable;
27 end
28 end

Let us now discuss steps of Alg. 2. As introduced before, it evaluates
f it is possible to complete a data transfer between two nodes and,
n positive case, it adds a transfer completed event in the event list.
n particular, we consider that in the communication between the 𝑖th
nd 𝑗th node, 𝑖 sends to 𝑗 all models that are in 𝑀𝑖 but not in 𝑀𝑗 ,

and vice versa. For this reason, we first evaluate the number of models
to be exchanged by means of the expression in Line 1, as well as the
transmission and propagation delay (Lines 2–3). Then, if the number
of models to be exchanged is different from zero and the link is still
available when the potential transmission is completed (Line 4), we add
a ‘transfer_completed’ event to the event list, having the time at which
transfer finishes as event occurrence time, 𝑖 and 𝑗 as involved nodes,
and the union of 𝑀𝑖 and 𝑀𝑗 as the models memorized on both 𝑖 and 𝑗
after transfer is completed (Lines 5–8). Finally, the new event is added
to the event list (Line 9).

As far as the complexity of the proposed strategy is concerned, it
is possible to notice that it is mainly related to the length of the event
list, to the maximum number of rounds and to the complexity of adding
a ‘transfer_completed’ event to the list. In particular, by implementing
the event list as an heap queue, adding an element to the queue
has a complexity  (log 𝑛), where 𝑛 is the length of the event list.
By looking at the loop starting in Line 2, we notice that, in order
to complete a round it is necessary that each satellite has received
local models from all the other satellites. In the worst case, this is
accomplished by means of direct communications between each couple
of satellites, leading to 𝑁𝑠𝑎𝑡(𝑁𝑠𝑎𝑡 − 1)∕2 ‘transfer_completed’ events for
each round. For this reason, the complexity of the strategy can be
given by 

(

𝑁2
𝑠𝑎𝑡 log 𝑛

)

. However, in the proposed strategy the event
list length may increase during each cycle of the loop, due to the
inclusion of new transfer_completed events. An upper bound to the event
7

Algorithm 2: Add Transfer Complete Event
Input: 𝐸, 𝑤𝑠, 𝑖, 𝑗, 𝑡, 𝑀𝑖, 𝑀𝑗 , 𝑅𝑖,𝑗 , 𝛬𝑖,𝑗

1 𝑛𝑤 ← |𝑀𝑖| + |𝑀𝑗 | − 2|𝑀𝑖 ∩𝑀𝑗 | //Number of local models to be
exchanged;

2 𝜏𝑡 ← 𝑤𝑠 ⋅ 𝑛𝑤∕𝑅𝑖,𝑗 //Calculate the transmission time;
3 𝜏𝑝 ← 2 ⋅ 𝑑(𝑖, 𝑗, 𝑡)∕𝑐 //Calculate the propagation time;
4 if 𝑛𝑤 ≠ 0 ∧ 𝑡 + 𝜏𝑡 + 𝜏𝑝 ≤ 𝛬𝑖,𝑗 then
5 𝜀̃.type ← ‘transfer_completed’ //Set new event type as transfer

completed;
6 𝜀̃.𝑡 ← 𝑡 + 𝜏𝑡 + 𝜏𝑝 //Time of the new transfer completed event ;
7 𝜀̃.𝑁 ← [𝑖, 𝑗] //Nodes involved in the new transfer completed event ;
8 𝜀̃.𝑊 ← 𝑀𝑖 ∪𝑀𝑗 //Weights on each involved node after new transfer

completed event ;
9 𝐸 ← 𝐸 ∪ {𝜀̃} //Add the new transfer completed event in the event list ;
10 end

Output: 𝐸

list length can be estimated by considering that, in the worst case local
model transfer between each couple of satellites can be completed only
if there is an active link between them and consequently a number of
𝑁𝑠𝑎𝑡(𝑁𝑠𝑎𝑡−1)∕2 ‘link-on’ (and, potentially, ‘link-off’) events shall be also
included in the list. For this reason, an upper bound to the event list
length can be given by (𝑁𝑠𝑎𝑡(𝑁𝑠𝑎𝑡−1)∕2)2. Consequently, the complexity
f the proposed strategy can be expressed by 

