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Metastasis is the primary cause of death in patients with colorectal cancer (CRC), urging
the need for preclinical models that recapitulate the metastatic process at the individual
patient level. We used an orthotopic patient-derived xenograft (PDX) obtained through the
direct implantation of freshly dissociated CRC cells in the colon of immunocompromised
mice to model the metastatic process. Ortho-PDX engraftment was associated to a
specific set of molecular features of the parental tumor, such as epithelial-to-
mesenchymal transition (EMT), TGF-b pathway activation, increased expression of
stemness-associated factors and higher numbers of circulating tumor cells (CTCs)
clusters expressing the metastatic marker CD44v6. A parallel analysis of orthotopic/
metastatic xenografts and organoids showed that tumor cells underwent mesenchymal-
to-epithelial transition at the metastatic site and that metastasis-derived organoids had
increased chemotherapy resistance. These observations support the usefulness of ortho-
PDX as a preclinical model to study metastasis-related features and provide preliminary
evidence that EMT/stemness properties of primary colorectal tumors may be crucial for
orthotopic tumor engraftment.

Keywords: patient-derived xenograft (PDX), colorectal cancer (CRC), metastasis, epithelial-to-mesenchymal
transition (EMT), organoids
INTRODUCTION

Colorectal cancer (CRC) is the second most frequent cancer worldwide (1). Despite the
improvements in early diagnosis and therapy, its overall five-year lethality is 66% mostly due to
synchronous or metachronous metastatic disease (1). For this reason, preclinical models for
assessing the efficacy of antimetastatic agents are urgently needed. Unfortunately, murine CRC
models display critical limitations in metastasis development. In fact, two frequently used murine
models, i.e. chemically induced carcinogenesis and tumor-prone genetically engineered mouse
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models both poorly reproduce human cancer biology and
pathogenesis. Regarding in vivo human CRC models, the
approaches currently available are represented by xenografting
human tumor fragments or cells into immunecompromised
mice , e i ther subcutaneously or orthotopical ly (2) .
Subcutaneous xenografts can be generated either from cell
lines, patient tumors or primary CRC cells (cultivated either as
spheroids or organoids). We and others have previously used
spheroid-derived xenografts to investigate cancer-associated
molecular pathways and mechanisms of therapy sensitivity (3–
8). The subcutaneous implantation of freshly isolated tumor
specimens (subcutaneous patient-derived xenografts, PDX) has
an improved capability to preserve primary cancer genetic and
cellular heterogeneity as compared to grafting of cultured cancer
cells (9). Large panels of subcutaneous PDX have demonstrated a
high prognostic and therapy predictive power in several studies
(10–13). However, subcutaneous PDX do not generate
metastases and therefore are unsuitable for anti-metastatic
drug screening or efficacy prediction. In order to generate
metastatic models, orthotopic grafting of CRC cells or tumor
fragments is required (14). Orthotopic grafting has been
executed mostly with poorly differentiated cell lines, thus
limiting its clinical relevance (14). However, pioneer studies
have performed orthotopic xenografts with mouse tumor
organoids (15, 16), with human spheroids (17, 18) or
organoids (19, 20) and with cells directly derived from human
colorectal tumors (21–26). In this study, we generated an
orthotopic PDX with CRC cells isolated from a surgical CRC
specimen and directly transplanted into the colon of
immunocompromised mice. Prompt grafting at primary site
followed by metastatization was observed for cells from one
out of three patients. Ortho-PDX gave rise to spontaneous lung
and liver metastases and were employed to generate orthotopic-
derived and metastasis-derived organoids, which were analyzed
for EMTmarkers and chemoresistance. Interestingly, tumor cells
that produced orthotopic/metastatic PDX were characterized by
enhanced expression of stemness-related genes and of proteins
involved in epithelial-to-mesenchymal transition (EMT),
indicating an increased tumor aggressiveness. Finally, a
characterization of patients’ circulating tumor cells (CTCs)
showed increased numbers of CTCs and CTC clusters
associated to ortho-PDX engraftment. Altogether, these results
support ortho-PDX as a faithful model of metastatic CRC and
provide preliminary evidence that the combination of stemness-
and EMT-related features may promote orthotopic engraftment.
MATERIALS AND METHODS

