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Abstract

We reconstruct the innovation dynamics of about two hundred thousand companies by
following their patenting activity for about ten years. We define the technological portfo-
lios of these companies as the set of the technological sectors present in the patents they
submit. By assuming that companies move more frequently towards related sectors, we
leverage on their past activity to build network-based and machine learning algorithms to
forecast the future submissions of patents in new sectors. We compare different prediction
methodologies using suitable evaluation metrics, showing that tree-based machine learning
algorithms outperform the standard methods based on networks of co-occurrences. This
methodology can be applied by firms and policymakers to disentangle, given the present
innovation activity, the feasible technological sectors from those that are out of reach.

Keywords: Economic Complexity, Technological Innovation, Predictions, Patenting firms

Introduction

In this work, we quantify the relatedness between a firm and a technology sector in different
ways, namely using standard methods based on co-occurrences networks and supervised
machine learning algorithms (Tacchella et al. (2021); Albora et al. (2021)). In order to
compare such assessments, we develop an out-of-sample prediction framework based on the
assumption that, on average, the next technology sector in which a firm will patent will be
among the ones that are more related with its present patenting portfolio. In this way, we
can build and study the technological adjacent possible of innovative firms, this concept be-
ing originally introduced by Kauffman (1996) and subsequently mathematically formalised
in Tria et al. (2014); Loreto et al. (2016). We find that machine learning algorithms not
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Straccamore, Pietronero and Zaccaria

only show better prediction performances but allow for a two-dimensional representation
of technology sectors that we call Continuous Technology Space (CTS). The CTS can be
used to visualize the patenting portfolio of companies and to design strategic investments
and acquisitions.
The question regarding the nature of the link between the performance of firms and their
internal allocation of resources (Penrose, 1959) and capabilities (Teece et al., 1994) has
fueled the interest of economics and management scholars for a long time, since opening
the black box of corporate strategy would be key to gain insight into the determinants of
corporate heterogeneity and hence a better understanding of markets and their evolution.
To the best of our knowledge, these analyses are all aiming at finding explanatory variables
for the present performance and not at forecasting future activity. On the contrary, the
approach known as Economic Fitness and Complexity Tacchella et al. (2012); Sbardella
et al. (2018), widely applied at both country and regional level, naturally focuses on fore-
casting, which represent a natural and scientifically sound framework to validate and falsify
the different approaches (Tacchella et al., 2018; Albora et al., 2021; Tacchella et al., 2021).
The aim of the present paper is to apply the EFC forecasting methods at firm level, and in
particular to the bipartite network of firms and the technology sectors in which they show
patenting activity.
One of the main problems for the economic literature is to empirically track the capabilities
and the strategic choices of companies. Unfortunately, these elements are generally intan-
gible, so that the empirical literature often struggles to find instruments to keep up with
the theoretical richness of the debate. One of the more easily measurable footprints left
behind by the strategic decision making of firms is diversification, i.e the scope of activities
(both at technological and productive level) to which internal resources are devoted. This
has been recognized early by scholars, who have often focused their efforts in this direction
to reconcile theory with empirical evidence (Penrose, 1960; Gort, 1962a; Berry, 1971b).
Though diversification is interesting in and of itself, perhaps the more interesting ques-
tion regards the degree of complementarity (or relatedness) between the various elements
included in the portfolio of activities in which businesses engage. Notable early efforts
to address this aspect have been proposed by Rumelt (1974) and Rumelt (1982). Both
studies examine diversified manufacturing firms and focus on the link between profitability
and the degree of correlation between the business units of the same firms. From this, they
test the hypothesis that greater profitability correlates with expansion mainly in areas that
share a competence or basic resource. Teece et al. (1994) have built on the above intuition
by employing plant-level data classifying establishments according to the standard 4-digit
SIC industrial codes relative to the industrial sectors in which they operate and measuring
the relatedness between sectors through the frequency of their co-occurrence within the
same productive plant, that is two sectors are related if many plants produce both. The
hypothesis underlying this approach is the so-called survivor principle (Teece et al., 1994),
i.e. the assumption that economic competition eventually drives inefficient organizational
forms out of the market, thus promoting the co-occurrence of activities that are well in-
tegrated with one another because of complementarities in the technological capabilities
they require. In virtue of the survivor principle, efficient combinations of activities should
occur with a significantly higher frequency than one would expect if activities were paired
randomly. Indeed, the authors find that internal coherence matters, as firms that diversify
tend to add activities that are related to at least a part of their existing portfolio. More
recent analyses confirmed this hypothesis (Rahmati et al., 2020; Buccellato, 2016; Lo Turco
and Maggioni, 2016).
Production is not the only aspect of corporate strategy in which building a coherent port-
folios of related activities has been shown to matter (for example in Gort (1962b); Rumelt
(1974); Berry (1971a) the manufacturing sector is considered). Indeed, in the last twenty
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Which will be your firm’s next technology?

