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Abstract 

Background and Objectives 

Considerable heterogeneity exists in the literature concerning genetic determinants of the age 

of onset (AAO) of Parkinson’s disease (PD), which could be attributed to lack of well-

powered replication cohorts. The previous largest GWAS identified SNCA and TMEM175 loci 

on chromosome (Chr) 4 with a significant influence on AAO of PD, these have not been 

independently replicated. The present study aims to conduct a meta-analysis of GWAS of PD 

AAO and validate previously observed findings in worldwide populations. 

Methods 

A meta-analysis was performed on PD AAO GWAS of 30 populations of predominantly 

European ancestry from the Comprehensive Unbiased Risk Factor Assessment for Genetics 

and Environment in Parkinson's Disease (COURAGE-PD) consortium. This was followed up 

by combining our study with the largest publicly available European ancestry dataset 

compiled by the International Parkinson disease Genomics Consortium (IPDGC). 
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Results 

The COURAGE-PD included a cohort of 8,535 patients with PD (91.9%: Europeans, 9.1%: 

East-Asians). The average AAO in the COURAGE-PD dataset was 58.9 years (SD=11.6), 

with an under-representation of females (40.2%). The heritability estimate for AAO in 

COURAGE-PD was 0.083 (SE=0.057).  None of the loci reached genome-wide significance 

(P<5x10-8). Nevertheless, the COURAGE-PD dataset confirmed the role of the previously 

published TMEM175 variant as genetic determinant of AAO of PD with Bonferroni-corrected 

nominal levels of significance (P<0.025): (rs34311866:β(SE)COURAGE=0.477(0.203), 

PCOURAGE=0.0185). The subsequent meta-analysis of COURAGE-PD and IPDGC datasets 

(Ntotal=25,950) led to the identification of two genome-wide significant association signals on 

Chr 4, including the previously reported SNCA locus 

(rs983361:β(SE)COURAGE+IPDGC=0.720(0.122), PCOURAGE+IPDGC=3.13x10-9) and a novel BST1 

locus (rs4698412:β(SE)COURAGE+IPDGC=-0.526(0.096), PCOURAGE+IPDGC=4.41x10-8).   

Discussion 

Our study further refines the genetic architecture of Chr 4 underlying the AAO of the PD 

phenotype through the identification of BST1 as a novel AAO PD locus. These findings open 

a new direction for the development of treatments to delay the onset of PD. 

Keywords: Burden of disease, Age at onset, Duration of disease, Parkinson’s disease, 

Genetic heritability 

 

Introduction 

In 2019, over 8.51 million individuals (95% uncertainty interval [UI] 7·3–9.8) had PD 

globally 1.This disease is one of the fastest-growing neurodegenenerative diseases globally, 

with an estimated 30.9% increase in the number of patients with PD in 2019 compared to 

2010. However, the prevalence of a disease depends on both the incidence and duration of 

disease, making an earlier age at onset of PD an essential contributor to the overall burden of 
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the disease. While less than 5% of patients with PD harbor pathogenic mutations in known 

monogenic PD genes, the majority are sporadic with predominantly late age of onset (AAO)2, 

3. A better understanding of genetic factors influencing variability in AAO in sporadic 

patients could lead to a better understanding of PD pathophysiology. 

The emergence of genome-wide association studies (GWAS) has resulted in a rapidly 

expanding list of loci harboring disease-susceptibility variants for the sporadic form of the 

disorder 4-6. To date, genetic variants at 78 loci have been identified for sporadic PD 6. Despite 

advances in understanding the genetic basis of PD incidence, the heritability underlying PD 

AAO remains largely unexplained. A recent global effort involving 28,568 sporadic PD 

patients of European ancestry led to the identification of two loci, SNCA and TMEM175, as 

risk factors for an earlier AAO, both of which are also known to play a role in α-synuclein-

linked mechanisms underlying PD pathology 1, 7, 8. More recently, a meta-analysis including 

5,166 Chinese patients with PD lead to the identification of another locus NDN/PWRN4 9. 

Despite the large disparity in sample size and the genetic loci identified by the two studies, 

both works estimated similar total heritability of AAO of 10-14% 7, 9. They also showed an 

inverse correlation between a polygenic risk score (PRS) and AAO based on risk loci for PD 

on individuals of similar ancestry, suggesting overlap between the pathways underlying 

disease susceptibility and AAO in PD.  

