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This paper presents a convex programming approach to the optimization of a multistage launch vehicle ascent

trajectory, from the liftoff to the payload injection into the target orbit, taking into account multiple nonconvex

constraints, such as the maximum heat flux after fairing jettisoning and the splash-down of the burned-out stages.

Lossless and successive convexification methods are employed to convert the problem into a sequence of convex

subproblems. Virtual controls and buffer zones are included to ensure the recursive feasibility of the process, and a

state-of-the-art method for updating the reference solution is implemented to filter out undesired phenomena that

may hinder convergence. A hp pseudospectral discretization scheme is used to accurately capture the complex ascent

and return dynamics with a limited computational effort. The convergence properties, computational efficiency, and

robustness of the algorithm are discussed on the basis of numerical results. The ascent of a VEGA-like launch vehicle

toward a polar orbit is used as a case study to discuss the interaction between the heat flux and splash-down

constraints. Finally, a sensitivity analysis of the launch vehicle carrying capacity to different splash-down locations

is presented.

Nomenclature

Ae = nozzle exit area, m2

D = aerodynamic drag vector, kN
f = right-hand side of the equations of motion
J = problem cost function
m = mass, kg
p = atmospheric pressure, kPa
_Q = heat flux, W∕m2

q = virtual control
r = position vector, km
T = thrust vector, kN
t = time, s
u = control vector
v = velocity vector, km∕s
w = virtual buffer
x = state vector
η = transformed independent variable in �−1; 1�
μ = Earth gravitational parameter, km3∕s2
ρ = atmospheric density, kg∕m3

τ = transformed independent variable in �0; 1�
φ = latitude, deg

ϕ, ψ = elevation and azimuth, deg
ωE = Earth angular velocity vector, rad∕s

Subscripts

des = desired condition
f = final boundary
vac = in vacuum
0 = initial boundary

Superscripts

(i) = relative to phase i
^ = unit vector
− = evaluated on the reference solution
0 = derivative with respect to τ
⋆ = optimal solution

I. Introduction

I N THE present state-of-the-art, the only propulsion system
capable of providing the high thrust required for access to space

is the chemical one. However, this system allows for injecting into
orbit only a small fraction of the rocket initial mass. Therefore, the
ascent trajectory optimization process is of primary interest in order
to increase the launcher capacity and reduce the overall mission cost.
Besides, the need for a reliable and efficient optimization tool is
apparent in the preliminary design phases of a launch vehicle, to
evaluate the performance of various configuration concepts, in the
advanced preflight analysis, to assess the feasibility of specific mis-
sion scenarios, and in the definition of optimization-based real-time
guidance algorithms, where computational speed and robustness are
primary requirements.
The design of a rocket ascent trajectory is a complex optimal

control problem (OCP), greatly sensitive to the optimization varia-
bles and characterized by highly nonlinear dynamics and numerous
mission requirements. Over the years, various optimization methods
have been proposed to solve the ascent problem. Jurovics [1] was one
of the first to propose an indirect approach.An indirect procedure also
underlies the well-known DUKSUP optimization software [2],
which has been extensively employed by NASA in the design of
theAtlas, Titan, and Space Shuttle launch systems.More recent work
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based on the indirect method includes both pure trajectory design
applications [3–5] and closed-loop guidance algorithms [6–8]. How-
ever, when dealing with real-world launch vehicle missions, the
indirect method may be unappealing as it requires the derivation of
the optimality conditions, which can be a burdensome task, and the
solution of the resulting boundary value problem requires a meticu-
lous initialization process to achieve convergence. In addition, if path
constraints are included in the formulation, an a priori knowledge of
the structure of the constrained arcs is necessary, which, in general, is
hard to guess. To mitigate this issue, a hybrid analytic/numerical
procedure has been developed by Gath and Calise [9]. Nevertheless,
despite all the efforts, direct methods are typically preferred.
A wide spectrum of direct optimization software tools has been

developed for solving aerospace problems, including traditional non-
linear programming (NLP) solvers, such as POST [10], OTIS [11], and
ASTOS [12], and more recent programs that leverage pseudospectral
methods to set up accurate and efficient optimization algorithms, such as
GPOPS [13], SPARTAN [14], and DIDO [15]. Direct methods have
been used even for solving problems very similar to the one addressed in
this paper. Spangelo andWell [16] described a direct formulation of the
ascent problem that takes into account the maximum heat flux and
constrains the return of a spent stage by bounding the perigee of its
osculating orbit at burnout. Instead, later work byWeigel andWell [17]
includes a complete simulation of the return of the burned-out stage
as an additional phase and, then, solves the resulting OCP via direct
multiple shooting. However, these approaches essentially consist in
transcribing the continuous-time OCP into a general NLP problem
and, despite being easy to set up, this frequently leads to a solution that
depends on provided first guess. This is a burdensome drawback for the
problem at hand because designing an accurate initialization may be
nontrivial due to the aforementioned sensitivity of the problem. More-
over, solving a general NLP problem is a computationally expensive
task,with noguarantee on the optimality of the attained solution, as first-
order necessary conditions are imposed on the discrete problem only.
Convex optimization techniques are becoming increasingly popular

for solving OCPs in the aerospace community [18]. Convex optimi-
zation is a special class of mathematical programming that allows for
the use of polynomial-time algorithms that provide a theoretically
guaranteed optimal solutionwith a limited computational effort. How-
ever, because most aerospace problems are not naturally convex,
several convexification techniques have been developed to convert a
nonconvexproblem into a convexone.Thesemethods aregrouped into
lossless and successive convexification techniques. The former consist
in exploiting either a convenient change of variables or a suitable con-
straint relaxation to reformulate the problem as convex. For example,
Açkmeşe andBlackmore [19] proved that problemswith a certain class
of nonconvex control constraints can be posed equivalently as relaxed
convex problems. Instead, successive convexification offers a way
to tackle the nonconvexities that cannot be handled by lossless con-
vexification through linearization around a reference solution that is
recursively updated. Differently from lossless convexification, the
successive linearization generates a sequence of approximated sub-
problems. The theoretical proof that also successive convexification
leads to a (locally) optimal solution of the originally intended problem
is availableonlyunder appropriate assumptions [20–22].Nevertheless,
current research offers wide numerical evidence of the effectiveness of
successive convexification over a broad spectrum of applications,
including spacecraft rendezvous [23], proximity operations [24], for-
mation flying [25], low-thrust transfers [26,27], rocket powered land-
ing [28–31], and atmospheric entry [32–35]. Convex optimization has
been proposed also for solving the launch vehicle ascent trajectory
problem. However, successful applications are limited to simplified
scenarios, where a flat Earth is assumed [36], atmospheric forces
are neglected [37,38], or only the upper stage trajectory is optimi-
zed [20,39].
In this paper, a realistic dynamic model, which accounts for a

Keplerian gravitational model and nonlinear aerodynamic forces, is
considered, and the complete ascent problem is solved via convex
optimization, building up on the authors’ previous work [40,41]. A
VEGA-like launch vehicle is taken as case study, but the method can
be easily extended to any other rocket. VEGA is a four-stage launcher

made up of three solid rocket motors and a small liquid rocket engine
that performs the final orbit insertion maneuver [42]. The rocket

configuration is such that the third-stage burnout velocity is close
to the orbital one, and hence it ends up falling far away from the
launch site. In this respect, the impact point of the third stage must be

predicted and actively constrained to a safe location. The return of the
other stages also requires a careful design, but it would draw in further
safety-related requirements, specific of either the launch vehicle or

the launch base, that are out of the scope of this paper, and it is
thus neglected. The accurate prediction of the splash-down location
requires the inclusion of an additional return phase in the formulation

that must be cast as a free-time phase to efficiently satisfy the zero-
altitude terminal constraint. Moreover, because it features a high-
velocity object falling into the atmosphere, the accurate discretization

of its dynamics may significantly increase the overall computation-
al burden of the optimization. Thus, a proper discretization scheme
must be adopted to limit the problem dimension. In this respect, a hp
discretization, based on Radau pseudospectral method [43], is em-

ployed to obtain accurate solutions with a limited computational cost
[44]. Finally, a constraint related to the maximum heat flux that the
payload can undergo once the fairing is jettisoned is included in the

formulation. This is another nonconvex constraint to be tackled in the
convexification procedure and it presents the further technical diffi-
culty of being coupled with the splash-down constraint because

moving the impact point affects the whole trajectory profile and, in
particular, the encountered heat flux conditions.
This paper features several original contributions. Compared with

the authors’ previous works [40,41], a different formulation that
makes use of a Cartesian coordinate system is employed to overcome

numerical issues arising for near-polar orbits when spherical coor-
dinates are used. Also, the typical lossless convexification strategy
originally proposed for powered descent problems [45] is slightly

modified by preserving the original state variables and thus prevent-
ing accuracy issues related to the large variation between the liftoff
and payload mass when a logarithmic scale is used [41]. Finally,

additional algorithmic robustness is provided by an original method,
named filtering, for the recursive update of the reference solution that
avoids the use of trust region constraints [46–48], whichmay limit the

search space or modify the objective function and thus require a
careful implementation, as well as initialization strategies based on
homotopy [7–9], which can significantly increase the computational
burden. When using filtering, the update of the reference solution is

devised as a weighted sum of the previously found solutions, rather
than being based only on the last one. This approach successfully
filters out oscillations in the search space and other common unde-

sired phenomena due to the successive linearization, such as artificial
unboundedness, without altering theOCP, as no additional constraint
or penalty term needs to be added to the formulation. The combina-

tion of the novel convexification strategy and the high-accuracy hp
pseudospectral discretization sets up a highly efficient and robust
optimization process that allows for a successful solution of the

ascent problem. Both these aspects of novelty of the technique are
discussed in the paper, with reference to the case study. In particular,
the filtering technique is compared with hard and soft trust region

techniques in terms of robustness and efficiency of the devised
optimization technique.
This paper is organized as follows. Section II outlines the multi-

stage launch vehicle ascent problem, describing the phase structure,
the system dynamics, and the mission requirements. In Sec. III, the

original OCP is transcribed into a convex optimization problem via
a combination of lossless and successive convexification methods.
The initialization strategy and the recursive update of the reference
solution via filtering are detailed in Sec. IV. Numerical results are

presented in Sec. V to show the effectiveness of the proposedmethod.
The computational efficiency and robustness to the initial guess are
studied via an extensive Monte Carlo analysis, highlighting also the

merits of the novel filtering technique. Finally, an analysis of the
sensitivity of the achievable payload with respect to different splash-
down locations is carried out, showing the interaction between the

heat flux and splash-down constraints.
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II. Original Problem Formulation

