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Abstract The aim of this work is to provide a
reduced-order model to describe the dissipative behav-
ior of nonlinear vertical sloshing involving Rayleigh–
Taylor instability by means of a feed forward neural
network. A 1-degree-of-freedom system is taken into
account as representative of fluid–structure interaction
problem. Sloshing has been replaced by an equivalent
mechanical model, namely a boxed-in bouncing ball
with parameters suitably tuned with performed exper-
iments. A large data set, consisting of a long simula-
tion of the bouncing ball model with pseudo-periodic
motion of the boundary condition spanning different
values of oscillation amplitude and frequency, is used to
train the neural network. The obtained neural network
model has been included in a Simulink® environment
for closed-loop fluid–structure interaction simulations
showing promising performances for perspective inte-
gration in complex structural system.
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1 Introduction

Vertical sloshing is a phenomenon that occurs on struc-
tures that undergo strong vertical accelerations. Among
these, we find the aeronautical structures that with-
stand load occurring from gusts, turbulence and land-
ing impacts. The jolt of fuel generally stowed in the
wings caused by vertical accelerations is coupled with
the structural dynamics of the aircraft. This type of
sloshing is well known to provide a noticeable increase
in structural damping but nevertheless remains gener-
ally not modeled in the design phase of modern air-
craft. This work is therefore part of the research activ-
ity within the European project H2020 SLOshingWing
Dynamics (SLOWD) and aims at providing reduced-
order models (ROMs) for the study of slosh dynamics
(Ref. [1]). Vertical slosh dynamics is one of the possible
dynamics of the fluid stowed in the tanks which, when
it occurs, manifests different characteristics compared
to the classic sloshing, generally occurring with rota-
tions and lateralmotion of the tank. The latter generates
standing waves inside the cavity that provide dynamic
coupling with structure and possible modification of
flutter margins. Specifically, the effects of sloshing on
aircraft aeroelastic flutter stability were considered in
Refs. [2,3]. On the other hand, the subject of this paper
is sloshing induced by high vertical acceleration of the
tank, hence perpendicular to the free surface. As long
as the acceleration is kept below a certain threshold
the free surface does not break. However, the cross-
ing of this acceleration threshold triggers Rayleigh–
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Taylor instabilities (Ref. [4]), determining a chaotic
flow regimewith air/watermixing.Turbulence, impacts
and the continuous generation of the free surface cause
additional dissipation of energy (Refs. [5,6]). The total
balancing of elastic potential energy and fluid energy
results in a noticeable increase in the effective damping
of the structural motion. Moreover, considering verti-
cal harmonic motions, it would be noticeable that the
dissipative characteristics depend on the amplitude of
the motion and on the frequency.

This work involves the use of acceleration data from
sloshing experiments carried out in the laboratories of
the Universidad Politécnica de Madrid (UPM). The
experimental object consists of an elastically scaled
single-degree-of-freedommass–spring system coupled
with the slosh dynamics within a hydrodynamically
scaled tank. An equivalent mechanical model of a
bouncing ball is then used to emulate the fluid behavior
inside the tank (specifically the impacts with the tank
wall) and provide a numerical model of a tank isolated
from the structure on which it is possible to perform
simulations with seismic excitation. Indeed, classical
sloshingROMsare intrinsically based on potential fluid
theory or small lateral perturbations [7–10] and, the
identification of impulsive forces that vertical sloshing
dynamics provides is not covered by these models. On
the other hand, the main interests of fluid dynamics are
addressed on the study of Rayleigh–Taylor instabili-
ties and Faraday waves phenomena [8], thus focusing
more on getting the stability margins rather than pro-
viding ROMs for multi-disciplinary analyses. As far
as it concerns the bouncing ball model, in the frame-
work of SLOWD, a one-free-parametermodel has been
recently proposed inRef. [11].However, themodel pre-
sented in Ref. [11] provides infinitesimal-time impul-
sive sloshing forces making it not fitting for its use in
the neural network framework, thus requiring the intro-
duction of a furthermodelwithmore extensive features.
However, it is worth specifying that the bouncing ball
model being introduced in this paper replaces what in
the authors’ minds will have to be represented either by
a long experimental campaign with different arrange-
ments for a complete investigation of the behavior of
the fluid or by Computational Fluid Dynamics (CFD)
simulations. Finally in the last part of the paper, we
will present a reduced-order model based on neural
networks. Indeed, The use of neural network is getting
attention in providing ROM for fluid–structure inter-
action (FSI) as it was already done for external aero-