Patient-Derived Xenograft Generation
Surgical specimens of colorectal cancer (CRC) were obtained
upon informed consent from CRC patients undergoing surgery
for primary tumor resection. Sample collection was performed
under the approval of the Sapienza-Policlinico Umberto I Ethical
Committee (RIF.CE: 4107 17/10/2016). Samples were washed 3
times in cold phosphate buffered saline (PBS) and transferred to
Frontiers in Oncology | www.frontiersin.org 2
Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher,
Foster City, CA, USA) containing 3% penicillin-streptomycin-
amphotericin B solution (Thermo Fisher) until processing. Then,
CRC samples were washed in PBS and manually cut in fragments
> 0.5 mm that were subsequently incubated in Tryple Express
(Thermo Fisher) for 30 min at 37 °C with shaking. The resulting
suspension was filtered with a 100 mm nylon mesh, washed twice
with DMEM and resuspended in Matrigel® (Growth Factor
Reduced Basement Membrane Matrix Corning, New
York, USA) for orthotopic injection. Animal procedures
were executed in accordance to the National animal
experimentation guidelines (D.L.116/92) upon approval by the
Animal Experimentation Committee of the Italian Ministry of
Health (DM n. 292/2015 PR 23/4/2015). NOD.Cg-Prkdcscid
Il2rgtm1Wjl/SzJ (NSG) mice (The Jackson Laboratory) (6-
week-old females) were used for all in vivo experiments. Before
injection, mice were anesthetized with ketamine (100 mg/kg) and
xylazine (10 mg/kg), then 105 cells resuspended in 40 ml 1:1 PBS/
Matrigel were injected in the colon wall during open laparotomy.
Animals were euthanized according to the national Animal
Welfare Guidelines when they lost more than 20% of their
body weight or alternatively (in case they did not display any
sign of suffering) after 120 days from xenografting. Histological
evaluations were performed by an expert pathologist.

Generation and Validation of Xenograft-
Derived Organoids
Organoid cultures were generated from orthotopic xenografts
(OXDOs) or from metastatic xenografts (MXDOs) with the
method described in (27). Shortly, cells were resuspended in
Matrigel® and seeded in 24 well plates. Cancer cells were overlaid
with 500 µL of colon cancer organoids culture medium (27)
supplemented with 20 ng/mL recombinant human EGF, 10 ng/
ml human basic fibroblast growth factor (both from Peprotech,
Rochy Hill, NJ, USA), 10 nM Gastrin, 10 µM Y-27632, 10 µM
SB202190 (Sigma-Aldrich, St. Louis, MO) and 500 nM A83-01
(Tocris Bioscience, Bristol, UK).

CTCs Isolation From the Peripheral Blood
of CRC Patients
Peripheral blood samples were obtained from three patients with
occlusive CRC according to the protocol approved by Ethical
Committee of Policlinico Umberto I of Rome (protocol n. 668/09,
July 09, 2009; amended protocol 179/16, March 01, 2016). Each
sample was collected into K2EDTA tube, stored at +4°C and
processed within 3hrs. In order to isolate CTCs for cytological
studies, the ScreenCell® Cyto kit (ScreenCell, Sarcelles, France)
was employed following the manufacturer’s instructions.

Mutational Profiling
Genomic DNA was extracted from tumor tissues with the
DNeasy Mini Kit (Qiagen, Limburg, The Netherlands) and
used for mutation analysis. Data analysis on tumor samples
was carried out using the Ion Reporter Software v5.12 (Thermo
Fisher Scientific) following AmpliSeq CHPv2 single sample
workflow which detects and annotates low frequency variants
June 2022 | Volume 12 | Article 869485
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(SNPs, InDels). All the selected variants were visually inspected
using the Integrative Genomics Viewer (IGV; www.
broadinstitute.org/igv).

Immunohistochemistry
Tissues were fixed in paraformaldehyde 4%. Fixation was followed
by dehydration, embedding in paraffin, section cutting, and
standard H&E staining. For immunohistochemistry staining,
samples were incubated with primary antibodies anti-CK20,
anti-ZEB2 (#M7019, Dako, Agilent Technologies; #NBP1-82991,
Novus), anti-alphaSMA (Cell Signaling mAb #19245), anti
pSMAD 2/3 (Invitrogen #PA5-110155) and anti-FAP (Cell
Signaling mAb #66562). The sections were subsequently
incubated with secondary antibodies and visualised using the
UltraTek HRP Anti-Polyvalent DAB (Scytek). Nuclei were
counterstained with Mayer’s haematoxylin. IHC on liver
sections was performed with previous block of endogenous
biotins. Images were acquired on a Zeiss Axio Scope.A1
Microscope equipped with 20X objectives and quantified with
the software ZEN 2.6 (blue edition).

Real-Time PCR
Total RNA was extracted with TRIzol (Thermo Fisher)
and reverse-transcribed with M-MLV reverse transcriptase
(Thermo Fisher). The resulting cDNA was used as template in
PCR reactions with the following probes: Vimentin
(Hs.PT.58.38906895), E-Cadherin (Hs.PT.58.3324071),
ZEB1 (Hs.PT.58.39178574), ZEB2 (Hs.PT.58.1089006),
SNAIL (Hs.PT.58.2984401), SLUG (Hs.PT.58.1772559), TWIST
(Hs.PT.58.18940950), Bmi-1 (Hs00180411_m1), NANOG
(Hs.PT.58.21480849), Lgr5 (Hs00969422_m1), all from
Integrated DNA Technologies, Coralville, USA). Normalization
was performed using b-ACTIN (Hs.PT.39a.22214847)
as reference. Values were expressed as 2-DDCt, where
DDCT= DCTsample−DCTcalibrator or DCt. DCt represents the
difference in threshold cycles between specific RNA and reference
amplicons provided by StepOne Plus Real-Time PCR software
upon negative correlation with the internal reference dye (ROX).

