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Infrared plasmons in ultrahigh conductive PdCoO2
metallic oxide
Salvatore Macis1,2, Luca Tomarchio1,3, Silvia Tofani4, Federica Piccirilli5, Michele Zacchigna6,

Vincenzo Aglieri 7, Andrea Toma 7, Gaurab Rimal8, Seongshik Oh 8 & Stefano Lupi 1,6✉

PdCoO2 layered delafossite is the most conductive compound among metallic oxides, with a

room-temperature resistivity of nearly 2 μΩ cm, corresponding to a mean free path of about

600 Å. These values represent a record considering that the charge density of PdCoO2 is

three times lower than copper. Although its notable electronic transport properties, PdCoO2

collective charge density modes (i.e. surface plasmons) have never been investigated, at least

to our knowledge. In this paper, we study surface plasmons in high-quality PdCoO2 thin films,

patterned in the form of micro-ribbon arrays. By changing their width W and period 2W, we

select suitable values of the plasmon wavevector q, experimentally sampling the surface

plasmon dispersion in the mid-infrared electromagnetic region. Near the ribbon edge, we

observe a strong field enhancement due to the plasmon confinement, indicating PdCoO2 as a

promising infrared plasmonic material.
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Surface plasmons, the collective oscillations of electrons in
metals and doped semiconductors, show outstanding elec-
tromagnetic (EM) properties spanning from a reduced

wavelength in comparison to that of an exciting electromagnetic
field, an extreme local electric field enhancement several orders of
magnitude larger than the incident em field, to several nonlinear
effects like harmonic generation and optical rectification1. Those
properties are the basis of nano-infrared and surface-enhanced
Raman spectroscopies, currently applied in many bio-sensing
techniques1–4. Although conventional metals, like gold and silver,
are usually used in plasmonics1, non-conventional conductors like
graphene5–7, transparent oxides8, high-Tc superconductors9,10,
strongly-correlated oxides11–13, and topological materials14–16 are
now on the scientific edge, providing additional properties like
plasmon tunability due to their extreme sensitivity, to external
parameters like doping, temperature, and electric and magnetic
fields17. Among metallic oxides, PdCoO2 layered delafossite is the
most conductive, having a room-temperature resistivity of nearly
2 μΩ cm, corresponding to a mean free path of about 600 Å 18,19.
These values are comparable to those of the best three-dimensional
(3D) metallic conductors such as Al, Au, Cu, and Ag, although the
charge density of PdCoO2 is ~30% the copper one. PdCoO2 has a
nearly two-dimensional (2D) layered structure composed of Pd
triangular layers and CoO2 slabs18. Theories20–23 and experiment24

show that the electronic density of states at the Fermi level is
dominated by Palladium indicating that the electronic states are
nearly 2D. Its single-particle electrodynamics has been measured
on single crystals25 and it is dominated at Infrared (IR) and Ter-
ahertz (THz) frequencies by intraband excitations, well described
by the Drude model, while interband transitions appear above 8000
cm−1 (1 eV). Although the very long mean free path at room
temperature, and the nearly perfect separation between intra- and
interband electronic transitions provide an ideal framework for
investigating the collective electronic excitations (surface plas-
mons) of PdCoO2 layered delafossite, these modes have never been
measured to our knowledge.

Here, we report experimental evidence of surface plasmonic
excitations in thin films of PdCoO2 on sapphire substrates. In
particular, we have fabricated parallel ribbons array structures of
PdCoO2 and investigated their optical properties from THz to
Visible (VIS) for light polarization parallel and perpendicular to
the ribbons. When the polarization is perpendicular to the ribbon
array, one excites plasmon modes at the surface of the PdCoO2

film. Through the measurements of several ribbon arrays, we have
sampled the plasmon frequency vs. wavevector, being able to
experimentally determine the energy/momentum dispersion of
surface plasmons in PdCoO2.