dynamics in Ref. [12]. Artificial neural network can
be seen as a parallel distributed processors made up of
the so-called neurons: simple processing units, having
the natural capability of storing accumulated knowl-
edge, and then, make it available for subsequent use.
In particular, knowledge is acquired by the network
from its environment through a learning process, and
then stored by synaptic weights. Due to their useful
properties and capabilities (Ref. [13]), neural networks
are increasingly used in nonlinear system identifica-
tion. Indeed, they are a powerful tool for approximat-
ing nonlinear dynamic systems, even when the system
structure is unknown and only input–output data are
available, thus allowing a sort of generalized black-
box modeling. Specifically, the sloshing forces will be
estimated on the basis of the unsteady boundary condi-
tion time series. The feed forward natural network (Ref.
[14]) is trained with an appropriate data series (consist-
ing ofmotion of the tank and forces provided by bounc-
ing ballmodel) spanningdifferent values of frequencies
and amplitude in order to provide a complete character-
ization of the fluid dissipative behavior. Once the neural
network is identified and integrated in the simulation
framework, the results provide a good agreement with
simulations with the bouncing ball model and experi-
ments as well.

2 Experimental setup and related experiments

In order to scale down the actual wing to the SDOF
tests, it is important to consider the dimensional analy-
sis of the problem. Applying the � theorem to a refer-
ence variable [15], for example the dissipated power by
the fluid, one can find a dimensional relation between
this variable and several non-dimensional numbers,
such as the Reynolds number, Froude number and fill-
ing level. It is common practice in sloshing problems to

perform a Froude scaling [15] where Fr =
√

w2
0h/Ng

is defined based on the maximum acceleration of the
problem which is N times the gravity. In the Froude
number definition, w0 is the characteristic angular fre-
quency of the problem, h represents the height of the
tank, Ng is the maximum acceleration of the problem,
being N ≈ 10 in our case. Then, a perfect geometri-
cal scaling parameter is considered λ = hSDOF/hW
defined as the ratio between the heights of the SDOF
tank and the wing tank. For the SDOF sloshing tests,
a 1:5 scale was selected (λ = 0.2) which results in
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a tank geometry of 10x6x6 cm. The scaled tank is
filled up to 50 % of its volume with a water mass of
ml = 0.18 kg and it oscillates at a characteristic fre-
quency of f0 = 6.56 Hz.

A picture of the experimental setup at the Model
Basin Research group sloshing laboratory of the UPM
and a simplified outline are both shown in Fig. 1. The
sloshing rig is a SDOF system composed of a mechan-
ical guide that allows the 1-degree-of-freedom con-
straint. This guide is attached to a C-shaped wooden
structure that holds the tank with a structural mass of
m = 2.06 kg. Similarly, theC-shapedwooden structure
is attached to a set of 6 springs, 3 on the upper side and
3 on the lower side. The lower springs aremechanically
embedded into the floor, and on the opposite side, the
upper set of springs is attached to a metallic plate that
acts as a joint between them and the embedded load
cell. This setup also includes an accelerometer glued
to the C-shaped wooden structure, a laser sensor point-
ing at the wooden block and two solenoids acting as a
release mechanism. The structure is deflected an initial
amplitude until it is fixed by the action of the solenoids.
When the electrical current is turned on, they release
the structure triggering the beginning of the experiment
where acceleration and position of the tank as well as
load cell measurements are recorded allowing the cal-
culation of the sloshing force acting on the system. A
more detailed description of the sloshing rig and the
sloshing force can be found in Ref. [16].

3 Bouncing ball model replacing slosh dynamics

In the present model, the sloshing forces are replaced
by the forces exchanged between the tank wall (floor
and ceiling) and a ball bouncing inside the rigid tank.
The energy balance after each impact is negative due to
the presence of viscoelastic element inside the ball that
characterizes energy dissipation. Indeed, the behavior
of the fluid inside the tank is such that it is possible
to appreciate impacts of the fluid mass on the tank
walls (see Fig. 2b and c) as well as instants when
the most of water mass is floating inside the cavity
(see Fig. 2a). As illustrated in Fig. 3, the bouncing
ball model aims at reproducing this behavior. Specif-
ically, three different conditions are illustrated repre-
senting the ball floating in the tank and, respectively,
the impactswith the ceiling andfloor. The system is ide-
ally represented as a rigid bubble without mass prop-

erties that has a concentrated mass inside hanged to
its wall by means of a spring-damper system. Part of
the fluid total mass is considered associated with the
ball mb, whereas another portion is considered frozen
m f , namely attached to the wall. When the rigid bub-
ble touches the ceiling or the floor of the tank, the
impact condition is verified so causing viscoelastic
forces exchanged between the case and the bouncing
ball. The equation of motion of the bouncing ball can
be thus summarized as follows

mbz̈b = −mbg + Fb(zb(t), zT (t)) (1)

where Fb is the force exchanged at the wall, zT (t) rep-
resents themotion of the tankwhereas zb is the absolute
vertical motion of the bouncing ball. The latter will be
expressed as (1 − β)ml beingml the total fluidmass of
the ball and β a parameter that can take values between
zero and 1.