Enzyme-Linked Immunosorbent Assay
TGF-b protein levels were evaluated in lysates of tumors and
normal mucosae of CRC patients by using DuoSet® ELISA kit
and DuoSet® ELISA Ancillary Reagent Kit 1 (both from R&D
Systems, Minneapolis, MN) according to the manufacturer’s
recommendations. To activate latent TGF-b1 to its
immunoreactive form, samples were first incubated with
Sample Activation Kit 1 (R&D Systems, Catalog # DY010).
The relative absorbance was read at 490 nm on a Benchmark
microplate reader (Bio-Rad Laboratories).

Western Blotting
Pieces of frozen tissues (~ 50 mg) were lysed in lysis buffer (10mM
Tris pH8, 150mMNaCl, 60mMOctyl-b-Glucoside, supplemented
with protease inhibitor cocktail/phosphatase inhibitor cocktails I
and II from Sigma-Aldrich). Tissue homogenization was performed
with Pro 200 Kema Keur (Pro Scientific Inc. Oxford) at max speed
Frontiers in Oncology | www.frontiersin.org 3
at 4°C for 30”. Equivalent amounts of proteins were loaded on 4–
12% precast gels (Thermo Fisher) and transferred onto
nitrocellulose membranes (GE Healthcare Life sciences). Blots
were incubated first with TBST 5% nonfat dry milk and then
overnight at 4°C with primary antibodies. Vimentin (#5741), N-
Cadherin (#13116), SLUG (#9585), ZEB1 (#3396), pSMAD 2/3
(#8828), TGFb (#3711) were from Cell Signaling Technology, E-
Cadherin (#610181) from Becton Dickinson, LTBP1 from Santa
Cruz (#sc-271140). Blots were then washed 4 times in TBST and
incubated for 45 minutes with secondary HRP-conjugated
antibodies diluted in TBST 5% nonfat dry milk. Immunoblotting
images were recorded and analyzed with Bio-Rad ChemiDoc
Imagers (Bio-Rad Laboratories). Immunoblot densitometry
quantification was performed with ChemiDocMP (BioRad) and
signal intensity was quantified with the Image Lab software.
Normalization was performed using antibodies against b-ACTIN
or GAPDH as reference standards (#A5316, #SAB1405848
respectively, from Sigma-Aldrich).

Immunofluorescence Staining of CTCs
For immunofluorescence analyses, CTC isolation filters were
hydrated with Tris-Buffered Saline (TBS) and first stained with
mouse monoclonal anti-human CD45 (#130–098-551, Miltenyi
Biotec) in order to detect hematopoietic cells. Then, filters were
washed twice in TBS 0.002% Tween20 and endogenous
peroxidase activity was neutralized by incubating with 0.03%
hydrogen peroxide for 15 min in the dark, followed by
incubation for 90 minutes with CD45 biotinylated antibody.
Filters were then processed using streptavidin conjugated to
horseradish peroxidase and substrate-chromogen solution
contained in UltraTek HRP Anti-Polyvalent DAB kit
(#AMF080, Scytek). Samples were then incubated in a humid
chamber overnight at 4°C with the following primary antibodies:
anti-Vimentin (#5741, Cell Signaling), anti-CK20 (#SC-17113,
Santa Cruz Bio-technology) and anti-CD44v6 (#BBA13, R&D
Systems). Filters were washed and incubated with appropriate
secondary antibodies (Donkey anti-rabbit IgG Alexa Flu-
or®488-conjugated #A21206, donkey anti-goat IgG Alexa
Fluor®647-conjugated #A21447, donkey anti-mouse IgG Alexa
Fluor®555-conjugated #A-31570) for 45 minutes at RT in the
dark. Nuclei were stained with 4′, 6-Diamidino-2-Phenylindole
(DAPI #D1306, Thermo Fisher) for 15 minutes at RT. All
antibodies were dissolved in PBS 3% bovine serum albumin
(BSA), 3% fetal bovine serum (FBS), 0.001% NaN3 and 0.1%
Triton X-100. Finally, filters were mounted with Prolong-Gold
Antifade (#P7481, Thermo Fisher) on glass slides and analyzed
using an Olympus FV1000 confocal microscope equipped with
60x oil immersion objectives.

Viability Assay
Organoids were dissociated into single cells and plated in 30ml
1:1 Medium/Matrigel in 96 well plates (3,500 cells/well) in
triplicate for 72 hours prior to drug treatment. Organoids were
treated for 6 days with 5-Fluorouracil (Selleck Chemicals) in a
humidified atmosphere at 37°C, 5% CO2 and drug-containing
medium was replaced every 72 hours. Cell viability was
June 2022 | Volume 12 | Article 869485
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determined by CellTiter Glo 3D viability assay (Promega) with a
DTX880 multimode microplate reader (Beckman Coulter).