(

𝑁2
𝑠𝑎𝑡 log

(

𝑁4
𝑠𝑎𝑡

))

.
In order to better clarify the presented communication strategy, let

us introduce the example shown in Fig. 5. In particular, we consider
a constellation of three satellites, i.e., 𝑁𝑠𝑎𝑡 = 3. Initial event list
represented by link-on and link-off events is known because of orbital
mechanics, and we assume these events to be represented by the initial
and final extremes of the colored horizontal bars in Fig. 5, respectively.
At time 𝑡0, each node has only its own local model in memory, which

e assume to have been trained, as a matter of example, for 𝑁𝑒𝑝 = 1
poch, i.e., 𝑀𝑖 = {𝐰0,1

𝑖 }, ∀𝑖 ∈ [0,… , 2]. However, at 𝑡0 a link between
nodes 0 and 1 becomes available, thus, the two nodes tries to share the
models in their memories, i.e., node 0 try to send its model to node
1, and vice versa. Assuming this information transfer needs a time 𝛥𝑡,0
such that from 𝑡0 to 𝑡1 = 𝑡0 + 𝛥𝑡,0 the link between 0 and 1 is always
ctive, a transfer completed event occurs at 𝑡1. Furthermore, at 𝑡1 we

have 𝑀0 = 𝑀1 = {𝐰0,1
0 ,𝐰0,1

1 } and 𝑀3 = {𝐰0,1
3 }. Both nodes 0 and

1 will try to share their updated model lists with other nodes at 𝑡1,
but since no link is available, no further transfer happens. Next event
occurs at 𝑡2, when a link between nodes 1 and 2 becomes available.
Thus, node 1 tries to share the models it has in its memory, i.e., both
𝐰0,1
0 and 𝐰0,1

1 with 2, and vice-versa. Again, assuming this information
transfer needs a time 𝛥𝑡,1 such that the link between nodes 1 and 2
remains active from 𝑡2 to 𝑡3 = 𝑡2+𝛥𝑡,1, transfer is possible and a transfer
completed event happens at 𝑡3. Thus, at this time 𝑀0 = {𝐰0,1

0 ,𝐰0,1
1 }

and 𝑀1 = 𝑀2 = {𝐰0,1
0 ,𝐰0,1

1 ,𝐰0,1
2 } and both nodes 1 and 2 try to

share their updated model lists with other nodes. In particular, since
at 𝑡3 a link between nodes 0 and 1 is active and will be still available
during the full time span 𝛥𝑡,2 needed to transmit 𝐰0,1

2 (the only local
model being in node 1 memory but not in node 0 one), a transmission
completed event occurs at 𝑡4 = 𝑡3 +𝛥𝑡,2. Since at this time we have that
𝑀0 = 𝑀1 = 𝑀2 = {𝐰0,1

0 ,𝐰0,1
1 ,𝐰0,1

2 }, the local model distribution phase
is over and the local learning phase can begin.

4.3. Options of the distributed learning procedure

We will consider two schemes in the proposed distributed learning
strategy. In the first one, hereafter named ‘‘DL w/ GS’’, we assume
that ground stations can contribute to model distribution as relay
nodes, i.e., when a satellite 𝐴 flies over a ground station, it shares
the models it has in its memory with the ground, in such a way that
when another satellite 𝐵 flies over a ground station, it can receive

the models memorized in 𝐴 directly from the ground, without having
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Fig. 5. Example of the proposed strategy with 3 satellites. Gray horizontal bars indicates the availability of a link between a couple of satellites in time, thus, their limits represent
link-on and link-off events. Transfer completed events are represented by curved arrow ends. Dashed bars indicates events that are not included in the new round event list. At
the bottom, memories of nodes at 𝑡0, 𝑡1, 𝑡3 and 𝑡4 are shown.
to wait to communicate with 𝐴. Please notice that ground stations
only act as models relay, and they do not have to receive all local
models from satellites to calculate the global model, as it happens
in federated learning solutions. Furthermore, we assume that ground
stations are all interconnected in such a way that communicating with
one of them is equivalent to communicate with all of them. For this
reason, if a ground station receives models from a satellite, these are
immediately available on any other ground station, too. Instead, the
second distributed learning strategy considered, named ‘‘DL w/o GS’’,
does not provide for involving ground stations as relay nodes, and
satellites can share models only by means of in-orbit communications.