In this section, the ascent trajectory is first divided into multiple
phases to account for different guidance programs, coasting phases,
and mass discontinuities. Second, the equations of the 3-DoFmotion
of the launch vehicle are derived. Finally, the constraints and objec-
tive function of the addressed OCP are outlined.

A. Flight Strategy and Phase Sequence

A launch vehicle is a system that, from liftoff to payload release,
flies through variable conditions and thus requires different guidance
programs to meet all mission requirements. Moreover, the ascent of a
multistage rocket consists of a sequence of propelled and coasting
arcs, and features the separation of inert masses at each stage burnout.
To effectively tackle these specificities in the optimization process,
the corresponding OCP must be cast as a multiphase problem.
During the first few seconds after liftoff, the rocket has to retain a

vertical attitude in order to fly above the launch tower height and
safely clear the site. Then, a programmed rotationmaneuver, referred
to as pitch-over, starts steering the vehicle axis off from its vertical
attitude and eventually aligns it with the relative-to-atmosphere velo-
city. In the remainder of the atmospheric flight, the rocket is pre-
scribed to keep heading in the direction of the relative wind to
minimize the transverse aerodynamic load. This is called a zero-lift
gravity turn (ZLGT)maneuver, because it exploits gravity to steer the
vehicle while retaining a null angle of attack. Finally, once the rocket
reaches the sufficiently rarefied layers of the atmosphere, an optimal
guidance program can be followed. This usually corresponds to a
Hohmann-like maneuver, meaning that the upper stage performs two
burns separated by a long coasting arc.
The considered phase sequence for a VEGA-like launch vehicle is

illustrated schematically in Fig. 1 and represents the typical flight
strategy of a four-stage configuration. Note that the phases are
numbered progressively from 1 to 13 in chronological order, with
the relevant exception of the return phase, which, despite being the
13th arc, chronologically starts at the burnout of the third stage, i.e., at
the end of phase 8, and takes place concurrently with phases 9–12.
Hereinafter, let t�i�0 and t�i�f denote the initial and final time of the ith
phase. For the sake of simplicity, if no phase superscript is specified,

then t0 and tf denote the liftoff time t�1�0 and the fourth-stage burnout

t�12�f , respectively. Likewise, let tR denote the return time of the spent

stage t�13�f .

The first stage ascent is divided into three phases to properly account
for the different guidance programs: vertical ascent (1), pitch-over (2),
and gravity turn (3). The gravity turnmaneuver continues for the entire
second stage burn, so phase 5 lasts for its whole operation. The third
stage operates at sufficiently high altitudes and can adopt an optimal
guidance program, as aerodynamic loads do not represent a concern
anymore. Because also the thermal environment is less critical, during
the third-stage flight, the payload fairing is jettisoned. To efficiently
handle the related mass discontinuity, the third-stage operation is split
into phases 7 and 8 in correspondence of the jettisoning. VEGA’s last

stage performs aHohmann-likemaneuver and its flight is conveniently

split into two burn phases, 10 and 12, separated by a coasting one,
phase 11. Note that three other brief coasting arcs (4, 6, and 9) are

included at each stage separation. Finally, the return of the third stage is
included as phase 13 of the OCP.
For the sake of simplicity, we assume a fixed time schedule of

phases 1–9. Therefore, only the time-lengths of phases 10–13 are free

to be optimized. Indeed, we assume that the vertical ascent lasts only
the few seconds necessary to reach the given clearance altitude over

the launchpad and prescribe the pitch-over duration to a value that
guarantees that the angle of attack of the launcher is (almost) null at

the beginning of the gravity turn. Moreover, the fairing is assumed
to be released after an assigned (small) amount of time to guarantee

the vehicle attitude controllability and the stage full operative con-
ditions at the jettisoning. The duration of the coasting phases at

stage separation are prescribed, with the relevant exception of the
Hohmann-like coasting of phase 11. Finally, the time-lengths of the

other time-fixed phases are constrained by the (assigned) burn times
of each stage. It is worth mentioning that this algorithm could be
easily extended to handle coasting arcs of unknown duration, without

the need to introduce additional trust regions. However, preliminary
results reported onlyminor differences in the payloadmass; thus their

value is held fixed in this paper.

B. System Dynamics

The vehicle is modeled as a point mass subject to a 3-DoF trans-

lational motion. Under these assumptions, the state vector x is
composed of the position vector r, the velocity vector v, and the

launch vehicle mass m: x � �x; y; z; vx; vy; vz;m�. Note that the

rocket position and velocity are expressed in Cartesian Earth-

centered inertial (ECI) coordinates. In particular, the x axis is in the
Earth equatorial plane and passes through the meridian of the launch

site at the initial time, the z axis is alignedwith Earth angular velocity,
and the y axis completes the right-hand frame. This set of state

variables was preferred over the spherical coordinates used in pre-
vious works [23,40,41] because it allows for studying missions

toward high inclination orbits without suffering from the numerical
issues related to the singularities at the poles. As a downside, when

using Cartesian coordinates, the terminal conditions result in non-
linear expressions of the state variables.
The launch vehicle is supposed to be subject only to the gravity

acceleration g, the aerodynamic drag D, and the engine thrust T. A
Keplerian gravitational model is assumed and the drag force is
D � −1∕2CDSρvrelvrel, where CD is the drag coefficient, assumed

to be constant, S is the reference surface, ρ is the atmospheric density,
andvrel � v − ωE × r is the relative-to-atmosphere velocity,withωE

denoting the Earth’s angular velocity vector.
As for the propulsive system, each stage is characterized by a

vacuum thrust law Tvac�t� and an ejected mass flow rate _me�t�.
However, note that the actual thrust magnitude acting on the system

depends also on the external pressurep as T � Tvac�t� − pAe, where
Ae is the nozzle exit area.While the thrust magnitude is prescribed by

Fig. 1 Phases of the optimal control problem.
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the motor characteristics and the atmospheric conditions, the thrust

direction vector T̂must be optimized and represents the control u. Its

elements are expressed in the ECI frame and, since T̂ is a unit vector,
the following relationship must be satisfied:

T̂2
x � T̂2

y � T̂2
z � 1 (1)

The resulting equations of motion _x � f�x; u; t� are

_r � v (2)

_v � −
μ

r3
r� Ta

m
T̂� Tb −D

m
v̂rel �

Tc

m
r̂ (3)

_m � − _me (4)

where the thrustmagnitudeT is fictitiously split into three contributions
to account for the different guidance programs. Indeed, the thrust di-

rection T̂ can be optimized only in some propelled arcs. For instance,
during the gravity turnmaneuver (phases 3 and 5) the rocket axis (thus,
the thrust direction) must be aligned with the relative-to-atmosphere
velocity. Likewise, during the liftoff (phase 1) the thrustmust be aligned
with the local vertical. Thus, Ta represents the optimally controlled
thrust contribution, whereas Tb and Tc are multiplied by the relative
velocity unit vector and the radial direction vector in Eq. (3). Note that
only one of these three terms can be nonzero at a given time:

Ta �
�
Tvac − pAe in phases 2; 7; 8; 10; and 12
0 in the other phases

(5)

Tb �
�
Tvac − pAe in phases 3 and 5

0 in the other phases
(6)

Tc �
�
Tvac − pAe in phase 1

0 in the other phases
(7)

C. Optimal Control Problem

The goal of the optimization is to determine the control law and
other mission parameters, such as the duration of free-time arcs, that
maximize the payload mass injected into the target orbit. In the
present work, the propellant and inert masses of the four stages,
denoted by mp;i and mdry;i for i � 1; : : : ; 4, are assumed to be
assigned. Therefore, we can equivalently decide to maximize the
final mass, because it differs from the payload mass by a constant
value. Let the OCP be cast as a minimum problem, then the cost
function J to minimize is

J � −m�tf� (8)

Besides the payloadmaximization, the optimizationmust take into
account all mission requirements, which are transcribed as differ-
ential, boundary, and path constraints. The differential constraints are
associated with the equations of motion (2–4). The boundary con-
ditions include the initial, terminal, and linkage constraints.While the
initial launcher mass is free to be optimized, the initial position and
velocity are completely assigned. In particular, the launcher initial
position corresponds to the launch base location at liftoff rLB, and its
velocity is equal to the eastward inertial velocity due toEarth rotation:

r�t0� � rLB (9)

v�t0� � ωE × rLB (10)

The terminal conditions ensure that the payload is released in a
circular orbit of prescribed radius rdes and inclination ides at tf:

x�tf�2 � y�tf�2 � z�tf�2 � r2des (11)

vx�tf�2 � vy�tf�2 � vz�tf�2 � μ∕rdes (12)

r�tf� ⋅ v�tf� � 0 (13)

x�tf�vy�tf� − y�tf�vx�tf� � hz;des (14)

Equations (11) and (12) constrain the semimajor axis of the final orbit

to be rdes. Equation (13) guarantees that the radial velocity is zero at
payload release; thus, combined with the previous conditions on

position and velocity magnitude, it ensures that the final orbit is

circular. Finally, Eq. (14) derives from the expression of the inclina-

tion in ECI coordinates:

i � cos−1
�
xvy − yvx

h

�
(15)

Indeed, because the angular momentum h of the target orbit is known
and equal to

����������
μrdes

p
, Eq. (15) can be conveniently expressed as in

Eq. (14), with hz;des � cos ides
����������
μrdes

p
.

