
ORIGINAL RESEARCH
published: 25 May 2022

doi: 10.3389/fneur.2022.868792

Frontiers in Neurology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 868792

Edited by:

Francesca Trojsi,

Università degli Studi della Campania

“Luigi Vanvitelli”, Italy

Reviewed by:

Raffaele Dubbioso,

Federico II University Hospital, Italy

Christian Lunetta,

Centro Clinico NEMO, Italy

*Correspondence:

Marco Ceccanti

marco.ceccanti@uniroma1.it

Specialty section:

This article was submitted to

Neurorehabilitation,

a section of the journal

Frontiers in Neurology

Received: 03 February 2022

Accepted: 22 April 2022

Published: 25 May 2022

Citation:

Ceccanti M, Cambieri C, Libonati L,

Tartaglia G, Moret F, Garibaldi M and

Inghilleri M (2022) Effects of Skin

Stimulation on Sensory-Motor

Networks Excitability: Possible

Implications for Physical Training in

Amyotrophic Lateral Sclerosis.

Front. Neurol. 13:868792.

doi: 10.3389/fneur.2022.868792

Effects of Skin Stimulation on
Sensory-Motor Networks Excitability:
Possible Implications for Physical
Training in Amyotrophic Lateral
Sclerosis
Marco Ceccanti 1*, Chiara Cambieri 1, Laura Libonati 1, Giorgio Tartaglia 1, Federica Moret 1,

Matteo Garibaldi 2 and Maurizio Inghilleri 1

1Department of Human Neuroscience, Center for Rare Neuromuscular Diseases, Policlinico Umberto I, Sapienza University

of Rome, Rome, Italy, 2Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Neuromuscular and

Rare Disease Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy

Background: Many different trials were assessed for rehabilitation of patients with

amyotrophic lateral sclerosis (ALS), with non-unique results. Beside the effects on muscle

trophism, some of the encouraging results of physical training could be ascribed to the

modulation of cortical excitability, which was found hyperexcited in ALS.

Objective: The effects of tactile skin stimulation in the modulation of the sensory-motor

integrative networks in healthy subjects were assayed through the paired associative

stimulation (PAS) protocol.

Methods: In total, 15 healthy subjects were enrolled. In the standard PAS session, the

average amplitude of the motor evoked potential (MEP) after 10 stimuli of transcranial

magnetic stimulation (TMS) was measured at the baseline and after the PAS protocol (0,

10, 20, 30, and 60min). In the skin stimulation session, the average amplitude of the MEP

was measured before and after 10min of skin stimulation over the hand. Subsequently,

each subject underwent the PAS stimulation and the measure of the average amplitude

of the MEP (0, 10, 20, 30, and 60 min).

Results: The tactile skin stimulation on healthy subjects increases the PAS-induced

sensory-motor network hyperexcitability in healthy subjects.

Conclusion: Skin stimulation should be avoided in the physiotherapeutic approaches

for patients with ALS, given the possible hyperexciting effects on the already

upmodulated sensory-motor networks. They can be taken into account for diseases

characterized by downregulation of cortical and transcortical networks.

Keywords: paired associative stimulation, sensory-motor networks, amyotrophic lateral sclerosis, brain

stimulation, cortical excitability
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rare, adult-onset
neurodegenerative disease characterized by a loss of motor
neurons in the cerebral cortex, brainstem, and spinal cord,
giving rise to upper and lower motor neuron signs. No effective
therapy is available, even if some drugs demonstrated a mild
effect in slowing down the disease progression (1, 2). Even
more challenging is the etiopathology of ALS; genetic (3),
autophagy (4, 5), glutamate-driven excitotoxicity in the motor
cortex (6, 7), oxidative stress (8), mitochondrial dysfunction
(9), muscle impairment (10), and many other mechanisms have
been considered.