years, the empirical analysis of the innovative output of firms as measured by patents has
gained increasing popularity (Rycroft and Kash, 1999). It is worth noting that patent data
have become in general a workhorse for the literature on technical change over the past
few decades due to the growing availability of machine-readable patent documents and
widespread access to sufficient computing power (Youn et al., 2015). All the above has
played a pivotal role in fueling this trend spurring scholarly (e.g. Hall et al. (2001)), insti-
tutional (e.g. PATSTAT, REGPAT) and corporate (e.g Google Patents) efforts aimed at
constructing comprehensive collections of patent-related documents. Increasing data avail-
ability has in turn allowed researchers to inquire into the nature of patented inventions,
their role in explaining technical change, their reciprocal connections, and their link to
inventor - and applicant-specific characteristics (Strumsky et al., 2011, 2012; Youn et al.,
2015). One of the characteristics of patent documents, which historically has lent itself
more to economic analysis, is the presence of codes associated with the claims contained in
the patent applications. These are used to mark the boundary of the commercial exclusion
rights demanded by inventors. To allow evaluation by patent office examiners, claims are
classified based on the technological areas they impact according to classifications (e.g. the
IPC classification (Fall et al., 2003)), which consist of a hierarchy of 6-digit codes that
associate progressively finer-grained definitions of technological areas to the codes lower in
the hierarchy. Mapping claims to classification codes allows to localize patents and patent
applications within the technology space. Taking advantage of the increasing availability of
patent data, several studies (Jaffe et al., 2000; Leten et al., 2007; Joo and Kim, 2010; Rigby,
2015) have found significant empirical evidence suggesting that evidence that relatedness
in the composition of R&D activities has implications for the ability of firms to innovate
successfully.
Within this stream of literature, a well-known study (Breschi et al., 2003) has recovered the
methodology proposed by Teece et al. (1994) and built upon it to investigate whether firms
tend to diversify their innovative efforts in a coherent fashion by patenting in technological
fields that share a common knowledge base with the technological fields in which they inno-
vated in the past. In particular, the authors have analyzed the technological diversification
of firms through the co-occurrences between technology codes.
In another well-known paper, Nesta and Saviotti (2006) have studied corporate knowledge
coherence in the US pharmaceutical industry showing that both the scope and the coher-
ence of the knowledge base “contribute positively and significantly to the firm’s innovative
performance”, as measured by the number of patents it produces weighted by the number
of citations received.
Some authors of the present paper introduced the concept of “coherent diversification”
(Pugliese et al., 2019b), showing that firms that diversify (i.e., expand their technological
portfolios by patenting in a relatively large number of technological sectors) in a coherent
way (i.e., by preferring related sectors to unrelated ones) on average show a higher perfor-
mance in terms of labor productivity.
In Yan and Luo (2017), the authors present a method for choosing an optimal compromise
between explanatory power of on the diversification and the removal of the weak links in a
network of technology codes.
Finally, we mention the work by Kim et al. (2021), whom have studied the relatedness
between technology codes in Korean firms, finding that ”firms are more likely to develop a
new technology when they already have related technologies”.
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Results

The data we will use in this study is the matrix representation of the temporal bipartite
company-technology network. In particular, we will consider 643 technology sectors em-
bedded in the patents submitted by 197944 firms in 12 years. In practice, we will use 12
Vy matrices that link the layer of firms with that of technology codes, where y ranges from
2000 to 2011. In the following, we will interchangeably use the terms technological code,
sector, or simply technology to express the same concept, since the codes written in the
patents do represent technology sectors and so, in this sense, technologies.
The matrix element V yf,t quantifies the patenting activity of firm f in the technology field
t during year y. In particular, it is the number of patents submitted by the given firm in
that sector. Note that this number can be fractional, since (usually) more than one code
is present in each patent and (rarely) a single patent could be submitted by more than
one applicant firm. In these cases, the unitary weight corresponding to one patent is split
among the sectors and/or the applicants. Note that it may also happen that the same
invention is linked to multiple patent application documents. In this case, each group of
documents in the PATSTAT database is called ”Patent Family” according to primary cita-
tions among them (Publishing et al., 2001). Referring to the same inventions, these families
are associated to the same technology codes, and they are counted as single patents. In
summary, each matrix element V yft is obtained as follows: we assign to each patent (or
family of patents), in a given year y, one unit of weight. This is then divided into equal
shares between all the observed (firm f -technology t) pairs and, finally, the matrix V is
built by summing element-wise these contributions. The construction process is explained
with more details and a numerical example in the supplementary information. The starting
data is obtained by matching the AMADEUS database (https://amadeus.bvdinfo.com),
that covers over 20 million firms with European registered offices, with the Patstat (www.
epo.org/searching-for-patents/business/patstat) database about patents submis-
sions. More details can be found in the Methods section and in Pugliese et al. (2019b).
The matrix element V yf,t gives a quantification of the patenting activity of firm f in the
technology t. However, in the EFC framework one usually deals with binary matrices; our
choice is to use different thresholds T to define the 12 binary matrices My, one for each
year from 2000 to 2011, and to compare a posteriori the effect of using different values of
T . In formulas, the binarizing procedure reads

If T = 0→My
ft =

{
1 if V yft > T

0 if V yft = T

If T > 0→My
ft =

{
1 if V yft ≥ T
0 if V yft < T

So the element My
f,t is equal to 1 if a firm f submits more than T patents with technolog-

ical code t in the year y, and 0 otherwise. We point out that in the Economic Complexity
framework one usually binarizes the export (or, if patents are considered, the innovation
activity) matrix using Balassa’s Revealed Comparative Advantage (Balassa, 1965; Hidalgo
et al., 2018; Pugliese et al., 2019a). Since in this case the V matrix is very sparse, the
effect of RCA is practically negligible so we preferred to use the V yft elements for clearer
interpretability.
These M matrices can be used to train different algorithms to calculate our predictions
about their temporal evolution. In order to have an out of sample forecast, we use data
from 2000 to 2009 for the training phase and to obtain a score matrix S2011 which will
represent the relatedness between companies and technologies; in other words, we expect
that a higher value of the matrix elements S2011

f,t is connected to a higher probability for
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Which will be your firm’s next technology?

firm f to patent in technology code t in year 2011.
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Figure 1: Schematic representation of the data processing. The V matrices represent the
yearly bipartite networks that link firms and technologies; each element Vf,t rep-
resents how much a technology t is present in the patenting activity of firm f .
The elements Mf,t of M matrices instead, gives us the binary information about
whether a technology t is made by a firm f or not, that is if Vf,t exceeds or not
a threshold T . The dark green elements are the potential activations and the red
circles in 2011 matrices are the realized activations (i.e. those elements that were
0 in all training years and then, in 2011, become 1: a new technology for that
firm). Also the distinction between training and test set is shown.

We point out that both the matrices V and M are highly autocorrelated in time: if a firm
does submit patents with a given technological code in a year y, it is likely that it will also
in the year y+ δ, and viceversa. As a consequence, we focus our attention on those matrix
elements that we call potential activations: the elements of M that are 0 in all training
years (from 2000 to 2009). Then, we will check whether in the test year (2011) this ele-
ment remains equal to 0 or becomes 1. We will call this last case a realized activation: a
firm enters (that is, starts patenting) in a technological sector which is new to this firm.
In Figure 1 we represent a numerical example clarifying how we managed the V and the
M matrices, the division of the data in training and test set, and the definitions of both
potential and realized activations.
Our forecast exercise permits to compare different prediction algorithms using the test year
2011. So we will compute one score matrix S2011 for each algorithm and we will compare
it with M2011 (obtained by binarizing the empirical V2011), and quantifying the prediction
performance as in usual supervised classification tasks (Kotsiantis et al., 2007).
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Straccamore, Pietronero and Zaccaria

In order to obtain the prediction scores, we use different algorithms to evaluate the related-
ness (Hidalgo et al., 2018) between a firm and a technology. In the case of co-occurrences
based networks, an intermediate step is to assess the similarity between technology codes.
Here we list the tested algorithms by category, leaving a more detailed discussion for the
Methods section.