Terminal conditions are prescribed also for the return of the

burned-out third stage:

x�tR�2 � y�tR�2 � z�tR�2 � R2
E (16)

z�tR� � RE sinφR;des (17)

where RE denotes the Earth radius. Equation (16) constrains the final

altitude of the returned stage to be null and Eq. (17) constrains the

splash-down location to a given latitude φR;des. Note that for missions

toward polar or quasi-polar orbits (e.g., sun-synchronous orbits),

constraining the latitude is equivalent to constraining the splash-down

distance from the launch base, because the orbital plane of the trajec-

tory is selected during the pitch-over maneuver and remains (almost)

constant in the remainder of the ascent. This turns out to be a simple,

yet effective, way to impose the splash-down constraint, as it consists

in assigning just the final value of the z variable, and it well suits the

VEGA target orbits, which are typically high-inclination orbits. Exten-

sion to the case of constraining (also) the longitude is straightforward.
Because the problem consists of multiple phases, proper linkage

conditions must be enforced at each internal boundary. All state

variables are continuous at boundaries, with the relevant exception

of mass, which features a discontinuity at each stage separation:

m
�
t�4�0

�
� m

�
t�3�f

�
−mdry;1 (18)

m
�
t�6�0

�
� m

�
t�5�f

�
−mdry;2 (19)

m
�
t�9�0

�
� m

�
t�8�f

�
−mdry;3 (20)

Likewise, at the fairing jettisoning, a mass discontinuity must be

accounted for

m
�
t�8�0

�
� m

�
t�7�f

�
−mfairing (21)

Finally, the return phase initial boundary corresponds to the third-

stage burnout, so the following linkage conditions must be enforced:

r
�
t�13�0

�
� r

�
t�8�f

�
(22)

v
�
t�13�0

�
� v

�
t�8�f

�
(23)

m
�
t�13�0

�
� mdry;3 (24)
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Note that Eq. (24) is not properly a linkage condition, because the
third-stage dry mass is known a priori.
As mentioned above, the final stage burn is partitioned between

two phases (10 and 12). Because we assumed that all the propellant
must be consumed, the sum of the time-lengths of the two firings
must be equal to the overall stage burn time tb;4:

Δt�10� � Δt�12� � tb;4 (25)

where Δt�i� � t�i�f − t�i�0 .

Because of the high relative velocity during the atmospheric
flight, the rocket undergoes severe thermal conditions. So, the
payload must be protected by the fairing during the initial phases
of the ascent. Nevertheless, once the atmospheric density has
decreased enough, the fairing is jettisoned in order to reduce the
inert mass as soon as possible. As a consequence, the payload is
directly exposed to the heat flux, which must not exceed a given
value. In line with VEGA’s user manual, the heat flux is evaluated
according to a simple model involving a free molecular flow acting
on a plane surface perpendicular to the relative velocity [42]. Thus,
the following path constraint is included in the formulation for
phases 8–12:

_Q � 1

2
ρv3rel ≤ _Qmax (26)

III. Convex Transcription

In this section, the OCP is formulated as a second-order cone
programming (SOCP) problem. SOCP is a special class of convex
programming that is characterized by a linear objective, linear
equality constraints, and second-order cone constraints. SOCP
allows for representing quite complex constraints and can be solved
with a small computational effort by means of highly efficient
interior point methods [49]. Because the original problem is not
convex, it is converted into an SOCP problem via several convex-
ification methods. First, a convenient change of variables, which
produces control-affine dynamics, is proposed. Second, a control
constraint is relaxed into a second-order cone constraint. The
remaining nonconvexities are then tackled via successive lineari-
zation. Virtual controls and buffer zones are introduced to prevent
possible artificial infeasibility due to the linearization. Finally, the
continuous-time problem is discretized via a hp pseudospectral
method.

A. Change of Variables

The equations of motion (2–4) are highly nonlinear in both
state and control variables, and thus represent a source of non-
convexity. A successive linearization of these equations would
produce linear constraints, but, due to the coupling of states and
controls, high-frequency jitters would show up in the solution
process, hindering its convergence [50]. To prevent this undesired
behavior, a change of variables is exploited to obtain a control-
affine dynamic system, following the same approach originally
proposed by Acikmese and Ploen in Ref. [45]. The new control is
introduced

u � Ta

m
T̂ (27)

Note that u includes both the thrust-to-mass ratio Ta∕m and the

thrust direction T̂. Replacing the new control in Eqs. (2–4)
directly produces control-affine equations:

_r � v (28)

_v � −
μ

r3
r� u� Tb −D

m
v̂rel �

Tc

m
r̂ (29)

_m � − _me (30)

So, state and control variables are decoupled and the dynamics can be

expressed as f�x;u; t� � ~f�x; t� � ~Bu, where ~B � �03×3I3×301×3�T .
0m×n and Im×n denote the null and identity matrix of size m × n.
The new control variables must satisfy Eq. (1), which is reformu-

lated as

u2x � u2y � u2z � u2N (31)

where the additional variable uN was introduced:

uN � Ta

m
(32)

B. Constraint Relaxation

The path constraint (31) is a nonlinear equality constraint that

requires to be convexified in order to be included in the SOCP

formulation. Let us consider its relaxation attained by substituting

the equality sign with the inequality sign:

u2x � u2y � u2z ≤ u2N (33)

Equation (33) is a convex constraint, in particular a second-order

cone constraint. The inequality sign allows the control variables to be

located inside a sphere of radius uN , rather than being constrained on
its surface. Therefore, the convex relaxation defines a larger feasible
set than the original one. Nevertheless, the following proposition

ensures that, under mild assumptions, the resulting OCP shares the

same solution as the original problem. Note that the return phase can

be temporarily removed from the OCP, as, being an uncontrolled

phase, it is not affected by the control constraint relaxation.
Assumption 1: Constraint (26) is assumed to be inactive a.e.**

in �t0; tf�.
Remark 1: Assumption 1 states that the heat flux constraint is not

active over finite intervals of the solution. This assumption holds

almost always for the ascent problem, because typically the heat flux
constraint is active only at isolated points in time, e.g., at the fairing

jettisoning.
Proposition 1: Let PA be the launch vehicle ascent OCP:

PA:min
x;u;tf

�8�

s:t: �9�−�14�;�18�−�21�;�25�;�26�;�28�−�30�;�31�;�32� (34)

LetPR be the relaxed version ofPA obtained by substituting Eq. (31)

with Eq. (33), that is,

PR:min
x;u;tf

�8�

s:t: �9�−�14�;�18�−�21�;�25�;�26�;�28�−�30�;�32�;�33� (35)

The solution of the relaxed problemPR is the same as the solution of

PA. That is, if fx⋆; u⋆; t⋆f g is a solution ofPR, then it is also a solution

of PA and u⋆x �t�2 � u⋆y �t�2 � u⋆z �t�2 � u⋆N�t�2 a.e. in �t0; t⋆f �.
Proof 1: See Appendix. □

The proof of Proposition 1 is provided in theAppendix and follows

the same reasoning as in Refs. [41,51]. The intuition that motivates

the relaxation is the same as in the seminal work by Acikmese and

Ploen [45], later extended to a broader class of problems [19]. When
Eq. (33) is strictly satisfied the engine does not provide themaximum

attainable acceleration to the rocket and, because the goal of the

optimization is to maximize the mass injected into a target orbit, it is

apparent that such a behavior is suboptimal, and thus will be auto-

matically discarded by the solution procedure. Finally, note that
this relaxation improves the convergence properties of the succes-

sive convexification algorithm compared with a linearization of the

**A condition satisfied almost everywhere (a.e.) means that it can be
violated only at a finite number of points (a set of measure zero).
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constraint (31), because it introduces no approximation and fully
preserves the nonlinearity of the original problem.The benefits of this
approach have also been recently investigated and compared with
direct linearization by Yang and Liu [52].