Many studies evidenced non-motor involvement in motor
neuron diseases, such as gastrointestinal dysfunction (7),
cognitive impairment (11), extrapyramidal signs (12–15), small
fiber neuropathy (16), and laryngeal sensitivity (17). Moreover,
sensory-motor networks are demonstrated to be impaired in
superoxide dismutase 1 (SOD1) ALS mice, which exhibit specific
delays in acquiring sensory-motor skills even during the first
week after birth (18). All these data are designing ALS as a
multisystem brain degeneration disorder instead of a disease
limited to motor neurons. Advanced neurophysiological studies
can help in identifying the sensory-motor impairment in many
different diseases. Transcranial magnetic stimulation (TMS) is
a non-invasive way to stimulate nerve cells in the superficial
brain areas by applying a high-energy magnetic field at the skull
surface, which produces a perpendicular-induced electrical field
through the cortex.

Recently, a surge in interest has been recorded in
electrophysiological techniques that induce short-term changes
in the human cortex excitability, such as patterned electrical or
mechanical muscle and nerve stimulation, and in methods that
indirectly stimulate brain regions through transient magnetic
fields or weak electrical currents (19–21). Within this context,
paired associative stimulation (PAS) has drawn attention both
as a therapeutic intervention (22, 23) and as an experimental
method to investigate Hebbian principles of synaptic plasticity.
In the prototypical form of the PAS (24), an electrical stimulus
is administered to a peripheral nerve in advance of a magnetic
stimulus delivered to the contralateral primary motor cortex
(M1). The interstimulus interval is adjusted to ensure that inputs
to M1 from the afferent volley arising from the nerve stimulation
occur simultaneously with the magnetic stimulation. Repeated
pairing of the two sources of stimulation (i.e., association) over
an extended time increases the excitability of corticospinal
projections from M1. A reduction in corticospinal excitability
has been reported when the interstimulus interval is adjusted
to allow a corollary of the afferent volley to reach M1 after the

magnetic stimulus (25).
This neuroplastic adaptation revealed by the PAS appears

to exhibit several criteria designated for long-term potentiation

(LTP) and long-term depression (LTD): its effects evolve quickly,
are reversible, and persist beyond the period of stimulation
(26–28). Pharmacological agents interacting with N-methyl-D-
aspartate (NMDA)-receptor activity interfere with the outcomes

of the PAS, thus supporting the hypothesis that LTP-like changes
are implicated (28).

Since the first description of this technique by Stefan
et al. (24), there has been a wide range of derivative
investigations concerning, among other features, the most
effective interstimulus intervals (ISIs) (29, 30), the muscles in
which the effects can be elicited (24, 31, 32) and the extent
to which they can be induced in various clinical populations
(23). Moreover, large interindividual differences in response to
the PAS have been observed (33). This led to investigations on
potential mediating factors, such as age (34), cortical anatomy
(35), and the role of specific genetic polymorphisms (36, 37).
The PAS protocol was tested in patients with ALS only in two
trials; one of them (38) recently demonstrated that sensory-
motor networks are also hyperexcited and Riluzole, one of the
approved drugs for ALS therapy, can positively modulate this
aspect. Physical training could positively or negatively modulate
this sensory-motor hyperexcitability in ALS. Several studies
on the animal model report neuroprotective effects induced
by moderate physical exercise (running), mainly ascribed to a
protective role on astrocytes (39); on the contrary, other studies
do not show differences between the survival of mice that make
exercise with different intensities (40). Finally, other studies
report a worsening of the clinical course in the mouse model
practicing intense physical exercise (41).

Studies on a mouse model, which practiced physical exercise
in water (swimming), report an improvement in the clinical
course characterized by reduction of symptoms and increased
survival (42, 43). This effect has been hypothesized to be related
to the repetitive activation of the same neuronal circuits and the
subsequent action on the transcriptome of the activated neurons,
which would induce a neuroprotective effect.

Many other articles recommended swimming training in ALS
(44–46). The difference in course and survival found in the
swimmingmouse compared to the running onemakes us wonder
about the reasons for such different clinical courses and what are
the peculiar characteristics of physical activity in water able to
mediate neuroprotection.

