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A B S T R A C T

We investigate the impact of chirped driving fields on the dynamics and generation of Kerr cavity breathers
and solitons. Synchronous phase and amplitude modulation of the pumping field can be exploited in order to
control soliton dynamics. Here we show that using a phase-modulated super-Gaussian pump permits to stabilize
the oscillations of breathing solitons. Moreover, our scheme permits to obtain new dynamical attractors, with
a prescribed temporal intra-cavity pattern. Straightforward applications are the deterministic generation of
optical frequency soliton combs, optical tweezers, and more generally, all-optical manipulation of light pulses.
. Introduction

Temporal cavity solitons (CSs) are self-sustained light pulses, which
ropagate unchanged thanks to the compensation of chromatic disper-
ion by the Kerr effect on the one hand, and of cavity loss by coherent
njection of an external pump on the other hand [1]. CSs received a
reat deal of attention in recent years, because of their potential appli-
ations, e.g., to all-optical buffering [2], optical communications [3],
ual-comb spectroscopy [4], optical tweezers [5] and, more generally,
o light manipulation [6]. Remarkably, in the frequency domain, a CS
orms a coherent optical frequency comb (OFC): scattering of a CS
nto dispersive waves may lead to octave-spanning OFCs, thus enabling
n integrated optical platform for self-referenced optical laser sour-
es [7].

Spatial CSs have first been demonstrated in VCSELs [6], whereas
emporal CSs have been generated in fiber loop resonators [2] and,
ore recently, in microresonators [8]. Although CSs are typically
umped by a continuous wave (CW) external laser, a synchronous pulse
rain may also be used [9,10]. With a pulsed pump, the CS is naturally
enerated on the top of the pump temporal intensity profile [10].
owever, by using specific amplitude [11,12] or phase [13–16] pump
odulation schemes, one may push the soliton away from the center

f the pump pulse. In general, appropriate shaping of the pump pulses
ay enable to control the generation of robust temporal dissipative

tructures or dynamical attractors [17]. In the context of optical com-
unications, the control of soliton dynamics has been extensively

∗ Corresponding author.
E-mail address: francescorinaldo.talenti@uniroma1.it (F.R. Talenti).

investigated. A method for suppressing soliton interactions is based on
synchronously driving the phase profile of a soliton pulse train, which
can be implemented by means of periodic phase modulation [18,19].
It was demonstrated that the use of a phase modulator leads to noise
suppression and timing jitter reduction [20]. More generally, pulse
shaping techniques can be used for retiming functionalities in return-to-
zero (RZ) signal regeneration techniques [21]. Recently, the generation
of breathing solitary waves, or breathers, in passive Kerr resonators has
been investigated, both theoretically and experimentally [22–24]. The
resulting dynamics unveiled unexplored physics, where the intracavity
field has a finite amplitude oscillation around a CS state. The resulting
rich spatiotemporal dynamics may be controlled by acting on different
key parameters, possibly leading to convergence of the cavity output
field towards a physical state of interest. In [22,25], for instance, it has
been shown how the insertion of a parabolic potential allows for the
stabilization of chaotic or oscillatory dynamics, triggering the genera-
tion of periodic temporal patterns. In this communication, we propose
and theoretically demonstrate that a chirped phase modulation of a
time-dependent driving pump field permits to effectively control the
oscillatory dynamics of soliton breathers. Our manuscript is organized
as follows: in Section 2 we present the model used; in Section 3 we
investigate the generation and dynamics of stable CS; in Section 4 we
identify the control parameters which permit to trigger soliton breather
oscillations, and we study the effect of pump pulse chirping on their
dynamics; finally, in Section 5 we draw our conclusions.
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Fig. 1. (a) Linearly chirped, pulsed pumping scheme for Kerr CS generation; (b)
Unchirped or negatively chirped (𝐶 ≤ 0) pulsed pumping scheme may lead to temporal
symmetry-breaking of the intra-cavity field. Time symmetry can be recovered by means
of a positive chirp (𝐶 > 0) driving field. (c) Similarly, a positively chirped pump pulse
may transform a soliton breather into a stable CS.