Migration/Invasion Assay
4 x 103 cells obtained from dissociated OXDOs or MXDOs were
allowed to re-aggregate into organoids for 4 days and then plated
in Matrigel® into the upper wells of Boyden Chambers
containing porous 8 mm diameter polycarbonate membranes
(Costar Scientific Corporation) suspended in 200 ml of non-
supplemented organoid medium. Lower wells contained 500 ml
of organoid medium supplemented with 20 ng/ml EGF and
10 ng/ml basic FGF. After 72 hours, cells in the upper wells
were removed, whereas cells that migrated to the lower wells
were fixed in 4% PFA, stained with DAPI in PBS 1% NP40 for
5 min and counted under a fluorescence Zeiss Axio Scope.A1
Microscope equipped with a 10x objective. The number of
migrated cells was quantified with the ZEN 2.6 software
(blue edition).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
version 4.0 for Windows (GraphPad Software) with unpaired
Student’s t test. Results are presented as the mean ± SD or
mean ± SEM where appropriate. Statistical significance is
expressed as *, P < 0.05, **, P < 0.01 and ***, P < 0.001.
RESULTS

Establishment of Orthotopic/Metastatic
Patient-Derived Xenografts: Workflow of
the Study
We have previously described a metastatic CRC model based on
the orthotopic injection of stem cell-enriched multicellular
spheroid cultures into the colon wall of immunocompromised
mice, giving rise to liver and lung metastasis. In our hands, this
method demonstrated an efficacy of about 70-80% of
colon grafting/liver metastasis (17, 18). In order to extend
the orthotopic/metastatic CRC model to patient-derived
xenografting, we inoculated freshly dissociated cells obtained
from tumor tissues of three patients, (referred to as L5, L6, L7)
into the colon of NSG mice (105 cells/graft, 5 replicate mice/
patient) according to the workflow shown in Figure 1A.
Inoculation of dissociated tumor cells was preferred over the
implantation of tumor fragments for quantitative reasons, as it
allowed to inoculate the same number of cells for each patient.
Furthermore, as orthotopic transplantation requires engraftment
of tumor cells into in the mouse colon, this technique is more
practicable (and less distressful for animals) by performing cell
injection in the cecum wall rather than through sawing a tumor
fragment in the colon lumen. Furthermore, this technique was
previously validated in CRC orthotopic xenografting (24).
Clinical data and microsatellite stability data are provided in
Supplementary Figure 1A, patients’ mutational profile is
reported in Figure 1B. Tumor histology is shown in Figure 1C
and Supplementary Figure 1B. Mice were sacrificed when
Frontiers in Oncology | www.frontiersin.org 4
presenting ~20% loss of body weight or alternatively (in case
they did not display any sign of suffering) after 120 days from
xenografting, and examined for the presence of tumors into the
colon and at distant organs. Xenografts performed with CRC
patients L5 and L7 did not give rise to orthotopic or metastatic
tumors. By contrast, xenografts performed with CRC patient L6
gave rise to orthotopic tumors and metastases in both lungs and
liver in 4/5 mice. Ortho-PDX and metastases were harvested and
stained with Hematoxylin/Eosin and cytokeratin 20 (CK20).
Histological evaluation and CK20 staining of orthotopic
tumors and of the deriving hepatic and pulmonary metastases
confirmed their CRC origin (Figure 1C). One orthotopic tumor
xenograft derived from patient L6 was dissociated into single
cells and cultured to generate organoids (orthotopic xenograft-
derived organoids, OXDOs). The same procedure was applied to
liver metastases in order to generate metastatic xenograft-derived
organoids (MXDOs). Lung metastases were not sufficiently large
to allow generation of organoid cultures.