• Benchmarks: We use a quasi-trivial Random and Autocorrelation-based predictions as
benchmarks. The first is a random model where we fix the diversification of the firms
df =

∑
tMf,t, i.e. the number of the technology codes in its patents. The second is a

benchmark model that takes into account the temporal autocorrelation of the M matrices:
the scores S are equal to the mean of V yft in all the training years (i.e. with y ∈ [2000, 2009]).

• Networks: The standard Economic Complexity approach usually starts from the evaluation
of normalized co-occurrences; in the simplest case

Byt,t′ =
∑
f

My
f,tM

y
f,t′

that is, t and t′ are similar if many firms patent in both sectors. Different normalizations
lead to the Product Space, or in this case, the Technology Space (Hidalgo et al., 2007),
the Taxonomy Network (Zaccaria et al., 2014), and the Micro-Partial network, based on the
paper of Teece et al. (1994). In all these cases, the network B represents a projection of the
bipartite network M into the space of technology codes, and each element Bt,t′ represent the
proximity/similarity between the two technology codes. In order to obtain a measure of the
relatedness between a firm f and a target technology t, to be used as a prediction score, one
then computes the coherence (Pugliese et al., 2019b) using eq. 2. Other approaches, such as
the density normalization introduced by Hidalgo et al. (2007), perform sensibly worse. More
details are provided in the Methods section.

• Machine Learning: Since our prediction exercise can be expressed as a supervised clas-
sification exercise, we can use the Random Forest (RF) algorithm (Breiman, 2001; Albora
et al., 2021), and what we call the Continuous Technology Space (CTS). The first is a popular
machine learning algorithm based on decision trees, while the CTS is based on the studies of
Tacchella et al. (2021), and it is a projection on the space of the technology codes obtained from
the scores obtained with the Random Forest, which can be seen as a high dimensional repre-
sentation of the codes themselves. This is done by using a Variational Auto Encoder (Kingma
and Welling, 2013) followed by the t-SNE dimensionality reduction algorithm (Van der Maaten
and Hinton, 2008). In this way, we are able to make the results of the Random Forest, in a
sense, more interpretable. As better specified in the Methods, the RF scores can be seen as
an high dimensional representation of the technology codes (one dimension for each firm). In
order to visualize this space, the t-SNE dimensionality reduction algorithm is applied, which
results in the CTS. Note that in order to produce prediction scores from the CTS one has
to compute a coherence or density measure as in the network based approaches. The use of
Random Forest somehow hides the reason why a company is close to a technology code, in
other words, where the relatedness results comes from. However, by applying t-SNE to the
prediction scores one can obtain a visual representation of the relative position of the codes
in this new space we define. Now the motivation behind our relatedness assessment, and
the consequent forecast, becomes (hopefully) more interpretable: the company is close to a
given technology if it is already patenting in close technologies. This is visible as a diffusion
process only if a low-dimensional representation is adopted. We point out that this is not an
explanation of how the Random Forest works, which is beyond the scope of the paper, but
a posteriori justification of our results that, being represented in a 2-dimensional plane, can
provide insights about companies’ innovation strategy.
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Which will be your firm’s next technology?

Two types of Random Forest are used, the non-Cross Validated (RF) and the Cross Validated
one (RF CV). With the cross validation, we remove a portion of firms at a time from the
training, and then we use them in the test. The starting rationale is that the algorithm pro-
duces its predictions by using two pieces of information: the similarity between technologies
and its ability to recognize a firm. By cross-validating the RF we try to force the algorithm
to use the former, and not the latter (Albora et al., 2021).

Prediction results

Here we compare the relatedness assessments of the co-occurrences based networks with
the machine learning algorithms, showing how the latter are able to give better prediction
results. The results are shown in Figure 2. In order to compare the various prediction
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Figure 2: Comparison of the prediction results obtained by different approaches, using three
different evaluation metrics and two binarization thresholds. Random Forest
outperforms all other approaches in all perspectives. Regarding the Area under
the PR curve, the second bests are the Taxonomy Network and the Continuous
Technological Space.
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methods from various viewpoints, we adopted different metrics to quantify the goodness of
a prediction (these metrics are discussed in detail in Methods):

• Area under the PR curve: the area under the curve in the precision recall plane. The
latter is obtained by varying the threshold that identifies the value above which the scores are
associated to positive predictions;

• Precision@100: the fraction of the largest 100 elements of the score matrix S2011 that are
actually activated;

• mPrecision@10: for each firm, we consider the largest 10 scores and we compute the fraction
of realized activations; then we average over the firms.

