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We have performed high-order compressible Navier-Stokes simulations of a thermoacous-
tically unstable resonator employing CO2 in transcritical conditions. The parameter space
spans the range of base pressures p0 = 1.01− 1.5 pcr and temperature differences ∆T =
Thot−Tcold up to 200 K, with thermodynamic and transport properties obtained from the
Peng-Robinson equation of state and Chung’s model. The setup is a classic standing wave
thermoacoustic resonator, which has been optimized resulting in a minimum temperature
difference of 23 K at p0 = 1.01 pcr required to sustain the instability. Strong real-
fluid effects in the thermoacoustic response in the linear regime are observed: (i) the
thermoviscous functions need to depend on the complex eigenvalue (and not just the
angular frequency) for linear theory to accurately predict the growth rate observed in the
Navier-Stokes simulations, due to a high growth-rate-to-frequency ratio; (ii) the growth
rate and frequency vary in a non-monotonic fashion with respect to p0 and ∆T ; (iii)
the pressure eigenmode amplitude tends to flatten out, and the pressure-velocity phase
difference smoothly transitions from π/2 to −π/2 at the average pressure node location;
(iv) the sharp change in base acoustic impedance at transcritical conditions introduces
a discontinuity in the eigenmodes’ spatial derivative. The energy budgets illustrate, for
a given ∆T , the increase of the acoustic power produced, but also of the heat input
required, for thermodynamic conditions approaching the critical point. Finally, intense
mass transport events at transcritical conditions are shown to entail thermodynamic
and convective nonlinearities, which do not, however, govern the limit cycle physics,
dominated instead by nonlinear minor losses.

1. Introduction

Fluid dynamic instabilities featuring acoustic wave amplification due to the two-way
coupling between pressure and heat release fluctuations (Rayleigh 1878) are known as
thermoacoustic instabilities. These are intentionally triggered in thermoacoustic engines
(TAEs) (Swift 1988), where an external temperature differential imposed on a compact
region of the device (thermoacoustic stack or regenerator) results in the spontaneous
generation of acoustic power. TAEs have received much attention from the worldwide
community (Ceperley 1979; Migliori & Swift 1988; Yazaki et al. 1998; Backhaus & Swift
1999, 2000; Tijani & Spoelstra 2011) due to the very high energy conversion efficiency
potential associated with the quasi-isentropic nature of wave energy propagation and
the absence of moving parts. TAEs applications span from NASA designs for deep-
space energy generation (Petach et al. 2004) to small-scale CPU-generated heat control
patented by Google (Elison et al. 2014).

The mechanisms driving thermoacoustic instabilities in TAEs rely on a Brayton-like
thermodynamic cycle occurring inside the thermoacoustic stack (Swift 1988), comprising
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two near-adiabatic transformations, driven by the acoustics, and two near-isobaric irre-
versible heat transfer transformations, which combined cause a fluid particle to experience
thermal expansion/contraction at a high/low pressure, powering the instability and
spontaneously converting heat into acoustic power. The operating fluid and the base
state conditions, hereinafter indicated by a subscript 0, play a fundamental role during
the heat-exchange phases of the cycle. Indeed, the theoretical thermoacoustic production
is proportional to the thermoacoustic gain, defined by Swift (1988) as

Θ = − 1

ρ0

dρ0
dx

, (1.1)

where x indicates the coordinate of wave propagation, and ρ0 is the base density. If the
base pressure p0 is uniform, Eq. (1.1) reverts to

Θ = αp0
dT0
dx

, (1.2)

where T0 is the base temperature and

αp = −1

ρ

∂ρ

∂T

∣∣∣
p

(1.3)

is the isobaric thermal expansion coefficient, which is simply equal to 1/T for perfect
ideal gases.

Fluids in thermodynamic conditions close to their critical point are characterized by
large thermal expansion coefficients, and their use would, theoretically, greatly increase
the thermoacoustic gain in Eq. (1.2). In particular, for fluids in transcritical, or pseudo-
boiling (PB) conditions (Fisher & Widom 1969; Tucker 1999; Banuti 2015), wave-induced
compressions and dilatations could be so large that periodic transitions from liquid-
like fluid (pseudo liquid, PL) to gas-like fluid (or pseudo gas, PG) would occur (see
figures 1 and 2). Around the PB region, the highly nonlinear coupling between pressure,
temperature, and density (thermodynamic nonlinearity) has been proposed by Herring
& Heister (2006) as the reason for undesired effects such as thermoacoustic instabilities
in high-pressure combustion chambers (Casiano et al. 2010; Poinsot & Veynante 2011)
or bulk-mode oscillations in pressurized fuel heat exchangers (Hines & Wolf 1962; Faith
et al. 1971; Hitch & Karpuk 1998; Herring 2007; Palumbo 2009; Hunt & Heister 2014;
Hunt 2016; Wang et al. 2015; Linne et al. 1997), often leading to catastrophic hardware
failure. These phenomena are similar to the multiphase instabilities called density wave
oscillations (O’Neill & Mudawar 2018). The regions of the phase space considered in the
literature are shown in figure 1.

The use of a fluid close to its critical point in a thermoacoustic engine was already
suggested by Swift (1988). In fact, the power energy density is proportional to αp0T0,
making a high thermal expansion coefficient one of the basic requirements in the selection
of the working fluid. However, the high pressures involved in the handling of transcritical
fluids, together with the drop of their thermal diffusivity (hence requiring very small pore
size in the heat exchangers and stack), has limited their use in a thermoacoustic engine so
far (Alexander et al. 2018). Moreover, high-fidelity numerical simulations of transcritical
thermoacoustic instabilities have not been carried out yet. One of the major challenges
is the use of fully conservative schemes (Karni 1994; Abgrall 1996; Toro 2002), for which
spurious numerical oscillations have been shown to produce unstable computations when
transcritical flows are considered (Kawai et al. 2015; Pantano et al. 2017; Migliorino et al.
2018). The most relevant previous work is the development of the linear thermoacoustic
theory, applicable to a generic fluid, by Swift (1988), which builds upon classic linear
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L: liquid

PG: pseudo-gas

G: gas

PL: pseudo-liquid PB: pseudo-boiling

number reference fluid notes

1 O’Neill & Mudawar (2018) FC-72 two-phase flow
2 Migliori & Swift (1988) Sodium liquid, subcritical pressure
3 Wang et al. (2015) RP-3 in between L and PL conditions
4 Herring (2007) JP-10 PL conditions
5 Hunt (2016) Jet-A PL conditions
6 Hines & Wolf (1962) DECH and RP-1 PL conditions, high pressures
7 Linne et al. (1997) JP-7 transcritical, high pressures
8 Faith et al. (1971) Jet-A transcritical
9 Hitch & Karpuk (1998) MCH and JP-7 transcritical
10 Palumbo (2009) Methanol transcritical
11 current work CO2 transcritical

Figure 1. Generic state diagram showing the range of thermodynamic conditions with respect to
the critical point (T = Tcr, p = pcr) considered in previous studies of thermoacoustic instabilities
involving either multiphase mixtures, liquids or supercritical fluids. The abbreviations L, PL,
PB, PG, and G stand for fluid in liquid, pseudo-liquid, pseudo-boiling, pseudo-gaseous, and
gaseous conditions, respectively.

theory (Kirchhoff 1868; Kramers 1949; Rott 1969). This theory was applied to the design
of a thermoacoustic engine successfully operated with liquid sodium (Migliori & Swift
1988), which demonstrated that fluids other than ideal gases, and in particular liquids,
which had been employed before in Malone-type Stirling-like engines (Malone 1931), can
be employed in thermoacoustic systems.

The objective of this work is to establish a numerical benchmark for high-fidelity
simulations of transcritical thermoacoustic flows, extending previous efforts aimed at the
understanding and description of canonical thermoacoustic instabilities (Scalo et al. 2015;
Lin et al. 2016; Gupta et al. 2017). This goal is accomplished by investigating a standing-
wave-like thermoacoustically unstable two-dimensional resonator with transcritical CO2

as the working fluid, building upon Migliorino et al. (2017), idealizing the setup used by
Alexander et al. (2018).

The manuscript is organized as follows. The problem formulation (§2) starts with the
fluid model and the thermodynamic conditions employed in the Navier-Stokes simulations
(§2.1), followed by the description of the computational setup (§2.2). The latter includes
the full set of governing equations and the numerical setup employed to solve them
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Figure 2. (a): flooded contours of reduced density for CO2; (b): isobaric thermal expansion
coefficient (Eq. (1.3)) versus reduced temperature for CO2 at the pressures indicated in table 2.
The rectangle drawn in (a) shows the parameter space of the linear stability analysis, while the
11 configurations of Thot and p0 for the Navier-Stokes computations are indicated with circles.
The curves in (b) are obtained with the PR EoS (solid lines) and with the perfect ideal gas
EoS (dashed line, 1/T ). PL, PB, and PG stand for fluid in pseudo-liquid, pseudo-boiling, and
pseudo-gaseous conditions, respectively.

fluid Tcr pcr ρcr Mm δ

CO2 304.1282 K 7.3773 MPa 467.6 kg/m3 44.01 g/mol 0.225

Table 1. Critical properties, molar mass, and acentric factor of CO2.

(§2.2.1), and the thermoviscous wave equations, which guide the geometry optimization
(§2.2.2). The section ends with a grid sensitivity analysis (§2.3), showing the need to
include the fully complex eigenvalue in the thermoviscous functions dependence. Real-
fluid effects are then discussed in §3, namely on the frequency and growth rate (§3.1),
and on the eigenmode shapes in §3.2, where the reasons for the flattening of the pressure
eigenmode amplitude and the smooth transition of the pressure-velocity phase difference
at the average location of the pressure node are explained. Then, the energy budgets are
discussed in §4, with a first focus on the acoustic energy budgets (§4.1) demonstrating how
acoustic power production is increased when approaching the critical point, and then on
the total energy budgets (§4.2), which show a similar increase also for the heat required.
Finally, high amplitude pressure oscillations are first investigated in §5 by discussing the
thermodynamic and convective nonlinearities typical of fluids in transcritical states, and
then by describing the limit cycle obtained due to nonlinear minor area losses (§6).