Recent studies have underscored the relevance of inclusion of ethnic diversity in genomic 

research9, 10. The COURAGE-PD (COmprehensive Unbiased Risk Factor Assessment for 

Genetics and Environment in Parkinson‘s Disease) is a worldwide collaboration consortium 

comprising 35 PD study cohorts which aims to address this disparity to some extent in PD 

research 11. The present study aims to perform an AAO GWAS in COURAGE-PD and to 

investigate the validity of previously observed loci by conducting one of the largest meta-

analysis of PD AAO GWAS to date by combining previous International Parkinson’s Disease 

Genomics Consortium (IPDGC) AAO GWAS (n=17, 415) with newly generated 
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COURAGE-PD AAO GWAS (n=8,535), resulting in a combined dataset of 25,950 patients 

with PD. Lastly, we investigate the influence of a PD PRS on PD AAO to dissect the potential 

overlapping etiology. 

Methods 

Study cohorts and participants 

The COURAGE-PD consortium comprises data from 15,849 patients with PD and 11,444 

controls of predominantly European ancestry from 35 cohorts with a major contribution from 

the Genetic Epidemiology of Parkinson’s disease (GEoPD) Consortium (www.geopd.net). 

Quality control (QC) of genome-wide data was performed in each COURAGE-PD study 

cohort. See eMethods for more details, including collected phenotypic data. AAO was 

defined based on the initial manifestation of motor symptoms associated with PD, as 

described elsewhere 6. Post-imputation, only sporadic PD patients with data available on 

AAO and not overlapping with previous IPDGC AAO GWAS were included in the present 

study, leaving 8,535 samples from 30 cohorts. These comprised 26 European and four East-

Asian ancestry cohorts.  

Genotype-phenotype analysis 

 Regression analysis and meta-analysis of study-specific estimates 

Linear regression analysis of imputed dosages with AAO was performed in each study 

cohort using an additive model, implemented in rvtests, correcting for gender and the first five 

principal components 12. The selection of five principal components was based on study 

cohort specific scree plots. The scree plot flattened out after the third factor for majority of 

study cohorts, with few exceptions, where five factors explained the highest proportion of the 

total variance. This was followed by combining study-specific results through an inverse 

variance weighted (IVW) fixed-effect meta-analyses conducted using METAL 13, 14. 

Additionally, only those variants which were successfully genotyped in at least 2/3rd of study 

cohorts were included for further interpretation. Similarly, the variants with I2 statistic≥50% 
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were considered to have substantial heterogeneity and were excluded from further 

interpretation. We also employed additive random-effect meta-analyses using the 

DerSimonian-Laird estimator to check the influence of heterogeneity on our findings15. The 

quantile-quantile (QQ) plot was generated using R to judge the potential influence of 

population stratification on the overall significance of the effect estimates.  We considered a 

P<5x10-8  as genome-wide significant and a P<1x10-6 as suggestive evidence for a potential 

association 9. We also considered a Bonferroni-corrected P<0.025 for reporting replication 

signals originating from two SNPs (rs356203 (SNCA), rs34311866 (TMEM175)) that reached 

a genome-wide significance in the previous largest meta-analysis of AAO of PD7. The results 

were visualized using R generated Manhattan and LocusZoom generated regional association 

plots 16. We conducted LD score regression with LDSC (using summary-level data) to 

estimate heritability explained by the PD AAO GWAS 17. We also performed a meta-analysis 

of COURAGE-PD AAO (n=8535) with the previous largest AAO meta-analysis comprising 

IPDGC dataset (n=17,415) to discover potentially new loci and improve heritability estimates 

7.  

Correlation between case-control GWAS and AAO GWAS 

We used two approaches to assess the correlation between PD case-control GWAS meta-

analysis and COURAGE-PD AAO GWAS meta-analysis. Firstly, we computed the genome-

wide genetic correlation between PD status and PD AAO in COURAGE-PD dataset using the 

cross-trait LD score regression method 17. Secondly, we used effect estimates of significant 

genetic variants (P<5x10-8) identified by combining of COURAGE-PD case-control GWAS 

meta-analysis dataset with the IPDGC-PD case-control GWAS meta-analysis dataset to 

generate individual-specific polygenic risk scores (PRS) in the COURAGE-PD AAO 

population, using PRSice2 18. Linear regression analysis of PRS with AAO was performed, 

correcting for gender and the first five principal components.  
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Subgroup analysis and power computation 

A subgroup analysis was performed to explore the influence of ethnicity and gender on 

the AAO GWAS as well as the correlation between case-control and AAO GWAS meta-

analyses. The power was estimated using QUANTO 1.2.419. 