In this framework, it is convenient to introduce a
new variable s such that s = zb − zT − r0 (where
r0 is the radius of the bubble and h is the height of
the tank) if the ball is impacting in the floor region,
s = zb−zT −h+r0 if the ball is impacting in the ceiling
region and zero elsewhere. Moreover it is introduced
also the variable ν = żb − żT . It follows that we can
define the viscoelastic forces as

Fb(s(t), ν(t)) = kbs + cbν (2)

where kb and cb are, respectively, the stiffness and
damping associated with the bouncing ball. It is worth
to notice that kb = k̂b fnl(s) may eventually be, in
turn, nonlinear function of s(t) by introducing a penalty
function fnl(s) = 1+αs2/(r0−|s|) that avoid the ball
to go out by the limits of the tank. The overall sloshing
force exchanged between the tank and fluidmass inside
consists of two terms yielded by bouncing ball impacts
and frozen mass inertia:

Fs(s(t), ν(t)) = Fb(s(t), ν(t)) − m f (z̈T + g). (3)

3.1 The simulation environment

The experimental reality was modeled within a
Simulink® simulation environment by replacing the
sloshing dynamics with the bouncing ball model.
The structural system consists of mass–spring–damper
identified during the conducted experimental cam-
paign. It is worth noting that the structural damping
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Fig. 1 (1) Load cell, (2)
metallic plate, (3) upper
springs k1 = 1904.4 N/m,
(4) lower springs
k2 = 1904.4 N/m, (5) laser
sensor, (6) mechanical
guide, (7) accelerometer, (8)
methacrylate tank and
C-shaped wooden structure
and (9) solenoids for release
mechanism

(a) Experimental setup (b) Outline of the setup

(a) Floating (b) Ceiling Impact (c) Floor Impact

Fig. 2 Snapshots of the sloshing experiment

(a) Floating (b) Ceiling Impact (c) Floor Impact

Fig. 3 Bouncing ball motion phases
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Fig. 4 Flowchart of the fluid–structure interaction problem

model includes viscous and Coulomb damping to rep-
resent the identified frictious. Theflowchart of the over-
all system (structure and sloshing) is shown in Fig. 4
where the input of the structural subsystem is repre-
sented by the sloshing forces, while the input of the
sloshing subsystem is represented by the vertical rigid
displacement and the velocity of the tank. In particular,
the latter can be studied separately from the structure
by assigning a suitable seismic excitation, or connected
in a closed loop with the structure.

3.2 Bouncing ball tuning via experimental test

The main parameters of the bouncing ball are then esti-
mated from the experimental data by means of an opti-
mization process, in order to obtain a virtual equivalent
configuration such as to present the model of the ball
in place of the sloshing liquid. This optimization pro-
cess takes into account the vertical acceleration of the
tank. The reference experimental analysis was char-
acterized by a free response with initial displacement
equal to zT = 0.064 m. From this vertical accelera-
tion (blue curve in Fig.5a) the first step was to get the
envelope in order to estimate the instantaneous damp-
ing ratio via logarithmic decay, subsequently expressed
as a function of the acceleration amplitude (see blue
curve in Fig.5b). This function, that is influenced also
by the structural damping (viscous and Coulomb), rep-
resents the target function to fit. By exploiting the
model presented in Sec.3.1 it is possible to get the
acceleration signal related to the free response anal-
ysis (red curve in Fig.5a). By repeating the procedure
above we are able to obtain the virtual instantaneous
damping as a function of the acceleration amplitude
as the red curve in Fig.5b. This curve comes from an
already optimized problem with the objective function

J = ∑N
i=1

(
ζ
exp
i − ζ sim

i

)2
. The design variables are

reported in Table1 (where the liquid mass ml and the

Table 1 Optimal parameters of the bouncing ball

r0 [m] k̂b [Nm−1] cb [Nsm−1] α [m−1] β

0.0244 1103.00 13.04 74.04 0.0017

tank height h are kept fixed and equal, respectively, to
0.18 Kg and 0.06 cm).