C. Successive Linearization

Successive linearization is employed to tackle the remaining non-
convexities, which cannot be tackled via lossless convexification. In
particular, the nonconvex constraints are replaced with the first-order
Taylor series expansion around a reference solution that is recursively
updated.

1. Equations of Motion

The equations of motion (28–30) are control-affine but still non-
linear in the state variables, and thus they must be linearized. To
account for free-time phases in the optimization procedure, we
replace time t with τ, a new independent variable defined, for each
phase, over a fixed domain �0; 1�, as commonly done in traditional
directmethods [53]. Thanks to the unitary domain, the time dilation σ
between t and τ is equal to the actual arc time-length:

σ � dt

dτ
� tf − t0 (36)

σ is included as an additional optimization parameter for each phase.
The equations of motion are then expressed in terms of τ and
approximated via the first-order Taylor series expansion around a
reference solution f �x; �u; �σg:

x 0 ≔
dx

dτ
� σf�x; u; τ� ≈ Ax� Bu� Σσ � c (37)

where the following matrices were introduced:

A � �σ
∂f
∂x

� �x; �u; τ� (38)

B � �σ
∂f
∂u

� �x; �u; τ� (39)

Σ � f� �x; �u; τ� (40)

c � −�A �x� B �u� (41)

Thanks to the change of variables previously carried out, f is linear in
the control variables; thus the A and Bmatrices do not depend on the

reference solution control �u, and B � �σ ~B. This provides enhanced
robustness to the successive linearization sequence as intermediate
controls can change significantly among the first iterations [23].
However, the linearized dynamic equations are still function of the
reference controls, but note that, when σ � �σ, Eq. (37) reduces to

x 0 � Ax� Bu� ~c (42)

where

~c � �σ ~f� �x; τ� − A �x (43)

For arcs of known duration, Eq. (42) automatically replaces Eq. (37),
but the other arcs may suffer from instability issues when σ diverges
excessively from the reference value, and some expedient may be
necessary to ensure convergence. In the present application, the
return phase does not exhibit any unstable behavior related to σ,
but the other free-time phases need further safeguarding constraints
on their duration. In particular, a trust region constraint is imposed on
the duration of phases 11 and 12:††

jσ�i� − �σ�i�j ≤ δ�i� i � 11; 12 (44)

The trust radii δ�i� are additional optimization variables that are

constrained in the interval �0; δ�i�max�. In the authors’ experience, a

suitable choice of the upper bound is usually somewhere between 1

and 10% of �σ�i�. Moreover, to further incentivize σ ≈ �σ, the trust radii
are included in the cost function as (slightly) penalized terms by

introducing the penalty terms:

J�i�δ � λ�i�δ δ�i� i � 11; 12 (45)

where λδ are the penalty weights, which should be as small as

possible in order not to shadow the originally intended objective

and let the optimization autonomously determine the optimal arc

time-lengths.
Finally, because the linearization can cause artificial infeasibility

[21], a virtual control q is included in the dynamics to prevent this

undesired phenomenon:

x 0 � Ax� Bu� Σσ � c� q (46)

The virtual control vector is an unbounded variable that enables to

reach any point in the state space in finite time, thus solving the

infeasibility issue. To ensure that its use is limited to otherwise infea-

sible instances, an additional penalty term is defined:

Jq � λqP�q� (47)

where λq is the (high) penalty weight and P�q� a penalty function that
we will define upon discretization.

2. Boundary Constraints

All terminal conditions at payload release (11–14) are nonlinear in

the state variables and must be linearized as

�r�tf� ⋅ �r�tf� � 2�r�tf� ⋅ �r�tf� − �r�tf�� � r2des (48)

�v�tf� ⋅ �v�tf� � 2 �v�tf� ⋅ �v�tf� − �v�tf�� � μ∕rdes (49)

�r�tf� ⋅ �v�tf� � �v�tf� ⋅ �r�tf� − �r�tf�� � �r�tf� ⋅ �v�tf� − �v�tf�� � 0

(50)

�vy�tf��x�tf� − �x�tf�� − �vx�tf��y�tf� − �y�tf�� − �y�tf�vx�tf�
� �x�tf�vy�tf� � hz;des (51)

Likewise, also the condition on the return final radius (16) is linear-

ized as

�r�tR� ⋅ �r�tR� � 2�r�tR� ⋅ �r�tR� − �r�tR�� � R2
E (52)

Because also the linearization of the terminal constraints may

generate artificial infeasibility, virtual buffer zones are intro-

duced. In particular, Eqs. (48–51) are grouped into a constraint

vector χ � 0 and then relaxed as χ � w, where w are free va-

riables, referred to as virtual buffers. Like virtual control, the

virtual buffers should be used only when necessary, so a penalty

term is defined:

Jw � λwkwk1 (53)

where λw is the (high) penalty weight.
The augmented cost function that includes the trust radii, the

virtual control, and the virtual buffer zone penalties is

J � −m�tf� � J�11�δ � J�12�δ � Jq � Jw (54)
††Note that phase 10 does not require a trust region as its duration is

implicitly related to the one of phase 12 via Eq. (25).
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3. Path Constraints

The auxiliary control variable uN must be equal to the thrust-to-
mass ratio at every time, and thus Eq. (32) represents a nonlinear path
constraint to be linearized as

uN � Tvac − p� �r�Ae

�m

�
1 −

m − �m

�m

�
−
Ae

�m

dp� �r�
dr

⋅ �r − �r� (55)

In the same fashion, the linearized heat flux constraint (26) is

_Q��r; �v� � ∂ _Q

∂r
� �r; �v� ⋅ �r − �r� � ∂ _Q

∂v
� �r; �v� ⋅ �v − �v� ≤ _Qmax (56)

where the partial derivatives of the thermal flux with respect to
position and velocity are

∂ _Q

∂r
� 1

2

dρ

dr
v3rel �

3

2
ρvrelωE × vrel (57)

∂ _Q

∂v
� 3

2
ρvrelvrel (58)

D. Discretization

As a final step, the continuous-time problem must be transcribed
into a finite set of variables and constraints to enable the use of
numerical algorithms. In this respect, we employ ahp pseudospectral
method. The hp discretization combines the advantages of h and p
schemes, because it exploits the exponential convergence rate of
pseudospectral methods in regions where the solution is smooth
and introduces mesh nodes near potential discontinuities [44]. Fur-
thermore, compared with p methods, the hp transcription generates
sparser problem instances, i.e., with quasi-diagonal matrices,
allowing for the use of more efficient numerical routines.
The discretization splits the time domain intomultiple subintervals

and imposes the differential constraints in each segment via local
orthogonal collocation. In the present paper, we locally employ the
Radau pseudospectral method (RPM) [54] because it is one of
the most accurate and performing pseudospectral methods [43].
The RPM is also a particularly convenient scheme to embed in a
hp discretization, as it avoids redundant control variables at the
segment interfaces and provides the optimal control at each mesh
point (except for the final node of the final subinterval). Indeed, the
RPM is based on the Legendre–Gauss–Radau (LGR) abscissas,
which include the initial boundary but not the final one. Locally, this
design does not provide the terminal control in each segment, but
globally, the ambiguity drops because the final node of a segment
corresponds to the initial boundary of the next one, forwhich, instead,
the control is available.
Because details on the implementation of a hpRadau pseudospec-

tral method can be found in the literature [13–15], this paper outlines
only the major steps of the discretization scheme. First, the hp
method splits the independent variable domain τ ∈ �0; 1� of each
phase into h segments by defining a grid H of h� 1 nodes
0 � τ1 < : : : < τh�1 � 1. Then, each segment �τs; τs�1� is discre-

tized as a grid N s of ps � 1 nodes −1 � η1 < : : : < ηps�1 � 1,

where ps is the discretization order of the segment and η is a new
independent variable defined in the interval �−1; 1�, which can be
mapped to the original domain by the following transformation:

τ � τs�1 − τs
2

η� τs�1 � τs
2

(59)

Because we employ the RPM, the first ps nodes of each segment
correspond to the set of ps LGR roots and constitute the collocation

points Ks. Note that Ks is a subset of N s because it does not
incorporate the terminal boundary η � 1.
Once the grid is set up, the state and control are discretized over it,

and a finite set of variables �xsj;usj� is obtained. The superscript s

denotes the sth segment, and the subscript j refers to the jth node of
the segment. In particular, in each segment, the state is discretized
over the set N s and approximated using a basis of Lagrange poly-
nomials. Note that because the state is continuous among the seg-
ments of a phase, in the algorithm implementation the same variable

is used for both xsps�1 and x
s�1
1 . Instead, the control is discretized only

at the collocation pointsKs, so Lagrange polynomials of degreeps −
1 are used for the approximation. The final control of the final
segment is not included in the discrete problem and it is simply
extrapolated from the polynomial approximation of the control
signal.
Path constraints are converted into a finite set of algebraic con-

straints by imposing them at every node, whereas boundary condi-
tions are imposed only at the initial or final point of H. To take into
account the system dynamics (46), the time derivative of the state
interpolating polynomial is constrained to be equal to the equations of
motion at the collocation points of each segment s � 1; : : : ; h:

Xps�1

j�1

Ds
ijx

s
j �

τs�1 − τs
2

�As
ix

s
i � Bs

iu
s
i � Σs

iσ � csi � qsi �

i � 1; : : : ; ps (60)

where the same notation used for discrete-time variables was used for
the linearization matrices (38–41). In Eq. (60), Ds denotes the LGR
differentiation matrix [43], which can be efficiently computed via
barycentric Lagrange interpolation [55]. Finally, similarly to the
other continuous-time variables, also the virtual control is discretized
over the mesh as qsj. The resulting set of variables is grouped into a

vector ~q and the penalty term introduced in Eq. (47) can be tran-
scribed as

Jq � λqk ~qk1 (61)

As a final remark, in this paper, no automatic mesh refinement is
implemented. So, a sufficiently dense grid must be devised a priori
according to the desired discretization accuracy.