Expression quantitative trait loci analysis 

We further explored the potential influence of novel variants identified in the present 

study on the expression traits using the gene expression data from the Genotype-Tissue 

Expression Project using the GTEx portal (gtexportal.org, Data Source: GTEx Analysis 

Release V8 (dbGaP Accession phs000424.v8.p2) and UK Brain Expression Consortium 

(UKBEC) using the Braineac portal (braineac.org).20, 21. 

Standard protocol approvals, registrations, and patient consents 

The study was conducted at the University of Tübingen, and the ethical approval was 

obtained by the local institutional review board (IRB) of respective study sites. All the study 

participants provided signed informed consent. 

Data availability 

Summary statistics of COURAGE-PD AAO GWAS used in the meta-analysis are 

available from the corresponding author upon reasonable request. In addition, IPDGC 

summary statistics for AAO GWAS was downloaded from the IPDGC website 

(https://pdgenetics.org/resources). Significant SNPs of risk of PD based on meta-analysis of 

COURAGE-PD and IPDGC datasets, used in the PRS calculation can be found in the original 

publication (Grover et al. in preparation). Relevant programming scripts used for the present 

work are available at the github website of Center of Genetic Epidemiology (CGE) at 

Tübingen (https://github.com/CGEatTuebingen/Ageatonset_GWAS_Courage-PD).   
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Results 

Main study outcome variable 

The final cohort after QC included a total of 8,535 patients with PD, 7,847 of 

European ancestry (91.9%) and 688 of East-Asian ancestry (9.1%). The average AAO in the 

COURAGE-PD dataset was 58.9 years (SD=11.6), with an under-representation of females 

(40.2%) (see eTable 1). We did not observe any major influence of gender or ethnicity on 

AAO. Furthermore, the average AAO was slightly lower than that reported in the IPDGC 

dataset (62.1 years; SD=12.1), a difference that was statistically significant (P<0.05). 

Genetic heritability of the study outcome 

Using summary-level data, the total estimated heritability (h2) in the COURAGE-PD 

dataset was 0.083 (SE=0.057). Similar heritability estimates were observed in the European 

sub-cohort (h2=0.079, SE=0.061). However, the heritability estimates in the Asian sub-cohort 

could not be reliably computed due to an insufficient number of patients. Additionally, we 

failed to achieve any improvement in heritability estimates, although with improved accuracy 

by combining COURAGE-PD with IPDGC dataset (h2=0.078, SE=0.018). 

Genome-wide meta-analysis 

COURAGE-PD  

GWAS meta-analysis 

The genomic inflation factor λ was 1.016 (See eFigure 1 for the QQ plot). None of the 

loci reached genome-wide significance (Figure 1). We observed one locus reaching 

suggestive genome-wide significance level, PDZPH1P (chr5) (β(SE)COURAGE =-1.456(0.293), 

PCOURAGE=6.91x10-7). However, stratifying the analyses by ethnicities, we did not observe any 

suggestive involvement of PDZPH1P locus in the European sub-cohort. (see eTable 2). 

Interestingly, despite being a smaller sub-cohort, SUGCT locus on chromosome (Chr) 7 was 

detected as a suggestive locus in the East-Asian sub-cohort (β(SE)COURAGE-

EASIAN=13.681(2.769), PCOURAGE-EASIAN=7.80x10-7). Furthermore, the stratified analysis 
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provided suggestive evidence of three loci, RHEB (chr8) in males (β(SE)COURAGE-M =-

1.112(0.222), PCOURAGE-M=5.15x10-7), and MTHFD1L (chr6) (β(SE)COURAGE-F =-1.995(0.402), 

PCOURAGE-F=6.78x10-7) and KNH3 (chr12) in females (β(SE)COURAGE-F =2.176(0.432), 

PCOURAGE-F=4.59x10-7) (see eTable 2).  

In the replication of previously reported variants, only the TMEM175 variant 

(rs34311866: β(SE)COURAGE=0.477(0.203), PCOURAGE =0.018) reached Bonferroni-corrected 

nominal levels of significance in the COURAGE-PD dataset. Nevertheless, the SNCA variant 

also showed a trend towards association (rs356203: β(SE)COURAGE=0.362(0.172), 

PCOURAGE=0.035).  