Results and discussion
Five 100 nm films of palladium-cobalt delafossite were grown by
molecular beam epitaxy (MBE) on 500 μm thick Al2O3 substrates26

(see Methods). The reflectance R(ω) of an as-grown film was
measured across the THz to ultraviolet (UV) spectral range with a
Fourier-transform Michelson interferometer (THz-IR) and a near-
infrared (NIR)-UV spectrophotometer. R(ω) spectrum (Fig. 1a),
shows a Drude-like behavior at THz and Mid-IR (MIR) fre-
quencies, while hosting interband features in the NIR-UV range, in
agreement with the previous bulk characterization of this
material25. R(ω) spectra have been analyzed through the RefFit
program27, taking into account the optical properties of the sap-
phire substrate measured in the same experimental conditions. The
bare PdCoO2 reflectance (as extracted from RefFit fitting) is
represented in the inset of Fig. 1a, showing a value around 1 from
THz to MIR. Using the f-sum rule (see “Methods”), we obtain a
plasma frequency of 16800 ± 300 cm�1. This value is nearly two

times lower than the bulk one25 in agreement with the decrease of
the material conductivity in thin films26.

Micro-ribbon arrays (Fig. 1b) of different widths W and periods
2W have been fabricated through electron lithography (see Meth-
ods), to select suitable values of the plasmon wavevector q, so that a
series of discrete values of q ¼ π=W were obtained. In Fig. 1b we
show a Scanning Electron Microscope (SEM) image for the W ¼
1 μm patterned film, while in Fig. 1d, the optical images of all
patterned films are reported. Plasmon excitations have been studied
by measuring the reflectance of patterned samples for light polar-
ization perpendicular to the ribbons (Fig. 1c) and comparing them
to those with opposite polarization (Fig. 1c). When the electric field
is parallel to the ribbons, one measures the Drude response of the
film+substrate renormalized by the patterning. This is particularly
evident for the W ¼ 5 μm pattern, where one clearly observes the
main sapphire phonon located around 600 cm−1. This phonon is
progressively shielded by the metallic response of the film for
decreasing W. At W= 500 nm, a reflectance resembling that of the
unpatterned film is finally reached. Plasmonic excitations are gen-
erated at the interface between a metal and a dielectric1 and, for the
metallic films here considered, two different surface plasmons are
expected: one at the interface between the PdCoO2 metal and
sapphire substrate, and a second between metal and air (or
vacuum)28. These modes can be excited when the electric field is
perpendicular to the ribbons, appearing in the reflectance as a dip in
an otherwise flat metallic response28,29. In our case, one indeed
observes two peaks separated by a dip (see black arrows in Fig. 1c)
in all patterned films, followed by a broader minimum. Although
the second spectral feature is broader and then less visible in the
experimental reflectances than the first one, both shift to higher
frequencies as expected for an increasing plasmon wavevector
q ¼ π=W. In order to better highlight the plasmonic absorption, we
subtract from the reflectances in Fig. 1c, both the sapphire phonon
contribution below � 1000 cm−1 and the high-frequency back-
ground above ~7000 cm−1. This background is practically inde-
pendent of patterning and polarization coming by high-frequency
intrinsic electronic interband transitions of PdCoO2. The results are
finally shown in Fig. 2, where we plot all plasmon excitations at
different W. From this figure, the plasmon absorptions in patterned
PdCoO2 as well as and their hardening vs. q ¼ π=W are fully
evident. A comparison among plasmonic experimental data, elec-
tromagnetic simulations and an analytical model allows us to assign
the low-frequency dips to plasmons living at the PdCoO2–sapphire
interface, while the high-frequency broad minima to plasmons at
the PdCoO2–air interface. These assignments have been obtained by
two different methods. In the former we simulate reflectance curves
of patterned films through the COMSOL electromagnetic simula-
tion program (see Methods), using as input the experimental
conductivity of PdCoO2 unpatterned film. Simulated R(ω) for light
polarization perpendicular to the ribbon array are represented (red
lines) in Fig. 3a for the W ¼ 2 μm sample and in Fig. 3b for the
W ¼ 1 μm, respectively. They are in very good agreement with
experimental data (blue lines). Simulations have been performed
also for a patterned self-standing PdCoO2 film (PdCoO2–air
interface), showing that the broad feature, observed in Fig. 3 at a
higher frequency with respect to the dip, is related to plasmons at
the same interface (see Supplementary Methods II). In the second
approach, we model the Fresnel reflection coefficient of the PdCoO2

film on sapphire through a thin film approximation

rðωÞ ¼ ðεsðωÞq? � q0? þ σ f ðωÞdZ0q
0
?Þ

ðεsðωÞq? þ q0? þ σ f ðωÞdZ0q0?Þ
ð1Þ

where εsðωÞ and σ f ðωÞ are the dielectric function of sapphire or air,
and the optical conductivity of the PdCoO2 film, respectively. d is
the thickness of the film (d ¼ 100nm in our case), Z0 ¼ 377Ω is
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the impedance of free space, and q⊥ and q0? are the incident and
transmitted (inside the film) wavevectors of the light, perpendicular
to the film surface.