Among the mechanisms, it could be hypothesized that
different frequencies of the firing rate of the motor neuron
could lead to neuroprotective or neurodegenerative phenomena;
moreover, in the water exercise, the body undergoes a continuous
skin stimulation, which can modulate cortical excitability, as
experienced in persons with spinal cord injury (47). The effects of
sensory stimulation have been widely described for whole-body
vibration (WBV). WBV is a mechanical stimulation technique of
the body mainly used for study purposes to evaluate the induced
neuromuscular responses; it is also used in the rehabilitation of
patients with stroke or spinal injuries (47–49). The effects of
vibration on muscle strength, motor coordination, and postural
control are widely documented, consisting of a temporary
sustained enhancement of corticospinal excitability concomitant
with spinal inhibition (47). However, the physiological basis of
these effects is still unknown. Mechanisms modulating neuronal
excitability at the spinal and supraspinal levels have been
supposed, but the results obtained from the different studies are
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still discordant. Different results are probably due to vibratory
frequencies used (49).

The vibration also determines a facilitatory effect on themotor
evoked potential (MEP) of the stimulated territory (48, 50) and
a decrease of Hoffmann’s reflex (H-reflex) (49, 51–56), which
represents the electrophysiological equivalent of the myotatic
reflex. The ability of the vibration to modulate the H-reflex could
act at the spinal level, but a cortical involvement cannot be
excluded (48, 49).

The increase in the amplitude of the MEP following
WBV, documented in several articles, represents an increase
in the excitability of the corticospinal projections and,
therefore, an action at a supraspinal level (48). Nevertheless,
Sayenko et al. (55) demonstrated that also patients with
spinal cord injury had a reduction of H-reflex after WBV,
suggesting a direct action of vibration on the lower motor
neuron excitability.

The effects of the PAS on the cortical excitability, as
observed above, are synapse specific and are restricted to cortical
representations of themuscles innervated by the peripheral nerve
that has been electrically stimulated (57). Thus, vibration, which
can activate different sensory regions, does not appear to be the
best sensory cue to study the sensory-motor networks evaluated
by the PAS.

This trial aimed to demonstrate the effects of tactile
stimulation on the sensory-motor network’s excitability in
healthy subjects, to determine whether it should be encouraged
or not in the rehabilitation of patients with ALS.

MATERIALS AND METHODS

Skin Stimulation and Its Effects on the
Paired Associative Stimulation
In total, 15 healthy volunteers were recruited. The exclusion
criteria were as follows: drowsiness (assessed with the Epworth
sleepiness scale), alcohol and coffee consumption, or the
intake of drugs capable of interacting with the neuronal
excitability threshold in the last 24 h, women in the menstrual
or premenstrual phase (58), high resting motor threshold
(RMT) (exceeding the maximum TMS output power
to be elicited), pregnant women, subjects with epilepsy,
and subjects with metal implants (e.g., pacemakers and
hearing aids).

Each participant in this study underwent two sessions: in the
first session, he underwent the standard PAS protocol, while in
the second session, he underwent the PAS protocol after 10min
of skin stimulation (brushing).

Standard Paired Associative Stimulation
Session
The following parameters were recorded for each subject
(Figure 1):

• Resting motor threshold (RMT), belly-tendon registration
from the abductor pollicis brevis (APB) of the non-
dominant hand.

• Maximal amplitude of the motor evoked potential (MEP)
from the APB of the non-dominant hand; TMS output was
gradually increased by 10% until the maximal peak-to-peak
amplitude was recorded from the APB.

• Sensory electrical threshold of the median nerve of the non-
dominant hand. The sensory threshold was defined as the
minimal intensity of stimulation that can be perceived (59) in
5 out of 10 tests.

• Latency of the N20 component of the somatosensory evoked
potential (SSEP) from the stimulation of the median non-
dominant nerve (5 trials of 200 stimuli, filters set as 5/3,000Hz,
stimulus rate 3.3Hz, stimulation with monophasic rectangular
pulses with a duration of 0.1ms, intensity 1.3 times the
motor threshold, recording electrode between the central and
contralateral parietal electrode, and referenced to the ear
electrode) (60).