2. Problem Formulation

2.1. Fluid Model

In this work we have selected carbon dioxide as the working fluid because of its
well-documented properties (see table 1), making it a good choice for our theoretical
investigation. Its transcritical, or pseudo-boiling (PB), state is reached when the fluid
is at pressures exceeding its critical value, p > pcr, and the temperature varies between
T < Tcr (pseudo-liquid conditions, PL) and T > Tcr (pseudo-gaseous conditions, PG), as
figure 2 shows. The density rapidly drops when transitioning from PL to PG conditions
(figure 2a), hence the spike in the isobaric thermal expansion coefficient (figure 2b).



Real-fluid Effects on Standing-Wave Thermoacoustic Instability 5

p0 (MPa) 7.451 7.746 8.853 10.000 11.066

p0/pcr 1.01 1.05 1.2 1.356 1.5

symbol

Table 2. Selected base pressures for the Navier-Stokes simulations.

αcrM
2
mpcr/(R

2
uT

2
cr) bpcr/(RuTcr) c1 c2 β

0.457236 0.0777961 −1−
√

2 −1 +
√

2 0.37464 + 1.54226δ − 0.26992δ2

Table 3. Specific parameters for the PR EoS (Eq. (2.1)).

However, for increasing pressures, this transition becomes more gradual, and, for large
values of the temperature, αp tends to 1/T , reverting to a perfect ideal gas behavior.

The equation of state (EoS) of Peng & Robinson (1976) (PR EoS) and the model of
Chung et al. (1988) for viscosity and thermal conductivity are chosen as real-fluid model
due to their simplicity and easiness of implementation. The PR EoS relates pressure,
density, and temperature as follows:

p =
ρRT

1− ρb −
ρ2αcrα

(1− ρc1b)(1− ρc2b)
, (2.1)

where R = Ru/Mm, Mm is the molar mass, Ru = 8.314472 J ·mol−1K−1 is the uni-
versal gas constant, and α is chosen as the one proposed by Soave (1972),

√
α =

1 + β
(

1−
√
T/Tcr

)
, and the other coefficients are listed in table 3.

Notice that the EoS and transport parameter model degrade in accuracy for ther-
modynamic conditions close to the critical point, while still retaining all the important
features of real fluids.

The parameter space considered in this study spans the range of base pressures p0 =
1.01 − 1.5 pcr and temperature differences ∆T = Thot − Tcold up to 200 K (figure 2a,
see also Eq.s (2.2), (2.3) and figure 3). For all cases, the value of the cold temperature
is Tcold = 293.15 K. Five base pressures (table 2) are taken into account for the Navier-
Stokes simulations.

2.2. Computational Setup

The geometrical setup considered in this study (figure 3) is a two-dimensional resonator
composed of a hot cavity, indicated by the subscript cav, a thermoacoustic stack,
indicated by the subscript stk, and a long duct. The whole system is bounded axially by
two adiabatic walls at x = 0 and x = L. Fluid in PL conditions (Tcold) and PG conditions
(Thot), according to the base temperature distribution

T0(x) =

{
Thot 0 6 x 6 `cav,

Tcold `cav + `stk 6 x 6 L,
(2.2)
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Figure 3. Computational setup (not to scale) with geometrical parameters for minimal unit
numerical simulations. Isothermal boundary conditions in the stack are imposed following Eq.
(2.3). The side walls are considered adiabatic. PG stands for pseudo-gaseous fluid, PB for
pseudo-boiling fluid, and PL for pseudo-liquid fluid.

bound the stack (0 < xstk < `stk), kept at pseudo-boiling (PB) conditions by isothermal
wall boundary conditions, which impose the following temperature profile:

T0(x) = Thot −∆Txstk/`stk, (2.3)

where ∆T = Thot − Tcold. The stack coordinate is defined as

xstk = x− `cav. (2.4)

A canonical minimal unit (Gupta et al. 2017) is carved out of this geometry, defining
the computational setup employed for both the linear (frequency domain) and fully
nonlinear (Navier-Stokes) numerical analyses. The definition of a minimal unit greatly
reduces the computational cost of the Navier-Stokes simulations, which is especially
high when employing transcritical fluids, and does not compromise the generality of
the results obtained, provided that thermoviscous losses in the parts outside the stack
are negligible. Such condition is true when δk/R � 1, where R is the hydraulic radius
of the resonator and δk is the thermal boundary layer thickness (see Eq. (5.1)), and is
verified for example in Alexander et al. (2018), where δk/R = 3.84 · 10−3. This setup
takes into account nonlinear thermodynamic effects, and hydrodynamic nonlinear losses
due to area jumps, which will be analyzed in §5 and §6, respectively. Acoustic streaming,
transitional turbulence, and nonlinear wave steepening are not considered in the Navier-
Stokes simulations performed in this study.

2.2.1. Governing Nonlinear Equations and Numerical Setup

In this work we consider the fully compressible Navier-Stokes equations, expressed by
the conservation laws of mass and momentum,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.5)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (2.6)

and the evolution equation for pressure (Migliorino & Scalo 2017),

∂p

∂t
+
∂puj
∂xj

= (p− ρa2)
∂uj
∂xj

+
a2αp
cp

(
τij

∂ui
∂xj
− ∂qj
∂xj

)
, (2.7)
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Figure 4. Isolevels of thermoacoustic growth rate, α [rad/s], versus total length, L, and length
of the hot cavity, `cav (see figure 3), for p0 = 10 MPa, ∆T = 100 K (a), ∆T = 125 K (b),
and ∆T = 150 K (c), with a black square indicating the selected design point. These results
are obtained with the solution of the linear system of equations composed by Eq.s (2.10a) and
(2.10b).

where t is time, xj and uj (j = 1, 2, 3) are the components of position and velocity, ρ and
p are the density and pressure, a is the sound speed, αp is the isobaric thermal expansion
coefficient (Eq. (1.3)), and cp is the isobaric specific thermal capacity. The Newtonian
viscous stress tensor τij , according to Stokes’s hypothesis, and the Fourier heat flux read,
respectively,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, qj = −k ∂T

∂xj
, (2.8)

where δij is the Kronecker delta, µ is the dynamic viscosity, k is the thermal conductivity,
T is the absolute temperature. Both µ and k depend on density and temperature
according to the model of Chung et al. (1988).

Eq.s (2.5), (2.6), and (2.7) are solved with the unstructured spectral difference (SD)
solver sd3DvisP, the same used by Gupta et al. (2017) in their thermoacoustics sim-
ulations. It has been shown (Migliorino et al. 2018) that solving for the total energy
equation leads to numerical instability when simulating transcritical flows, due to the
loss of mechanical equilibrium at contact discontinuities. Instead, solving the pressure
evolution equation (Eq. (2.7)) ensures numerical stability and correct representation of
the physics of low Mach number flows (Kawai et al. 2015), such as the ones considered
in this study. This numerical approach has been tested and validated in Migliorino et al.
(2018).

The Navier-Stokes numerical simulations are initialized with the following conditions:

p = p0, T0(x), u =
p0pamp
ρ0a0

sin(πx/L), v = 0, (2.9)

where T0(x) is given by Eq.s (2.2) and (2.3), ρ0 = ρ0(x) and a0 = a0(x) are the density
and sound speed corresponding to p0 and T0(x), respectively, and pamp = 10−7 for all
cases, apart from the ones analyzed in §5 and §6, for which pamp = 5 · 10−3. Eq. (2.9)
imposes an initial disturbance in the computational setup that is thermoacoustically
amplified if the system is fluid-dynamically unstable.

The effect of gravity is not taken into account in the present model. In fact, for
horizontal or hot-side-up lab configuration, gravity will have no significant effect on
the oscillating flow dynamics (Alexander et al. 2018). If the setup is placed hot-side-
down, boiling might ensue, potentially disrupting any formation of thermoacoustic waves.
By placing the hot side up, gravity can also be used to stabilize the mean profiles of
temperature and density to avoid any mean flow induced by acoustic nonlinearities.
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Figure 5. Illustrations of portions of the unstructured mesh for Grid B (see table 4), close to
area changes, used for the Navier-Stokes simulations. This mesh has total number of elements
Nel = 2635.

2.2.2. Linearized Thermoviscous Wave Equations and Geometry Optimization

From Eq.s (2.5), (2.6), and (2.7), it is possible (Rott 1969; Swift et al. 1985; Migliorino
et al. 2017) to obtain, for a generic duct, the frequency-domain equations for the complex
volumetric flow rate Û and pressure p̂ (see Appendix A),

σÛ =− A

ρ0Fν

dp̂

dx
, (2.10a)

σp̂ =
ρ0a

2
0

AFk

(
ΘΦP −

d

dx

)
Û , (2.10b)

where σ = α + iω is the complex eigenvalue with growth rate α and angular frequency
ω, and

ΦP =
1

1− Pr0

fk − fν
1− fν

, Fν =
1

1− fν
, Fk = 1 + (γ0 − 1)fk, (2.11)

where the thermoviscous functions fν and fk depend on σ, the duct geometry, Prandtl
number, and kinematic viscosity (see Eq.s (A 15) and (A 25)). Base state quantities are
a function of the axial coordinate x only and are denoted with a subscript 0; ν0 = µ0/ρ0
is the kinematic viscosity, γ0 = cp0/cv0 is the ratio of specific heats, and Pr0 = cp0µ0/k0
is the Prandtl number. Furthermore, A is in general the cross-sectional area of the duct,
intended per unit depth for the geometry employed in this study. When the linearized
equations are solved, the flow field is considered at uniform base pressure p0.