In Fig.2 we report the scores of the previous metrics for different values of the threshold
parameter T ; the results are consistent even if one varies such threshold (or uses the RCA
to binarize).
We start noticing that the random benchmark is surpassed by all the different approaches,
showing that all are able to compute a measure of similarity that is able to grasp links
between the technology codes.
Also the autocorrelation benchmark is outperformed, but in the mPrecision@10 case. In
particular, it performs better when T increases, because the number of zeros in both the
training and the test matrices increases (that is, the number of potential activations, the
green elements in Figure 1, that are not realized).
In the Area under the PR curve and Precision@100, the only network-based algorithm
that manages to overcome the CTS is the Taxonomy. In particular, it is interesting to ob-
serve how this network exceeds the Technology Space. We can argue that for the technology
codes, a network based on the taxonomy principle, i.e. how firms move from low-complexity
to high-complexity technologies only after developing the necessary skills (Zaccaria et al.
(2014)) shows a better prediction performance that a proximity-based one, i.e. a network
where two technologies have an high link if they need the same capabilities (Hidalgo et al.,
2007).
The Micro-Partial approach does not show a competitive performance despite being quite
popular in both academic and corporate applications (Smith and Linden, 2017).
In any case, the superiority of the RF CV and of the RF with respect to both benchmarks
and density-based approaches (networks and CTS) is evident. Although the other algo-
rithms are able to give prediction scores able to overcome the benchmark models (especially
for T = 0), clearly these are not able to fully highlight the non-linear relationships among
the technological portfolios of firms and the technological sectors they will move to.
In Figure 3 we compare the frequency distributions of the scores of both the realized and
the not realized activations for the Random Forest (y-axis) and Technology Space (x-axis).
In order to make them comparable, both scores are rescaled using the respective maxima
and minima. The red line is the bisector, showed for further reference. From the left figure
it emerges that the Random Forest assigns, on average, higher scores to those potential
activations which will be actually realized in two years. On the contrary, the possible but
not realized activations show similar distributions; this is due to the much greater number
of true negatives which is present in both approaches. Note that, as expected, the scores
given to the Not Realized Activations are lower than the Realized ones.
Finally, it is also important to point out that in the present study, true positives are more
significant than true negatives. This has a twofold rationale:

• The high class imbalance implies that a performance measure such as accuracy is not adequate
for the problem. The majority of the elements of our matrices is equal to zero and therefore
an accuracy measure would consider only the overwhelming number of true negatives. Even
if we made a prediction in which we assume that all the elements of the matrix will be zeros
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Which will be your firm’s next technology?

we would get an accuracy higher than 99%. More in detail, the percentage ratio between
elements equal to 1 and 0 is about 0.2% for T = 0 and 0.08% for T = 1.

• For a firm, it is more interesting to know which technologies are close to it than those it
already active into (i.e. which technologies it can successfully activate in the future), rather
than knowing which ones it will not do in the future (which is often a trivial information, due
to a totally different scope, for instance).
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Figure 3: Comparison of the Random Forest and Technology Space scores with a 2D his-
togram plot. In each Figure the bins’ color represents the number of data points
within each bin. The left figure is referred to the Realized Activations, i.e. those
elements that are always 0 during the training years (from 2000 to 2009) and
then become 1 in the test year (2011). The red line is the bisector. The Real-
ized Activations’ scores obtained with the Random Forest are, on average, higher
than those obtained with the Technology Space. The right figure is referred to
the Not Realized Activations, i.e. elements that also in the 2011 are zero: here,
the distributions are roughly similar.

Continuous Technology Space

Even if the prediction performance of the Random Forest algorithm vastly outperforms the
other approaches, its practical feasibility in policy making could be limited by its low inter-
pretability. From a policy perspective, indeed, it is not easy to justify a strategic decision
such as to invest or not in a technological sector on the basis of a quasi-black box algorithm.
In order to provide a visual tool to inform and justify strategic decisions, we introduced the
Continuous Projection Space (Tacchella et al., 2021), that uses the scores obtained from
the machine learning algorithms to build a two-dimensional and, as such, easy interpretable
space to visualize and describe the temporal evolution of bipartite networks. The key idea
is to interpret the scores matrix obtained with the Random Forest as a matrix of coordi-
nates of technology codes in a high-dimensional space. These embeddings are then made
representable by applying suitable dimensionality reduction techniques; in this case, t-SNE
Van der Maaten and Hinton (2008). Note that here we are using the term ”interpretable”
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Straccamore, Pietronero and Zaccaria

in a policy perspective: in this sense, machine learning algorithms are a black box in the
sense that, for a policymaker, the origin of our results is not clear a priori (for instance, a
company being close to a technology code). However, by applying t-SNE to the Random
Forest scores one can obtain a visual representation of the relative position of the codes in
this new space we define. Now the motivation behind our relatedness assessment, and the
consequent forecast, become (hopefully) clear: the company is close to a given technology
if it is patenting in the close technologies. This is visible as a diffusion process only in a
low-dimensional representation. We point out that this is not an explanation of how the
RF works, which is beyond the scope of the paper, it is just an a posteriori justification of
our results that, being representable in a 2-dimensional plane, can provide insights about
companies’ innovation strategy (e.g., exploration vs exploitation).
Here we apply this methodology - which is fully described in the Methods section - to the
firm-technology network; the result is a plane in which each technology sector is a point,
and similar sectors are close. In Figure 4a) the different colors correspond to IPC macro-
categories, i.e. the first of the 4 digits that define the classification codes. We point out
that, differently from network-based representations, here the similarities are simply repre-
sented by the spatial proximity between technology codes. The use of euclidean distances
instead of topological ones permits to use a wider range of tools, for instance clustering
and anomaly detection algorithms. A visual inspection of the CTS permits to obtain a
number of insights: in the Figure 4a) one can observe that technology codes tend to cluster
following the macro categories; this is a first hint that the positions in the plane present a
certain degree of significance. However, also the departures from the classification reveal
meaningful relationships. In particular, on the upper left one can observe the presence of
a dense area where it is possible to find veterinary medicine close to farm. In the Motor
vehicles area on the left we find motor vehicle technology codes; in particular, there is a
red color technology code (A47C) that corresponds to chairs and seats specially adapted
for vehicles, black technology codes colors, corresponding to B60 (considering the first 3
digits), that represent vehicles, light blue technology codes corresponding to the first 3
digits F01 and F02, i.e. machines and engines, and combustion engineering, and one brown
technology code color (G05G), physics of command systems. Weapons area is associated
with weapons technologies: we find principally (considering the first 3 digits) codes B63
and B64, i.e. ships and aircrafts, C06 associated to explosive chemistry, and F41 and F42,
i.e. weapons and ammunition.