Since the light polarization is perpendicular to the ribbon
array, the transmitted light wavevector acquires an additional
longitudinal wavevector q0k ¼ π=W due to the pattern30. The
normal incident light has thus a wavevector q? ¼ q0 ¼ ω=c,

while its transmitted component q0? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εsðωÞq20 � q02k

q
, with

q0k ¼ π=W. This model is valid as long as the incident light

wavelength is higher than the film penetration depth, a condition
satisfied in our PdCoO2 thin films. By remembering that we are in
a half-filling condition, i.e., the array periodicity is p ¼ 2W,
where W is the ribbon width, the experimental reflectance of the
ribbon-array patterned films can be obtained through the com-
plex superposition of the ribbon covered and uncovered sapphire
regions contributing to the Fresnel coefficient:

RðωÞ ¼ 1
2
rðωÞ þ 1

2
rðω; σ f ¼ 0Þ

����
����
2

ð2Þ

Fig. 1 Reflectance of unpatterned and patterned PdCoO2 thin films on sapphire. a Reflectance of the as-grown, unpatterned film of PdCoO2. The inset in
the right upper side shows the bare reflectance of PdCoO2 extracted through RefFit program. b Scanning electron microscope (SEM) image of the W = 1 μm
patterned film. The bar-size is 5 μm. c Reflectance of the four patterned films, with the radiation electric field parallel to the ribbons (left column) and
perpendicular to the ribbons (right column). Arrows indicate approximately the frequency location of surface plasmon excitations. d Optical microscope
images of the four patterned films with different widths W and periods 2W. All the images have the same dimensions. Brighter parts are related to the oxide
film, while darker regions are associated to the sapphire substrate.
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The calculated reflectances (black lines) for the W ¼ 1 μm and
W ¼ 2 μm patterned films are represented in Fig. 3a, b, respec-
tively in comparison to data (blue lines) and electromagnetic
simulation (red lines, see above). In the calculation, we use both
the experimental PdCoO2 conductivity σ f ðωÞ and the experi-
mental dielectric function of the sapphire substrate εsðωÞ. A
similar calculation for the PdCoO2–air interface (εsðωÞ= 1) is
shown in Fig. S2 of Supplementary Methods II. Equation (2)
describes the reflectance behavior of our patterned films, showing
a well defined dip (see Fig. 3), corresponding to the plasmon
excitation at the PdCoO2–sapphire interface. However, one can
notice that the dip is much narrow with respect to the experi-
mental one. Indeed, in the model equations, dissipation effects are
only due to ohmic losses (contained in σ f ðωÞ), while in the actual
situation other dissipation mechanisms are working including
radiative losses14, shifting and broadening the dip in the reflec-
tance curves. The experimental plasmon frequency ωp can be
estimated from reflectance data through the zero-crossing of its
second derivative (see Fig. S1 of Supplementary Methods I). In
Fig. 4 we thus represent the dispersion ωp vs. the plasmon
wavevector q ¼ π=W as determined by this method. Here, black
points represent plasmon at the PdCoO2–sapphire interface. ωp
approximately grows linearly in the probed wavevector range
indicating that we are in the plasmon-polariton region, with a

slight deviation from the linear regime at W ¼ 2 μm and W ¼
5 μm due to the variation of the sapphire dielectric function as
induced by its phonon resonances. The calculation for the
PdCoO2–air interface is represented in Fig. S3 of Supplementary
Methods II (black points). In this case, the point related to the
maximum wavevector (corresponding to W = 0:5 μm) being out
of the spectral region here measured has not been represented.
Plasmon frequencies can be achieved from COMSOL simulation
(using the same method developed for experimental data, see
Supplementary Methods III), and they are represented in Fig. 4 as
red stars at the PdCoO2–sapphire interface (for the PdCoO2–air
interface, see Supplementary Methods II Fig. S3). These results
show a very good agreement among data and COMSOL simu-
lations. The plasmon frequency for a given ribbon width W (and
periodicity 2W), can be obtained in the model, by the pole of the

Fig. 2 Plasmonic reflectances obtained by removing both the sapphire
phonon contributions below −1000 cm−1 and the high-frequency
background above −7000 cm−1. Plasmon absorption hardens by
decreasing width W and periodicity 2W, i.e. by increasing the
corresponding wavevector q = π/W as expected from theory.