Eq.s (2.10a) and (2.10b) are discretized on a staggered uniform grid with second order
numerical operators (Lin et al. 2016; Gupta et al. 2017) and solved with a shift-Arnoldi
algorithm. For all the results in this paper, we will always refer to the first resonant mode
of the system.

The minimal unit computational setup is optimized, based on the linear theory, for
three values of ∆T (figure 4), resulting in the geometrical parameters listed in figure 3.
The optimization is performed here visually on the plots of the growth rates and provides
a geometry for which thermoacoustic instability appears for only about∆T = 25 K. Other
values of p0 or ∆T considered in the optimization would lead to different geometries,
which are not considered in this study.

2.3. Grid Sensitivity Analysis

The Navier-Stokes simulations are carried out on an unstructured mesh discretizing
only half of the minimal unit (figure 5), exploiting the symmetry of the flow field with
respect to the centerline of the domain. Two different grids are considered (table 4): A
(coarse) and B (fine). The order of accuracy of the polynomial reconstruction is fixed
with N , indicating the number of points inside each element. For each grid, N = 2 and
N = 3 are chosen.
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Grid A (Nel = 1135) Grid B (Nel = 2635)

Ndof Ndof

N = 2 4540 10540
N = 3 10215 23715

Table 4. Number of degrees of freedom, Ndof = N2Nel, for the two grids considered in this
study, and for two numbers of solution points N inside each element.

Figure 6. Growth rate versus reduced base pressure for ∆T = 100 K (a) and ∆T = 200 K
(b), for the different grid resolutions in table 4. Circles connected by lines are obtained from
the Navier-Stokes simulations, with arrows indicating increasing resolution (see legend in (b)).
Results labeled with “LSA, ω” and “LSA, σ” are obtained from linear stability analysis (LSA)
with thermoviscous functions only dependent on ω (Eq. (2.13)), and on α + iω (Eq. (2.12)),
respectively.

A grid sensitivity study on the linear growth rate indicates converging behavior (figure
6) of the data from the Navier-Stokes simulations, from Grid A with N = 2 to the
finest resolution employed (Grid B and N = 3), towards the growth rates predicted by
the linear theory. However, an important remark is that to achieve such agreement the
thermoviscous functions in Eq.s (A 15) and (A 25) have to depend on the full eigenvalue
σ, and not only on its imaginary part ω, otherwise linear theory overpredicts the growth
rate. In fact, the normalization for the transverse spatial coordinate r, Eq. (A 10), which
reads

η =

√
σ

ν0
r =

√
2i+ 2

α

ω

r

δν
, (2.12)

where δν is defined in Eq. (5.1), includes both the growth rate, α, and angular frequency,
ω, information. Previous studies restricted to ideal gas (Rott 1969; Swift et al. 1985; Lin
et al. 2016; Gupta et al. 2017) have made the assumption of α � ω, i.e. σ ≈ iω, which
can not be used here (see figure 21b), yielding

η =

√
iω

ν0
r =
√

2i
r

δν
= (i+ 1)

r

δν
. (2.13)

Adopting N = 3 solution points yields approximately the same growth rates for Grids
A and B (especially for ∆T = 200 K, for which the two results are almost identical).
Furthermore, an almost equal number of total degrees of freedom Ndof entails different
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Figure 7. Frequency versus ∆T for the five base pressures in table 2. Solid lines indicate results
from linear theory, symbols are data extracted from the Navier-Stokes simulations (with Grid
B and resolution N = 2, see table 4).

results depending on the order of the polynomial reconstruction inside each element: Grid
A with N = 3 (Ndof = 10215) provides a better estimate of the growth rates compared
to Grid B with N = 2 (Ndof = 10540). This justifies the use of high-order numerics in
the simulation of thermoacoustic instabilities.

Frequencies were found to be not very sensitive to grid resolution, as they are deter-
mined primarily from inviscid processes.

3. Real-fluid Effects on Frequency, Growth, and Eigenmodes

3.1. Real-fluid Effects on Frequency and Growth Rate

The frequency of the thermoacoustic response is dependent on the ∆T across the
stack for all base pressures p0 considered (figure 7). The largest values of ω are obtained
for values of ∆T below 5 K, for which most of the system is filled with pseudo-liquid,
which has a high speed of sound. Then, for increasing ∆T , the frequency drops by about
40%, with sharper variations at near-critical conditions, due to the drop in sound speed
characteristic of pseudo-boling fluids. For higher values of ∆T , the frequency increases
approximately in a linear fashion, due to the appearance of fluid in near-ideal gas state,
for which the speed of sound increases with temperature, in the hot cavity. Keeping
the same ∆T across the stack, for increasing base pressures, the frequency increases
approximately with a linear trend, entailing changes of 15% from p/pcr = 1.01 to 1.5.
Thermoacoustic oscillations featuring ideal gases show much milder dependence of the
frequency on the thermodynamic conditions (Lin et al. 2016; Gupta et al. 2017). The
grid requirements necessary to capture the correct frequency are less stringent than the
ones needed for numerical convergence of the growth rates (figure 6).

The thermoacoustic growth rate strongly depends on the ∆T across the stack (figure
8), because large values of ∆T increase the thermoacoustic gain Θ, which in turn controls
the acoustic energy production (discussed more in detail in §4.1). For all base pressures
considered, the minimum ∆T required for the onset of instability (positive growth rate) is
only approximately 25 K, much less than what usually needed in standard thermoacoustic
systems employing perfect ideal gases (Swift 1992; Lin et al. 2016; Gupta et al. 2017).
The configuration with base pressure closer to the critical pressure requires the lowest
∆T (= 23 K) to be thermoacoustically unstable.
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Figure 8. Growth rate versus ∆T for the five base pressures in table 2. Solid lines indicate
results from linear theory, symbols are data extracted from the Navier-Stokes simulations (with
Grid B and resolution N = 3, see table 4).

A non-monotonic variation in the growth rate is present right before ∆T = 15 K,
for p0 = 1.01pcr and p0 = 1.05pcr, due to the occurrence of PB conditions inside the
stack, whereas higher values of p0 entail the monotonic trends expected in ideal gases.
From the onset of instability onwards, increasing ∆T always corresponds to a rise in
growth rate, with the highest values obtained in near-critical conditions (for the lowest
values of p0 considered) until approximately 100 K; after such value, the growth rate
monotonically increases with pressure. The latter is a surprising result if one simply
relies on the intuition that higher base density gradients, achieved at lower pressures, are
expected to boost thermoacoustic energy production (Migliorino et al. 2017). Instead,
for example, at ∆T = 100 K the growth rate varies in a non-monotonic manner with
different base pressures, showing a maximum around p0 = 1.25pcr (figure 6a), which will
be explained in §4.1. These effects are not usually present in thermoacoustic systems
employing ideal gases (Swift 1992; Lin et al. 2016; Gupta et al. 2017).

Overall, the frequencies and growth rates extracted from the Navier-Stokes simulations
confirm the predictions obtained from the linear theory, hence validating the linear ansatz
despite the large gradients in the base state and the extreme thermodynamic conditions.

3.2. Real-fluid Effects on Eigenmodes

Strong real-fluid effects, due to the sharp base density gradients present in the stack,
entail a deviation of the eigenmodes shapes from the classic ideal gas axial profiles (figure
9a,b). For ∆T = 200 K, the overall spatial distribution of the eigenmodes, and their
matching with Navier-Stokes data, were found not to be significantly dependent on p0.

The spatial variation of the amplitude of the pressure eigenmode in the linear regime
(figure 9a) is much more gradual than its ideal gas counterpart. This can be explained
(Appendix B) as a result of the closure of the acoustic energy budgets, yielding

|p̂|min
|p̂|max

∝ |α|
ω
, (3.1)

regardless of the EoS. A large growth-rate-to-frequency ratio is however typical of
transcritical thermoacoustic oscillations (see figure 21b), with |p̂|min/|p̂|max values up
to 12% (figure 10a). The same configuration, with the assumption of thermally perfect
ideal gas, is characterized by |p̂|min/p̂|max values of at most 2%.



12 M. T. Migliorino and C. Scalo

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x (m)

0.0

0.2

0.4

0.6

0.8

1.0
|p̂|

/|p̂
| m

a
x

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x (m)

0.0

0.2

0.4

0.6

0.8

1.0

ρ
0|Û
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Figure 9. Axial distribution of pressure (a) and mass flow rate (b) dimensionless amplitudes,

and phasing between p̂ and Û (c), for ∆T = 200 K and p0 = 10 MPa: linear theory (solid
lines), data extracted from the Navier-Stokes simulations (circles). Dashed-dotted lines indicate
eigenmodes obtained from linear theory with the assumption of thermally perfect ideal gas.
Vertical dashed lines indicate locations of abrupt area change (see figure 3). The squares in (c)
indicate values of phase difference at the location of minimum pressure amplitude.

Furthermore, during the linear growth regime, a stationary node does not exist (see
Appendix B for more details), since the pressure eigenmode is zero at different axial
locations in time. The average location of the pressure node is referred to as x = x|p|min

=
xn. In the transcritical case, the pressure eigenmode amplitude presents its minimum
always shifted towards the stack (showing a minimum of about 31% of the total length,
see figure 10b), contrary to the ideal gas case, for which xn can reach a maximum of
0.51L. The trend of xn versus ∆T resembles the one of frequency versus ∆T (figure 7).
This is due to a local decrease in wavelength connected to the lower speed of sound of
PB and PG conditions compared to PL conditions.

In addition, the most intense mass transport events are expected inside the stack,
where the axial gradient of ρ0|U | is maximum, which is where transcritical conditions
are achieved (figure 9b). Such events, if pressure amplitudes are sufficiently high, entail
convective nonlinearities (analyzed in §5).