Meta-analysis of COURAGE-PD and IPDGC datasets  

The meta-analysis of COURAGE-PD and IPDGC datasets led to the identification of 

two loci that reached genome-wide significance (see eTable 2; Figure 2). The SNCA variant, 

rs983361, was the most strongly associated SNP, with the presence of allele T 

(frequency=0.204) leading to an average delay in AAO by 0.72 years 

((β(SE)COURAGE+IPDGC=0.720(0.122), PCOURAGE+IPDGC=3.13x10-9). This association, however, 

appeared to be driven by the strong association reported by IPDGC dataset, with negligible 

effect detected in the COURAGE-PD dataset (PCOURAGE/COURAGE-EUR (rs983361)=0.022; Not 

detected in East-Asian sub-population) (see eFigure 2A), which was also reflected in the loss 

of genome-wide significance, when using an additive random effect model (P=2.98x10-6). On 

the other hand, another independent locus on the same chromosome, BST1 (rs4698412) 

showed similar effects in COURAGE-PD and IPDGC datasets (β(SE)COURAGE=-0.633(0.175), 

PCOURAGE=2.95x10-4; β(SE)IPDGC=-0.480(0.115), PIPDGC=3.04x10-5), and the combination of 

both estimates resulted in the identification of a novel genome-wide significant BST1 locus 

for AAO (β(SE)COURAGE+IPDGC=-0.526(0.096), PCOURAGE+IPDGC=4.41x10-8) (see eFigure 2B). 

The rs4698412 allele A (frequency=0.562) at the locus led to an average earlier AAO of 

0.526 years in PD patients. No genetic heterogeneity was detected in the observed association 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

(I2=0; Heterogeneity P=0.465). Furthermore, we did not observe any change in the effect 

estimates, when using the additive random effect model (P=4.41x10-8). 

The previously reported TMEM175 (rs34311866) showed suggestive association in the 

combined analysis (β(SE)COURAGE+IPDGC=0.589(0.114), PCOURAGE+IPDGC=2.64 x 10-7) that 

appeared to be driven by previously reported findings in the IPDGC dataset (β(SE)IPDGC 

=0.642(0.139), PIPDGC=3.72x10-6) (see eFigure 2C). Another locus AL391867.1/RP11-

342F21.1 (rs62582905), a locus of unknown biological significance also crossed the threshold 

of suggestive association in the same analysis (β(SE)COURAGE+IPDGC =-1.456(0.293), 

PCOURAGE=6.62x10-7) (see eTable 2). However, unlike the TMEM175 association, the 

association with AL391867.1/RP11-342F21.1 was observed to be stronger in the COURAGE-

PD dataset (β(SE)COURAGE=-1.925(0.447), PCOURAGE=1.64x10-5). 

We carried out a sensitivity analysis by excluding the Asian sub-cohort from the 

COURAGE dataset, followed by combining with the IPDGC dataset. Similar findings were 

observed for the two genome-wide significant loci (SNCA rs983361: PCOURAGE(EUR)+IPDGC 

=3.13 x 10-9 , BST1 rs4698412: PCOURAGE(EUR)+IPDGC=6.27x10-8) (see eTable 2). A similar 

sensitivity analysis for the previously reported APOE ε4 locus also showed suggestive 

association with PD AAO (APOE rs429358: β(SE) COURAGE(EUR)+IPDGC =0.711(0.145), P 

COURAGE(EUR)+IPDGC=9.33x10-7). However, the association was primarily driven by highly 

significant findings in the IPDGC dataset (β(SE)IPDGC=0.754(0.171), PIPDGC=9.86x10-6; 

β(SE)COURAGE(EUR)=0.599(0.275), PCOURAGE(EUR)=0.029). 

Correlation between genetic risk for PD and PD AAO  

Using complete GWAS summary datasets for COURAGE-PD case-control and 

COURAGE-PD AAO, we observed a non-significant negative genetic correlation between 

PD and PD AAO (rg=-0.291, SE=0.224; P=0.186). Furthermore, a slightly stronger genetic 

correlation was observed when restricting our correlation analysis to European sub-cohorts 

only (rg=-0.315; SE=0.252; P=0.211).  
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When using PRS based on the significant loci detected in the meta-analysis of 

COURAGE-PD and IPDGC European datasets, as reported elsewhere, we observed that each 

unit increase in SD in PRS lead to a significant decrease in AAO in COURAGE-PD by 0.58 

years (β(SE)COURAGE=-0.581(0.149), PCOURAGE=9.35x10-5). Despite the significant findings, 

the PRS explained only 0.59% of the genetic proportion of PD heritability.  