Ortho-PDX Generation Is Associated With
a Hybrid Epithelial-Mesenchymal
Phenotype of the Parental Tumor
Having established that only the CRC derived from the L6
patient was able to generate ortho-PDX and metastases, we
investigated whether orthotopic engraftment was associated to
specific cellular and molecular features of the parental tumor. In
particular, we analyzed a panel of factors associated to an
epithelial or mesenchymal state, as EMT is considered a
paradigm of tumor aggressiveness and stemness (28). To this
end, we compared protein levels of E-Cadherin, Vimentin, N-
Cadherin, ZEB1 and SLUG in paired normal mucosa/tumor
samples derived from L5, L6 and L7 patients. E-Cadherin levels
were lower in L6 tumor as compared to both normal tissues and
tumor tissues from L5 and L7 patients, indicating weaker
epithelial features in L6. By contrast, L6 showed a higher
expression of EMT-associated markers Vimentin and N-
Cadherin as compared to other tumors and elevated (although
not highest) expression of ZEB1 and SLUG (Figure 2A). Then,
we analyzed RNA expression of epithelial and mesenchymal-
associated factors in normal and neoplastic tissues of L5, L6 and
L7 patients. Also at the RNA level, we detected a lower
expression of E-Cadherin and a higher expression of EMT-
associated factors Vimentin, TWIST, ZEB1, SNAIL, SLUG and
ZEB2 in L6 as compared to the other patients’ tumors
(Figure 2B). Notably, the difference in ZEB2 RNA expression
between L6 and the other tumors was highly significant,
according to our recent finding that ZEB2 is associated with
tumor stemness and EMT in CRC (7). Then, we asked whether a
difference in the amount of tumor stroma was present in parental
L5, L6 and L7 tumors, which could influence the expression
levels of mesenchymal markers and possibly the success of
orthotopic engraftment. To this end, we compared the
expression of stromal markers Fibroblast Activation Protein
(FAP) and alpha-Smooth Muscle Actin (aSMA) in the three
patients. Immunoblot analysis and quantification of the results
however showed that the three patients had comparable levels of
June 2022 | Volume 12 | Article 869485
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stromal markers (Figure 2C), indicating that the differences in
EMT factors expression can be attributed to tumor cells. Finally,
we performed immunohistochemistry on L5, L6 and L7 tumor
sections to analyze the expression of ZEB2 (for which we could
not find an efficient antibody batch for immunoblotting), E-
Cadherin and Vimentin respectively in tumor and stromal cells.
In line with RT-PCR results, we found that ZEB2 was highly
Frontiers in Oncology | www.frontiersin.org 5
expressed in L6 tumor cells, while L5 was completely negative
and L7 showed only few positive tumor cells (Figure 2D, upper
panels). L6 had the lowest E-Cadherin expression and the highest
Vimentin expression among the three tumors (Figure 2D,
central and lower panels). ZEB2 and Vimentin staining in L6
were clearly located in tumor pseudocrypts, further supporting a
more pronounced EMT state of tumor cells. Although
A

B

C

FIGURE 1 | Workflow of the orthotopic PDX model. (A) Orthotopic patient-derived xenografts (Ortho-PDX) were directly generated from a colon adenocarcinoma
surgically removed from a CRC patient. Dissociated tumor cells were injected in the colon wall of immunocompromised (NSG) mice. Upon tumor formation, intestinal and
metastatic tumor tissues were collected and characterized. Organoid were generated from orthotopic xenografts (orthotopic xenograft-derived organoids, OXDOs) and
from liver metastases (metastatic xenograft-derived organoids, MXDOs). Circulating tumor cells (CTCs) were collected from patients’ peripheral blood, counted
and analyzed for marker expression. (B) Distribution of functionally relevant variants found among the 50 genes included in the Ion AmpliSeq Cancer Hotspot
Panel v2 panel, in the 3 samples under study. Missense, nonsense and splice site variants are depicted in orange, blue and yellow, respectively. (C) Paraffin-
embedded sections of normal mucosa, patient tumor, orthotopic tumor, liver and lung metastases were stained with Hematoxylin/Eosin (H&E, upper panels) and
cytokeratin-20 (CK20, lower panels). Magnification 20x. Bar 50 mm.
June 2022 | Volume 12 | Article 869485

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


De Angelis et al. Ortho-PDX for Colorectal Metastasis Analysis
ortho-PDX generation was performed with a small number of
patients, these results suggest that a hybrid epithelial/
mesenchymal state of patient’s CRC may be associated to a
successful engraftment of orthotopic tumors. Finally, as EMT
weakens the adhesion forces between tumor cells and promote
independent or collective migration, we analyzed the numbers
and features of circulating tumor cells (CTCs) in L5, L6 and L7
patients. L6 had an increased presence of CTCs and particularly
of CTC clusters, which have been shown to be associated with
Frontiers in Oncology | www.frontiersin.org 6
increased metastatic capacity (Supplementary Figure 2A)
(29, 30). Representative images of CTCs isolated from the
peripheral blood of L5, L6 and L7 patients with the
ScreenCell® method show the presence in L6 of small CTCs
clusters expressing high levels of Vimentin and CD44v6
(Supplementary Figure 2B). The latter was previously
reported to characterize metastatic CSCs in CRC (31) and its
expression on CTCs has been recently associated with
treatment failure in metastatic CRC (32).
A