2. Super-Gaussian pumping scheme for Kerr cavity soliton gener-
ation

CS propagation is ruled by the coherently driven and damped
1-D nonlinear Schrödinger or Lugiato–Lefever equation (LLE). In nor-
malized units and with anomalous group-velocity dispersion, it reads
as [26–28]:
𝜕𝐸(𝑡, 𝜏)

𝜕𝑡
=
[

−1 + 𝑖
(

|𝐸|

2 − 𝛥
)

+ 𝑖 𝜕
2

𝜕𝜏2

]

𝐸 + 𝑆(𝜏) , (1)

where 𝐸 is the intra-cavity field amplitude, and 𝛥 is the laser/cavity
detuning. The two time variables 𝑡 (slow time) and 𝜏 (fast time) represent
he two different temporal scales for the evolution of the mean field:
cross successive cavity round-trips, and within the cavity, respectively.
ence, 𝜏 is a physical time, whereas 𝑡 is a fictitious continuous temporal
ariable that replaces the longitudinal spatial coordinate in an Ikeda
ap approach for describing temporal cavity dynamics [29]. Here we

onsider a super-Gaussian, linearly chirped pump pulse of the form:

(𝜏) = 𝑆0 exp

(

−

[

𝜏2

2𝜏2𝐺

]𝑞

− 𝑖𝐶𝜏2

2𝜏2𝐺

)

, (2)

here the repetition rate of the pump pulse train is synchronized with
he cavity round-trip time 𝑡𝑅. 𝑆0 is the driving field peak amplitude,
𝐺 is the pump pulse width, 𝑞 is the super-Gaussian order and 𝐶 is
he chirp parameter, which quantifies the strength of the driving field’s
hase modulation.

The Kerr cavity chirped-pulsed pumping scheme is sketched in Fig. 1
a). In the following, we will show how this allows for the generation
f either multiple or single CSs, placed on top of a quasi-flat pulsed in-
racavity background. Interestingly, a properly phase-modulated pump
ay also permit to recover the broken 𝜏-symmetry of the CS with

espect to its background [11], as sketched in Fig. 1(b). Similarly, as
e are going to show, breathing soliton oscillations can be stabilized
y introducing positively chirped pump pulses (see Fig. 1(c)).

. Cavity soliton regime

To see how the chirped pump pulse scheme of Fig. 1(a) may affect
S formation, we have simulated the dynamics of a nonlinear passive
esonator, pumped by a square wave (super-Gaussian of 4th order)
ulse. We also introduced a linear ramp of the cavity detuning 𝛥(𝑡),
asting for 5 × 104 cavity round-trips. This permits to explore the
 p

2

arameter space spanned by 𝑆0, 𝛥, and 𝐶. The evolution of the intra-
avity intensity with 𝛥 is illustrated in the 𝜏 vs. 𝛥 diagram shown in
ig. 2(a)–(d), for different values of the chirp parameter 𝐶 (ranging
rom 𝐶 = −0.05 to 𝐶 = 1). The intensity profile of the driving field,

and the corresponding phase profile as in Eq. (2) (i.e., 𝜙 = −𝐶𝜏2∕2𝜏2𝐺)
are sketched in Fig. 2 (e–f), respectively. Regardless of the value of the
chirp parameter 𝐶, all of the typical stages of the CS-based frequency
omb generation are present in Fig. 2: first, a modulation instability
MI) generated pattern appears; next, after a stage of build-up of
he intra-cavity energy, field spikes are formed, and start to interact
haotically; finally, CSs emerge from chaos. Note that, differently from
he typical CW pumping scheme, temporal patterns only exist in the
uasi-flat region of the super-Gaussian (SG) pump plateau, which is
elimited by the pump pulse duration (see gray dashed lines). We here
ocus on the CS regime. With a negative chirp (see Fig. 2(a) for 𝐶 =
−0.05), multi-CSs are typically generated from MI-induced chaos. The
resulting CSs experience a drift towards the boundaries of the quasi-flat
super-Gaussian background, depending on {𝑆0, 𝛥, 𝐶}, and on the initial

coordinate of the CS. As the cavity detuning grows larger, the CSs
nitially drift towards the edges of the pump pulse plateau, then flip
heir temporal trajectory and start to head towards the center of the
ump pulse. This might cause a collision of CSs: as a result, the CS will
erge into a single soliton. We may compare this dynamics with that

btained for an unchirped pump pulse (𝐶 = 0.0, see Fig. 2(b)). In that
ase, accelerated convergence of the CSs towards the center of the SG
lateau is observed. The reason for this is that the trapping position of
he CS is now obtained for lower values of |𝜏|, for all dynamical sweeps
f the cavity detuning. Still, we did not observe a clear convergence
owards a 𝜏-symmetric configuration. For a single CS, the chosen set of
arameters leads to a 𝜏-symmetry breaking, so that the stable trapping
osition of the CS is not centered at 𝜏 = 0.0 [11].