5. Numerical results

We evaluate the performance of the proposed distributed learning
solution with respect to federated learning-based one [33]. The only
option ‘‘DL w/o GS’’ illustrated in Section 4.3 will be investigated in the
case studies in which only one GS is considered because the advantages
of the ‘‘DL w/ GS option is negligible in this case. In the scenario with
more than one GS we will report the results for both the options ‘‘DL
w/ GS‘‘ and ‘‘DL w/o GS’’. As benchmark solution we will consider the
centralized federated learning solution illustrated in Section 4 while,
because the decentralized federated learning solutions suffer for the
intermittency of satellite links, they will not considered in the compar-
ison. As far as centralized federated learning-based schemes considered
as benchmarks are concerned, we consider a strategy leveraging both
intra-orbital and inter-orbital ISLs (‘‘FL w/ all ISLs’’), a strategy where
no inter-orbital communication is possible because of lack of inter-
orbital ISLs (‘‘FL w/o inter-orbital ISLs’’), and a strategy providing
for satellites having no ISLs (‘‘FL w/o ISLs’’), i.e., satellites cannot
communicate with each other. All the Federated Learning solutions
provide for having ground stations as parameter servers which, at each
round, receive all the local models and aggregate them into a single
global model which is transmitted to all satellites at the beginning of
the following round. Furthermore, in this work we will assume that
no aggregation of a partial number of local models happens on nodes
8

Table 3
Proposed and benchmark learning solutions in relation to the use of GS as model rely
node, intra-orbital ISL and inter-orbital ISL.

Learning solution GS as relay node Intra-orbital ISL Inter-orbital ISL

‘‘DL w/ GS’’ Yes Yes Yes
‘‘DL w/o GS’’ No Yes Yes
‘‘FL w/ all ISLs’’ No Yes Yes
‘‘FL w/o inter-orbital ISLs’’ No Yes No
‘‘FL w/o ISLs’’ No No No

neither in case of distributed learning-based solutions nor in federated
learning-based ones.

We report in Table 3 the investigated learning solutions in relation
to the use of GS as model rely node, intra-orbital ISL and inter-orbital
ISL.

Next we report the experimental setup and the results in Sec-
tions 5.1 and 5.2 respectively.

5.1. Experimental setup

The comparison of the proposed solution and the benchmark ones is
carried out as a function of the choice of the satellite network topology
in terms of number of orbital planes and number of satellites in each
orbital plane. In this way we will be able to assess the impact of
the inter-orbital link unavailability on the effectiveness of the learning
procedure.

The parameters values used in the experiments are reported in
Table 3. Some of them are varying such as the number of satellites
𝑁𝑠𝑎𝑡, the number of orbital planes 𝑁𝑜𝑝, the number of model parameters
(i.e., weights and biases) 𝑁𝑚𝑝, the duration of the local learning phase
𝜏𝑙, the number of ground stations 𝑁𝐺𝑆 and their location. Please notice
that, since model parameters are usually expressed in float32 format, it
easy to obtain the model size in bit given 𝑁𝑚𝑝, since 𝑤𝑠 = 32 ⋅𝑁𝑚𝑝 bit.
The values of each parameter will be specified for each of the following
analysis. Instead, the remaining parameters will be the same for each
analysis. In particular, we will assume to have a Walker constellation,



Computer Networks 251 (2024) 110625F. Valente et al.
Fig. 6. Average weight distribution time for different distributed learning-based and federated learning-based strategies, obtained by varying the number of satellites and by fixing
the number of orbital planes 𝑁𝑜𝑝 = 2, the number of model parameters 𝑁𝑚𝑝 = 106, the local learning time 𝜏 = 1 min, and placing a single ground station in Kiruna (Sweden).
Table 4
Parameters values.