Fig. 3 Comparison among experimental (blue line), simulated (red line) and model (black line) reflectance of ribbon arrays with width W = 2 μm and
W = 1 μm PdCoO2. Model and simulated reflectances are shifted along the y-axis with an offset of 0.1 and 0.3 (a), and 0.2 and 0.4 (b), respectively. The
dip in the reflectance spectra is related to plasmon excitations at the PdCoO2–sapphire interface, the broad minima at a higher frequency to the PdCoO2–air
interface.

Fig. 4 Plasmon dispersion curves. Black points correspond to experimental
plasmon frequencies, red stars to COMSOL simulation and blue diamonds
to the model (Eq. (3) main text). Experimental, simulation and modeling
dispersion well coincide at each wavevectors here measured.In the right
axis the field enhancement factor FE = |Ep/Ei| where Ep is the electric field at
the plasmonic resonance and Ei the incident field, is plotted vs. the
experimental wavevectors q. The strong field enhancement suggests a
SEIRA device applications for PdCoO2-based ribbon arrays7.
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reflection coefficient of Eq. (1):

q2kðωÞ ¼ εsðωÞq20 1� εsðωÞ
ð1þ σ f ðωÞZ0Þ2

" #
ð3Þ

Equation (3) applied for all q ¼ π=W allows the calculation of
the plasmon frequencies ωp, which are represented in Fig. 4 as blue
diamonds for plasmons at the PdCoO2–sapphire interface. More-
over, the model well reproduces the experimental dispersion for
both interfaces. The plasmon electric field spatial distribution in the
ribbon arrays for the W ¼ 2 μm is represented in Fig. S4 of Sup-
plementary Methods III. A strong electric field can be observed
near the ribbon edges at the PdCoO2–sapphire interface, giving rise
to a hot spot volume accessible for Surface Enhanced Infrared
Spectroscopy (SEIRA) sensing applications7. From the field spatial
distribution maps, one can calculate a parameter that cannot be
easily measured experimentally, i.e., the plasmonic field enhance-
ment (FE)31. FE ¼ jEp=Eij is defined as the electric field at the
plasmon resonance Ep over the incident field Ei, both integrated
over a circular area surrounding the ribbon section (see Fig. S4,
Supplementary Methods III). Through electromagnetic simulation
we obtain FE values (at the same experimental wavevectors of the
dispersion curve) which are represented on the right axis of Fig. 4
by green circles. The strong field enhancement suggests a SEIRA
device applications for PdCoO2-based ribbon arrays.

Conclusions
In conclusion, we measured and characterized the plasmonic
excitations in the highly-conductive PdCoO2 metallic oxide. Four
high-quality PdCoO2 films, grown on sapphire and patterned with
micro-ribbon arrays with different width (W) and periodicity (2W),
were fabricated by lithography methods and optically investigated
from terahertz to ultraviolet. Plasmon excitations appear as a dip in
the reflectance measured for light polarization perpendicular to the
ribbons. By extracting the experimental plasmon frequency ωp from
reflectance measurements, we were able to estimate the plasmon
dispersion ωp vs. the wavevector q. Electromagnetic simulation and
a thin-film analytical model reproduce very well this dispersion.
Near the ribbon edges at the PdCoO2–sapphire interface, we cal-
culate a strong field enhancement due to plasmonic confinement,
suggesting the use of PdCoO2-based plasmonic structures for sen-
sing and nonlinear spectroscopy applications in the mid-infrared
and terahertz spectral regions.

Methods
Synthesis of PdCoO2 film. Metallic delaffosite PdCoO2 films were grown by
Molecular Beam Epitaxy technique on Al2O3 substrates. Starting with sapphire sub-
strates oriented along the (001) axis, the PdCoO2 film grows under plasma oxygen at
a pressure of 4 ´ 106 Torr. An annealing treatment in oxygen at 800 °C for 10 h allows
us to improve the crystalline quality, decrease the resistivity and reduce the surface
roughness26. Films here used have a thickness of 100 nm, with a room temperature
resistivity of 16 μΩ cm. Film quality was evaluated with different techniques (X-ray
Diffraction, Rutherford Backscattering Spectroscopy, Atomic Force Microscopy, DC
resistivity) as shown in Figs. S5 and S6 of Supplementary Methods IV.