We may generalize this conclusion by noting that, by positively
hirping the driving field, we might expect to recover a symmetric
onfiguration, where the CSs are pushed towards the center of the
avity. This process is depicted in Fig. 2(c) for 𝐶 = 0.15, where we
ndeed observe a fast convergence of a multi-CS state towards a 𝜏-
ymmetric single soliton configuration: CSs generated from chaos drift
apidly towards 𝜏 = 0.0, eventually colliding and merging into a single
S. For larger 𝐶 values (e.g., 𝐶 = 1.0), the convergence is even faster,
o that a single CS regime emerges quite immediately from chaos, as
llustrated in Fig. 2(d).

The CS trapping position is related to the phase modulation of the
riving field. Pump pulse chirping introduces a 𝜏-dependent cavity
hase detuning: as a result, CSs are attracted to the points in time with
he largest effective detuning. Thus, the effective dynamical potential
hich is induced by a chirped pump generates local extrema of the

avity detuning. These correspond to a specific 𝜏-position, where the
Ss are trapped [11,12]; this situation is analogous to the case of using
bichromatic CW pump [30].

In our case, there are two main contributions to the dynamics of the
S drift. First, and above a certain pump threshold power, amplitude
odulation of the pump shifts the generated CSs at specific values of

he inhomogeneous background field. Second, with pure phase modu-
ation the CSs are always attracted to maxima or minima of the driving
ield. When considering a chirped super-Gaussian pump, there is a
oexistence of both amplitude and phase modulation. The strength and
ign of the chirp concur in determining the attraction/repulsion among
ifferent CSs, and their temporal drift with respect to the center of the
ump pulse.

Thus, once the other dynamical parameters are fixed, the trapping
osition of the CS is uniquely determined by the value of 𝐶 [14,31].
his permits to use the pump chirp as a means to control the CS
eneration and dynamics. Interestingly, by increasing the strength of
he pump phase modulation, we observed a faster convergence towards
he generation of a single CS per round-trip. As a consequence, pump

ulse chirping is a simple scheme for the deterministic generation of a
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Fig. 2. The intra-cavity power from adiabatic sweeps of the cavity detuning, for
different values of the chirp parameter 𝐶. Referring to Eqs. (1)–(2), we set 𝑆0 = 2.3,
= 4, 𝜏𝐺 = 30; the cavity round-trip time is 𝑡𝑟=120. Gray dashed lines delimit the

xtent of the super-Gaussian plateau, whose boundaries are defined by the pump pulse
ull width at half maximum (FWHM) (i.e. at 𝜏 ∼ [−40.0, 40.0]). In (e) we report the
ormalized intensity profile of the driving field, and in (f) we show its phase profile
, for different values of the chirp parameter 𝐶.

ingle CS within a large mode-locking range. The contour plots of the
ntracavity power in Fig. 2 show the presence of different regimes for
he CS drift dynamics and its temporal trapping positions. The latter
an be easily computed via direct numerical simulations with different
alues of 𝐶. In order to do so, let us consider the case of a Gaussian
𝑞 = 1) pump pulse, with the same pulse width (𝜏𝐺 = 30) but with
different value of its amplitude (𝑆0 = 3.5). In this situation, there

xists a threshold 𝛥 < 𝛥𝑡ℎ𝑟, such that the CS starts to exhibit oscillatory
ehavior. We will return to the details of this breathing dynamics in the
ext section. For the moment, let us consider a sufficiently large value
f the detuning (𝛥 = 10.0), so that no breathing behavior is observed.