The example discussed above can be generalized by comparing two frequency distri-
butions of distances (see Figure 4b). The first distribution (cyan line) is relative to the
distances between the new activated codes and the patenting company (that is, the dis-
tance from the closest sector the company patented in); the second (orange line) is the
density distribution of all distances between the points in the CTS. We can see how the
first distribution has a lower mean, evidencing that, on average, firms tend to patent in
codes that are relatively close to what they already do. Obviously, also high distances are
present, indicating strategic choices which lead the firm far from its usual scope.
In order to show a concrete application of the CTS, we show in Figure 5 the portion of
this space relative to an American nanotechology company, Nanotek Instruments Inc., as
an example. In 2002 Nanotek patented three inventions, two based on batteries (https://
patentimages.storage.googleapis.com/f4/d8/3d/d663e43fe48e2b/US6773842.pdf and
https://patentimages.storage.googleapis.com/66/b3/7f/6fa873ae402fbf/US6864018.

pdf) and the third is the Nano-scaled graphene plates (https://patentimages.storage.
googleapis.com/e5/3d/0d/1c25e5f68a77ab/US7071258.pdf). The first two are associ-
ated to the code H01M, while the third to the codes C08K, C04B, C01B and C22C, that
correspond to the gold points. The red points are the technology codes in which Nanotek
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patented in 2000 and 2001, while, as mentioned, the gold ones are those activated in the
2002. The black arrows underline the non random position of the new technologies, that
are close to the ones already present in the patenting activity of the company. This is
because we find that technology codes that have a high similarity are represented close to
each other, and therefore a sort of ”technological diffusion” is expected starting from the
codes that firms already have in their portfolios (as shown in Figure 4b).

Discussion

In this work we compare machine learning and network-based approaches to forecast which
will be the future patenting activity of firms; in particular, their next technological sector
of innovation. To the best of our knowledge, this is the first attempt to assess the related-
ness between a firm and a technology sector using machine learning. In order to compare
the various possible measures of relatedness we analyze a very large database consisting in
about two hundred thousand firms and 643 technology sectors and we develop a forecast
exercise using the assumption that, on average, firms will patent in sectors related to their
present technological activity. We find that supervised machine learning techniques (Ran-
dom Forest) clearly outperform the standard methodologies usually adopted in Economic
Complexity, that is, networks of co-occurrences. Our results are robust with respect to
different definitions of what a ”new” technological sectors is, and if different metrics to
evaluate the prediction performance are adopted. Indeed, Random Forest assigns on av-
erage higher activation scores to those technologies which will be explored by firms with
respect to all network based approaches. Finally, we introduce the Continuous Technol-
ogy Space (CTS), that permits to visualize the dynamics of firms during their innovation
activity. The introduction of this approach opens a number of possible applications and
developments. First of all, our activation scores represent an assessment of the achievability
of a given jump to a new technology sector, a measure of how easy will be to produce in-
novations in that sector given the present activity of the firm. Moreover, the CTS allows a
compact visualization of the past, the present and the possible patenting activity of a firm.
Using these tools, and in the spirit of the ”adjacent possible” approach Kauffman (1996);
Tria et al. (2014), it is now possible to quantify how much a firm is exploring the space of
technologies or exploiting what it already does. One can then compare different strategic
choices with various measures of performance, both in terms of profitability and further
innovation activity. Furthermore, these measures can be applied to investigate Mergers
and Acquisitions, and in particular to study whether acquirers prefer to target companies
which are ”close” or ”far” from their present patenting activity. Finally, following the work
of Brummitt et al. (2020) and Pugliese et al. (2017), a future research project could be
the prediction of some performance-related monetary variables of firms, such as revenue or
labor productivity, from knowledge of firms’ patent activity.

Methods

In this Section we describe in more detail the database, algorithms, and evaluation metrics
used in the analysis.

Data

The bipartite firm-technology network is obtained by matching two databases: AMADEUS
for firms and PATSTAT for the technology codes.
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Straccamore, Pietronero and Zaccaria

Firms

AMADEUS (https://amadeus.bvdinfo.com) contains information about over 20 million
companies, mainly concentrated in the European continent. This database is managed
by Bureau van Dijk Electronic Publishing (BvD) which specializes in providing financial,
administrative and budget information relating to companies. It is compatible with the
PATSTAT database for patents as BvD includes the same patent identifiers as the European
Patent Office (Pugliese et al., 2019b). We mention here one of the well-known problems
with AMADEUS, namely that large companies are fully covered while those with less than
20 employees are under-represented (Ribeiro et al., 2010); however, this is not a severe
issue for the present analysis.

Technology Codes

The dataset from which we take information about the patent and the technology codes is
PATSTAT (www.epo.org/searching-for-patents/business/patstat). Globally, PAT-
STAT considers approximately 100 millions of patents registered in about 100 Patent Of-
fices. This information spans from mid-19th century to three-four years before release of
the database; this is evident from the quickly decreasing number of patents in the last avail-
able years. As a consequence, we decided to restrict our analysis in a conservative time
interval (2000-2011). A key element is the presence of a set of alphanumeric codes in each
patent submission; these codes can be assigned by the inventors or by the reviewers and
represent the technological sector the patent belongs to. The WIPO (World International
Patent Office) uses the IPC (International Patent Classification) (Fall et al., 2003) to assign
these technology codes to each patent in such a way as to classify, and better manage, the
inventions presented. The IPC codes define a hierarchical classification consisting of six
levels: sections (that we call macro category), sub-sections, classes, sub-classes, groups,
sub-groups. For example, code Axxxxx corresponds to the ”Human Necessities” macro
category and Hxxxxx to the ”Electricity” macro category; considering the following digits
we have, for example, with A01xxx the sector ”Agriculture; Hunting”, and with A43xxx
the ”Footwear” sector. It is important to note that we discard classes “99” and sub-classes
“Z”, as they represent other technologies not classified in other classes or sub-classes, and
they are therefore not well defined.
It may happen that the same invention may be referred to for multiple patent application
documents. In this case, each group of documents in PATSTAT is called ”Patent Fam-
ily” according to primary citations among them (Publishing et al., 2001), which is nothing
more than the set of patents presented in different countries to protect the single invention.
Patent Families can be built with different criteria (Mart́ınez, 2011), but among these we
choose the one related to the ”Extended Family”, also called IN-PADOC. This corresponds
to the category considered in such a way as to associate the inventions with the widest pos-
sible technological spectrum. Once patents are assigned to firms, we can assign them the
corresponding technology codes and build the firm-technology bipartite network, and its
adjacency matrix Vy, one for each year y. The matrix element represents the number of
patent submitted by the firm in the technology sector. Note that this number may be
fractional, since more than one code is usually present in the same patent: for instance,
if a firm submits only one patent with three technology codes, the three nonzero elements
of the corresponding row of Vy will be equal to one third. The interested reader can find
more details about this data in the results section and in Pugliese et al. (2019b).
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Data processing