IV. Reference Solution

The convexification of the original problem nonlinear dynamics
and constraints exploits successive linearization, which replaces the
original expressions with a first-order Taylor series expansion around
a reference solution f �x; �u; �σg. This section focuses on the reference
solution. First, we outline a simple procedure to design a starting
trajectory that allows for convergence. Then, an improvedmethod for
updating the reference solution based on multiple previous iterations
is proposed.

A. Initialization

Sensitivity to the initialization is a major downside of traditional
optimization methods. For instance, indirect methods can achieve
convergence only if an accurate first guess is provided. This is a
cumbersome drawback as an initialization is not required only for the
trajectory but also for the costate and the structure of the constrained
arcs, which can be difficult to supply. On the other hand, direct
methods exhibit greater robustness to the initialization, but the dis-
cretization of highly sensitive nonconvex OCPs, such as the one at
hand, produces an NLP problem whose solution depends signifi-
cantly on the first guess. These limitations motivate the upstream
effort put into the careful convexification process. Indeed, a greater
robustness is observed in the devised algorithm compared with tradi-
tional direct optimization methods. Moreover, also compared with
our previous work on convex optimization of the ascent problem
[40,41], the present algorithm shows an enhanced robustness. The
reason for this improvement is the hp pseudospectral discretization,
which accurately describes the dynamics and yet retains a sparse
problem structure.
The standard way of dealing with the problem at hand is, first,

solving the ascent problem without the splash-down constraint, then
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simulate the return of the spent stages and, if necessary, constrain the
splash-down to a safe location. In fact, the concern on the splash-
down of the spent stages exists only if the simulation of the return
trajectory corresponds to an unsafe impact location. So, phase 13 and
the related constraints can be omitted at first and focus can be placed
on designing a reference solution for phases 1–12 only.
The present algorithm does not require an accurate initialization,

but, rather, in the authors’ experience, any starting trajectory with an
altitude profile always above sea level is sufficient to achieve con-
vergence. Such trajectories can be easily generated via numerical
integration of the original rocket equations of motion (2–4). To set up
the forward propagation, the unknown control history, the duration of
free-time arcs, and the initial mass must be prescribed. In general,
designing the control laws may be a complex task, but if the atmos-
phere is removed from the dynamics and by choosing a small value of
m�t0�, i.e., which corresponds to a small payload mass, even trivial
control laws can produce acceptable trajectories.
During the pitch-over, the elevation ϕ, i.e., the angle between the

thrust direction and the local horizontal, is prescribed to vary linearly
from 90° to a final value, commonly referred to as kick angle, here

denoted as ϕ�t�2�f �. Phase 2 is also assumed to take place in an fixed

inertial plane; therefore, the thrust azimuthψ , i.e., the anglemeasured
clockwise from the north direction to the thrust vector, is kept equal to

a constant value ψ �2�. While the kick angle must be guessed, a

systematic way of choosing ψ �2� is selecting the value that, under
the nonrotating Earth assumption, allows for reaching the target orbit
plane without further out-of-plane maneuvers:

ψ �2� � sin−1
�
cos�ides�
cos�φLB�

�
(62)

where φLB is the latitude of the launch base. Unfortunately, when
ides < φLB the previous formula does not hold anymore and an ad hoc

value must be provided for ψ �2�. For stages 3 and 4, even simpler
control laws can be devised. Indeed, the tentative solutions are
designed such that the orbital plane is kept constant after the second
stage burnout; so, the thrust vector is constrained in the orbital plane.
The only control to prescribe is the elevation angle ϕ, which is kept
null for the entire operation of both final stages. Finally, the sub-
division of the fourth-stage burn and the duration of the intermediate
coasting must be chosen.
To sum up, the only variables necessary for generating a tentative

solution are i) the initial mass m�t0� (or, equivalently, the payload

mass), ii) the kick angle ϕ�t�2�f �, and iii) the time-lengths of phases

10–12. These values should be set on the basis of the specific launch
vehicle and target orbit. Nevertheless, their choice does not represent
an arduous task, because a wide range of values can generate accept-
able trajectories.

B. Recursive Update

At every iteration of the successive convexification algorithm, the
reference solution must be updated. Traditional successive lineariza-
tion algorithms solve the ith SOCP problem by linearizing the con-
straints around the �i − 1�th solution. Instead, we employ an
improvedmethod, named filtering [23], which consists in computing
the reference solution for the ith SOCP problem as aweighted sum of
the K previous solutions:

�x�i� �
XK
k�1

αkx
maxf0;�i−k�g (63)

where αk are constant weights and x
�i� denotes the solution to the ith

subproblem. Note that if i < K then the initial reference solution x�0�
appears multiple times in the sum.
The proposed technique adds another layer of algorithmic robust-

ness to the successive convexification procedure. In fact, it has been
observed that sequences solved withK � 1 suffered from instability
issues, mainly related to artificial unboundedness. The common

approach to unboundedness is adding a trust region constraint that
limits the search space to the neighborhood of the reference solution
[21]. However, if the reference solution is far from the optimal one,
constraining the search space may cause convergence toward a
suboptimal solution. Instead, filtering efficiently solves the unbound-
edness issue and it does not affect the optimality of the attained
solution, as no additional constraint or penalty term is included in
the SOCP formulation.
The same parameters used in a different application [23] revealed

to be effective also for the problem at hand. Specifically, the three
last solutions are used (K � 3) and the corresponding weights are
α1 � 6∕11, α2 � 3∕11, and α3 � 2∕11. Different values ofK and of
theweights can also achieve convergence in awide range of missions
and are investigated in Sec. V.B.
It is worth noting that the filtering technique is applied to the

update of all optimizationvariables: states, controls, and time-lengths
of the free-time phases. As mentioned in Sec. III.C, some time-
lengths are also subject to a trust region constraint. In fact, filtering
does not exclude the use of a trust region, and, because the problem
under investigation is particularly sensitive to some optimization
variables, the use of a trust region on these variable was found to
improve convergence.
Eventually, the sequential algorithm terminates when all the fol-

lowing criteria are met: i) the difference between the computed
solution and the reference one converges below an assigned tolerance
kx − �xk∞ < ϵtol; ii) the computed solution adheres to the nonlinear
dynamics within a tolerance ϵf:

����
Xps�1

j�1

Ds
ijx

s
j −

ts�1 − ts
2

f�xsi ; usi ; tsi �
����
∞
< ϵf (64)

in each phase, for i � 1; : : : ; p, and s � 1; : : : ; h; and iii) the virtual
buffers of the computed solution are below the dynamics toler-
ance kwk∞ < ϵf.

V. Numerical Results

In this section, numerical results are presented to show the effec-
tiveness of the proposed approach. The described algorithm has been
implemented in C++ using Gurobi [56] as SOCP solver. The values

of the penalty weights are λ�11�δ � λ�12�δ � 10−4 and λq � λw � 104.

The convergence and dynamics tolerances were set equal to ϵtol �
104 and ϵf � 10−6. Also, because scaling is key to the effectiveness

of any numerical algorithm, we take the Earth radius, the correspond-
ing circular orbit velocity, and a reference mass of 10,000 kg as
normalization factors.
The data used to model the VEGA-like launch vehicle are sum-

marized in Table 1. The main assumption concerns the thrust and
mass flow rate history of the stages, which are approximated as linear
functions of time. Nevertheless, the total impulse is retained and the
other quantities are quite accurate, so the overall model is represen-
tative of the real system performance. Other designvalues include the
fairing massmfairing (535.3 kg), the drag coefficient CD (0.381), and

the reference surface S (9.079 m2). Although a realistic aerodynamic
model would be needed to accurately predict the splash-down loca-
tion, for this work, in a simplified manner, the same coefficients are
used also for the return phase. Notwithstanding, the algorithm can
consider more realistic aerodynamic characterizations of the launch
vehicle and stage return. Finally, the U.S. StandardAtmosphere 1976
model is used to evaluate the air density and pressure as functions of
the altitude [57].
As for the discretization, Table 2 reports h and p for every phase.

The values have been devised in a heuristic way in order to meet the
desired discretization accuracy. In particular, because phases 1–12
are relatively brief and do not feature rapidly changing dynamics, no
internal subdivision is necessary and h is simply set to 1. Instead,
because a high number of nodes are required to capture the reentry
dynamics and high-order approximating polynomials suffer from
numerical issues, the return phase is split into 10 equally spaced
segments. In each segment, the same discretization order p is used.

BENEDIKTER ETAL. 907

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
 D

I 
R

O
M

A
 A

 L
A

 S
A

PI
E

N
Z

A
 o

n 
Ju

ly
 6

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
19

4 



The considered case study is a mission toward a 700 km circular

polar Earth orbit (ides � 90°). The vehicle is assumed to take off from

the equator in correspondence of the Guiana Space Center meridian.