For the initial condition of our simulations, let us consider the
ech-shaped soliton [11,30,32]:

0(𝜏) =
√

2𝛥sech
(

(𝜏 − 𝜏0)
√

𝛥
)

, (3)

here the stable 𝜏-position is determined by the strength of both phase
nd amplitude modulation [15]. The reason of using the ansatz (3)
s that 𝑢0 corresponds to an exact solution of the LLE, whenever the
riving field also equals 𝑢0. We fixed the initial CS position 𝜏0 = 10,

and performed numerical simulations for different values of 𝐶. The
 a

3

Fig. 3. Soliton drift dynamics: we consider a soliton initially located at 𝜏0 = 10.0 and
riven by a chirped pulse in a LLE system. On the left, we report the color-mapped field
ynamics considering 𝐶 = −0.14 (a), 𝐶 = 0.24 (b), and 𝐶 = 1.0 (c). In (d) we show the
teady-state intra-cavity field, and in (e) the trapping fast time position |𝜏𝑆 | of the CS,
s. the chirp parameter. For this set of simulations, we fix {𝑆0 , 𝛥, 𝜏𝐺} = {3.5, 10.0, 30}.

esults of this analysis are illustrated in Figs. 3(a)–(c) for 𝐶 = −0.14,
.24, and 1.0, respectively. In these figures, we plot the intra-cavity
ower |𝐸(𝜏, 𝑡)|2: as can be seen, a slow 𝑡-evolution of the CS 𝜏-position
s observed.

For a negative chirp (see Fig. 3(a) for 𝐶 = −0.14), a soliton which
s initially located at 𝜏0 = 10 is delayed from the center of the Gaussian
ackground pulse, until it reaches a stable trapping position on the
railing edge of the pump pulse. This is a limit case, for which CSs
an be sustained by this dynamics. For more negative 𝐶 values, the
S escapes from the Gaussian background and disappears.

On the other hand, when 𝐶 takes on positive values the opposite
rend is observed. For 𝐶 = 0.24 (see Fig. 3(b)), the CS is still delayed,
ut with a reduced rate: moreover, the CS reaches its final trapping
osition at a smaller time shift from the pump pulse center. Finally,
ig. 3(c) shows that, for 𝐶 = 1.0, the CS accelerates towards the
enter of the Gaussian background, until the 𝜏-symmetry is completely
ecovered.

The steady-state power profile of the intracavity field, for all previ-
usly discussed cases, is illustrated in Fig. 3(d). In general, by control-
ing the value of the chirp parameter 𝐶, one may continuously adjust
he 𝜏-trapping position of the CSs. To demonstrate this, we performed
set of simulations for different values of the chirp parameter (within
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Fig. 4. Breather oscillatory dynamics. On the left panel, we report four different
napshots of the breathing soliton which is located on top of a Gaussian background,
nd oscillating between two constant extrema, in a stable oscillatory condition. For each
napshot, we report the corresponding slow time 𝑡 coordinate in units of 𝑡𝑅. Referring

to Eqs. ((1),(2)), we consider the values: 𝛥 = 6.5, 𝑆0 = 3.5, 𝜏𝐺 = 60, 𝐶 = 0 and 𝑞 = 1.
n the right panel, we report the oscillations of the soliton peak intensity.

he interval −0.14 ≤ 𝐶 ≤ 1.0), and we obtained the corresponding final
S trapping positions: these results are shown in panel (e). By tuning
, one may completely control not only the CS trapping position but
lso its drift. Indeed, the CS drift velocity 𝑣 at 𝜏0 depends on the first 𝜏
erivatives of the phase and amplitude of the driving field. A general
xpression for this velocity takes the form [15]:

(𝜏0) = 𝑎(𝑆0, 𝛥)
𝜕
𝜕𝜏

𝜙(𝜏0) + 𝑏(𝑆0, 𝛥)
𝜕
𝜕𝜏

𝑅𝑒{𝑆(𝜏)}(𝜏0) , (4)

where the coefficients 𝑎 and 𝑏 uniquely depend on the pump amplitude
and the detuning parameters [15]. With 𝑎 > 0 being strictly positive for
phase modulations, and 𝜕𝜙∕𝜕𝜏 = −𝐶𝜏∕𝜏2𝐺, we can find the 𝐶 values for
which the drift velocity vanishes at 𝜏 = 𝜏0.

In conclusion, the chirp parameter 𝐶 is able to completely control
the Kerr CS dynamics (i.e., its drift velocity and, consequently, its
convergence towards the stationary state), once that the other cavity
parameters are fixed [14,31].