• Average MEP amplitude from the APB of the non-dominant
hand obtained through the delivery of 10 stimuli at 0.1Hz with
an intensity of 120% of the RMT. This average amplitude was
recorded before the PAS stimulation, immediately after (T0)
and after 10 (T10), 20 (T20), 30 (T30), and 60 (T60) min from
the PAS stimulation.

• Amplitude and latency of the median compound muscle
action potential (cMAP) of the non-dominant hand.

For the assessment of the RMT, the minimum intensity of
transcranial magnetic stimulation able to evoke a motor evoked
potential with an amplitude at least of 50 µV in at least 5 out
of 10 stimulations recorded at the level of the APB of the non-
dominant hand was considered. The non-dominant hand was
tested to avoid possible entrapment syndrome, more frequent in
the dominant hand.

The TMS was performed through a high-frequency biphasic
magnetic stimulator (Magstim Rapid—The Magstim Company
Ltd., Whitland, Southwest Wales, United Kingdom) connected
to an eight-shaped coil. The particular shape of the coil allows
the delivery of a very focused stimulation (61).

The PAS stimulation was performed by administering 200
pairs of stimuli at a frequency of 0.3Hz, with the same protocol
previously used (38). The magnetic stimulus was delivered via
TMS in the hotspot for the APB of the contralateral hand, at

FIGURE 1 | The standard paired associative stimulation (PAS) session protocol.
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an intensity of 100% of the RMT; the eight-shaped coil was
placed tangentially to the scalp with an angle of approximately
45◦ to the midline. The hotspot was considered the location
that evokes the largest electromyogram (EMG) responses while
applying a series of pulses at a relatively high intensity (62). The
magnetic stimulus was coupled to an electrical stimulus delivered
on the median nerve of the non-dominant hand (contralateral
to the magnetically stimulated cortex); the electrical stimulation
was administered at 300% of the previously recorded sensory
electrical threshold, with a duration of 500 µs. However, the
duration of the electrical stimulus was adjusted to maintain
the stimulus always below the motor threshold, to avoid any
activation of muscle fibers of the APB, which would provide
further activation of an afferent proprioceptive volley, thus
possibly modifying the effect of the PAS.

The interstimulus interval (ISI) between electrical and
magnetic stimuli was calculated by adding 6ms to the N20
latency of the somatosensory evoked potentials (SSEPs) of the
stimulated hand so that the inputs afferent to the primary motor
cortex deriving from the electrical stimulation of the median
nerve precede the cortical stimulation obtained with TMS (63).

Paired Associative Stimulation Protocol
With Skin Stimulation
In the second session, tactile skin stimulation was performed
before the PAS stimulation (Figure 2).

A skin mechanical stimulation rather than an electrical
stimulation was carried out to activate only the sensitive Aβ and
not small sensitive Aδ or C fibers. Unlike other studies, we used a
mechanical tactile stimulation instead of a vibratory stimulation
because the latter let the entire hand vibrate, thus stimulating
other nervous areas such as the ulnar or radial ones.We speculate
that the effects of the PAS can be modulated by sensory stimuli
delivered to the same sensory area.

Skin stimulation was performed by brushing through the
bristles of a brush, with a stimulation frequency of 1Hz for
10min in the territory innervated by the median nerve of the
non-dominant hand.

The following parameters were recorded both before and after
skin stimulation:

• Motor threshold at rest, belly-tendon registration from the
APB of the non-dominant hand.

• Maximal amplitude of the motor evoked potential from the
APB of the non-dominant hand; TMS output was increased
with steps of 10% of stimulation output until the maximal
peak-to-peak amplitude was recorded from the APB.

• Sensory electrical threshold of the median nerve on the non-
dominant hand.

• Average amplitude of theMEP after 10 stimuli of TMS at 120%
of the RMT and a frequency of 0.1Hz (registration from the
APB of the non-dominant hand).