The time-lengths of the arcs of fixed duration are reported in Table 3.

The threshold on the bearable heat flux is set to 900 W∕m2. First,

the optimal ascent trajectory is found, neglecting the splash-down

location of the spent stages. Then, the return phase is included in the

OCP and an analysis of the sensitivity of the system performance to

different impact points is presented.

A. Unconstrained Return

To set up the optimization, a starting reference solution must be

provided. This is generated as described in the previous section and

the used parameters are reported in Table 4. Note that a very small

payload mass mpl was picked (less than 10% of the expected opti-

mum) and that the duration of phase 10 is omitted as it can be

automatically derived from Eq. (25).

The convergence behavior is illustrated in Fig. 2. Starting from the

initial guess (dashed black line), the intermediate solutions, whose

color transitions from red to green, gradually converge to the final

trajectory. Thus, despite that the initial reference solution is far from

the solution of the OCP, the termination criteria are eventually met in

22 iterations. Note that the virtual buffer zones introduced to relax the

terminal constraints are actively exploited in the first 10 iterations.

Indeed, the intermediate subproblems would otherwise be infeasible

(evenwith virtual controls); thus virtual buffers are essential to ensure

the recursive feasibility of the sequential process. Without any spe-

cific code optimization, the overall computational time is 12.8 s, so

each iteration requires 0.58 s on average.‡‡ By using a custom SOCP

solver and running on dedicated hardware, a further speed-up can be

expected, thus enabling potential suitability for real-time guidance.

Moreover, in real-time applications a much more accurate initializa-

tion is used, as a nominal trajectory is already available, so fewer

iterations are needed, greatly reducing the computational burden.

The unconstrained trajectory is illustrated in Fig. 3. The figure also

reports the simulation of the return phase, which provides the optimal

splash-down latitude (φ⋆
R � 65.79°). Figure 4 shows the optimal

control laws of every controlled phase in terms of the elevation angle

ϕ, defined as in Sec. IV.A. As for the pitch-over, one should constrain
the initial elevation to 90 deg to ensure the control continuity with the

liftoff phase. However, using Cartesian coordinates this would

require adding a nonlinear constraint to the formulation, so, for the

sake of simplicity, the initial pitch-over control direction is uncon-

strained in the present study. All the control laws are regular and very

smooth, further proving the optimality of the attained solution.

The accuracy of the converged solution is verified by forward

propagation of the original equations of motion (2–4) using the

optimal control laws. In particular, the discrepancies in the terminal

conditions are inspected. The largest inaccuracy concerns the semi-

major axis, but the error is less than 50 m, corresponding to a relative

error equal to 0.0008%, which is in agreement with the finite pre-

cision of the SOCP solver. A deeper analysis on the solution accuracy

is presented in Sec. V.C.

To validate the quality of attained results, the same problem was

solved also using EOS [58], a direct shooting algorithm based on

differential evolution that was already successfully employed to

solve a similar instance of the problem at hand [59]. The comparison

between the two solutions is reported in Table 5. The payload mass

difference is approximately 5 kg and is due to the different sets of

time-lengths found. Indeed, the problem features many local optima

with different times but similar costs, so the optimization can con-

verge unpredictably toward one of these. Nevertheless, note that the

difference in cost is minimal, so both solutions are acceptable for any

practical purpose. Compared with the convex approach, the main

drawback of EOS is the large computational effort required (approx-

imately 20 minutes on the same hardware).

Table 2 Discretization segments, order, and nodes in each phase

Grid Param.
Phase

1 2 3 4 5 6 7 8 9 10 11 12 13

h 1 1 1 1 1 1 1 1 1 1 1 1 10

p 5 5 17 5 19 14 5 19 9 19 19 19 10

Nodes 6 6 18 6 20 15 6 20 10 20 20 20 101

Table 3
Time-lengths of
time-fixed arcs

Phase Δt, s
1 4.1
2 6.6
3 91.3
4 6.6
5 75.0
6 37.3
7 5.4
8 104.6
9 15.4

Table 4 Values used for the
generation of the first guess

trajectory

Quantity Value Unit

mpl 100.0 kg

ϕk 80.0 deg

Δt�11� 2500.0 s

Δt�12� 200.0 s

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500  3000  3500

h 
(k

m
)

Time (s)

 0

 5

 10

 15

 20

Fig. 2 Iteration sequence starting from the initial reference solution
(dashed black line) and transitioning from red (iter � 1) to green
(iter � 22) until convergence.

Table 1 VEGA-like rocket data

Quantity Stage 1 Stage 2 Stage 3 Stage 4 Unit

mp 87,898 23,926 10,006 397 kg

mdry 8,417 2,563 1,326 813 kg

tb 102.0 75.0 110.0 502.1 s

Tvac�0� 2,827 1,075 299 2.45 kN

Tvac�tb� 1,885 717 222 2.45 kN

_me�0� 1,034 383 105 0.79 kg∕s
_me�tb� 689 255 77 0.79 kg∕s
Ae 3.09 1.70 1.18 0.07 m2

‡‡The algorithm was tested on a computer equipped with Intel Core i7-
7700HQ CPU @ 2.80 GHz.
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As a final remark, the assumption of fixed duration of the coasting
arcs is not required for the success of the convex optimization
method. By freeing the time-length of phases 4, 6, and 9, with the
only requirement of guaranteeing a minimum stage separation time
(6.6 s) for safety reasons, a slightly improved solution was found, as
reported in Table 6. The initial guess was designed by using the same
values as in Table 4 and the nominal coasting times fromTable 3. The
optimal coasting times are slightly different from the nominal values,
with the relevant exception of the duration of the first coasting (phase
4) that is the same as in the fixed-time case and corresponds to the
lower bound. The change in the payload mass is quite small (<1 kg).
The solution found by the convex approachwhen freeing the duration
of phases 4, 6, and 9 is in good agreement with the one found by EOS
when freeing the same variables, validating the quality of the attained
solution (see Table 6). Also, a further analysis showed that payload

variations corresponding to changes in the third coasting time Δt�9�
are almost negligible and of the same order as the accuracy of the
solver. Eventually, in what follows, all coasting times, except for
phase 11, are prescribed to the nominal values of Table 3 for the sake
of simplicity.

B. Analysis of Filtering Technique

AMonte Carlo analysis is presented to assess the effectiveness of
the filtering technique for updating the reference solution. A system-
atic analysis of the computational effort (measured in terms of the
average run time) and the robustness to a randomly sampled initial
guess trajectory is carried out considering, in addition to the custom
set of weights (α � �6∕11; 3∕11; 2∕11�) that was presented in
Sec. IV.B and devised in a heuristic way, several other distributions
of weights inspired by well-known sequences in mathematics. Also,

the effect of taking into account fewer or more terms in the weighted

sum is investigated by varyingK, i.e., the number of previously found

solutions used in the recursive update.
For each devised set ofweights, we considered 2000 random initial

trajectories generated as described in Sec. IV.A by sampling the

initialization parameters in the ranges reported in Table 7. To better

highlight the effects of the filtering method on the convergence rate,

values of the first guess payload mass larger than the one used in

Sec. V.Awere considered, as lower values (e.g., below 250 kg) were

found to significantly reduce the convergence rate, thus flattening out

the results of the analysis, regardless of the adopted set of weights.
In the present analysis, three families of sets of weights were

considered, in addition to the custom set previously introduced. The

first family is generated by using a linear sequence ofK terms taken in

reverse order and normalized by their sum (e.g.,α � �3; 2; 1�∕αN , with
αN � 6 for K � 3). The second family of weights uses a geometric

sequence of terms: the weights are the first K powers of two, taken

in reverse order and normalized by their sum (e.g., α � �4; 2; 1�∕αN ,
with αN � 7 for K � 3). The last family of weights corresponds to a

Table 5 Unconstrained solution compared
with the EOS solution

Quantity Convex EOS Unit Variation, %

mpl 1400.73 1396.74 kg 0.2855

Δt�10� 359.71 357.60 s 0.5892

Δt�11� 2583.50 2660.70 s 2.9016

Δt�12� 142.39 144.50 s 1.4581

Table 6 Unconstrained solution compared
with the EOS solution with free coasting arcs

Quantity Convex EOS Unit Variation, %

mpl 1400.84 1402.36 kg 0.1084

Δt�4� 6.6 6.6 s 0

Δt�6� 38.4 40.70 s 5.6511

Δt�9� 17.43 6.6 s 164.0909

Δt�10� 359.90 358.10 s 0.5027

Δt�11� 2582.24 2595.40 s 0.5071

Δt�12� 142.20 144.00 s 0.0125
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Fig. 3 Visualization of the unconstrained trajectory, with the third-
stage return flight colored in red.
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Fig. 4 Optimal control laws for the unconstrained scenario.
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monotonic subset of the Fibonacci sequence, starting from 1, with

terms taken in reverse order and normalized by their sum (e.g.,

α � �5; 3; 2; 1�∕αN , with αN � 11 for K � 4).
Table 8 presents the results of theMonte Carlo analysis in terms of

success rate and run time. A run is considered successful if it con-

verges to a solutionwith a payloadmass value that is greater than 95%

of the optimal one reported in Table 5. The latter is deemed very close

to the global optimum of the problem instance because, despite the

high number of runs, none provided a better performing solution.