Another quantity of interest is the phasing between p̂ and Û , Ψp−ΨU (figure 9c). The
axial profile of Ψp − ΨU , for the ideal gas configuration, is consistent with similar trends
reported by Yazaki et al. (1998), who observed a sharp change from π/2 to approximately
−π/2. Instead, for the transcritical case, Ψp − ΨU shows a much milder transition inside
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Figure 10. Data from linear stability theory on pressure eigenmode amplitude: relative
magnitude (a) and location (b) of its minimum. Solid lines are for real-fluid EoS (for all base
pressures in table 2), and the dashed line indicates thermally perfect ideal gas EoS (for p0 = 10
MPa only).

Figure 11. Axial distribution of dimensionless pressure amplitudes (left y axis), and base
acoustic impedance (right y axis), for ∆T = 200 K and p0 = 1.01pcr: linear theory (solid
line), data extracted from the Navier-Stokes simulations (circles), and base acoustic impedance
(dashed dotted line). The vertical dashed line on the left indicates pseudo-boiling (PB)
conditions, achieved at xstk/`stk = 0.942, while the one on the right denotes the end of the
stack (xstk/`stk = 1).

the resonator. Moreover, the value of Ψp − ΨU at x = xn (see inset in figure 9c) is never
exactly zero in the presence of thermoacoustic growth, and is in magnitude higher for
the transcritical fluid than for the ideal gas case. In fact, it can be shown that (Appendix
B)

Ψpn − ΨUn = − arctan
(α
ω

)
, (3.2)

indicating that the pressure-velocity phase difference is significantly different than zero
at x = xn for transcritical flows, due to the high value of α/ω. This means that, at
x = xn, pressure and flow rate are generally more out of phase for transcritical fluids
than for ideal gases. However, due to the smooth spatial variation in phasing, transcritical
fluids exhibit a wider interval, centered around xn, where travelling-wave-like phasing is
present.

We finally concentrate our attention towards the end of the stack, where we observe
two changes in derivative of the pressure eigenmode amplitude (figure 11). These can be
explained by considering the axial profiles of the acoustic impedance Z0, obtained as the
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Figure 12. Fluctuating pressure plotted against specific volume fluctuation of a Lagrangian
fluid parcel, for all base pressures of table 2 and ∆T = 100 K, extracted with the aid of the
linear theory. Initial position of the Lagrangian parcel is at the centerline of the stack and at
pseudo-boiling conditions (x = 12.21, 12.17, 12.019, 11.88, 11.77 cm for increasing values of p0).
All cycles are taken at the same pressure amplitude and are traversed clockwise.

ratio of the specific acoustic impedance and the duct area,

Z0 =
ρ0a0
A

. (3.3)

At xstk/`stk = 1, since no discontinuity in base state quantities is present (uniform ρ0a0),
the area change is responsible for a jump in Z0, resulting in a local change in d|p̂|/dx,
also for the ideal gas case (not shown). However, no variations in area are present inside
the stack, but in the vicinity of the pseudo-boiling region great variations of base density
and speed of sound produce a pseudo-jump in Z0, which entails a gradual change in
the spatial derivative of the pressure eigenmode amplitude (and of the mass flow rate,
not shown). This rapid change in Z0 at transcritical conditions effectively acts on the
eigenmodes like a continuous change in geometry, which is a peculiar real-fluid effect
not present for higher base pressures or ideal gases, characterized by milder variations of
thermodynamic properties.

The large difference in acoustic impedance between fluid in PL conditions and fluid
in the hot cavity is also responsible for the presence of the maximum of pressure on the
right end side of the domain for the real gas configuration (figure 9a). For ideal gases,
instead, the acoustic impedance in the hot cavity can be higher than the one evaluated
on the right of the stack, causing the maximum pressure amplitude to be at x = 0.

4. Energy Budgets in the Linear Regime

The mechanisms of conversion from heat to acoustic energy occur inside the stack,
where a Lagrangian fluid parcel experiences a thermodynamic cycle, driven by the
harmonic pressure oscillations, with expansions and contractions accompanied by heat-
ing and cooling. The resulting Lagrangian pressure-volume cycle, traversed clockwise,
indicates mechanical power production (figure 12), which is strongly dependent on the
spatial variation in the fluid’s base state resulting from the imposed mean temperature
distribution (Eq. (2.2)). As base pressures approach the critical pressure, transcritical
conditions entail sharper spatial gradients in base density, which in turn cause larger
volume fluctuations for the same pressure oscillation amplitude, hence generating more
power due to the larger area encompassed by the Lagrangian pressure-volume cycle.
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4.1. Acoustic Energy Budgets

Multiplying Eq. (2.10a) by Û∗ and (2.10b) by p̂∗, where a superscript ∗ indicates
complex conjugate, yields, after rearranging,

σκFνA =− 1

2

dp̂

dx
Û∗, (4.1a)

σεFkA =
ΘΦP

2
Û p̂∗ − 1

2
p̂∗
dÛ

dx
, (4.1b)

which are the equations for the acoustic kinetic energy density and acoustic potential
energy density, defined by

κ =
ρ0
2

|Û |2
A2

, ε =
1

2

|p̂|2
ρ0a20

, (4.2)

respectively, both with units of energy per unit volume. Taking the real part of the
addition of Eq. (4.1a) with Eq. (4.1b), and using the properties <{φψ} = <{φ}<{ψ} −
={φ}={ψ}, and <{φ− φ∗} = 0, where φ, ψ are two generic complex numbers, yields

αE +
dẆ

dx
= P −D, (4.3)

where the acoustic energy density is defined as

E = A(<{Fν}κ+ <{Fk} ε), (4.4)

which has dimensions of an energy per unit length, the acoustic power is

Ẇ =
1

2
<{p̂ Û∗}, (4.5)

which has dimensions of an energy per unit time, the production of acoustic energy
density is

P =
Θ

2

[
<{ΦP}<

{
p̂∗Û

}
−={ΦP}=

{
p̂∗Û

}]
, (4.6)

and its dissipation is

D = −ωA(={Fν}κ+ ={Fk} ε), (4.7)

both with dimensions of power per unit length. The weights of <
{
p̂∗Û

}
and =

{
p̂∗Û

}
in

Eq. (4.6), <{ΦP} and −={ΦP}, respectively, are strongly dependent on Pr0, but never
negative (Migliorino et al. 2017).

Integrating Eq. (4.3) axially along the domain yields

α = R/Σ, (4.8)

where the Rayleigh index (Gupta et al. 2017) is

R =

∫ L

0

(
P −D

)
dx, (4.9)

and the total acoustic energy is

Σ =

∫ L

0

Edx, (4.10)

and where hard-wall boundary conditions have been taken into account (the acoustic
power is zero at x = 0 and x = L). Once the eigenvalue problem in Eq. (2.10) is solved,
it is possible to directly evaluate all the variables in Eq.s (4.5), (4.6), and (4.7), allowing
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Figure 13. Base state quantities and acoustic energy budgets terms inside the stack
(xstk = [0, `stk]) from linear theory, for ∆T = 100 K and the base pressures in table 2. (a): base
Prandtl number; (b): minus thermoacoustic gain (Eq. (1.1)); (c): acoustic energy production
(Eq. (4.6), positive values), and minus acoustic energy dissipation (Eq. (4.7), negative values);

(d): axial gradient of acoustic power (Eq. (4.5)); (e): P − D − dẆ/dx (filled circles), and αE
(solid lines, Eq. (4.4)), see Eq. (4.3). All quantities correspond to maximum pressure oscillation
amplitude of 100 kPa, fixed for all base pressures.
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to compute the growth rate from Eq. (4.8). This procedure has been carried out for
all the configurations considered in this work and the growth rate hence obtained is in
excellent agreement with the one computed from the numerical eigenvalue solution of
Eq. (2.10). Indeed, the pointwise acoustic energy budgets in Eq. (4.3) are closed (figure
13e), corroborating the validity of the data extracted from the linear theory.

As the base pressure increases, transcritical conditions are achieved for a higher
temperature (see figure 2b), shifting the location of fluid in PB conditions towards the
hot side of the stack, and yielding a lower maximum of |Θ| (figure 13b). This directly
affects the location and intensity of the spike of the acoustic energy production (figure
13c, Eq. (4.6)). The boost of production obtained for values of p0 approaching pcr is,
however, also accompanied by a similar increase in acoustic dissipation (figure 13c), due
to the high values of Prandtl number typical of transcritical conditions (figure 13a). The
nonlinear trends exhibited by production and dissipation of acoustic energy throughout
the stack are responsible for the non-monotonic behavior observed for the growth rate
as a function of p0/pcr in figure 6a. Furthermore, the derivative of the acoustic power
presents a maximum at PB conditions for higher base pressures, and a local minimum
for p0 = 1.01pcr and p0 = 1.05pcr. The acoustic energy density is mostly uniform in the
stack, apart from the PB region where it presents a spike (figure 13e), gradually reduced
by increasing the base pressures away from the critical point.

For all values of p0, the acoustic power flows away from the stack, reaching boundary
values of zero due the imposed hard wall boundary conditions at both ends of the device
(figure 14a), while inside the stack (figure 14b) a positive gradient (also see figure 13d)
confirms acoustic power production. The trends of the acoustic power inside the stack
confirm the intuitive conclusion, drawn from figure 12, that near-critical base pressures
entail higher power production in the linear regime. However, the heat input required for
sustaining the same pressure oscillations at values of p0 closer to pcr is expected to be
higher, given the spike in thermal capacities typical of transcritical conditions.