Subsequently, each subject was subjected to the PAS stimulation
with 200 pairs of stimuli delivered with a frequency of 0.3Hz
(same protocol as the standard PAS session). Average MEP
amplitude from the abductor pollicis brevis (APB) of the non-
dominant hand was obtained through the delivery of 10 stimuli
at 0.1Hz, with an intensity of 120% of the RMT. This average
amplitude was recorded immediately after the PAS stimulation
(T0) and after 10 (T10), 20 (T20), 30 (T30), and 60 (T60) min.

F-Wave Amplitude Study
On a different day from the two PAS sessions, the same skin
stimulation was performed as in the PAS protocol with skin
stimulation, and the average amplitude of the F-wave was
obtained by 10 supramaximal stimuli of the non-dominant
median nerve at 1Hz before the 10-min skin stimulation,
immediately after (T0) and after 10 (T10), 20 (T20), 30 (T30),
and 60 (T60) min.

This study complied with the Declaration of Helsinki and
international safety guidelines and was approved by the local
ethics committee. All the subjects provided written informed
consent for their participation in this study.

STATISTICS

Parametric tests were used when Levene’s test demonstrated
equal variances of the sample. In particular, the comparison
between RMT and the mean baseline MEP before the standard
PAS session and before and after skin stimulation in the
PAS protocol with skin stimulation was performed with the
Student’s t-test. The MEP amplitude and F-wave amplitude in
the different time points were compared through the repeated
measures-ANOVA (RM-ANOVA), with a within-subject analysis
comparing the single parameter in the different time points and
a between-subject analysis comparing the parameters in the two
PAS sessions.

Statistical significance was defined with a p-value < 0.05. All
the statistics were performed with IBM SPSS statistics version 25.

RESULTS

In total, 15 volunteers were enrolled, 9 women (60%) and 6
men (40%), aged between 20 and 62 years (mean age: 28.87 ±

10.67 years).
The mean RMT recorded in the first trial (the standard

PAS session) was 56.67 ± 7.08%; the mean RMT in the PAS
protocol with skin stimulation was 56.13 ± 7.55% in the

FIGURE 2 | The PAS protocol with skin stimulation.
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preskin stimulation session and 57.40 ± 8.47% in the postskin
stimulation session.

For the electric sensory threshold, an average value of
1.87 ± 0.52mA was calculated in the first trial and an
average value of 1.93 ± 0.80mA was calculated in the
second trial.

The mean MEP amplitude calculated at the different time
points during the first and second trials is shown in Table 1.

No statistically significant changes (p > 0.05) were
demonstrated in the RMT recorded in the three detections
(baseline RMT in the standard PAS session trial and before and
after skin stimulation in the PAS protocol with skin stimulation).

The mean baseline MEPs were also compared between the
three detections and no significant differences were found
(p > 0.05).

The presence of significant global changes in the mean
MEP amplitude in the different time points (baseline, T0, T10,
T20, T30, and T60) was assessed by RM-ANOVA, both in the
standard PAS session and PAS protocol with skin stimulation.
No significant changes in the global mean MEP amplitude
either in the first trial [F (2.783,38.967) = 1.012, p > 0.05]
or in the second trial [F (1.828,18.282) = 2.016, p > 0.05]
were found.

The within-subject analysis in the standard PAS session
highlighted a significant increase in the amplitude of the MEP
after the PAS at T20 (p= 0.045).

The within-subject analysis in the PAS protocol with skin
stimulation showed a statistically significant increase in the mean
MEP amplitude at T30 (p= 0.027) and T60 (p= 0.031) compared
to the baseline MEP recorded before the PAS and after skin
stimulation. In the other time points, no significant differences
were found.

In the between-subject analysis, significance was achieved for
a higher increase in the MEP amplitude at T30 (p = 0.031)
in the PAS protocol with skin stimulation compared to the
standard PAS session; a trend to significance was also found at
T60 (p= 0.072) (Figures 3, 4).

TABLE 1 | Mean RMT, sensory threshold, and the MEP amplitude ± SD in the

different time points, both with and without skin stimulation trials.