The starting database can be represented using the following structure: 12 matrices, one
for each year from 2000 to 2011, that link 426983 firms f (rows) to 7456 (6-digits) technol-
ogy codes t (columns). We chose to work at a higher aggregation level, and so to compress
the technology codes from 6 to 4 digits, summing the columns corresponding to the 6 digit
codes with the same first 4 digits. From the 6 to the 4 digit level the number of technologies
goes from 7456 to 643. This operation leads to both better quantitative results and shorter
computation times (from a qualitative point of view, instead, the results are unchanged).
A key element of both the machine learning and the network based approaches is to provide
an assessment of the similarity between technology codes; this information can be extracted
from the co-occurrences of technological sectors in the same firms. So we consider only firms
that, in years from 2000 to 2009, make at least 2 technology codes; these firms are 197944.
This leads to the data mentioned to the main text: 12 V yearly matrices that link 197944
firms and 643 technology codes.
In order to compute the relatedness measures, in the Economic Complexity literature (Hi-
dalgo et al., 2007; Zaccaria et al., 2014; Pugliese et al., 2019a) one usually computes the
Revealed Comparative Advantage or RCA (Balassa, 1965), and then these matrices are
binarized using a threshold equal to 1. As far as exports are concerned this choice of
threshold has a natural economic meaning, traceable to the works of Ricardo and Balassa
himself: considering the bipartite country-product network, RCAc,p ≥ 1 means that coun-
try c is significantly competitive in the export of the product p (Hidalgo et al., 2007). So
the country’s share of that product in its market is equal to or greater than the product’s
share on the world market. However, the economic meaning of patents submission is differ-
ent, so the choice of RCA is not straightforward. In this work, we binarize the matrices V
with different values of threshold T , without computing the RCA; in this way, the matrices
V are better interpretable as how much a technology code t is present in the patenting
activity of a firm f . We have in any case checked the robustness of our results for different
threshold values and the use of RCA.

Network-based approaches

In this and in the next sections we discuss how to obtain a prediction score matrix S for
2011 from each method starting from the same training data V and M, relative to the
years 2000-2009. The score matrix gives the model’s estimation of the likelihood that a
firm will patent in the given technology sector, and the comparison between the scores
and the actual M2011 using the performance metrics will give an assessment of the models’
performance.
The basic idea of network-based approaches is to compute a similarity of technology codes
from their co-occurrences in companies. Introduced by Teece et al. (1994), and popularized
in the network/complexity community by Hidalgo et al. (2007), the basic quantity is the
number of firms that have patented inventions relating to both codes:

BCOt,t′ =
∑
f

Mf,tMf,t′ . (1)

The idea is that if many firms are active in two technology sectors t and t′ at the same
time, this means that the capabilities, the techniques and, in general, the necessary means
to patent in these sectors, are roughly the same, and so these sectors are, in this sense,
similar, or related.
Different scholars presented various ways to normalize the co-occurrences, on the basis of

13

Page 13 of 25 AUTHOR SUBMITTED MANUSCRIPT - JPCOMPX-100270.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Straccamore, Pietronero and Zaccaria

different theoretical frameworks or interpretations. In general, we can write:

Bt,t′ =
1

A

∑
f

Mf,tMf,t′

C

and discuss the various options for the quantities A and C:

• Simple Co-Occurrences (Teece et al., 1994): forA = 1 and C = 1 one simply counts the number
of companies that are active in both sectors. This case corresponds to BCOt,t′ of Equation 1;

• Technology Space (same normalization of the Product Space (Hidalgo et al., 2007)): A =
max (ut, ut′) and C = 1, where ut =

∑
f Mf,t is the ubiquity of technology code t, that is, the

number of firms active in that technology sector. Using this type of normalization we give a
lower connection weight to those technology codes done by many firms, that we can consider
as basic.

• Taxonomy(Zaccaria et al., 2014): A = max (ut, ut′) and C = df , where df =
∑
tMf,t is the

diversification of firm f . The Technology Space, for how it is built, gives a higher score for
high complexity technology codes (i.e. codes done by few firms) and, as a result, bias towards
them. Consequently, it is not possible to justify the evolution of low-complexity technology
codes towards high-complexity ones. Normalizing also for the diversification we avoid this
problem as we penalize low ubiquity scores and low complexity technology codes are weighted
more.

• Micro Partial (Teece et al., 1994): we compute

BMP
t,t′ =

BCOtt′ − µtt′
σtt′

with
µtt′ =

utut′

N
,

and

σ2
tt′ = µtt′

(N − ut)(N − ut′)
N(N − 1)

,

where N is the number of companies. Here we use a null model in which the ubiquities of the
technologies are kept fixed and everything else is randomized. This case can be analytically
solved: the resulting distribution for the co-occurrences is hypergeometric with mean µtt′ and
variance σ2

tt′ . We call this network Micro Partial following the notation used by Cimini et al.
(2022): this null model is microcanonical in the sense that the degree sequence is exactly fixed
and partial because only one layer is constrained. So the idea is that, if the weight of the link
between two technology codes t and t′ exceeds the expected value µtt′ , this means that t and
t′ are highly related with respect to this random case. Furthermore, as a t-statistic, BMP

t,t′

measures how much the observed link between the two technology codes exceeds what would
be expected if the companies were randomly assigned.

For the latest formulas we obtain one matrix BNet for each network. In order to consider
all years available in the training data, we using as M matrix in the previous formulas a
total matrix obtained by summing the V matrices from years 2000 to 2009, using all the
197944 firms, and then binarizing this sum.
Based on the network used, we get a BNet which we use in the coherence equation from
Pugliese et al. (2019b):

S2011
f,t =

∑
t′

M2009
f,t′ B

Net
t′t , (2)
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Which will be your firm’s next technology?

where M2009
f,t′ is the M matrix obtained by binarizing the V2009 matrix. In practice, t is

highly coherent with the patenting activity of firm f if f is active in many sectors highly
connected with t. On the contrary, if a sector is far from what a firm actually does, we
will assign to it a lower activation score. Note that this equation differs from the density
equation of the Product Space (Hidalgo et al., 2007); we use coherence instead of density
since we have found a better predictive performance.