Unsuccessful runs are those for which the algorithm either diverges

(i.e., exceeds the maximum number of iterations imax � 100) or it
converges to a suboptimal solution (i.e., a feasible solution, but

deemed unacceptable because the payload mass is lower than 95%

of the optimal value). Reported run time statistics are evaluated by

considering successful solutions only.

The results show that the effectiveness of the algorithm strongly

depends on K. Indeed, when K � 1 the method was never able to

achieve convergence, suggesting that if filtering is not employed,

then another strategy should be pursued to prevent artificial unbound-

edness, such as a trust region [41,46,60,61]. By setting K � 2, the
algorithm can successfully converge to the optimal solution, but only

in a limited number of cases. Instead, ifK ≥ 3, the algorithm appears

to be much more reliable and it finds the optimal solution in the

majority of cases. The best success rates are observed forK � 5, but
themost efficient setups are the ones that are based on three solutions.

This is because filters that use more solutions are generally more

conservative, as newer solutions are assigned smaller weights and,

despite showing increased ability to compensate for diverging sol-

utions that may appear across the successive iterations, may require

more iterations to converge, thus a longer computational time. On the

other hand, if fewer solutions are taken into account in the update, the

convergence is generally achieved in fewer iterations, as the search

space is explored more rapidly, but the algorithm is more sensitive to

artificial unboundedness and other diverging phenomena. As for the

choice of the weight distribution, the homogeneity of the results for

the each K indicates that all the considered families of sets are

valuable options. Indeed, only slight differences are observed, sug-

gesting that the geometric set is associated with the shortest mean run

times, but the most robust families are the linear one, for K < 5, and
the Fibonacci one, for K ≥ 5.

For the sake of comparison, the effectiveness of the use of a trust

region in place of the filtering technique was investigated. In this

respect, a further Monte Carlo campaign was carried out using the

same 2000 randomly generated initial reference trajectories em-

ployed for evaluating the filtering performance, but considering

alternatively (i) a dynamic hard trust region, such as the one used

in Refs. [35,41,46], or (ii) a soft quadratic trust region, such as in

Refs. [47,48]. Both trust regions were applied only on the control

variables, because this was observed to be the most effective strategy

for the problem under investigation. The initial trust radius of the

adaptive hard trust region and the penalty weight of the soft onewere

selected according to a parametric study, using the most effective

values. In particular, a starting trust radius of 10 m∕s2 was used to

initialize the hard trust region and a nondimensional penalty weight

equal to 10−3 was used for the soft trust region.

Table 9 shows that solving the multiphase ascent problem can be

quite challenging if using a trust region and starting from an initial

guess generated as described in Sec. IV.A. Indeed, the success rates

are zero or close to zero if no trust region is included or if either a soft

or a hard one are used.When relying on a trust region, the success rate

can be greatly improved if a three-step continuation strategy is

adopted [41], leading to more meaningful results. Indeed, solving

intermediate problems, which either neglect the atmosphere or fix the

time-lengths of the launch vehicle ascent phases, greatly improves

the robustness of the algorithm to the initial guess. However, even

with this improvement, both the hard and soft trust region are much

less robust than the filtering approach on this problem, featuring

success rates below 20%. This is because, in general, trust regions

work better when the initial reference trajectory is closer to the

optimal solution, while in this application an accurate guess is not

available and is quite hard to design. Even though advanced trust

region implementation demonstrated to be highly effective without

particularly good initial guesses in diverse applications, including

atmospheric entry [35,60] and rocket landing [28,48], a proper tuning

of the involved parameters (such as initial radius of the hard trust

region or penalty weights of the soft trust region) may require a

significant effort. Instead, the filtering approach is much easier to set

up, as the method sensitivity to the values of the weights is low;

indeed, high success rates are achieved by every considered family as

long asK ≥ 3. In this regard, filtering is an effective and easy-to-set-
up method to improve the convergence of successive convexification

algorithms.

Note that the circumstances under which the Monte Carlo cam-

paigns were carried out are particularly challenging. In fact, to assess

whether the proposed algorithm is able to solve the optimal ascent

trajectory problem even starting from a rough initial guess, the

starting trajectories were randomly generated by considering wide

ranges of the seeding parameters (i.e., kick angle, payload mass, and

coasting times), as reported in Table 7. Greater success rates can be

achieved if a more accurate initialization guess is used. A typical

scenario is real-time guidance, where a nominal trajectory is always

available and the vehicle path may only slightly deviate from it. In

that case, the algorithmconverges in fewer iterations andwith success

rates very close to 100% regardless of using either filtering or a trust

region [62].

Table 8 Results of the Monte Carlo analysis for several
values of K and different sets of filtering weights

K Distribution of weights Success rate, %

Run time, s

Min Mean Max

1 Lineara 0.0 — — —

2 Lineara 16.7 4.6 30.3 76.0
3 Linearb 55.9 4.4 25.8 75.2

Geometric 51.7 4.4 25.6 60.4
Custom 54.4 4.5 27.4 82.0

5 Linear 59.9 6.0 32.2 90.1
Geometric 58.0 5.2 26.9 78.5
Fibonacci 61.4 5.9 28.1 74.7

7 Linear 54.4 8.6 32.9 100.2
Geometric 58.5 5.5 25.2 74.2
Fibonacci 60.4 6.0 27.6 67.7

aFor K � 1 and 2 the linear set is identical to the geometric and Fibonacci sets.
bFor K � 3 the linear set is identical to the Fibonacci set.

Table 9 Results of the Monte Carlo analysis using
common trust region algorithms

Stepsa Trust region Success rate, %

Run time, s

Min Mean Max

1
None 0.0 — — —

Hard 0.2 28.9 61.7 131.8
Soft 0.0 — — —

3
None 0.1 13.0 13.0 13.0
Hard 4.3 11.5 67.9 309.2
Soft 19.6 7.8 21.7 56.5

aNumber of continuation steps in the solution strategy (see Ref. [41]).

Table 7 Scattering range of the seeding
parameters for the Monte Carlo analysis

Parameter Lower bound Upper bound Unit

mpl 250 500 kg

ϕk 75 80 deg

Δt11 2000 2800 s

Δt12 100 300 s
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C. Discretization Analysis

A further analysis was carried out to investigate the efficiency and
accuracy of several hp grids. In addition to the “default” mesh
introduced in Table 2, we considered other three grids and varied h
(i.e., the number of segments each phase is divided into). Table 10
reports the number of discretization nodes in each phase for each
mesh. Grid B is obtained from the default one by picking for each
phase the number of intervals equal to the closest power of 2. This
allows to set h equal to 1, 2, or 4, and still use local polynomials of the
same order p in each phase segment because the number of time
intervals is a multiple of h. Grid A is obtained by starting from grid B
and halving the number of intervals (and thus the local polynomials
order p) in each phase, but keeping the minimum number of nodes
above5.Conversely, gridC is designed by doubling the intervals (and
correspondingly the order) of each phase of grid B. When increasing
h, it is ensured that the number of segments in a phase is less than the
number of intervals in order to use local polynomials of, at least, order
p � 2. Finally, note that for the sake of simplicity we did not include
the return phase in this analysis.
Table 11 reports the results of the Monte Carlo analysis. The same

2000 initial reference trajectories as in the previous section were
considered for this campaign. Furthermore, the custom set of filtering
weights was used. Results are presented in terms of success rate, run
time, and errors on the final orbital elements (semimajor axis a,
eccentricity e, and orbit inclination i). The errors on the orbital
elements are evaluated as differences between the desired values
and the elements corresponding to the propagated final state, which
is computed by numerical integration of the original ODEs (2–4)
from liftoff to the burnout of the last stage using the optimal control
laws. The run time and orbital elements statistics are relative only
to the successful runs, defined in the same way as in the previous
section.
It is apparent that the computational time increases as the total

number of nodes increases; so, for instance, solving the problemwith
grid C is more demanding than solving it over grid A. Nevertheless,
for a given grid, the solution process can be more efficient if the
phases are split into smaller segments, i.e., increasing h. However,
increasing h on a given grid implies lower-order polynomials, which
may be less accurate. Indeed, the average errors increase as h
increases. This is particularly emphasized for grid A, the one with
fewest nodes, which leads to great inaccuracies if h > 1. Indeed, as a
limiting case, when grid A is used with h � 4, only unphysical
solutions (with a payload mass 10% greater than the attainable

one) are obtained; hence no run is deemed successful. Instead, the
success rates of all the other grids are comparable. In conclusion, the
default mesh appears as a reasonable tradeoff between accuracy and
efficiency, as the mean run time is quite small and the errors on the
final orbital elements are acceptable for any practical purpose, but
also some of the other grids can be used if greater accuracy or a faster
solution times are required.