Parameter Values

𝑁𝑠𝑎𝑡 [2,… , 18]

𝑁𝑜𝑝 [1,… , 5]

ℎ𝑝 𝑝 ∈ [0,… , 𝑁𝑜𝑝] 712,84 Km
𝑖𝑊 98.24 deg
𝑇 2 sidereal days
𝑁𝑚𝑝 [105 , 106 , 107 , 108 , 109]

𝜏𝑙 [1 min, 10 min, 20 min, 30 min, 40 min, 50 min, 60 min]

𝑃 10 W
𝐺 34.31 dBi
𝑅𝐼𝑆𝐿 200 Mbps
𝑅𝐺𝑆 200 Mbps
𝜈𝑡𝑥 26 GHz
𝑇𝑠 290 K
𝐵 500 MHz
𝐸𝑙𝑚𝑖𝑛 5 deg

with circular orbits having altitude ℎ𝑝 = 712.84 km, inclination 𝑖𝑊
98.24 deg, repeat cycle time 𝑇 = 2 sidereal days, transmission data
rate on both ISLs and links to the ground stations 𝑅𝐼𝑆𝐿 = 𝑅𝐺𝑆 = 200
Mbps, transmission power 𝑃 = 10 W, antenna gain 𝐺 = 34.31 dBi,
transmission frequency 𝜈𝑡𝑥 = 26 GHz, system noise temperature 𝑇𝑠 =
290 K, bandwidth 𝐵 = 500 MHz, minimum elevation angle 𝐸𝑙𝑚𝑖𝑛 = 5
deg (see Table 4).
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The following performance indexes will be considered for the com-
parison of the various solutions:

• The average weight distribution time, that is time needed to
distribute the weights in a round as illustrated in Figs. 3 and
4; notice how this index allows to prove the effectiveness of the
proposed solution regardless the training dataset considered.

• The convergence time and validation accuracy evaluated in the
case of an image classification application trained on the Eu-
roSAT [21] dataset.