Standard PAS PAS protocol with

session skin stimulation

Pre-skin Post skin

stimulation stimulation

RMT (%) 56,67 ± 7,08 56,13 ± 7,55 57,40 ± 8,47

Sensory threshold (mA) 1,87 ± 0,52 1,93 ± 0,80

MEP pre-PAS (mV) 0,69 ± 0,62 0,59 ± 0,27 0,53 ± 0,30

MEP T0 (mV) 0,57 ± 0,56 0,52 ± 0,23

MEP T10 (mV) 0,52 ± 0,34 0,58 ± 0,28

MEP T20 (mV) 0,77 ± 0,75 0,77 ± 0,43

MEP T30 (mV) 0,69 ± 0,42 0,91 ± 0,66

MEP T60 (mV) 0,59 ± 0,74 0,74 ± 0,82

RMT, resting motor threshold; MEP, motor evoked potential; PAS, paired

associative stimulation.

Repeated measures-ANOVA showed no differences between
F-wave amplitude before and after skin stimulation at the
different time points (p > 0.05; Table 2).

DISCUSSION

Skin stimulation was investigated in a healthy subject sample
and the effects on transcortical excitability were evaluated
through the PAS protocol. The effects of skin stimulation were
tested on the healthy subjects to infer the effects of sensory
cues during rehabilitation on the transcortical sensory-motor
excitability. Previous studies (38) demonstrated an increased
transcortical sensory-motor excitability in patients with ALS
after the PAS protocol, thus suggesting possible NMDA-mediated
excitotoxicity not only in the primary motor cortex but also in
the transcortical sensory-motor networks. Moreover, the effects
of Riluzole, the main approved drug for ALS, do not act only
on the primary motor cortex excitability (64–66), but also on the
sensory-motor projections.

Many factors can modify cortical excitability, increasing
or decreasing it and leading to a beneficial or deleterious
effect in patients with ALS. Studies on G93A-SOD1 mice,
the experimental animal model for ALS, showed a significant
difference in course and prognosis between in-water and
extrawater exercise, with the former associated with increased
survival (42, 43). Among the possible hypothesized mechanisms,
the tactile stimulus associated with swimming was evaluated in
this trial. While swimming, in fact, the continuous resistance
opposed by water determines a constant skin stimulation on the
body surface.

Sensory stimulation is already recognized as an important
tool for rehabilitation in many neurological diseases such as
stroke and spinal cord injuries (47, 67), diseases characterized
by downregulation of the pyramidal tract. Several studies
(47–49) investigating the neurophysiological effects of sensory
stimulation, usually vibration, report a reduction of the lower
motor neuron excitability.

However, supraspinal effects of vibration have also been
reported (48), with an increased amplitude of the MEP,
suggesting an upmodulated cortical excitability.

This trial aimed to evaluate the primary motor cortex and
sensory-motor networks’ excitability after skin stimulation,
to confirm or deny a role for sensory stimulation during
rehabilitation in diseases characterized by transcortical
hyperexcitability, such as ALS.

At the beginning of each of the two stimulation sessions,
with and without skin stimulation, the baseline RMT and MEP
amplitude were evaluated to check any change in intracortical
excitability between the first and the second sessions. Indeed, no
significant changes were found for these parameters.

The absence of differences in RMT values before and after skin
stimulation shows that the latter does not induce changes in the
NMDA-mediated excitability of the primary motor cortex (68).

In the standard PAS session, the MEP amplitude increased
at T20 (p = 0.045), compared to the baseline value; in the PAS
protocol with skin stimulation, a significant increase in the MEP
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FIGURE 3 | The MEP amplitude in the two trials at the different time points. Error bars indicate the SEM. * = p < 0.05.

FIGURE 4 | Normalized MEP amplitude in the two trials at the different time points. * = p < 0.05.

amplitude was found at T30 (p = 0.027) and T60 (p = 0.031)
compared to the baseline.

No changes in F-wave amplitude were found at any time point
after skin stimulation compared to the baseline.
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TABLE 2 | Average F-wave amplitude ± SD in the different time points.