B

D

C

FIGURE 2 | Ortho-PDX generation is associated with a mesenchymal phenotype of the parental tumor. (A) Left: immunoblot analysis of E-Cadherin, Vimentin, N-
Cadherin, ZEB1 and SLUG on whole lysates of normal mucosa (N) and patient tumors (T). b-Actin was used as a loading control. Right: quantification of the immunoblot
experiment shown on the left. (B) qRT-PCR analysis of Vimentin, Twist, E-Cadherin, ZEB1, SNAIL, SLUG and ZEB2 expression in normal mucosa and tumor tissue of
patient tumors L5, L6, L7. Mean ± SD of 3 experiments. *P < 0.05, **P < 0.01 and ***P < 0.001 from two-tailed t test. (C) Left: Immunoblot analysis of Fibroblast Activation
Protein (FAP) and alpha Smooth Muscle Actin (aSMA) on normal mucosa (N) and patient tumors (T), with tubulin as loading control. Right: quantification of the immunoblot
experiment shown on the left. (D) Left: Paraffin-embedded sections of patient tumors L5, L6, L7 were stained with anti-ZEB2 (upper panels), anti-E-Cadherin (E-CAD,
central panels) and anti-Vimentin (VIM, lower panels). Arrows show areas positive for protein expression. Right: quantification of ZEB2, E-CAD and VIM performed on
patients L5, L6, L7, 5 fields/section. Magnification 20x. Bar 50 mm.
June 2022 | Volume 12 | Article 869485
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TGF-b Pathway Activation and Increased
Expression of Stemness-Associated
Factors May Be Related to Orthotopic
Engraftment
As TGF-b is a major inducer of EMT (33, 34), we analyzed the
expression of mature TGF-b and its precursor proteins and the
levels of phosphorylated SMAD 2/3 (pSMAD 2/3) in normal
intestinal mucosae and tumors derived from L5, L6 and L7
patients. The large latent TGF-b complex protein LTBP1 (Latent
Transforming Growth Factor beta 1 binding protein), which
participates in the local regulation of TGF-b signaling and in
Frontiers in Oncology | www.frontiersin.org 7
TGF-b tissue storage, had a slightly increased expression in L6 as
compared to L5 and L7 tumors. The 45/65 kDa latent TGF-b and
the 12,5 kDa mature monomer were highly expressed in L6,
suggesting an activated state of this pathway (Figure 3A).
Immunoblot analysis of pSMAD 2/3 showed a high expression
both in L6 CRC and in L5 normal mucosa (Figure 3A).
However, only L6 had both high active TGF-b and pSMAD 2/
3 expression, indicating effective activation of TGF-b signaling.
The increased levels of active TGF-b in L6 CRC as compared to
other patients was confirmed by enzyme-linked immunosorbent
assay (ELISA) performed on tumor lysates. TGF-b concentration
A

B

D

C

FIGURE 3 | Ortho-PDX generation is associated with TGF-b pathway activation and increased expression of stemness-associated factors in the parental tumor.
(A) Left: immunoblot analysis of TGF-b, LTBP-1 (Latent-transforming growth factor beta-binding protein 1), Latent TGF-b, active TGF-b and phosphorylated SMAD
2/3 (pSMAD 2/3) on whole lysates of normal mucosae (N) and patient tumors (T). Tubulin and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as
loading controls. Right: quantification of the immunoblot experiment shown on the left. (B) ELISA assay performed on lysates of normal mucosae (N) and patient
tumors (T) showing active TGF-b concentration. ***P < 0.001 from two-tailed t test. (C) pSMAD 2/3 staining of L5, L6 and L7 tumor sections and quantification of
5 fields/section. Magnification 20x. Bar 50 mm. (D) qRT-PCR analysis of Bmi-1, Nanog and LGR5 expression in normal mucosae and tumor tissues of CRC patients.
Mean ± SD of 3 experiments. *P < 0.05, **P < 0.01 and ***P < 0.001 from two-tailed t test.
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in the L6 sample was significantly higher as compared to L5 and
L7, in line with levels of TGF-b monomer detected by
immunoblotting (Figure 3B). To gain further insight into the
activation and location of TGF-b signaling, we performed IHC
analysis of pSMAD 2/3 in L5, L6 and L7 tumor sections. The
results showed that in L5 and L7 pSMAD 2/3 was localized
respectively in stromal and tumor cells (Figure 3C). By contrast,
L6 expressed significantly higher amounts of pSMAD 2/3
localized in tumor cells, further supporting the presence of
active TGF-b signaling (Figure 3C). Since TGF-b signaling has
been recently shown to induce de-differentiation and enhance
stem cell properties in CRC (35), we analyzed transcript levels of
factors implicated in stemness and self-renewal Bmi-1, Nanog
and LGR5 in normal mucosae and tumors of L5, L6 and L7
patients. L6 CRC showed a significantly higher expression of the
three factors, in line with its increased aggressiveness and
mesenchymal features (Figure 3D). Altogether, these results
suggest that an enhanced activation of EMT and stemness
programs may promote tumors’ ability to generate orthotopic/
metastatic PDX.