5.2. Results

First analysis focuses on the impact of the number of satellites in an
orbital plane on the average weight distribution time. For this analysis,
we consider the number of satellites to be 𝑁𝑠𝑎𝑡 ∈ [2, 4,… , 18], equally
distributed over 𝑁𝑜𝑝 = 2 orbital planes, and we consider to have
only a ground station placed in Kiruna (Sweden), a typical choice for
orbits with the chosen inclination, a local learning time on satellites
𝜏𝑙 = 1 min, and model having a number of parameters 𝑁𝑚𝑝 = 106.
Results in Fig. 6 show that any distributed learning-based strategy
outperforms any federated learning-based strategy, regardless the num-
ber of satellites. However, it can be noticed that the average weight
distribution time when a distributed learning-based strategy is applied
first increases with the number of satellites, then it starts decreasing,
and finally it increases again. This is due to the fact that by increasing
the number of satellites, we increase the number of models that each
satellite has to receive to calculate the global model, thus, we increase
the number of models to be shared. At the same time, by increasing
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Fig. 7. The average weight distribution time for different distributed learning-based and federated learning-based strategies, obtained by varying the number of orbital planes 𝑁𝑜𝑝,
by considering 7 satellites on each orbital planes, 𝑁𝑚𝑝 = 106 model parameters, local learning time 𝜏 = 1 min, and placing a single ground station in Kiruna (Sweden).
the number of satellites without changing the number of orbital planes,
each orbit has an increased number of satellites, and this increases the
communication possibilities within satellite couples. However, for 2 <
𝑁𝑠𝑎𝑡 ≤ 6, the increase in communication opportunities is not enough to
allow the sharing of an increased number of models in the same time
span as in case 𝑁𝑠𝑎𝑡 = 2, thus, the average weight distribution time
increases. Instead, for 𝑁𝑠𝑎𝑡 > 6, the increased number of communica-
tions between satellites is such that, even though the number of models
to be shared increases, a complete sharing is achievable in a smaller
time than in case 𝑁𝑠𝑎𝑡 = 6, thus, the average weight distribution time
decreases. In particular, for 𝑁𝑠𝑎𝑡 ≥ 10, in the same amount of time it is
even possible to share an increased number of models with respect to
the case 𝑁𝑠𝑎𝑡 = 2, thus, we obtain an average weight distribution time
lower than the one obtained when 𝑁𝑠𝑎𝑡 = 2. However, for 𝑁𝑠𝑎𝑡 > 14,
the average weight distribution time starts increasing again. This is due
to the fact that, as it can be easily verified by means of expressions
in (4), the intra-plane ISLs become always active for 𝑁𝑠𝑎𝑡 ≥ 14, while
they are never active when 𝑁𝑠𝑎𝑡 < 14. Thus, for 𝑁𝑠𝑎𝑡 ≥ 14, as soon as
a satellite receives models, it transmits them to satellites in the same
orbital plane, with a delay only depending on the amount of models
to be transferred and on the propagation time, without having to wait
for an intra-plane ISLs to become available. Thus, the model sharing is
completed shortly after any couple of satellites appertaining to different
orbital planes is able to communicate. However, the average weight
distribution time is minimized exactly when 𝑁𝑠𝑎𝑡 = 14, since for a
higher number of satellites, even though inter-plane communications
happen slightly earlier because of the increased number of satellites
and, consequently, of the inter-plane communication opportunities, this
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does not compensate for the increase in the amount of data to be
exchanged because of the increased number of models to be shared.
Thus, for 𝑁𝑠𝑎𝑡 > 14, there is a mild increase in the average weight
distribution time. Moving to federated learning-based strategies, it can
be noticed that the best performance is obtained when all ISLs are
leveraged, but the average weight distribution time is higher than
the one obtained in case of distributed learning strategies, because in
federated learning schemes first all models have to reach the ground,
where the global model is centrally determined, and then the ground
station has to uplink the updated global model to all satellites. This also
explains why, by increasing the number of satellites, we have an overall
decrease in the average weight distribution time, since the higher
the number of satellites is, the higher the number of communication
opportunities with the ground is. Finally, it can be noticed that ‘‘FL
w/o inter-orbital ISLs’’ and ‘‘FL w/o ISLs’’ have the same behavior for
𝑁𝑠𝑎𝑡 ≤ 12, while the latter leads to an decrease in the average weight
distribution time for 𝑁𝑠𝑎𝑡 > 12. This is due to the fact that, as discussed
before, for 𝑁𝑠𝑎𝑡 ≤ 12, no intra-orbital ISL is available, while they are
always available for 𝑁𝑠𝑎𝑡 ≥ 14. Obviously, the worst performance in
terms of the average weight distribution time is obtained with the ‘‘FL
w/o ISLs’’ solution, since by means of this strategy we have to wait for
all satellites to fly over the ground to transmit their models, and then,
after the global model has been aggregated on the ground, we have to
wait again for all satellites to fly over the ground to receive it.