4.2. Total Energy Budgets

The evolution equation for total energy in two dimensions reads

∂ρE

∂t
+
∂ρHu

∂x
+
∂ρHv

∂y
=
∂uiτi1
∂x

+
∂uiτi2
∂y

− ∂q1
∂x
− ∂q2

∂y
, (4.11)

where E = e + (u2 + v2)/2 is the specific total energy, sum of specific internal energy
and specific kinetic energy, H = E + p/ρ is the specific total enthalpy, and the other
quantities are the same as in Eq. (2.7). Integrating Eq. (4.11) across the stack pore area,
for a 2D rectilinear geometry, yields

∂

∂t

∫ h/2

−h/2
ρEdy+

∂

∂x

∫ h/2

−h/2
ρHudy =

∫ h/2

−h/2

∂uiτi1
∂x

dy− ∂

∂x

∫ h/2

−h/2
q1dy− [q2]

h/2
−h/2, (4.12)

where we accounted for u = v = 0 at y = ±h/2. Introducing the cycle averaging operator,

(·) =
ω

2π

∫ 2π/ω

0

(·)dt, (4.13)

where time 0 indicates the arbitrary beginning of an acoustic cycle, Eq. (4.12) becomes∫ h/2

−h/2

[ρE]
2π/ω
0

2π/ω
dy +

∂

∂x

∫ h/2

−h/2

(
ρHu+ q1

)
dy =

∫ h/2

−h/2

∂uiτi1
∂x

dy − [q2]
h/2
−h/2. (4.14)
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Figure 14. (a): acoustic power (Eq. (4.5)) in the whole domain; (b): acoustic power in the
stack; (c): total energy flux (Eq. (4.19)) in the stack. Data are taken from the linear stability
theory, for ∆T = 100 K and all base pressures of table 2. The values on the y axis correspond
to a maximum pressure oscillation amplitude of 100 kPa, fixed for all base pressures.

Scaling arguments provided by Swift (1988) allow to neglect the energy change due to
viscous dissipation, first term on the right hand side of Eq. (4.14), which, neglecting
terms of third order, becomes

−[q2]
h/2
−h/2 =

∫ h/2

−h/2

[ρE]
2π/ω
0

2π/ω
dy +

∂Ḣ
∂x

, (4.15)

where

Ḣ =

∫ h/2

−h/2

(
ρhudy − k∂T

∂x

)
dy (4.16)

is the fluid’s time-averaged total energy flux. Integrating Eq. (4.15) axially along the
stack, with 1 indicating the axial coordinate of its beginning and 2 its end (see figure
15), yields

Q̇ =

∫ x2

x1

∫ h/2

−h/2

[ρE]
2π/ω
0

2π/ω
dydx+ Ḣ2 − Ḣ1, (4.17)

where the time-averaged heat exchange through the walls is

Q̇ = −
∫ x2

x1

[q2]
h/2
−h/2dx = 2

∫ x2

x1

(
k
∂T

∂y

)
h/2

dx, (4.18)

where we assumed a symmetric temperature profile around y = 0. Eq. (4.17) shows that
the boundary heat flux is absorbed by the fluid in the form of time-averaged total energy
flux difference between the two stack extremities.
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Figure 15. Control volume (thick dashed lines) used for the total energy balance inside the
stack pore in the minimal unit setup described by figure 3.

The frequency domain expression for the time-averaged energy flux (Eq. (4.16)) is
(Swift 1988; Ward & Swift 2012):

Ḣ =
1

2
<
{
p̂Û∗

(
1− αp0T0(fk − f∗ν )

(1 + Pr0)(1− f∗ν )

)}
+

ρ0a
2
0Θ|Û |2

2AG0ω|1− fν |2
=
{
f∗νPr0 + fk

1− Pr0
2

}
+Hk,

(4.19)
where

Hk = −Ak0
dT0
dx

(4.20)

is the conductive axial heat flux, and where

G =
αpa

2

cp
=
γ − 1

αpT
, (4.21)

is the Grüneisen parameter, which reverts to γ−1 for ideal gases, and which is described
by Swift et al. (1985) as the ratio between the work parameter γ − 1 and the heat

parameter αpT . For our configuration, Ḣ is equal to the acoustic power when computed
outside of the stack.

The profile of Ḣ inside the stack (figure 14c) shows the cumulative time-averaged
heat in Watts required from the solid walls of the stack to sustain the fluid oscillations

(ignoring the first term on the right hand side of Eq. (4.17)). The axial derivative of Ḣ
represents the pointwise heat per unit length (W/m) injected into the fluid. The highest
wall heat flux is required to sustain carbon dioxide oscillating around its pseudo-boiling
(PB) state, followed by fluid in pseudo-liquid and pseudo-gaseous conditions, on its right
and left, respectively, which is a hierarchy consistent with the one of the isobaric specific
heat capacities of each thermodynamic condition. For a given ∆T , conditions closer to
the critical point do produce more acoustic power, but also require more energy to be
sustained.

The efficiency of the thermal-to-acoustic energy transformation can be computed by
dividing the produced acoustic power to the total energy required by the stack,

η =
Ẇ 2 − Ẇ 1

Q̇
. (4.22)

This estimate can be more accurately performed if a limit cycle is present (to cancel the
unsteady term in Eq. (4.17)). In order to do so, nonlinear effects need to be considered,
as done in the remainder of the manuscript.

5. Thermodynamic Nonlinearities at Moderate Pressure Amplitudes

For moderate pressure amplitude values (of about 1% p0), rapid, asymmetric, and
strong density oscillations are observed for p0/pcr = 1.01 (left column of figure 16),
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Figure 16. Color contours of density inside the stack for ∆T = 100 K, for p0/pcr = 1.01
(left) and p0/pcr = 1.5 (right) (see table 2), employing Grid B with N = 3 (see table
4). A complete acoustic cycle is displayed top to bottom. The results are mirrored about
the centerline and stretched 100 times along the y axis for plotting purposes. Solid lines
indicate isocountours of density for ρ = 125, 150, 200, 260, 446.671, 650 kg/m3 (left) and
ρ = 200, 240, 300, 450, 521.197, 620 kg/m3 (right), while dashed white lines display the local
δk (see Eq. (5.1)). The density oscillations shown correspond to pressure oscillations of about
1% of the base pressure for both left and right columns.
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Figure 17. Time evolution, during the transient phase, of cross-sectional profiles of temperature
(a), axial velocity (b), and density (c) inside the stack, with resulting Lagrangian pressure-volume
cycle at the centerline (d), for∆T = 100 K and p0/pcr = 1.01 (see table 1), for Grid B withN = 3
(see table 4). Darker to lighter colored circles indicate increasing time in (d), which considers
a complete acoustic period. The results in (a), (b), and (c), for plotting purposes, are mirrored
about the centerline, and are considered until 70 % of the acoustic cycle completion. Horizontal
dashed lines indicate the distance from the walls equal to δk in (a) and (c), and to δν in (b), and
vertical dashed-dotted lines are plotted for T = Tcr in (a) and for ρ = ρcr in (c). (e) shows the
base density (dashed-dotted line) and the base Prandtl number (solid line), and vertical dashed
lines at x = 10.75 cm, 12.11 cm, 12.21 cm, 12.31 cm, which are the axial coordinates from where
the y-profiles in (a), (b), (c) are extracted from, and the initial locations for the acoustic parcel
in (d). For this case, the strength of the initial perturbation is pamp = 5 · 10−3 (see Eq. (2.9)).
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close to the right hand side of the stack, where PB conditions allow large variations of
thermodynamic properties from small temperature perturbations. At the beginning of
the acoustic cycle, the PB density contour (ρ = 446.671 kg/m3) is skewed towards the
left, where fluid in PG conditions is present, while it does not extend as much towards the
right, halfway through the acoustic cycle, where the PL fluid is. Moreover, the phasing
between PG density oscillations (ρ = 260 kg/m3) and PL ones (ρ = 650 kg/m3) is similar,
whereas the PB fluid lags behind, especially in the center of the channel. In fact, when
critical conditions are achieved near the center of the pore, the thermodynamic properties
show a rather flat transverse distribution (figure 17a,c), due to the high spike in thermal
capacity. The thermal inertia is responsible for the increased residence time of the fluid
around PB conditions, and contributes to its nonlinear time phasing difference with
respect to the oscillations of PG and PL fluid.

On the other hand, for p0/pcr = 1.5 (right column of figure 16), which is sufficiently
away from the critical pressure, the stability dynamics are more akin to the ones of ideal
gases: away from strong base density gradients, the fluid in the stack undergoes mild
and symmetric density oscillations, all with about the same relative phasing. Moreover,
the acoustic time scale is comparable to the time of thermal diffusion in the y direction,
hence allowing for harmonic density perturbations in all the stack.

In fact, the peculiar behavior of transcritical fluids is connected to the axial profiles of
the viscous and thermal boundary layers thicknesses δν , δk, defined by

δ2ν =
2ν0
ω
, δ2k =

2k0
ωρ0cp0

=
δ2ν

Pr0
. (5.1)

Since the viscous boundary layer thickness, even for p0/pcr = 1.01, covers most of the
fluid inside the stack in all its regions, the cross-sectional velocity profiles resemble their
linear counterparts (predicted by the theory of Rott), and do not show significant changes
among the different fluid conditions (figure 17b). Real-fluid effects are mainly manifest
in the oscillating thermodynamic variables, such as density and temperature, but not in
the velocity. Indeed, while for gases the Prandtl number is commonly less than unity,
and for liquids usually Pr > 1, in the PB region the Prandtl number can reach values of
100 (see figure 13a). This leads to such a low ratio of thermal boundary layer thickness
to half height of the pore, δk/r, that most of the fluid in the pore can not be heated
or cooled by the walls during an acoustic cycle (bottom left of figure 16). Therefore,
fluid in PB conditions is thermally shielded, and shows large variations and asymmetric
characteristics in the transverse profiles of density (figure 17c).