Analysis of EMT- and Metastasis-
Associated Features in Xenografts and
Organoids Derived From Ortho-PDX and
Liver Metastases
In order to investigate whether the different anatomic location of
orthotopic and metastatic PDX affected the expression of EMT-
associated factors, we first compared the expression of E-
Cadherin and Vimentin in primary, orthotopic and metastatic
tumor tissues. While E-Cadherin levels were variable with the
highest expression in the normal mucosa, Vimentin was virtually
undetectable in lung and liver metastatic tumors (Figure 4A).
This result is in line with the mesenchymal-to-epithelial (MET)
transition theory, indicating that tumor cells lose mesenchymal
features once they have colonized metastatic sites. According to
this hypothesis, orthotopic and metastatic tumor tissues
expressed TGF-b but only the orthotopic tumor expressed a
relevant amount of pSMAD 2/3, indicating activation of the
TGF-b pathway (Figure 4B). RT-PCR analysis of EMT-
associated factors showed that the orthotopic tumor had an
increased expression of EMT-associated factors Vimentin, Twist,
ZEB1, SNAIL and ZEB2 as compared to metastatic tissues
(Figure 4C). E-cadherin levels were also highest in the
orthotopic xenograft, possibly reflecting a hybrid epithelial/
mesenchymal phenotype present also in the original patient
tumor and peritumoral tissue (Figure 4C). An important issue
is whether the parental tumor stroma is able to engraft and grow
within mouse PDXs. Previous studies indicated that first
generation PDXs contain both human and murine stroma,
while after three PDXs generations the stroma is composed
only by mouse cells (36). However, the large majority of PDXs
studies were performed on subcutaneous xenografts, while
information on orthotopic PDXs is limited. To characterize the
relative amount of stroma in the orthotopic xenograft and in
liver metastases we first performed an evaluation of aSMA
(recognizing both human and mouse protein) on sections of
Frontiers in Oncology | www.frontiersin.org 8
orthotopic and metastatic PDXs (Figure 4D). IHC evaluation
showed a non-significant difference between aSMA expression
in the two tumor sites (Figure 4D). Then, we determined the
presence of parental fibroblasts in the orthotopic PDX and in
metastatic tumors by immunoblotting with anti-human FAP.
The results shown in Figure 4E show that fibroblasts are
abundant in the parental tumor but scarce in the ortho-PDX
and completely absent from lung and liver metastases.
Altogether, these observations suggest that parental tumor-
associated stroma is not responsible for the EMT-associated
features detected in L6. Patient-derived organoids (PDOs)
obtained by subcutaneous transplantation of tumor fragments
have been shown to reproduce the architectural and histological
features of the original tumor tissue, and can be effectively used
for the characterization/validation of molecular vulnerabilities
for therapeutic purposes (37, 38). We generated organoids from
orthotopic tumor xenografts (OXDOs) and hepatic metastases
(MXDOs) from patient L6. OXDOs and MXDOs displayed
similar growth rates (data not shown) and were regularly
expanded until passage 7 (Figure 4F), then stored in liquid
nitrogen and thawed as necessary. RT-PCR analysis of E-
cadherin, Vimentin, SNAIL and ZEB2 expression in MXDOs
reflected that of metastatic xenografts, with MXDOs showing a
more epithelial state as compared to OXDOs (Figure 4G). Then,
we performed a migration/invasion assay to compare this ability
in OXDOs and MXDOs. OXDOs showed a slightly higher
migratory capacity than MXDOs, but differences were not
significant (Figure 4H, pictures in Supplementary Figure 3).
Finally, we compared the chemosensitivity of OXDOs and
MXDOs by treating organoids for 6 days with 5-fluorouracil
(5-FU). MXDOs showed an increased resistance to 5-FU
as compared to OXDOs, in line with the enhanced
chemoresistance of metastatic tumors (Figure 4I).
DISCUSSION