In Fig. 7, we analyze the impact of the number of orbital planes,
chosen to be 𝑁𝑜𝑝 ∈ [1,… , 5], on the average weight distribution
time when the different strategies previously introduced are applied.
In particular, in this analysis we consider again a number of model
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Fig. 8. The average weight distribution time for different distributed learning-based and federated learning-based strategies, obtained by varying the number of model parameters
and by fixing the number of satellites 𝑁𝑠𝑎𝑡 = 14, the number of orbital planes 𝑁𝑜𝑝 = 2, the local learning time 𝜏 = 1 min, and placing a single ground station in Kiruna (Sweden).
parameters 𝑁𝑚𝑝 = 106, a learning time 𝜏𝑙 = 1 min and a single ground
station placed in Kiruna. Instead, the number of satellites will be equal
to 𝑁𝑠𝑎𝑡 = 7𝑁𝑜𝑝, in such a way that each orbital plane has 7 satellites
and intra-orbital ISLs are always active, as previously discussed. Again,
distributed learning-based solutions outperform the federated learning-
based ones. However, it can be noticed that by increasing the number
of orbital planes, the average weight distribution time increases in case
distributed learning-based strategies are applied, while it decreases up
to a maximum in case ‘‘FL w/ all ISLs’’ is considered. The behavior of
the distributed learning solutions is due to the fact that, even though
by increasing the number of orbital planes we increase the communi-
cation opportunities among satellites on different orbital planes, again
this increase is not enough to allow for the sharing of an increased
number of models to conclude a learning round in the same time
span, leading to an overall increase in the average weight distribution
time. However, this increase becomes milder by increasing the number
of orbital planes, since this reduces the distances between couples of
satellites on different orbits, increasing the number of communication
opportunities until this is high enough to allow for the sharing of an
increased number of models in almost the same time span. Instead, by
looking at ‘‘FL w/ all ISLs’’ solution, it is possible to notice that the
average weight distribution time decreases for 𝑁𝑜𝑝 ≤ 4, and increases
when 𝑁𝑜𝑝 > 4. This is due to the fact that, by increasing the number
of orbital planes, we both increase the communication opportunities
among satellites appertaining to different orbital planes, but we also
increase the communication opportunities among satellites and ground.
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This leads to the decrease in the average weight distribution time for
𝑁𝑜𝑝 ≤ 4. However, when 𝑁𝑜𝑝 = 4, any couple of satellites can com-
municate, regardless the occupied orbital plane, because intra-orbital
ISLs are always active and the position of orbital planes is such that at
any time there is at least a satellite of an orbital plane being able to
communicate with a satellite of any other plane. Furthermore, for this
number of orbital planes, at any time there is at least a satellite being
able to communicate with the ground. It follows that any satellite in
the constellation can communicate with the ground station at any time.
Obviously, this property will be still valid by increasing the number of
orbital planes, and the number of communication links between orbital
planes will even increase with 𝑁𝑜𝑝. However, for 𝑁𝑜𝑝 > 4, we have
to share with the ground a higher number of models because of the
increased number of satellites, and this requires a higher amount of
time because of the higher amount of data to be transmitted, leading
to an increase in the average weight distribution time with respect
to the case 𝑁𝑜𝑝 = 4, since the increased number of communication
opportunities is not high enough to allow for the increased number
of models to be transmitted in the same time span. Finally, in case no
inter-orbital ISL is leveraged, like in ‘‘FL w/o inter-orbital ISLs’’ and ‘‘FL
w/o ISLs’’ solutions, there is no advantage in increasing the number of
orbital planes, and the average weight distribution time increases when
𝑁𝑜𝑝 increases because of the increased number of satellites having to
communicate with the ground to complete a learning round.

We also analyze the impact of the number of model parameters
on the average weight distribution time. In particular, we considered



Computer Networks 251 (2024) 110625F. Valente et al.
Fig. 9. The average weight distribution time for different distributed learning-based and federated learning-based strategies, obtained by varying the number of ground stations
and by fixing the number of satellites 𝑁𝑠𝑎𝑡 = 14, the number of orbital planes 𝑁𝑜𝑝 = 2, the number of model parameters 𝑁𝑚𝑝 = 106, and the local learning time 𝜏 = 1 min.
𝑁𝑚𝑝 ∈ {105, 106, 107, 108}, we fixed the number of satellites 𝑁𝑠𝑎𝑡 = 14,
distributed over 𝑁𝑜𝑝 = 2 orbital planes, we assumed a local learning
time 𝜏𝑙 = 1 min and a single ground station placed in Kiruna. Please
notice that, even though the local learning time is actually dependent
on the number of model parameters, it also depends on the available
computational capacity. For this reason, we left the local learning
time as an analysis parameter that will be investigated further on.
Results shown in Fig. 8 allow to conclude that distributed learning-
based strategies outperform the federated learning-based ones for any
value of the number of model parameters. However, the average weight
distribution time increases when 𝑁𝑚𝑝 increases. This is due to the
fact that, by increasing the number of parameters, we increase the
amount of data to be transmitted, and, consequently, the time needed
to accomplish the data transfer, making each learning round longer.
However, in case of distributed learning, since we do not have to
wait to first transfer all local models to the ground and then receive
the updated global model from the Earth, we have an overall shorter
duration of model distribution phase, which allows for completing a
round in a shorter time and, consequently, to have a lower average
weight distribution time.