3.3 Nonlinear dissipative behavior

In order to show the dissipative capabilities of the
reduced-order model of the identified bouncing ball,
an open-loop simulation campaign of the sloshing sub-
system (i.e., bouncing ball) is carried out. Since the
dissipative content is dependent on the amplitude and
frequency of the imposedmotion, several analyses have
been performed with permanent harmonic motion con-
sidering different amplitude–frequency pairs covering
a range of acceleration that is even beyond the range
of interest of the performed experiment. For each of
these simulations, the sloshing forces produced by the
equivalent mechanical model were obtained as output.
The hysteresis cycles were plotted (see Fig. 6a) from
which the work dissipated by the sloshing forces was
computed, once a stationary regime is reached, by eval-
uating the area subtended by the cycle. This last quan-
tity allows to define the loss factor as the ratio between
the dissipated work and the kinetic energy of the over-
all system (sloshing and structure) in the case of frozen
fluid ( η := WD/(π (m + ml)
2A2) ). Finally, Fig.
6b shows the dependency of the loss factor from both
amplitude and frequency by means of pseudo-color
plot. It looks evident how there exists a specific value
of amplitude A (that appears to be between 1 cm and 3
cm) that maximizes the loss factor (darker region). A
contour line plot of maximum values of g-force is also
superimposed on the loss factor map. Moreover, the
occurrence of something similar to Rayleigh–Taylor
instabilities, that is the detachment of the ball from
the bottom of the tank, is verified when the maximum
value of acceleration reaches approximately 2g. Before
the 2g frontier, since there is no impact, the dissipation
is negligible. On the contrary, for acceleration values
greater than this threshold value, the ball detaches and
impacts cause dissipation.
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(a) Time decaying acceleration (b) Instantaneous damping ratio

Fig. 5 Identification of the optimal bouncing ball parameters

(a) Hysteresis cycle (b) Loss Factor map

Fig. 6 Hysteresis cycle and loss fact map of the optimal bouncing ball ROM

4 Neural-network-based reduced-order models

Identification techniques based on the use of neural net-
works (NN) can therefore be exploited to obtain a new
class of ROMs for vertical sloshing. In order to iden-
tify the NN-based ROM, input/output data related to
the vertical sloshing system are needed. In this paper,
in order to cover the lack of experimental and CFD
data, the NN is trained by exploiting data that are out-
put by low-fidelity bouncing ball model. This model is
now considered as a black-box to be identified that pro-

vides sloshing forces as a function of the history of the
assigned vertical displacement. Before the integration
of the NN-based ROM into a simulation framework in
Sec. 4.2, a training campaign for the identification of
the network is provided in Sec. 4.1.

4.1 Training phase

The training phase consists in the definition of a neu-
ral network able to emulate vertical slosh dynamics.
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Fig. 7 Feed forward neural network flowchart

In this framework, the use of a proper data set is crit-
ical, thus requiring an investigation among different
types of inputs, after which, the choice fell on a pseudo-
harmonic signal with amplitude and frequency slowly
varying over time (zT = A(t) sin(

∫ t
0 
(τ) dτ)). This

time law is such as to suitably cover the amplitude–
frequency domain of interest as in Fig. 6b , that, in
turn, covers the range of accelerations provided by the
performed experiments. The time derivative of zT is
used as input for the training. On the other hand, the
output consists of the sloshing force that the ball returns
when the tank is set on motion. The need to cover the
more frequency–amplitude pairs leads to a data set rep-
resented by time series (velocity as input and slosh-
ing force as output) obtained by only one 200 s long
simulation with a sample frequency of 1 kHz. Among
the wide variety of NN architectures feed forward neu-
ral network (FF NN) has been considered, in which
the information simply propagates from left to right
in the network through a manifold of hidden layers.
The proposed scheme of the identified neural network
shown in Fig. 7 consists of 7 hidden layers with 35
nodes/neurons each. Moreover, 50 tapped delay lines
are considered for the input. This kind of NN is proved
to work efficiently by using non-polynomial activation
functions like radial basis functions (Refs. [17,18]). As
a consequence, these latter are employed as activation
functions in all nodes of the considered hidden layers,
whereas the output layer ismade upwith a simple linear
function. The choice of the number of hidden nodes and
layers is based on a qualitative sensitivity analysis that
did not require the use of specific techniques. Specifi-
cally, given the same number of epochs considered in
the network training, the selected NN is the one that
proved to provide more fitting results when the ROM
is introduced in the FSI environment that follows in
Sec. 4.2. The algorithm used for the training consists

of Bayesian Regularization, implemented in Matlab®
through the trainbr function (Ref. [14]), with a fixed
number of epochs equal to 1000, in which the mean-
squared error performance is observed to converge to
a constant value, thus guaranteeing the convergence of
the network. The total time spent for the NN training is
44 hours without employing any kind of parallel com-
puting.