Expression quantitative trait analysis of novel BST1 locus 

The mining of the Genotype-Tissue Expression (GTEx) portal showed that rs4698412 

representing the BST1 locus is a highly significant expression quantitative trait locus (eQTL) 

for CD38 in the basal ganglia (caudate, nucleus accumbens and putamen) and cortex (NES=-

0.32 – -0.44; P<1x10-10) (Table 1). The expression analysis also showed a strong dosage 

effect with a consistent lower expression in the presence of AA genotype compared to GG 

genotype with a higher expression, irrespective of brain tissue type. In addition, we also found 

that SNP modulates the expression of BST1 in whole blood. However, the effect was 

considerably lower in comparison to that observed on CD38 expression levels in brain tissues 

(NES=-0.071; P=1.7x10-6).  The follow-up of association of rs4698412 with expression in 

brain tissues in the UKBEC database further confirmed the role of basal ganglia with CD38 as 

the most significantly associated expressed gene in the putamen (P=7.1x10-6 ) (Table 1)    

 
Discussion 

The identification of genetic determinants that modify the disease progression will not 

only help to increase our understanding of PD etiopathogenesis, but also enables the 

development of strategies that could be used for therapeutic intervention for at-risk carriers. 

Our study not only validates previously reported AAO PD loci in the COURAGE-PD dataset, 

but our meta-analysis with IPDGC data also provides the first genome-wide significant 

evidence that the known BST1 PD risk locus affects AAO. Interestingly, the variant, 

rs4698412, representing the BST1 locus, showed a similar large effect in COURAGE-PD and 
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IPDGC providing strong evidence that this is a bona-fide genetic locus for PD AAO. Lastly, 

using significant SNPs from the meta-analysis of COURAGE-PD and IPDGC case-control 

datasets, we demonstrate an inverse association between a PD PRS and AAO of PD.  

Numerous genetic loci for familial and sporadic PD have been well characterized. The 

existence of overlapping loci between familial and sporadic PD suggests a complex but 

interconnected relationship between PD and age. Several meta-analyses of candidate genes 

and GWAS have previously recognized the BST1 locus as a locus that could influence the 

development of sporadic late-onset PD 6, 22-24. Notably, the BST1 locus has been demonstrated 

to play a role in both Asian and European PD populations. 6, 22-24 The genome-wide significant 

BST1 variant, rs4698412 observed in our AAO meta-analysis, is also identical to the top BST1 

variant reported in the latest PD GWAS meta-analysis6. Interestingly, regional plots showed 

that the genome-wide significant variant, rs4694812 was neither the top genetic variant in the 

BST1 locus in IPDGC nor COURAGE AAO PD datasets. While, rs4694819 (r2 with 

rs4694812<0.6) was the most significant variant in the COURAGE AAO dataset, rs11724635 

(r2 with rs4698412=1.0) was the most significant variant in the IPDGC AAO dataset (eFigure 

2B).  

BST1 was first identified as a gene encoding a cell surface receptor on bone marrow 

stromal cells (bone marrow stromal cell antigen 1) with a role in promoting the growth of 

hematopoietic stromal cells 25. In addition to its role as a receptor, it also exhibits ADP-ribosyl 

cyclase activity, leading to the generation of cyclic ADP-ribose (cADPR), with a role in 

intrinsic Ca2+ regulation 26. The dual functional protein, a highly conserved 

glycosylphosphatidylinositol (GPI)-anchored glycoprotein (also known as CD157), is now 

known to be expressed in a wide variety of tissues, including vascular endothelium and 

follicular dendritic cells, with an ability to perform a wide variety of immune system and 

inflammation-related cellular functions 27. The initial identification of BST1/CD157 as a 

potential risk locus for sporadic late-onset PD in a GWAS in the Japanese population by 
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Satake et al. 2009, led to several functional studies aimed at deciphering its potential neuronal 

role in influencing PD phenotype 22. Several knockout mouse model studies have shown that 