Patterning of PdCoO2 film. The 100 nm thick PdCoO2 films on sapphire were
treated with oxygen plasma cleaning (180 s, 100W) to remove surface con-
taminants. Ribbons of 5, 2, and 1 μm in width were fabricated recurring to electron
beam lithography (EBL) system (Raith 150-two). A resist layer made of Polymethyl
methacrylate (MicroChem Corp. PMMA A4) was spin coated on top of the
samples and soft baked at 180 °C for 7 minutes. Then the PMMA layer was pat-
terned via EBL, developed in a solution of Methyl Isobutyl Ketone and Isopropyl
Alcohol (MIBK/IPA 1:3) for 30 s and stopped in IPA for other 30 s. Once devel-
oped, the samples were coated with a 50 nm thick chromium film by using an
electron beam evaporator. Then, by soaking the sample in acetone, a hard mask for
the subsequent dry etching step was formed. Indeed the pattern obtained through
lift-off was transferred to the PdCoO2 layer by means of a plasma-enhanced
reactive ion etching system (Sentech SI500) with argon gas. The etched depth and
the side walls verticality were optimized by carefully tuning the process parameters
(Ar 40 sccm, RF power 60W, ICP power 200W, temperature −5 °C, etching rate

10 nm/min). Finally, the Cr-mask was removed in standard etchant solution
(Chrome etch 18, Micro Resist Technology GmbH). A representative image of the
final structures is shown in Fig. 1 Concurrently, 500 nm wide ribbons were fab-
ricated via direct ion milling. A focused ion beam (FIB) system (FEI, dual-beam
Helios Nanolab 650) working with Ga+ ions was operated for these purposes
(current 200 pA, energy 30 keV). Prior to ion machining, a 200 nm thick Cr layer
was deposited by electron beam evaporation. In this process the Cr film acted as a
sacrificial mask, thus preventing charging effects and Ga+ implantation inside the
PdCoO2 structures. The residual Cr layer was dissolved in the standard etchant
solution previously described.

Optical measurements. Measures in the THz-IR range were carried out with a
Bruker Vertex 70v spectrometer coupled with a Hyperion 1000 microscope, scanning
from 100 cm−1 up to 8000 cm−1 with a resolution of 4 cm−1. In the IR-UV range
the reflectance was measured with a JASCO V770 spectrometer, from 300 nm (3.3 ×
104 cm−1) up to 3200 nm (3125 cm−1) with a resolution of 1 nm. A set of THz/IR
and NIR/UV polarizers have been used to control the electric field direction with
respect to the ribbon array pattern. Morphological characterization was performed
with the optical microscope of the JASCO NRS5100 Raman micro spectrometer,
using an ×100 magnification optic. Analysis of the SEM images shows a 6%
uncertainty in the ribbon width W and 2% uncertainty in the periodicity 2W. These
uncertainties have been used to calculate the corresponing error in the wavevector
q ¼ π=W. The PdCoO2 and Al2O3 reflectance spectra were analyzed with the RefFit
software27, in order to extract the real and imaginary parts of both the dielectric
function and the conductivity. On the real part of the optical conductivity we applied
the f-sum rule30 in order to extract the plasma frequency ωpl of PdCoO2 film. This
results in a value of 16800 ± 300 cm−1. The optical conductivity can also be fitted
using a Drude–Lorentz model with the RefFit software, obtaining a ωpl of
16000 ± 100 cm−1 in good agreement with that obtained by the f-sum rule.

Simulation. A finite-element method (FEM), implemented by means of COMSOL
Multiphysics, was used to obtain the numerical simulations of the reflectance of films
in the frequency range between 500 and 6500 cm−1. The ribbon arrays were simu-
lated by applying periodic boundary conditions to a unit cell of period p = 2W, for a
width of W = 500 nm, 1, 2, and 5 μm. As the input of the numerical simulation, we
use the complex refractive indexes of PdCoO2 and Al2O3 as obtained from the RefFit
data analysis of the non-patterned film and bare substrate, respectively.

Data availability
The datasets generated and analyzed during the current study are not publicly available
due to Department policy but are available from the corresponding author on reasonable
request.
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