The fluid ejection around PB conditions confirms the presence of convective nonlinear-
ities, and suggests that the modal assumption of linear fluctuations is locally violated due
to the large changes in particle volume. Indeed, as a result of the PB thermodynamics,
the linear relation between density and temperature (Eq. (A 16)), which holds for small
wave amplitudes, is replaced by a fully nonlinear relationship even at moderate pressure
amplitudes, resulting in a distortion of the Lagrangian pressure-volume cycle (figure
17d). However, away from the PB region (and also for higher values of p0 away from
pcr), a pv cycle typical of the linear regime (figure 12) is observed (plot on the left of
figure 17d). Moreover, pressure oscillations amplitudes, for all values of p0/pcr, still grow
at approximately the rate predicted by the linear theory even with the presence of the
aforementioned convective nonlinearities.

In summary, oscillations of transcritical fluids with p0/pcr ' 1 present a nonlinear
behavior localized in the small region of the stack where PB conditions are present.
However, as discussed in the following section, these nonlinearities are not the ones
governing the system’s limit cycle.
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p0 (MPa) 7.451 7.746 8.853 10.000 11.066

ρ0a
2
0 ' |p|nl (MPa) 110.36 114.81 130.52 145.69 159.09
|p|nl/p0 14.81 14.82 14.74 14.57 14.38

Table 5. Base pressure, base density times square of base speed of sound, equal to the
approximate pressure amplitude limit for nonlinear wave propagation, |p|nl, and ratio of |p|nl
over base pressure. Data are for all the base pressures of table 2 and for T = 293.15 K.

6. Limit Cycle due to Minor Area Losses

A limit cycle can be achieved if pressure amplitudes are sufficiently high to trigger
nonlinear losses, balancing acoustic energy production via a nonlinear dissipation term,
resulting in a zero net energy growth (see Eq. (4.3)). One mechanism that can provide
high enough nonlinear losses for a limit cycle in a minimal unit calculation is the
formation of shock waves (Gupta et al. 2017). However, pressurized liquids can sustain
large pressure wave amplitudes without the generation of higher harmonics or shock
waves. In fact, the pressure amplitude above which acoustic nonlinearities occur, |p|nl,
which is approximately equal to the reference pressure ρ0a

2
0 (Migliorino & Scalo 2017),

is of the order of hundreds of MPa, corresponding to about 15 times the base pressure
(table 5), whereas values around 1-2% of p0 are usually expected for ideal gases. Indeed,
Swift (1992) reported the formation of higher harmonics (which indicate incumbent
wave steeping) in his experiments on a large-scale ideal-gas thermoacoustic engine, with
pressure amplitudes of 10% of the base pressure, and Gupta et al. (2017) showed shock
waves at 7% of the base pressure in their numerical traveling wave setup with an ideal gas.
On the other hand, Migliori & Swift (1988) did not report any trace of higher harmonics
at |p|max/p0 = 55% in their liquid sodium thermoacoustic device, and even proposed a
future design for which |p|max/p0 = 100%. The Navier-Stokes simulations carried out
in this study from the linear regime to the limit cycle confirm that pressure traces are
harmonic (figure 18). A minimal-unit setup such as the current one will require more
acoustic periods to obtain a limit cycle than full scale devices, such as the one investigated
by Lin et al. (2016), due to its reduced thermoviscous losses. As done in previous studies
by Scalo et al. (2015), Lin et al. (2016), and Gupta et al. (2017) a limit cycle is achieved by
simulating the complete transient evolution of the system, comprising modal growth and
nonlinear saturation, on a coarse grid first. Upon reaching a limit cycle on such grid, the
solution is interpolated on progressively finer grids until adequate resolution is reached.
On the other hand, when analyzing the grid sensitivity analysis of growth rates extracted
from the Navier-Stokes simulations, as done in figure 6, all available grid resolutions are
adopted from the beginning, and simulations are halted after approximately 8-30 cycles.
In no case the complete evolution of the system, from initial conditions to a limit cycle,
is simulated on the finest grid available, nor it is advisable to do so.

In the computational setup considered in this study, the main source of nonlinear
dissipation is the vortex shedding at locations of sudden area change, which are the
transition from the hot cavity to the stack and from the latter to the duct on its right
(see figure 3). Such area jumps entail pressure drops, or minor losses, which can be
parametrized as (Idelchik 2003; Lin et al. 2016)

∆p̂ml = −K
2
ρ0
Û |Û |lc
A2

0

, (6.1)
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Figure 18. Pressure fluctuations detected by a probe at x = L and y = 0, for ∆T = 30 K and
p0 = 1.01pcr, from Navier-Stokes simulations with Grid A and N = 2.

where |Û |/A0 is the largest average velocity in the channel and K is defined by

K = Kexp(A0/A1,Re) +Kcontr(A0/A1,Re), (6.2)

where A0 is the smaller and A1 the larger area. Eq. (6.2) considers losses in steady flow
due to expansions together with losses from contractions, both dependent, as indicated
in Idelchik (2003), on the Reynolds number

Re =
ρ0h|Û |lc/A0

µ0
, (6.3)

where h is the height of the stack (see figure 3). The values of |Û | at limit cycle, |Û |lc,
which are different for each area jump, are computed iteratively until a zero growth rate
is obtained from the numerical solution of Eq.s (2.10a) and (2.10b).

The linear stability theory augmented with linearized minor losses is able to correctly
reproduce the axial profiles obtained from the fully nonlinear Navier-Stokes simulations
(figure 19a,b), as it was also shown by Lin et al. (2016). With respect to the linear regime,
(figure 9), the pressure amplitude minimum is null (since α/ω = 0 at limit cycle) and the
mass flow rate inside the stack varies more steeply at PB conditions, but the overall axial
profiles of pressure amplitude and mass flow rate do not vary considerably. Instead, at
limit cycle, the pressure-flow rate phasing is uniform in the entire resonator, apart from
a sharp variation from 90 to -90 degrees (figure 19c).

Eq.s (6.1) and (6.2), by taking into account transitional and fully developed turbulence,
are necessary for the quantitative prediction of realistic limit cycle thermoacoustic
oscillations (figure 20), which is not obtainable with the two-dimensional Navier-Stokes
simulations.

Pressure amplitudes are the highest for near-critical conditions only for values of ∆T
below 50 K (figure 20a). Furthermore, for a fixed pressure amplitude, conditions away
from the critical point are characterized by the lowest Reynolds numbers (figure 20c) and
work output (figure 20d), consistently with what observed in the linear regime (§4.1).
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Figure 19. Axial distribution of pressure (a) and mass flow rate (b) dimensionless amplitudes,

and phasing between p̂ and Û (c), for ∆T = 30 K and p0 = 1.01pcr, for Grid A with N = 3 (see
table 4), at limit cycle: linear theory augmented with linearized minor losses (solid lines), data
extracted from the Navier-Stokes simulations (circles). Vertical dashed lines indicate locations
of abrupt area change.

Thus, as also pointed out by Swift (1988), higher power energy densities are achieved
by fluids with larger thermal expansion coefficients, such as fluids with p0/pcr ' 1.
However, the efficiency of thermal to acoustic energy conversion is the highest for base
pressures closer to the critical pressure only if ∆T < 30 K (figure 20b), consistently with
the theoretical findings of Swift (1988), where higher acoustic powers were associated to
lower efficiencies. The maximum efficiency observed is η = 0.87 %, obtained for p0/pcr =
1.5 and ∆T = 119 K. For the sake of comparison, Migliori & Swift (1988), with their
liquid sodium thermoacoustic engine, obtained 18 W of acoustic power, employing 360 K
temperature difference across the stack with 990 W of required heat, for an efficiency of
1.8%. Notice that the computational setup used in this work was not originally optimized
for thermal-to-acoustic efficiency, but for growth rate instead (see §2.2.2).

The nonlinear behavior exhibited by the pressure amplitude trends for ∆T < 40 K
(see inset in figure 20a), which correspond to Reynolds numbers below 104, are due to
the trends of Kexp and Kcontr appearing in Eq. (6.2) (figure 20e,f). For large Reynolds
numbers, Eq. (6.2) becomes (Idelchik 2003)

Kexp =

(
1− A0

A1

)2

for Re > 3.3 · 103, Kcontr =
1

2

(
1− A0

A1

)3/4

for Re > 104, (6.4)



26 M. T. Migliorino and C. Scalo

0 25 50 75 100 125 150 175 200
∆T (K)

0

10

20

30

40
|p|

m
a
x
(M

P
a)

(a)

p0/pcr

0 25 50 75 100 125 150 175 200
∆T (K)

0.0

0.2

0.4

0.6

0.8

η
(%

)

(b)

p0/pcr
25 30 35 40
0

2

4 p0/pcr

20 30 40 50
0.0

0.2

0.4

p0/pcr

0 10 20 30 40
|p|max (MPa)

101

102

103

104

105

R
e m

a
x

(c)

p0/pcr

0 10 20 30 40
|p|max (MPa)

0

10

20

30

40

50

60

Ẇ
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Figure 20. Data on limit cycle achieved due to linearized area losses (Eq. (6.1)) for all base
pressures of table 2. (a): maximum pressure amplitude; (b): thermal-to-acoustic efficiency (Eq.
(4.22)); (c): Reynolds number (Eq. (6.3)); (d): acoustic power produced by the stack; (e),(f):
Kexp, Kcontr appearing in Eq. (6.2) versus Reynolds number for A0/A1 = 0.5 (Idelchik 2003).

where the first expression is the Borda-Carnot formula. For more accurate predictions of
the limit cycle physics, it is recommended that an accurate parametrization for K, i.e.
accounting for oscillatory flow, is obtained.

7. Conclusions

This work has unveiled the fundamental physics of transcritical thermoacoustics
through the first direct numerical simulation of a thermoacoustically unstable resonator
employing carbon dioxide in transcritical conditions. The main takeaways of this
manuscript are the strong real-fluid effects observed in the linear and nonlinear regimes,
which are, more specifically:

(i) The high value of the growth rate to frequency ratio (α/ω) which requires, unlike
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the ideal gas cases, the thermoviscous functions in the linear theory formulation to be
based on the fully complex eigenvalue α+ iω, rather than just its imaginary part ω.