Results in Fig. 9 give insight on the impact of the number of
ground stations on the average weight distribution time for the different
considered strategies. In this case study we report the results for both
the options ‘‘DL w/ GS’’ and ‘‘DL w/o GS’’. In particular, we set the
number of satellites 𝑁 = 14, the number of orbital planes 𝑁 = 2,
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𝑠𝑎𝑡 𝑜𝑝
the number of model parameters 𝑁𝑚𝑝 = 106, the local learning time
𝜏𝑙 = 1 min, and we consider an increasing number of ground stations,
mainly provided by Amazon Web Services [35], grouped as follows:

• in case of a single ground station, we consider it to be placed in
Kiruna (Sweden);

• in case of three ground stations, we consider them to be placed
in Kiruna (Sweden), Matera (Italy) and Kourou (French Guyana);

• in case of six ground stations, we add ground stations placed
in Hawaii, Punta Arenas (Chile) and Singapore to the previous
group;

• in case of nine ground stations, we add ground stations placed in
Ohio (USA), Cape Town (South Africa) and Sidney (Australia) to
the previous group;

• in case of twelve ground stations, we add ground stations placed
in Oregon (USA), Bahrein and Seoul (South Korea) to the previous
group.

From Fig. 9 it is possible to notice that the average weight distri-
bution time is lower in all solutions providing for leveraging ground
stations, i.e., ‘‘DL w/ GS’’ and the three federated learning-based strate-
gies when the number of ground stations increases, as a consequence of
the fact that there are more communication possibilities with ground
stations when their number increases. Furthermore, it is important to
underline that since we consider the ground stations being intercon-
nected, as soon as a model is available on one of them, it will be
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Fig. 10. Validation accuracy in training a VGG16-based satellite image classification model on the EuroSAT dataset by applying different distributed learning-based and federated
learning-based strategies, obtained by setting the number of satellites 𝑁𝑠𝑎𝑡 = 14, the number of orbital planes 𝑁𝑜𝑝 = 2, the number of model parameters 𝑁𝑚𝑝 = 106, the local learning
time 𝜏 = 1 min and a ground station in Kiruna (Sweden).
immediately available on each of them, facilitating the model sharing
within the constellation, since a model can be transferred between two
satellites not being able to directly communicate but simultaneously
flying over two different ground stations. This reflects in the fact that
the ‘‘DL w/ GS’’ strategy allows for weight distribution time lower than
the ‘‘DL w/o GS’’, and the ‘‘FL w/ all ISLs’’ solution achieves almost
the same performance as the distributed learning-based ones for a high
number of ground stations.