BST1 can influence social behaviour. However, the studies failed to demonstrate any 

influence on motor functioning, the cardinal feature which is impaired in patients with PD 28, 

29. The eQTL analysis demonstrated a highly significant effect of the BST1 locus, rs4694812, 

on gene expression, with the A allele resulting in a decreased expression of CD38, a paralog 

of CD157, in a dose-dependent manner. CD38 and CD157 are contiguous gene duplicates, 

which belong to same gene family with a similar role of dual functional protein and an ability 

to modulate social behavior30, 31. Interestingly, unlike CD157, CD38 knock out mice have 

been shown to have higher locomotor activity32. Furthermore, the highly significant increased 

expression of CD38 was mainly observed in the striatum, a region directly implicated in 

motor dysfunction in PD. Interestingly, a statistically underpowered brain imaging study in 

humans suggested that allele A of BST1 SNP rs4698412 leads to deficits in the right lingual 

gyrus region in the brain during the progression of PD 33. This brain region is known to play a 

role in spatial orientation and visuospatial information processing. However, specific 

molecular and neuronal pathways influenced by altered CD38 expression in basal ganglia, 

with a potential role in triggering earlier AAO in sporadic PD, remain unclear. 

SNCA is one of the most consistently observed significant loci in both early and late-

onset PD and has been suggested to play a critical role in the age-related hierarchy of disease 

onset. While monogenic PD, often with relatively early onset, is attributed to rare point 

mutations and multiple copies of the SNCA gene, susceptibility to late-onset PD is attributed 

to common variants 6, 10, 34-36. In addition to being a leading locus in the largest GWAS of 

sporadic PD to date, the locus was also recently reported to be a top locus in influencing AAO 

in Europeans in a meta-analyses comprising IPDGC and 23andMe datasets (n=28,568) 7. An 

SNP present towards the 3’ end (rs356203) of the SNCA gene was observed as the strongest 

genome-wide significant variant originating from the region (P=1.9x10-12). Based on the 
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conditional analysis, the study also identified an independent signal at the 5’ end of the gene, 

rs983361 (P=6.8x10-6). A recent GWAS of AAO in 5166 East Asian (Chinese) PD patients 

further reported a slightly weaker signal originating from another independent SNCA variant, 

rs3775458 (P=9.92x10-7) 9. Using the 1000 genome phase 3 dataset, we failed to detect any 

LD among the three variants in both European and East Asian populations (data not shown 

here). Upon screening of the SNCA locus in the COURAGE-PD dataset, we observed nominal 

significance of all the three variants (PCOURAGE (rs356203)=0.035, PCOURAGE (rs3775458)=0.005, 

PCOURAGE (rs983361)=0.022), possibly suggesting a consistence influence of different loci around 

the SNCA region in determining AAO in different worldwide PD populations. The combining 

of our dataset with IPDGC further showed an independent genome-wide significant signal 

originating from the 3’ end of the SNCA gene (rs983361), as shown in the results section 

above. Notably, we also observed an independent signal at the 5’ end (rs356203). However, 

the variant was excluded for further interpretation due to high heterogeneity observed when 

combining IPDGC and COURAGE datasets (β(SE)COURAGE+IPDGC=-0.591(0.097), 

PCOURAGE+IPDGC=9.28 x 10-10; I2=61.9%). 

Another PD locus, TMEM175, was previously shown to reach genome-wide 

significance in an AAO study 37. Similar to SNCA, our study also demonstrated replication of 

the TMEM175 locus in the COURAGE-PD AAO dataset with a nominal level of significance 

(P=0.018). The subsequent combining of the non-synonymous coding variant, rs3431186 

(p.M393T), representing the genome-wide significant locus, in the IPDGC dataset with the 

COURAGE-PD, resulted in suggestive level of association without any underlying 

heterogeneity (PCOURAGE+IPDGC=2.64 x 10-7; I2=0.0). On the contrary, a recent East-Asian 

GWAS failed to observe any signal originating from the locus, possibly suggesting 

contribution of the locus mainly in the European populations.9 A previous study also reported 

a borderline significant association of the variant rs429358 representing APOE ε4 locus with 

PD-AAO (P=5.69 x 10-8) in a combined dataset (n=28568) comprising IPDGC and 23andMe 
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datasets7. The study, however, suggested that the association at the locus could be an age-

related effect with a highly significant association with the age of controls (P=1.49x10-5). The 

variant also resulted in a suggestive association upon merging of COURAGE-PD European 

dataset only with the IPDGC dataset (P=9.3x10-7). These findings are consistent with the 

failure to detect association of APOE ε4 locus with PD-AAO in the recently reported East-

Asian GWAS9. However, being a longevity marker, the suggestive finding of APOE ε4 locus 

in Europeans must be interpreted with caution.  