4.2 Integration of Neural Network into closed-loop
simulation

Subsequently, the equivalent mechanical model of
bouncing ball was replaced by the identified neural-
network-based ROM in the simulation framework
depicted in Fig. 5. The same free response analysis
as in the experiments and simulation in Sec. 3.2 has
been performed. It is worth to highlight that this kind of
response has nothing to dowith the data used to train the
network. Since the sloshing tank system is of the type
single input/single output, the simulation takes only a
few seconds to perform the fluid–structure interaction
analysis where the sloshing block is replaced with a
neural network. Fig. 8a, b and c provides, respectively,
the acceleration response, the instantaneous damping
ratio as a function of the acceleration envelope, and the
sloshing force comparing the experiments, the simula-
tion with the bouncing ball and the one with the neural-
network-based ROM. Specifically, Fig. 8a shows that
response in terms of acceleration obtained with the
NN-based ROM for sloshing is close to the response
obtained with the bouncing ball model (used to train
the network) and the experimental response as well.
Fig. 8b demonstrates the capability of the NN-based
ROM to provide a value of the instantaneous damping
ratio matching the one of the bouncing ball model at
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(a) Free Response (b) Instantaneous damping ratio

(c) Sloshing Forces

Fig. 8 Comparison between FFNN, bouncing ball and experiment

each value of response amplitude even though better
performances are noticeable at higher acceleration val-
ues. The results show that although the methodology is
at its preliminary stage, the NN-based ROM is able to
reproduce the behavior of the model with the bouncing
ball and, in turn, also of the experiments. Moreover, as
shown in Fig. 8c, the neural network is also capable to
reproduce the nonlinear behavior of the bouncing ball
impact force.

5 Conclusions

The goal of this paper was to study and provide a
reduced-order model to describe the dissipative behav-
ior of nonlinear vertical sloshing (involving Rayleigh–
Taylor instability) of fuel-inside-wing tanks by means
of a feed forward neural network. The data used to
build an equivalent mechanical model (EMM)was pro-
vided by an experimental study about the coupling
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between fluid sloshing and a 1-DoF system performed
at UPM. The EMM consists of a boxed-in bouncing
ball model, able to emulate the fluid sloshing into the
tank and to replace the fluid behavior in FSI simula-
tions for different scenarios than the one of the exper-
iments. Next, the network was trained using a large
data set, consisting of a long simulation of the bounc-
ing ball model with pseudo-periodic motion assigned
as unsteady boundary condition spanning different val-
ues of oscillation amplitude and frequency. Indeed, the
vertical sloshing forces were proved to be highly non-
linear and dependent on the amplitude of oscillation
and its frequency content. Despite the training phase
of the neural network has revealed time-consuming, it
has provided a sufficiently fast reduced-order model
able to reproduce the behavior of sloshing forces.
The obtained neural network input–output model was
included in a Simulink® environment for closed-loop
fluid–structure interaction simulations showing good
matching with the experiments.

In the framework of SLOWD project, this research
will go toward several directions, such as the use of
higher fidelity data provided by CFD simulations spe-
cific for vertical sloshing or by proper experiments even
though large tank sizes requires for important facilities
to assign motion to trigger such a dissipative behav-
ior. On the other hand, neural networks may allow for
generalization of tank motion including all 6 DoFs of
the tank instead of the only vertical motion at the cost
of increasing the computational cost in the identifica-
tion since more inputs and more outputs increase the
complexity of the network. Moreover, a specific issue
to be faced in the next future concerns the integration
of the network into a multiple-degree-of-freedom sys-
tem, in which the behavior of the ROM will need to
be assessed for multi-harmonic motion. Although the
neural network is computationally more expensive in
both training and simulation phases, these points mark
the difference with the bouncing ball model. NN-based
ROM, following an adequate learning phase employ-
ing the right data set (also taking into consideration
different types of inputs with respect to the pseudo-
harmonic), has the potential to accurately replace the
behavior of the sloshing forces even by increasing the
degree of complexity of the FSI environment.
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