Random Forest

Random Forest (Breiman, 2001) (RF) is a tree-based machine learning algorithm that we
use to better capture the non-linear links between technology codes. In particular, we use
this binary classification algorithm to determine whether or not a technology code will
appear in the patenting portfolio of a particular company in the future starting from the
knowledge of the technology codes in which the firms patented in the last training year.
In general, during the training of a supervised machine learning algorithm an input data
X matrix is passed. Because our problem is a supervised one, to each vector (row) of the
matrix is associated a label presents in a different input y. To give an example, X can be
the matrix where each row is a flattened handwritten digit, and each element of the row is
the intensity of a pixel; in this case y will be the label corresponding to the digit, and that
must be associated, in order to be recognized, to all those present in X. Once the model is
trained, one gives new samples Xtest and the model is able to make associate a prediction
ytest(in this case, a digit), to each sample.
In our case, we train one RF for each technology code: we want the RF to learn to which
typologies of portfolios is associated each code after two years. So, as samples matrix X
we use the matrix obtained by concatenating, or stacking vertically, the V matrices from
the year 2000 to 2007, and as y we use one column at a time (and therefore one technology
code at a time) of the matrix obtained by concatenating the matrices M from the year
2002 to 2009. In this way, each row is a firm in a year from 2000 to 2007, that has 643
features. We associate this sample to the respective label in y, that is, if after 2 years
the technology code associated to the element in y is active, or not. In such a way, we
associate the codes of each portfolio to the possible presence of the target code in the future.

From a practical viewpoint, we use the ”RandomForestClassifier” from the ”sklearn.ensemble”
python library (Pedregosa et al., 2011), called in this way:

RandomForestClassifier.fit(V2007
2000,

−→
M2009

2002),

where V2007
2000 are the vertically stacked matrices and with the vector symbol over M we

indicate that one column is used at a time, that is, we train one RF for each technology
code. The delay of 2 years is used to insert a dependence on time, as we want to produce
forecasts about the innovative development of firms. We optimized the RF parameters as
described in the supplementary information; the results shown here refer to: number of
trees = 50, min samples leaf = 4; max depth = 40 and method = ’entropy’. The use of all
available companies in the training is computationally demanding, so we used only the top
10000 most diversified firms (10KHD firms). If we use more firms for the training we get
a saturation of the forecast performances (see the Supplementary information). The fact
that firms with higher diversification should be used is due to the fact that these provide
a better coverage of the possible technologies and the possible combinations among them.
After fitting the data, that is, training the machine learning model, we obtain the S2011

scores by using the V2009 matrix as Xtest in a predicting phase. The command line reads

S2011 = RandomForestClassifier.predict proba(V2009)
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and this associates a probability to activate the target technology to each firm in 2009. In
Figure 6 we schematically represent how S2011 is obtained from the RF, the latter being
represented by a set of differently trained decision trees.

In this paper we also compare the approach described above with a cross-validated RF,
for which we use the same optimized parameters and, in order to provide a consistent
comparison of the results, the same training and test sets. In this respect, note that the
textbfXtest should always produce a prediction for all the 197944 firms (including the
10KHD firms used in the training). In the cross-validation framework, we train k = 4
different RFs, using the technique called k-fold Cross Validation, that is we separate into
k=4 groups both the 10KHDs used for the training and the 197944-10KHDs used for the
test. Then, in training each RF we remove one of the 4 groups of 10KHD companies.
The test is instead performed on the removed group from the 10KHD companies along
with 1/4 of the 197944 - 10KHD firms used for the test. This is performed 4 times, each
time removing a different set of firms. At the end, we will have prediction scores for all
companies by merging the scores produced by the four RFs.
The idea behind the use of cross validation is the following. During the training the RF
basically learns two pieces of information: to recognize the portfolio of a company and the
similarity among technologies. Even if we are more interested to the latter, the learning
of the two can not be avoided. However, we can try to force the algorithm to use the
similarities in the test phase: if we give a new company in the Xtest, the RF can not
recognize it and so it is forced to use the similarities to produce its predictions. This
procedure, even if computationally more demanding, leads to better results, as shown in
Figure 2.

Continuous Technology Space

Random Forest shares with most of the machine learning algorithms an intrinsic difficulty
of interpretation, i.e. the rationale behind how the input is connected to the output is
not evident. In this respect, network approaches (note: if made sparse by a suitable filter)
are more clear, since the coherence or density based approach are clearly visualizable: a
technology is coherent with a firm’s portfolio if has a lot of heavy connections with what
the firm already does. In order to restore the interpretability of networks and keep the
predictive performance of machine learning, Tacchella et al. (2021) propose the Continuous
Projection Space, that here we reformulate, with suitable modifications, as the Continuous
Technology Space (CTS).
To compute the CTS we start from Random Forest CV method but, in X, only the first
2K HD firms are used, because we have a saturation of the scores: using more firms does
not change the scores and increases the computational time.
Another difference with the Random Forest CV is that the predictions are obtained using
as Xtest the same 2K HD firms used for the traininf (i.e., in the CTS X = Xtest; however,
we use k-fold CV to avoid overfitting problems). At the end we obtain a scores matrix of
shape [N ×years]× [#t], where N in the number of companies (N = 2000), years = 10 and
#t = number of technology codes = 643; in total this scores matrix has shape 20000×643.
Each column of the score matrix represents the likelihood that each company (rows) will
patent in each technology code (columns). We can then argue than two sectors are similar
if the RF predicts that the same companies will (or will not) produce patents in these
sectors. In this sense, the columns of the score matrix can be seen as the coordinates in a
high-dimensional space for each technology code, where the number of dimensions is given
by the number of companies multiplied by the number of training years (in this case, 20000).
In order to provide a better interpretability to the relatedness assessment, one should find
a low dimensional visualization of this high dimensional representation. Obviously, it is
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impossible to visualize this continuous space of technologies in such an high dimensionality;
so we project these points in a lower dimension by combining a Variational - Autoencoder
Neural Network (Kingma and Welling, 2013), to reduce the dimension from 20000→ 150,
and then t-SNE (Van der Maaten and Hinton, 2008), to reduce the embedding space from
150 → 2 dimensions, finally obtaining the Continuous Technology Space (CTS), that we
show in Figure 4a. Now the similarity between technology codes is simply given by the
relative distance in this 2−D space, and it is easy to understand and visualize how firms
move from the codes already present in their portfolios to the ones that are immediately
close, as shown in Figure 5.
Now we want to use the idea of a coherent diffusion in this low dimensional space to
produce forecasts; in practice, to obtain a score matrix S2011 to compare with the possible
activations of 2011. We start by computing a similarity matrix for the CTS, that for the
sake of simplicity we keep calling B. We use the distances between technology codes on
the CTS and gaussian kernels:

Bi,j =
e−||yi−yj ||

2/2σ2
i∑

k e
−||yi−yk||2/2σ2

i

,

where yi is the coordinate of the i-th technology code in the CTS (i.e. in the 2−D space).
The σi is the standard deviation of the Gaussian kernel related to the technology code i-th;
this parameter can be set differently for each i code, through a binary search process in
which the number of first neighbors is fixed. As we can see in Figure 4a, there are codes
in dense areas and codes in less dense areas, so the idea is to assign a high sigma value to
the codes in less dense areas and low sigma values in more dense areas in order to keep
the interaction with the number of first neighbors constant. The binary search process is
described in the supplementary information where we also show that the best optimal value
of nearest neighbors is 75.
After the similarity matrix B is obtained, one can compute the score matrix S2011 from
the coherence equation Eq. (2):

S2011
f,t =

∑
t′

M2009
f,t′ Bt′,t.

The number of nearest neighbors is calculated out of sample using the 4-fold cross validation
as in the case of the Random Forest CV: we use 3/4 of the companies to determinate the
number of nearest neighbors that maximize the Area under the PR curve and then we
calculate the scores using the Equation 2 for the remaining companies.
Note that the CTS is, like the network approaches, density-based: the more a firm surrounds
a technology sector, more likely it will be part of its patenting activity in the near future.

Benchmark models

In order to understand the effective goodness of our forecast results, a comparison with
some relatively trivial benchmark models is required. We used two benchmark models:

• The first consists in a simple randomization of the technology codes. In practice, we shuffle the
columns of the M2009 matrix in the calculation of Equation 2. The B used is that calculated
with Technology Space network starting from the not randomized M2009 (using the other
networks there is no significant change in the metric scores). In this way, the diversification
of firms is preserved.

• The second benchmark model checks the hypothesis that the simple temporal autocorrelation
of the bipartite networks can explain the observed dynamics. In this case, we use the mean
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of the Vs matrices from 2000 to 2009, V (all the years used in the training) of the test firms
as score matrix S2011, that is, element-wise:

S2011 = V.

In this way we check if the number of patents done in the past can forecast the number of
patents done in the future by the same company in the same technology sector. As shown in
Figure 2, this benchmark model can outperform some of the density-based approaches.

Prediction performance metrics

In order to compare the goodness of the predictions of the different approaches we use stan-
dard evaluation metrics, widely used for classification tasks in supervised machine learning
(Hossin and Sulaiman, 2015). As different metrics capture different aspects of the predic-
tion problem, only the comparison between various measure of performance can provide a
global view of the effectiveness of a forecast approach.
The elements that we want to predict are the possible activations, that is, those elements
of M2011 that were always zero in 2000-2009. The 0s are called negatives, and the 1s are
called positives. The elements equal to 1 that are correctly predicted are called true pos-
itives (TP); and similarly one can define the false positives (FP), the true negatives (TN)
and the false negatives (FN) as, respectively, the 0s predicted as 1s, the correctly predicted
0s, and the 1s predicted as 0s.
To evaluate the predictions done with the different approaches, we have used three perfor-
mance metrics:

• Area under the PR curve: This indicator is equal to the area in the Precision - Recall plane.

Precision is defined as TP (τ)
TP (τ)+FP (τ) , while recall is equal to TP (τ)

TP (τ)+FN(τ) . These quantities are

close to 1 if FP and FN are respectively minimized. Note that in order to compute precision
and recall one has to specify the scores’ binarization threshold τ , that is, the number above
which the score is associated to a positive prediction (1). The PR curve is defined by varying
the τ parameter, because for different values of τ we obtain different precision and recall
values. The last step is the computation of the area under this curve, which is independent
from the threshold τ .

• Precision@100: to compute this indicator we focus on the top 100 scores elements in S2011:
if the model is correct, many of these possible activations should become realized activations.
The Precision@100 is the ratio between the number of these 100 that are true positives (that
is, correctly predicted realized activations), and 100, i.e. the number of elements that we are
considering. This represents a global assessment, that considers the score matrix as a whole.

• mPrecision@10: While the Precision@100 provides a global measure of the precision of the
approach, we would like to have a measure of our average predictive performance for each
firm. To do this, we evaluate the mPrecision@10. We consider the 10 highest scores for each
row, i.e. for each firm, and compute the fraction of true positives. Then we average over the
firms. Since most of the firms do not show at least 10 realized activations, the global number
is far from 1. We have computed the mPrecision also restricting ourselves only to the firms
with 10 or more realized activations, finding similar qualitative results.
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Figure 4: Above: representation of the Continuous Technology Space (CTS). Each point is
a technology code and each colour is associated to the respective macrocategory,
i.e. the first of the 4 digits. Clusters related to macro categories are evident.
Below: comparison between two density distributions of distances. The first (cyan
line) represents the distances between activation codes patented by a company
from the closest code the company used; the second (orange line) is the density
distribution of distances between points in the CTS.
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Figure 5: The exploration of the Continuous Technological Space by an American nanotech-
nology company. Starting from the red sectors, in which Nanotek patented in the
past, this company moved nearby, patenting in the gold sectors in the next years.
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Figure 6: We show how the score matrix S2011 is obtained by the Random Forest by com-
bining the predictions of different decision trees.

25

Page 25 of 25 AUTHOR SUBMITTED MANUSCRIPT - JPCOMPX-100270.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