4. Breather regime and chirp stabilization

Generally, in order to increase the complexity of a physical non-
linear system, it is sufficient to increase its total amount of energy. In
our case, this can be obtained either by increasing the pump amplitude
or by decreasing the laser/cavity detuning. While doing that, we may
observe the emergence of multiple steady-states which can be static
or dynamic. A typical example of the latter is the breathing soliton,
or simply breather, whose oscillatory dynamics are sketched in Fig. 4.
Here we consider the same set of parameters of the previous section
(𝑆0 = 3.5, 𝐶 = 0), except for the cavity detuning, which is lowered
to 𝛥 = 6.0, thus reaching a Hopf instability regime where CSs start
to oscillate. This breathing oscillation is shown in the right panel of
Fig. 4, while on the left panel we report four different snapshots of
this oscillation for different values of 𝑡. By fixing the input power to
0 = 3.5, and sweeping both 𝛥 and 𝐶, the CS dynamics may become

more complex, as illustrated in Fig. 5, where we depict static CSs in
(a), breathers in (b) and drifting breathers in (c).
4

At this stage, it is interesting to study in more detail the effect of
pump chirp 𝐶 on the CS dynamics, in order to implement a chirp-
ing technique that is capable of managing the emerging physics. In
what follows, we show how a properly phase-modulated pump may
affect, and eventually stabilize, the oscillatory dynamics of the resulting
system.

In order to do so, first we performed a cavity scan with an unchirped
pump and a linear ramp of the cavity detuning. We kept fixed
{𝑆0, 𝐶, 𝜏𝐺}={3.5, 0.0, 30.0}, while spanning 𝛥 from 4 to 16, and
calculated at each 𝑡-instant the dynamical solution of the LLE-system of
qs. (1)–(2). Moreover, we considered that, initially, the CS is centered
t 𝜏0 = 0. These results are illustrated in Figs. 6(a)–(b).

For exploring the upper single CS solution branch, we performed
two sweeps, first with a negative detuning ramp, and the second with
a positive detuning ramp, while starting in both cases from 𝛥 = 10.0.
Fig. 6(a) shows the results of these scans in a intra-cavity power
|𝐸(𝛥, 𝜏𝑝𝑒𝑎𝑘)|

2 vs. 𝛥(𝑡) diagram. For 𝛥 = 4.0, the system is chaotic
see blue shaded area), and thus |𝐸(𝛥, 𝜏𝑝𝑒𝑎𝑘)|

2 oscillates rapidly, until
eaching the threshold which is marked by the (𝑖)-vertical dashed line.
his line marks the lower limit of the breathing regime. The breathing
egion is delimited by markers (i–ii), and it is shaded in orange. Here
he breather oscillates between minimum and maximum fixed values.
arkers (ii–iii) delimit the CS regime (green shaded area), where the
Ss are static, i.e. they do not oscillate. The (iii)-vertical line delimits
he collapse of the system onto the quasi-homogeneous branch of
olutions (red shaded area), which represents a deformation of the
ulsed pump.

In Fig. 6(b) we report the peak intra-cavity power as a function of 𝛥.
his diagram was computed by means of a path-numerical continuation
f the steady-state CS solution (red dotted line); the linear stability of
he corresponding solutions is depicted by using black solid and dashed
ines for stable and unstable states, respectively. This approach allows
s to compute the middle CS unstable branch, which is not reachable
y direct numerical simulations. Our linear stability analysis reveals the
nset of a Hopf bifurcation (see marker (ii) of the previous panel), from
hich breathers arise.

The typically nonlinear bistable behavior of the system can be ob-
erved by dynamically scanning the lower branch of quasi-homogeneous
olutions. While sweeping the detuning, starting from 𝛥(𝑡0 = 0) =
0, the system follows the upper branch of stationary solutions until
eaching the fold bifurcation, or turning point, 𝑓 ′, and then collapses
nto the lower stable branch. On the other hand, when sweeping
he detuning from values larger than (iii), and with a negative ramp
i.e. 𝜕𝑡𝛥 < 0, [see green solid line]), the system stays on the lower
uasi-homogeneous solution branch until reaching the other turning
oint 𝑓 ′′, where the system jumps to the upper branch of solutions.