(ii) When the fluid inside the stack approaches pseudo-boiling conditions, the fre-
quency of oscillations drops steeply with small changes in ∆T , with the growth rate
exhibiting a non-monotonic dependency with respect to the base pressure p0.

(iii) A more prominent traveling-wave component than what found in ideal-gas systems
in similar configurations is observed at the location of minimum pressure amplitude.

(iv) Due to the steeply varying acoustic impedance, pressure, mass flow rate, and
acoustic power exhibit a discontinuity in their first spatial derivative at pseudo-boiling
conditions.

(v) The acoustic energy budgets indicate a boost in thermoacoustic production at
transcritical conditions, together with a sharp increase in thermoacoustic dissipation;
also, the profiles of acoustic power and total energy flux inside the stack suggest that
conditions closer to the critical point produce additional power but require more heat
input to be sustained;

(vi) Moderate pressure amplitude values (of about 1% p0) trigger thermodynamic
nonlinearities, resulting in a highly distorted pressure-volume work cycle, due to the
gradients in the base state profiles typical of transcritical fluids with p0 ' pcr. However,
these nonlinearities are found to be localized in a small region of the stack, and are not
responsible for regulating the limit cycle, which is dominated by minor losses at the area
jump locations. Axial profiles obtained from the Navier-Stokes simulations pushed to
limit cycle are well reproduced by the linear stability theory augmented with linearized
minor losses. For this standing-wave configuration, a prediction of the maximum efficiency
of thermal to acoustic energy conversion is 0.87 % at p0/pcr = 1.5 and ∆T = 119 K.
Limit cycle work output is found to be always higher for near-critical conditions.

The findings of this work can be helpful for future theoretical and experimental
studies on transcritical thermoacoustic instabilities. Future work needs to consider three-
dimensional Navier-Stokes simulations for the accurate prediction of the limit cycle
physics. Such investigation could shed light on the modelling strategy needed for the
pressure drop located at abrupt area jumps, and on the importance of the convective
nonlinearities occurring around transcritical conditions. In addition, the effect of bulk
viscosity and of gravity needs to be assessed. Moreover, linear stability tools able to
consider the steady state energy balance in the stack, with companion conjugate heat
transfer Navier-Stokes simulations, need to be considered in the case of transcritical
fluids. Finally, more realistic geometrical configurations, such as geometries comprising
more than one minimal unit, are desirable.
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Appendix A. Derivation of the Harmonic Equations

The evolution equations for mass, axial momentum, and pressure (Eq.s (2.5), (2.6) and
(2.7), respectively), in a two-dimensional domain, with x (j = 1) corresponding to the
axial direction and r (j = 2) to the radial direction, read

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ

(
∂u

∂x
+

1

rm
∂rmv

∂r

)
,

ρ

(
∂u

∂t
+ uj

∂u

∂xj

)
= −∂p

∂x
+

µ

rm
∂

∂r

(
rm

∂u

∂r

)
,

∂p

∂t
+ u

∂p

∂x
= a2

(
∂ρ

∂t
+ uj

∂ρ

∂xj

)
+
αpa

2

cp

(
τij

∂ui
∂xj

+
k

rm
∂

∂r

(
rm

∂T

∂r

))
,

(A 1)

where we considered cartesian (m = 0) or cylindrical (m = 1) coordinates, neglected axial
viscous and conduction stresses, assumed that µ = µ(x) and k = k(x), and disregarded
the momentum equation in the r direction (∂p/∂r = 0, v = v(r), and negligible viscous
stresses along r).

A first order Taylor expansion is assumed, both for thermodynamic and kinematic
variables,

ρ = ρ0(x) + ρ′(x, y, t), T = T0(x) + T ′(x, y, t), p = p0 + p′(x, t),

u = u′(x, y, t), v = v′(y),
(A 2)

where a generic variable is composed of a base quantity, at most varying axially, and a
fluctuation that is time and space dependent, and no mean flow is considered. Neglecting
nonlinear terms, and with the assumptions in Eq. (A 2), Eq. (A 1) becomes

∂ρ′

∂t
+ u′

dρ0
dx

= −ρ0
(
∂u′

∂x
+

1

rm
∂rmv′

∂r

)
,

ρ0
∂u′

∂t
= −∂p

′

∂x
+
µ0

rm
∂

∂r

(
rm

∂u′

∂r

)
,

∂p′

∂t
= a20

(
∂ρ′

∂t
+ u′

dρ0
dx

)
+
γ0 − 1

αp0T0

k0
rm

∂

∂r

(
rm

∂T ′

∂r

)
,

(A 3)

where we used the thermodynamic relation a2Tα2
p/cp = γ − 1.

Introducing the variables

U ′ =

∫ h/2

−δ0mh/2
u′(x, r, t)(2πr)mdr, A =

∫ h/2

−δ0mh/2
(2πr)mdr, (A 4)

which are, respectively, the volumetric flow rate fluctuations and the cross sectional area
for cylindrical coordinates (m = 1), or pore height times 1 m for rectilinear coordinates
(m = 0), and integrating Eq. (A 3) over the cross section, we obtain

ρ0
∂U ′

∂t
= −A∂p

′

∂x
+ τ ′w, A

∂p′

∂t
= −ρ0a20

∂U ′

∂x
+
γ0 − 1

αp0T0
q′, (A 5)

after accounting for impenetrable boundary conditions in r, and assuming symmetry of
the fluctuations around the centerline of the duct in the expressions of the wall shear
stress and the wall heat flux, respectively,

τ ′w = 2µ0

(
πh

2

)m
∂u′

∂r

∣∣∣∣
r=h/2

, q′ = 2k0

(
πh

2

)m
∂T ′

∂r

∣∣∣∣
r=h/2

. (A 6)
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Assuming an harmonic dependence of the perturbations (normal mode assumption),

ρ′ = ρ̂(x, r)eσt, T ′ = T̂ (x, r)eσt, p′ = p̂(x)eσt,

u′ = û(x, r)eσt, v′ = v̂(r)eσt,
(A 7)

where it is intended that the physical solution of all the perturbations is the real part of
the respective expressions, Eq. (A 3) becomes

σρ̂ = −ρ0
∂û

∂x
− ûdρ0

dx
− ρ0
rm

∂rmv̂

∂r
,

σû = − 1

ρ0

dp̂

dx
+
ν0
rm

∂

∂r

(
rm

∂û

∂r

)
,

σ

(
ρ̂− 1

a20
p̂

)
= −ûdρ0

dx
+

ν0
Pr0

1

rm
∂

∂r

(
rm

∂ρ̂

∂r

)
,

(A 8)

which are the harmonic mass, momentum, and pressure equations, and the frequency-
domain expression of Eq. (A 5) reads

ρ0σÛ = −Adp̂
dx

+ τ̂w, Aσp̂ = −ρ0a20
∂Û

∂x
+
γ0 − 1

αp0T0
q̂. (A 9)

Despite not having made any assumption on the fluid, Eq. (A 8) coincides with the
equations proposed by Rott (1969), who used the ideal gas EoS.

The coordinate transformation

ξ = iη, η =

√
σ

ν0
r =

√
2i+ 2

α

ω

r

δν
, (A 10)

which is a generalization of the case α � ω (σ ≈ iω) (Rott 1969; Swift et al. 1985; Lin
et al. 2016; Gupta et al. 2017), for which η =

√
2ir/δν = (i + 1)r/δν , allows to rewrite

the harmonic momentum equation as

ξ2
∂2û∗
∂ξ2

+mξ
∂û∗
∂ξ

+ ξ2 û∗ = 0, (A 11)

where û∗ = −σρ0û/ (dp̂/dx)−1. Eq. (A 11), in the case of m = 1, is a Bessel’s differential
equation of order 0. Eq. (A 11) has the general solution

(m = 1) : û∗(ξ) = − J0(ξ)

J0(ξb)
, (m = 0) : û∗(η) = − cosh(η)

cosh(ηb)
(A 12)

where J0 is the Bessel function of the first kind of order 0, the subscript b indicates
evaluation at r = h/2, i.e. ηb =

√
σ/ν0h/2, and the no-slip boundary condition has been

taken into account (û∗(ξb) = û∗(ηb) = −1). Therefore the solution of the momentum
equation and the wall shear stress in frequency domain are

û = − 1

σρ0

dp̂

dx
(û∗ + 1) , τ̂w = A

dp̂

dx
fν , (A 13)

and the first of Eq. (A 9) is

σÛ = − A
ρ0

dp̂

dx
(1− fν) , (A 14)

where

(m = 1) : fν =
2

ξb

J1(ξb)

J0(ξb)
, (m = 0) : fν =

tanh(ηb)

ηb
. (A 15)
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The linearized harmonic EoS,

γ0
p̂

ρ0a02
=

ρ̂

ρ0
+ αp0 T̂ , (A 16)

evaluated at the walls, where isothermal boundary conditions (T̂w = 0) are applied,
becomes

ρ̂w =
γ0
a02

p̂, (A 17)

where we used the independency of p̂ from r. Using Eq. (A 10), the harmonic pressure
equation becomes

∂2

∂ξ2
(ρ̂− ρ̂w) +

m

ξ

∂

∂ξ
(ρ̂− ρ̂w) + Pr0(ρ̂− ρ̂w) = −Pr0

γ0 − 1

a02
p̂− Pr0

σ
û
dρ0
dx

, (A 18)

that is the inhomogeneous analog of Eq. (A 11). To revert back to an homogeneous
equation, we assume a solution of the form

(ρ̂− ρ̂w) =
ρ0Θ

σ

Pr0
1− Pr0

û (ξ) + (ρ− ρ̂w)2, (A 19)

where we assumed Pr0 6= 1 everywhere axially, obtaining from Eq. (A 18) the equation

ξ̃2
∂2ρ̂∗

∂ξ̃2
+mξ̃
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+ ξ̃2ρ̂∗ = 0, ξ̃ = ξ

√
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Θ

(1− Pr0)σ2

dp̂
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)−1
− 1,

(A 20)

which can be solved with a solution of the form of Eq. (A 12) replacing ξ with ξ̃, taking
advantage of the wall boundary conditions:

(m = 1) : ρ̂∗(ξ) = − J0(ξ
√

Pr0)

J0(ξb
√

Pr0)
, (m = 0) : ρ̂∗(η) = − cosh(η

√
Pr0)

cosh(ηb
√

Pr0)
. (A 21)

We can therefore write the harmonic density equation:

ρ̂− ρ̂w = −(R+ p̂(γ0 − 1)/a0
2)(ρ̂∗ + 1) +RPr0(û∗ + 1), (A 22)

where

R =
Θ/σ2

1− Pr0

dp̂

dx
. (A 23)

Here, as noticed before, the derivation of Rott, performed under the assumption of ideal
gases, still holds for a generic fluid, in the case of Pr0 6= 1.