Finally, we evaluate the time of convergence of the validation
accuracy when the different strategies are applied. For this analysis we
consider to have 𝑁𝑠𝑎𝑡 = 14 satellites distributed over 𝑁𝑜𝑝 = 2 orbital
planes, a local learning time 𝜏𝑙 = 1 min and a single ground station
placed in Kiruna. We also set the maximum number of learning rounds
to be 𝑁𝑟 = 100 and the number of local learning epochs 𝑁𝑒𝑝 = 1.
We consider a land cover classification task based on the EuroSAT
dataset [21], made of 27000 64 × 64 images, taken by Sentinel-2.
Images are classified with respect to 10 classes (AnnualCrop, Forest,
HerbaceousVegetation, Highway, Industrial, Pasture, PermanentCrop,
Residential, River, SeaLake), depending on the represented scene. We
are aware of the fact that training a classification model requires
labeled data, and this may be not the case when considering images
acquired from satellites to be used for training without previously
transmitting them to the ground. However, since the focus of this paper
is on the communication strategy underlying the learning algorithm,
we only want to provide some insight on the performance of the
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communication scheme by focusing on a general machine learning task,
as it happens also in other works [20,31–33,36], since this insight may
be also extended to more sophisticated machine learning techniques,
like self-supervised learning, which are beyond the scope of this work.
Furthermore, it is important to underline that, given the model to be
trained, the chosen strategy does not influence the accuracy obtained
when training converges, but only the time needed to reach valida-
tion convergence. Following [37], we consider VGG16 as classification
model, pre-trained on ImageNet dataset, to which a regular densely-
connected neural network of 2048 units with ReLU activation function,
a dropout layer with 0.2 drop rate, and a regular densely-connected
neural network of 10 units with softmax activation function are added.
We will assume that only these added layers will be trained, thus,
the number of model parameters to be exchanged will be equal to
𝑁𝑚𝑝 = 4216842. Differently from [37], we assume that the model is
not trained on a central node, but each satellite trains its own local
model during local training phase. In particular, each satellite will have
a different dataset, since satellites fly over different areas. However,
after some orbits, each satellite will have flown over a high amount
of different areas, thus, we suppose that in datasets of each satellite
we have samples for all classes, but the distribution of samples on
each orbital plane with respect to the different classes is different. In
particular, we randomly split the initial dataset to separate a 20% of
samples for validation. For each image in the training set, we generate
a randomly rotated version and a noisy version of it, and we add the
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Table 5
Time to converge.

Strategy Time to converge

DL w/o GS 1.25
FL w/ all ISLs 1.68
FL w/ intra-orbital ISLs 4.13
FL w/o ISLs 558 (23.3 days)

two new images to the training set for augmentation purposes. In order
to obtain the training sets associated to each satellite, for each class we
split the samples between the two orbital planes in random proportion,
and the samples for each class associated to each orbital plane are
equally and randomly associated to each satellite on the orbital plane.
This also allows to obtain non-IID training sets on the satellites. We thus
evaluate the accuracy of the global model (i.e., of the model obtained
by aggregating the locally trained models) on the validation set for
each learning round. Since we know how long each learning round
lasts when the different strategies are applied, it is easy to report the
validation accuracy in time, as shown in Fig. 10. We also evaluate the
time to converge as the time at which validation accuracy reaches a
value that is not improved in the next 10 learning rounds. Values of
the time to converge are summarized in Table 5.

From presented results, it can be noticed that by using strategies
providing for the use of inter-orbital ISLs, like in case of distributed
learning-based and ‘‘FL w/ all ISLs’’ schemes, validation accuracy con-
verges much faster than in case of strategies where inter-orbital ISLs are
not used. This is due to the fact that, as previously discussed, by lever-
aging inter-orbital ISLs we increase the communication opportunities
among satellites. Furthermore, distributed learning-based strategies,
thanks to a reduced duration of the model distribution phase, allows to
reach convergence in a shorter time than any federated learning-based
solution.

6. Conclusions

In this work, we proposed and evaluated a distributed learning
solution in the context of EO constellations with satellites forming a
network by means of ISLs. This solution differs from federated learning
one in the fact that there is no central node which has to receive the
local models to aggregate them in an updated version of the global
model, since we assume that satellites share local models with each
other until each satellite has received the local models of the others,
in order to locally calculate the updated global model. Numerical
results show that distributed learning outperforms federated learning in
number of learning rounds completed in the unit time by increasing the
number of satellites, of orbital planes, of model parameters, of ground
stations and by increasing the time needed to accomplish local learning.
This translates in a faster test accuracy convergence, as evaluated in a
land coverage classification task based on the EuroSAT dataset.
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