We may now generalize the study by sweeping the cavity with a
hirped Gaussian driving field, considering values from 𝐶 = 0.0 to
= 400.0. Always referring to Fig. 6, the peak powers of the intra-

avity field are reported in panel (c), while in (d) we report the extrema
f the breathing oscillations. The raw data acquired in the numerical
imulations (panel (c)), indicate that the chaotic region tends to be
tabilized by the chirping effect. From a zero chirp, where the (i)-point
elimits the passage from chaos to breathing dynamics at 𝛥𝑖 > 4.0, the 𝛥
oordinate of (i) decreases to values 𝛥𝑖 < 3.0, when considering a high
hase-modulated pump (𝐶 = 400). Similar considerations can be made
or the point (ii). The shift of points (i-ii) vs. C is sketched in panel (e).
he shift of (ii) implies the stabilization of the breather oscillations,
esulting in a broader stable CS regime. The shift of point (i) means
hat the chaotic region shrinks and that chaos is suppressed for a wide
ange of detuning.

In general, the larger 𝐶, the more the breathing oscillations tend
o be stabilized. For larger 𝐶 values, the Hopf lobes shrink (panel
d)), meaning that the amplitude of the breathing oscillation decreases.
inally, we highlight in panel (f) the impact of chirping on the longi-
udinal breathing oscillation period. Here we report the two extreme
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Fig. 5. Typical dynamical representation of a soliton (panel (a), {𝑆0 , 𝛥, 𝐶} = {3.5, 10.0, 1.0}), a breather (panel (b)), {𝑆0 , 𝛥, 𝐶} = {3.5, 6.0, 1.0} and a drifting breather (panel (c)),
𝑆0 , 𝛥, 𝐶} = {3.5, 6.0,−0.5}.
Fig. 6. Cavity sweeps where a pulsed driving field triggers the CSs dynamics. In (a) and (b) we consider an unchirped (C=0) driving field. In this case, we performed a dynamical
weep with a positive ramp of detuning, and we report the intracavity peak power. In (a), we report the raw data, while in (b) we show the periodic extrema of the breather
scillations. We also performed a negative ramp of the detuning (sketched in green), and we compare the simulated dynamics with the numerical solutions found by means of
he path continuation theory (red dotted line). In panels (c–f) we study the effect of chirping, considering chirp values ranging from 𝐶 = 0.0 to 𝐶 = 400. Again, we report the raw
ata of the peak soliton power (c) and the breather extrema (d). In (e) are reported, for each case, the 𝛥𝑖,𝑖𝑖 coordinates delimiting the endpoints of the breathing regime. In (f)
e show the oscillation period in the breathing regime, for the two extreme cases studied, i.e. 𝐶 = 0.0 and 𝐶 = 400.0.
p
p

ases studied (i.e. 𝐶 = 0.0 and 𝐶 = 400.0). We can observe that, as
he phase modulation increases, the breathing period decreases: the
pproaching of the two extrema results in faster oscillations.

In summary, from panels (c-f) we may conclude that introducing
chirped pump pulse permits to stabilize the dynamics of breathers,
hich tends to converge to a stationary soliton state. The Hopf bifurca-

ion shifts towards lower 𝛥 values, so that the soliton regime broadens.
oreover, the breathing oscillations are weaker, since both the oscilla-

ion period and its amplitude decrease. We may finally observe that
5

ump chirping tends to suppress chaos, since the chaotic regime is
ushed towards lower 𝛥 values, as the chirp 𝐶 grows larger.

5. Conclusions

Inhomogeneous pumping schemes of nonlinear passive resonators
have been extensively studied recently. The fast-time symmetry break-
ing of soliton-like solutions [11–13] represents a paradigm shift,
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enabling complete control of the Kerr cavity solitons (CSs) drift dy-
namics [14,15,31]. Phase and amplitude modulation of the driving
field could potentially represent a reliable scheme to trigger the de-
terministic generation of specific CS states, which represent dominant
dynamical attractors of the system [17]. An equivalent approach is that
of modulating the intra-cavity generated pulses. In this perspective,
recent publications showed how the temporal manipulation of Kerr CSs
can be obtained by inserting an electric-optic modulator in a nonlinear
passive optical cavity, in order to trigger Bloch oscillations [33], or
to build signal synthesizers [34]. In a high-energy nonlinear regime,
where the complexity of the system increases, alternative pumping
schemes might be useful to access specific cavity states. For example,
the insertion of a parabolic potential reveals the existence and stabilizes
periodic temporal patterns [22]. In strict analogy, the method that
we have analyzed here can be viewed as a stabilizing technique for
breathers or chaotic states. The effective physics is that of an effective
parabolic phase potential, which provides a new degree of freedom for
the manipulation of trapped optical pulses.
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