Effective modelling of tumors through in vitro and in vivo
methods is the cornerstone of preclinical cancer research,
allowing dissection of cancer-associated molecular traits and
testing of novel therapeutic strategies. In recent years,
organoids and PDX have opened additional avenues towards
personalized medicine, as they provide respectively an in vitro
and in vivo reproduction of individual patient tumors. In this
study, we provide an example of orthotopic-metastatic PDX
directly generated from a CRC patient, which was used to study
molecular features associated to primary, orthotopic and
metastatic tumor tissues. Previous studies showed the
feasibility of the ortho-PDX model in CRC. However, several
studies did not examine in depth the molecular features of
orthotopic and metastatic PDX (20–22, 24). In other cases,
ortho-PDX transplantation was preceded by pre-conditioning
through subcutaneous transplantation, thus selecting for cells
more adaptable to a non-physiological microenvironment (23,
25, 26, 30, 39). In this manuscript, we provide further support
to the feasibility of direct ortho-PDX generation and
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FIGURE 4 | Metastatic tissues lose mesenchymal traits and acquire increased chemoresistance. (A) Left: comparative immunoblot analysis of E-Cadherin (E-CAD)
and Vimentin (VIM) on whole lysates of normal/peritumoral mucosa (N) and tumor tissue (T) of patient L6, orthotopic xenograft (Orthotopic), liver and lung xenograft
metastases (Liver Met and Lung Met). GAPDH was used as a loading control. Right: quantification of the immunoblot experiment shown on the left. (B) Left: comparative
immunoblot analysis of phosphorylated SMAD 2/3 (pSMAD 2/3) and TGF-b on whole lysates as described above. Right: quantification of the immunoblot experiment
shown on the left. (C) qRT-PCR analysis of E-Cadherin (E-CAD), Vimentin (VIM), Twist, ZEB1, SNAIL, SLUG, and ZEB2 in normal/peritumoral mucosa (N) and tumor
tissue (T) of patient L6, orthotopic xenograft (Orthotopic), liver and lung xenograft metastases (Liver Met and Lung Met). Mean ± SD of 3 experiments. *P < 0.05,
**P < 0.01 and ***P < 0.001 from two-tailed Student’s t test. (D) Staining of alpha Smooth Muscle Actin (aSMA) on sections of L6 orthotopic PDX and hepatic
metastasis (left) and quantification of 5 sections (right). Magnification 20x, ns non-significant. (E) Left: Immunoblot analysis of human Fibroblast Activation Protein
(FAP) in normal (N) and tumor (T) parental tissues of L6 patient, in orthotopic PDX (Orthotopic) and metastatic PDX (Liver Met and Lung Met). Tubulin was used
as loading control. Right: quantification of the immunoblot experiment shown on the left. (F) Time course of organoid generation (orthotopic xenograft-derived
organoids, OXDOs and metastatic xenograft-derived organoids, MXDOs), from the first day of culture (passage 0, P0) to subsequent passages (P3, P5 and P7,
respectively after 3 weeks, 5 weeks and 7 weeks of culture). Magnification 10x. Bar 100 mM. (G) qRT-PCR analysis of E-Cadherin (E-CAD), Vimentin (VIM), SNAIL and
ZEB2 on OXDOs (orange bars) and MXDOs (blue bars). *P < 0.05, **P < 0.01 and ***P < 0.001 from two-tailed Student’s t test. (H) Invasion/migration assay performed
with OXDOs and MXDOs. (I) Cell viability of OXDOs (orange bars) and MXDOs (blue bars) treated with 5 mM 5-Fluorouracil (5-FU) for 6 days. Values represent mean ± SD
of three independent experiments. *P < 0.05 by unpaired Student’s t test.
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preliminary insights into mechanisms that may influence
ortho-PDX engraftment. Interestingly, despite the small
number of samples used in this study, we observed an
association between ortho-PDX generation and EMT traits,
increased activation of TGF-b signaling, expression of
stemness-associated factors and presence of CTCs clusters in
the peripheral blood. Our results are in line with recent studies
showing that the EMT state may support metastatic seeding
by CTCs clusters and that ZEB1 is required for liver
metastat izat ion in an orthotopic CRC model (30) .
Interestingly, our studies showed that ortho-PDX generation
was associated to a particularly high expression of ZEB2 in
primary tumor cells. ZEB2 is a transcriptional regulator linked
to EMT and stem cell plasticity (40, 41). We have recently
demonstrated that, in CRC, ZEB2 was associated to slow
cycling, enhanced stemness, chemoresistance, mesenchymal
features and worse relapse-free survival (7). Therefore, it can
be hypothesized that tumors characterized by elevated ZEB2
expression, stem cell traits and EMT may be particularly
suitable for the generation of ortho-PDX models. According
to previous studies, colorectal tumors characterized by high
ZEB2, EMT, stem cell traits and low proliferative index are
more likely to belong to the CMS4 consensus molecular subtype
of CRC (7, 42). Moreover, activation of the TGF-b pathway has
been also reported to be associated with the CMS4 CRC subtype
(42). The L6 CRC used in this study displayed several features
of CMS4 tumors (ZEB2 overexpression, TGF-b activation,
EMT, microsatellite stability) but lacks other features of
CMS4 such as increased stromal content as compared to L5
and L7. On the other hand, the L6 tumor had KRAS mutation,
which is typical of CMS3. Therefore, the molecular features
presented by L6 (EMT/stemness/TGF-b/KRAS mutated) may
indicate hybrid CMS3/CMS4 features that are particularly
aggressive and prone to orthotopic engraftment. It may be
speculated that tumors with the EMT/stemness/TGF-b/KRAS
mutated signature may represent a class of “born to be bad”
colorectal cancers with aggressive features and ability to
metastatize at an early stage (43, 44). In line with this
hypothesis, the L6 patient developed liver metastases within
18 months from surgery while L5 and L7 did not undergo
metastatic progression (data not shown). The observations
reported in this study have been performed on a very small
number of cases and need to be supported by additional
evidences. Despite the preliminary nature of our studies, we
show that the ortho-PDX system is an effective and versatile
tool to reproduce the features of metastatic CRC, encouraging a
broader use of this model in translational CRC research.
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