Our study has several strengths and limitations. Our study provides the largest 

independent dataset for testing the reliability of previously discovered AAO loci in a highly 

diverse and predominantly European population. Another strength of our study was the 

availability of data on AAO on all the study participants as opposed to age of diagnosis, often 

used as a proxy for AAO. One of the significant limitations of our findings was the lack of 

ready access to the recently published East-Asian AAO GWAS dataset that prevented us from 

drawing any conclusion on the validity of the novel BST1 locus in the East-Asian population. 

Likewise, the unavailability of the 23andMe dataset to us has precluded us from making an 

unequivocal claim on our BST1 findings. Hopefully, the inclusion of other datasets, such as 

23andMe and East-Asian GWAS datasets, will help further to refine the signals originating 

from the BST1 locus. We also suggest that loci identified through meta-analysis in the 

COURAGE-PD dataset (PDZPH1P) and subsequent stratification by gender (RHEB, 

MTHFD1L, KNH3) and ethnicity (MOAP1/TMEM251 l, SUGCT) be meta-analysed with 

these unavailable datasets. Another limitation was our inability to conduct gene-gene 

interaction due to the limited sample size in the present study. The possibility of complex 

interactions among various loci on Chr 4 in modulating AAO cannot be ruled out. A recent 

study showed the association of several genome-wide significant loci on the X Chr with PD 

38. It is also possible that some of these variants may also modulate AAO. However, due to 

potential analytic challenges from calling and imputation of X Chr genotypes, to model 
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uncertainty associated with random X Chr inactivation, we excluded the X Chr variants from 

the present analysis39. And lastly, it is hoped that in the future, the availability of a larger 

dataset would enable us to integrate additional layers of genetic data, including rare and copy-

number variants 40.  

Our findings clearly highlight the importance of combining GWAS from diverse 

populations representative of worldwide populations to refine the genetic architecture 

underlying a complex trait like AAO. Our COURAGE-PD dataset suggests a role for 

additional pathways in addition to α-synuclein mechanisms of modulating PD pathogenesis 

and influencing AAO in worldwide PD populations. 
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Figure 1. Manhattan plot of COURAGE-PD age at onset GWAS .  

 

Figure 2. Manhattan plot of meta-analysis of COURAGE-PD and IPDGC age at onset 

GWAS.  
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Table 1. eQTL lookup of BST1 SNP rs4698412 from GTEx in brain tissue 

Table 1.  eQTL lookup of BST1 SNP rs4698412 from GTEx and UKBEC in brain tissue. 

 
Database 

 Gene 
Symbol P-Value NES Tissue 

GTEx ENSG00000004468 CD38 3.3e-16 -0.44 Caudate (basal ganglia) 
 ENSG00000004468 CD38 5.5e-15 -0.39 Cortex 
 ENSG00000004468 CD38 1.4e-13 -0.39 Nucleus accumbens (basal ganglia) 
 ENSG00000004468 CD38 1.4e-11 -0.32 Putamen (basal ganglia) 
 ENSG00000004468 CD38 6.6e-6 -0.21 Frontal Cortex (BA9) 
 ENSG00000237765 FAM200B 1.0e-5 0.23 Cerebellar Hemisphere 
 ENSG00000004468 CD38 1.2e-5 -0.26 Anterior cingulate cortex (BA24) 
 ENSG00000237765 FAM200B 1.4e-5 0.23 Cortex 
 ENSG00000004468 CD38 1.4e-5 -0.22 Hypothalamus 
UKBEC ENSG00000118564 FBXL5 5.1e-7 NA Occipital Cortex 
 ENSG00000004468 CD38 7.1e-6 NA Putamen (basal ganglia) 
 ENSG00000004468 CD38 2.1e-5 NA Hippocampus 
 ENSG00000137449 CPEB2 2.4e-5 NA Medulla 

GTEx: Genotype-Tissue Expression Project, NA: Not available, UKBEC: UK Brain Expression Consortium 
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