Average F wave amplitude

pre-skin stimulation 0,17 ± 0,10

T0 0,12 ± 0,07

T10 0,13 ± 0,05

T20 0,14 ± 0,06

T30 0,13 ± 0,06

T60 0,15 ± 0,07

Furthermore, the between-subject analysis showed a
significantly higher increase in the mean MEP amplitude in the
PAS protocol with skin stimulation compared to the standard
PAS session at T30 (p =0.031) and a trend toward significance at
T60 (p= 0.072).

The skin stimulation was able to further increase sensory-
motor networks’ susceptibility to the PAS and extend the
duration of the effect (at least 60min). In this way, we can
confirm an effect on a supraspinal level for sensory stimulation,
acting not just on the primary motor cortex but also on the
sensory-motor networks.

The F-wave amplitude did not change before and after the
skin stimulation at any time point, not even in the same
ones (T30), which demonstrated an increased MEP after the
standard (T30) and the PAS protocol with skin stimulation.
The F-wave amplitude is related to the intrinsic primary motor
cortex excitability, with increased excitability expected to reduce
the amplitude. This is to confirm that the skin stimulation
does not directly modify the primary motor cortex excitability,
but increases the excitability of the sensory-motor networks.
Moreover, we can speculate that the F-wave represents the tonic
and intrinsic excitability of the primary motor cortex, while the
MEP amplitude preferentially represents the excitability of the
interneurons rather than motor neurons (69, 70).

When compared to the evidence from previous articles (38),
a similar behavior between skin-stimulated healthy controls and
patients with ALS can be highlighted, with a higher and longer-
lasting increase in the MEP amplitude after the PAS.

The results of this study should discourage the use of
sensory cues in the rehabilitative protocols for patients with
ALS, given the possibility of further increasing the transcortical
excitability, thus potentially increasing the excitotoxic damage.
Moreover, the synergistic effect on cortical excitability of the
PAS coupled with skin stimulations confirms a peculiar role for
spatial summation in the medium-term brain modulation and
associative learning.

On the other hand, the evidence of a better prognosis for
mice making in-water physical exercise (42, 43) cannot be
explained by the continuous body skin stimulation by water.
Then, the intensity of physical exercise during the swimming
activity can be taken into account. Other authors demonstrated
a better prognosis for ALS when a moderate exercise was
performed (71–73); in particular, Carreras (73) demonstrated
a reduced motor neuron loss in ALS mice when moderate
exercise was performed, compared to sedentary and high-level

exercise. The authors concluded that different intensities of
exercise could have different outcomes in ALS mice prognosis;
moderate level exercise, compared to a sedentary lifestyle, could
increase the release of neurotrophic factors, such as brain-
derived neurotrophic factor (BDNF), insulin-like growth factor-1
(IGF-1), and vascular endothelial growth factor (VEGF), with a
positive role on motor neurons survival. High-level exercise may
be a combination of the beneficial effects of exercise together
with the negative effects of stressful excursion, with an increase
in glutamate and reactive oxygen species release.

The main limitation of this study was the absence of a
study arm with patients with ALS. In this study, patients with
ALS would have been involved in further trials, if the sensory
stimulation had induced a negative modulation of the sensory-
motor networks. In fact, this study group already demonstrated
hyperexcitability of these transcortical projections in ALS (38).
The results of this trial are inhibiting further investigations on
patients for ethical reasons.

If the skin tactile stimulation should be avoided in ALS
patients’ physical activity, other diseases and conditions could
benefit from it. Skin stimulation should be encouraged in
pathologies characterized by reduced cortical excitability, such as
stroke (74) or remitting phase of multiple sclerosis (75). In these
diseases, some evidence for sensory stimulation during physical
activity is already available, regardless of the sensory mode used
(76–78) and even for dysphagia (79–81). The administration of
sensory cues during the training already provided evidence for
benefit, also in the non-motor rehabilitation; protocols using
vestibular, somatosensory, and optokinetic stimulation each have
been shown to produce transient improvements in visuospatial
neglect (82).

CONCLUSION

We can conclude that sensory cues during rehabilitation can be
encouraged in diseases characterized by cortical and transcortical
hypoexcitability, but should be avoided in patients with ALS.
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