We can now evaluate the wall heat flux in the frequency domain,

q̂ = σA
cp0
αp0

(
− Θ

(1− Pr0)σ2

dp̂

dx
(fk − fν)− γ0 − 1

a20
p̂fk

)
, (A 24)

where notice that the term 1/αp0 reverts back to T0 in the case of ideal gas EoS (Gupta
et al. 2017), and where

(m = 1) : fk =
2

ξb
√

Pr0

J1(ξb
√

Pr0)

J0(ξb
√

Pr0)
, (m = 0) : fk =
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√

Pr0)

ηb
√

Pr0
. (A 25)

Eq.s (A 15) and (A 25) define the thermoviscous functions.
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Finally, the pressure equation in harmonic form can be written as

σp̂ =
ρ0a

2
0/A

1 + (γ0 − 1)fk

(
Θ(fk − fν)

(1− fν)(1− Pr0)
− d

dx

)
Û . (A 26)

Appendix B. Discussion on Minimum Pressure Amplitude

Expressing p̂ and Û in the conventional complex phasor notation, p̂ = |p̂|eiΨp and
Û = |Û |eiΨU in Eq. (2.10a) yields

Û = − A

σρ0Fν
eiΨp

(
d|p̂|
dx

+ i|p̂|dΨp
dx

)
, (B 1)

hence
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, (B 3)

and, from Eq. (2.10b),

σ|p̂|ei(Ψp−Ψu)
AFk
ρ0a20

= |Û |
(
ΘΦP − i

dΨU
dx

)
− d|Û |

dx
. (B 4)

In the duct on the right of the stack the base state is uniform, hence Θ = 0, and inviscid
walls are assumed (Fν = Fk = 1). There, where the pressure is minimum, if α is not
too close to 0, |Û | can be assumed to be maximum. Therefore, at x = x|p|min

= xn,

d|p̂|/dx|n = d|Û |/dx|n = 0 in Eq.s (B 2), (B 3), and (B 4) yields

|Û |n =
A

|σ|ρ0
|p̂|n

∣∣∣∣dΨpdx
∣∣∣∣
n

, (B 5)

ei(Ψpn−ΨUn ) = i
σ

|σ| sgn(
dΨp
dx
|n) → Ψpn − ΨUn = − arctan

(α
ω

)
, (B 6)

|σ|2
a20

=

∣∣∣∣dΨpdx
∣∣∣∣
n

∣∣∣∣dΨUdx
∣∣∣∣
n

. (B 7)

Eq. (B 5) shows that, in order to have maximum |Û |n, |dΨp/dx|n has to be maximum.
Eq.s (B 5), (B 6), and (B 7) have been verified with the data obtained from the linear
theory (not shown).

In section §3.2 it was stated that |p̂|min/|p̂|max (figure 10b) is proportional to |α|/ω
(figure 21b). This can be explained by noticing that, outside of the stack, Eq. (4.3)
becomes

dẆ

dx
= −αE , (B 8)

and by assuming an acoustic energy distribution (Eq. (4.4)) equal to its value at x = L
(where |Û | = 0). After integrating Eq. (B 8) from the right end side of the stack to the
right end side of the resonator, the acoustic power at x = xn is

Ẇn = |p̂|n|Û |n(− ω

|σ| )sgn(
dΨp
dx
|n) =

αA

2ρ0a20
|p̂|2max(L− xn). (B 9)
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Figure 21. Data from linear stability theory. (a): product of the absolute value of the phase
derivative of flow rate at the minimum pressure amplitude location (xn) and absolute value of
distance of xn from the right end side of the resonator (term present in the right hand side of
Eq. (B 11)); (b): ratio of the absolute value of growth rate to angular frequency. Solid lines are
for real-fluid EoS (for all base pressures in table 2), and the dashed line indicates ideal gas EoS
(for p0 = 10 MPa only).

This is consistent with the intuitive reasoning that, if there is growth, nowhere in the
resonator the acoustic power flow can be blocked by a stationary node, which would
instead happen for a perfectly standing wave (zero acoustic power), which has α = 0.
Inserting Eq. (B 5) in Eq. (B 9) yields( |p̂|n

|p̂|max

)2

= −|σ|
2α

2a20ω
(L− xn)/

dΨp
dx

∣∣∣∣
n

, (B 10)

which proves that, since the left hand side is always positive, α/
dΨp

dx |n 6 0. Using Eq.
(B 7) in Eq. (B 10), after taking the absolute value of its right hand side, yields( |p̂|n

|p̂|max

)2

=
1

2

|α|
ω

∣∣∣∣dΨUdx
∣∣∣∣
n

|L− xn|. (B 11)

With the data obtainable from the linear theory, it is found that |dΨU/dx|n|L − xn|
(figure 21a) is proportional to |α|/ω (figure 21b), hence also

|p̂|min
|p̂|max

∝ |α|
ω
, (B 12)

explaining the trend observed in figure 10b.
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Abgrall, Rémi 1996 How to prevent pressure oscillations in multicomponent flow calculations:
A quasi conservative approach. Journal of Computational Physics 125 (1), 150 – 160.

Alexander, D., Migliorino, M. T., Heister, S. D. & Scalo, C. 2018 Numerical and
Experimental Analysis of a Transcritical Thermoacoustic Prototype. In 2018 Fluid
Dynamics Conference. American Institute of Aeronautics and Astronautics.

Backhaus, S. & Swift, G. W. 1999 A thermoacoustic Stirling heat engine. Nature 399 (6734),
335–338.

Backhaus, S & Swift, G. W. 2000 A thermoacoustic-Stirling heat engine: detailed study. J.
Acoust. Soc. Am. 107, 3148–3166.

Banuti, D. T. 2015 Crossing the Widom-line – Supercritical pseudo-boiling. J. Supercritical
Fluids 98, 12–16.

Casiano, M. J., Hulka, J. R. & Yang, V. 2010 Liquid-propellant rocket engine throttling:
A comprehensive review. J. Propul. Power 26 (5), 897–923.



Real-fluid Effects on Standing-Wave Thermoacoustic Instability 33

Ceperley, P.H. 1979 A pistonless Stirling engine-the traveling wave heat engine. J. Acoust.
Soc. Am. 66, 1239–1244.

Chung, T.-H., Ajlan, M., Lee, L. L. & Starling, K. E. 1988 Generalized multiparameter
correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27 (4),
671–679.

Elison, B.P., Mann, P.V. & Sinha, A.K. 2014 Implementing microscale thermoacoustic heat
and power control for processors and 3d chipstacks. US Patent App. 13/624,051.

Faith, L.E., Ackerman, G.H. & Henderson, H.T. 1971 Heat Sink Capability of Jet A Fuel:
Heat Transfer and Coking Studies. Tech. Rep.. Shell Development Company.

Fisher, M. E. & Widom, B. 1969 Decay of correlations in linear systems. J. Chem. Phys.
50 (20), 3756–3772.

Gupta, Prateek, Lodato, Guido & Scalo, Carlo 2017 Spectral energy cascade in
thermoacoustic shock waves. J. Fluid Mech. 831, 358–393.

Herring, N. R. 2007 On the development of compact, high performance heat exchangers for
gas turbine applications. PhD thesis, Purdue University.

Herring, N. R. & Heister, S. D. 2006 Review of the Development of Compact, High
Performance Heat Exchangers for Gas Turbine Applications. In ASME International
Mechanical Engineering Congress and Exposition.

Hines, W. S. & Wolf, H. 1962 Pressure oscillations associated with heat transfer to
hydrocarbon fluids at supercritical pressures and temperatures. ARS Journal 32 (3),
361–366.

Hitch, B. & Karpuk, M. 1998 Enhancement of heat transfer and elimination of flow oscillations
in supercritical fuels. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit . American Institute of Aeronautics and Astronautics.

Hunt, S. 2016 Thermoacoustic Oscillations in Supercritical Fluid Flows. PhD thesis, Purdue
University.

Hunt, S. & Heister, S. D. 2014 Thermoacoustic Oscillations in Supercritical Fuel Flows.
In 12th International Energy Conversion Engineering Conference. American Institute of
Aeronautics and Astronautics.

Idelchik, I. E. 2003 Handbook of Hydraulic Resistance, 3rd edn. CRC Press.
Karni, Smadar 1994 Multicomponent flow calculations by a consistent primitive algorithm.

Journal of Computational Physics 112 (1), 31 – 43.
Kawai, S., Terashima, H. & Negishi, H. 2015 A robust and accurate numerical method for

transcritical turbulent flows at supercritical pressure with an arbitrary equation of state.
J. Comput. Phys. 300 (Supplement C), 116 – 135.
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