D. Parametric Analysis of the Splash-Down Constraint

Once the optimal solution is obtained, we can investigate the effect
of the splash-down constraint. Therefore, the return phase is added to
the OCP along with the corresponding constraints and the impact
point is gradually moved from its optimal location to different
latitudes. So, a series of problems with different φR;des is solved.
Each OCP uses the converged solution of the previous one as
initialization. Because this initialization is quite accurate, on average
only eight iterations are required to meet the convergence criterion.
However, the inclusion of the return phase significantly increases the
problem dimension, so each iteration is computationally more
demanding (0.95 s on average). Nevertheless, the overall process
requires a mean computational time of 7.75 s. The “default” grid
detailed in Table 2 was used to discretize the problem. Numerical
integration forward in time of the equations ofmotion showed that the
error on the splash-down point is less than 20 km. This error may
appear large compared with the one on the semimajor axis, which is
below 100 m, but the return dynamics is much more sensitive due to
the highly nonlinear atmospheric forces that act on the spent stage
until the splash-down. Indeed, if the atmospheric drag is removed
from the equations of motion, the error on the splash-down location
drops to 500 m, which is in agreement with the errors on the payload
orbital elements.
The optimal payload mass is plotted in Fig. 5a as a function of the

splash-down latitude. While moving the spent stage return point
significantly changes the trajectory, as shown in Figs. 5b and 5c, it
does not necessarily hinder the performance. Indeed, the payload
curve is essentially flat in the interval φR ∈ �60°; 72°� and variations
only below 1 kg are observed. When the splash-down location is
moved beyond 72°, the decrease in performance is more evident, but
it still does not represent a concern as a shift of 15° causes a loss of
only 3 kg. Instead, moving the splash-down point closer than 60°
appears more critical, as a greater performance drop is observed.
Nevertheless, even constraining the third stage to fall 10° closer than
φ⋆
R results in a payload reduction by only 1% of its optimal value. It is

worth studying how the heat flux and splash-down constraints interact
with each other. Figure 5d shows the heat flux history that the payload
undergoes from the fairing jettisoning until the end of the first firing of
stage 4. Red curves correspond to splash-down locations at lower
latitudes, i.e., closer to the launch site,whereas blue ones are associated
with high-latitude returns. In all trajectories for which φR ≥ 57°, the
heat flux constraint is active only at the boundaries of phase 8, so
Assumption 1 holds in all these cases. Instead, the heat flux constraint
is active over intervals of finite duration when the splash-down is
moved closer than 57°. In particular, the heat flux peak is delayed

Table 10 Discretization grids considered in theMonteCarlo analysis

Grid

Nodes per phase Total
nodes1 2 3 4 5 6 7 8 9 10 11 12

Default 6 6 18 6 20 15 6 20 10 20 20 20 167
A 5 5 9 5 9 9 5 9 5 9 9 9 88
B 5 5 17 5 17 17 5 17 9 17 17 17 148
C 9 9 33 9 33 33 9 33 17 33 33 33 284

Table 11 Results of the Monte Carlo analysis on different grids

Grid h Success rate, %

Run time, s Average error

Min Mean Max a, km e i, deg

Default 1 55.4 3.4 16.9 71.3 6.6e–02 1.3e–05 1.5e–04

A

1 55.6 1.3 7.3 35.8 7.0e–02 8.4e–05 2.5e–04

2 56.4 1.3 6.4 40.0 6.1e�00 1.7e–03 3.3e–04

4 0.0 — — — — — —

B

1 55.1 2.9 18.3 55.5 4.1e–02 9.0e–06 5.1e–04

2 56.1 3.3 15.6 51.9 2.6e–02 2.2e–05 7.2e–04

4 54.9 2.3 15.5 47.6 1.4e–01 7.0e–05 4.8e–03

C

1 53.9 15.9 65.1 164.3 2.5e–02 4.1e–06 3.7e–04

2 54.7 5.0 29.2 95.7 2.0e–02 1.4e–05 1.3e–03

4 54.9 5.0 26.8 77.8 5.6e–02 2.5e–05 3.2e–03
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and occurs during phase 10. Note that the duration and location of the
bounded arc are very difficult to predict, but, thanks to the direct
discretizationmethod, the optimal switching structure is automatically
determined and no a priori guess is required.
Figure 6 reports the relaxation error during phase 10 of the solution

corresponding to φR � 55°. The error is always below the solver

feasibility threshold (10−6), except for the final node of the phase that,
due to the Radau discretization scheme, is not an optimization
variable and is extrapolated a posteriori from the approximating
polynomial. This solution is particularly interesting as Assumption 1
does not hold anymore in the interval �576.6; 604.2� s. Nevertheless,
even though no theoretical proof can be provided, the relaxation is
still lossless, as the resulting controls satisfy Eq. (33) with the equal-
ity sign within tolerance.

VI. Conclusions

This paper presented a convex approach to the optimization of
the ascent trajectory of a multistage launch vehicle. The intrinsic
nonconvexities of the problem have been effectively tackled via a
thoughtful convexification process. This exploits a convenient change
of variables to reduce the coupling of state and control, and it pre-
serves some of the original problem nonlinearity by relaxing, in a
lossless fashion, a control constraint. These expedients, combinedwith

successive linearization, are essential to set up a convex formulation of
the original problem that does not suffer fromnumerical issues, such as
high-frequency jitters in the control, and other undesired phenomena
linked to the linearization thatmay hinder convergence. In this respect,
virtual controls and buffer zones ensure the recursive feasibility of the
iterative process, and a simple, yet effective, method to update the
reference solution based on multiple previous iterations is imple-
mented to filter out oscillations in the search space and provide further
stability to the procedure. Moreover, it was shown that the employed
hp discretization scheme can, on the one hand, accurately capture the
complex ascent and return dynamics and, yet, produce a computation-
ally efficient and sparse discrete problem.
The present paper investigated a VEGA-like launch vehicle con-

figuration and analyzed its performance sensitivity to the splash-down
location of the third stage. Results show thatmoving the return point of
the spent stage can significantly change themission profile. As a result,
the payload undergoes different, hardly predictable, thermal condi-
tions. Nevertheless, the convex optimization approach was proved to
effectively handle both the heat flux and splash-down requirements in a
systematic way, retaining system performance to acceptable levels in
a wide range of scenarios. While the numerical results are relative to
this particular case study, the general approach can be easily extended
to different missions and vehicle configurations, possibly including
further (nonconvex) constraints that account for additional mission
requirements (e.g., visibility aspects at stage separation).
The devised algorithm exhibits great robustness to the initialization,

as it can achieve convergence even starting from a rough reference
trajectory, and high overall computational efficiency, as the sequential
process terminates successfully and quickly, after just a few iterations.
Thus, it represents a fast and reliable alternative to traditional optimi-
zation methods, which, in turn, often manifest high sensitivity to the
supplied first guess solution or require a large computational effort to
achieve convergence. These beneficial properties make the proposed
approach potentially suitable for further studies and applications to
optimization-based guidance, as speed-ups can be achieved if better
initialization is provided; custom SOCP solvers are used; and the code
is executed on dedicated hardware. Naturally, specific validation tests
are necessary to rigorously demonstrate the real-time applicability of
the algorithm, but convex optimization, combinedwith pseudospectral
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Fig. 6 Relaxation error during phase 10 of the trajectory constrained to
φR � 55°.
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Fig. 5 Performance, trajectories, and thermal conditions corresponding to different splash-down latitudes compared with the unconstrained solution
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discretization methods, holds the promise to be a disruptive tool in the
design of future computational guidance algorithms.

Appendix: Proof of Proposition 1

The proof that the optimal solution of PR is the optimal solution
also of problem PA is here provided. Proposition 1 is proved by
contradiction, using the direct adjoint approach [63]. We introduce
the Hamiltonian H:

H � λ ⋅ f�x;u; t� � λr ⋅ v� λv ⋅
�
−
μ

r3
r� u� Tb −D

m
v̂rel �

Tc

m
r̂

�

� λm�− _me� (A1)

where λ�t� � � λTr λTv λm �T is the costate vector, conveniently split
in position, velocity, and mass subvectors. To take into account the
path constraints, the Lagrangian L is defined:

L � H − μQ� _Q − _Qmax� − μu�u2x � u2y � u2z − u2N� (A2)

where μu�t� and μQ�t� are the Lagrange multipliers associated with

the constraints (33) and (26), respectively. The optimal solution must
satisfy the complementary slack conditions:

μQ ≥ 0; μQ� _Q − _Qmax� � 0 (A3)

μu ≥ 0; μu�u2x � u2y � u2z − u2N� � 0 (A4)

According to Pontryagin’s minimum principle, the optimal control
u⋆ must be such that

u⋆ � argmin
u∈U

H�x⋆; u; λ; t� (A5)

where U is the set of controls that satisfies Eq. (33):

U�x; t� � f�ux; uy; uz�:u2x � u2y � u2z ≤ ��Tvac − pAe�∕m�2g (A6)

where uN was replaced with Eq. (32). The Karush–Kuhn–Tucker
(KKT) condition for minimizing the Hamiltonian over u ∈ U is

∂L
∂u

� λv − 2μuu � 0 (A7)

The costate equations are

_λ � −
∂L
∂x

� −
	
∂f
∂x



T

λ − μQ
∂ _Q

∂x
− 2μuuN

∂uN
∂x

(A8)

The Jacobian matrix of the dynamics has the following structure:

∂f
∂x

�

2
64
03×3 I3×3 03×1

Avr Avv avm

01×3 01×3 01×1

3
75 (A9)

whereAvr andAvv are full (i.e., without any identically null elements)
3 × 3 matrices, and avm is a full 3 × 1 vector. The costate equations
expand to

_λr � −AT
vrλv − μQ

∂ _Q

∂r
− 2μuuN

∂uN
∂r

(A10)

_λv � −λr − AT
vvλv − μQ

∂ _Q

∂v
(A11)

_λm � −avm ⋅ λv − 2μuuN
∂uN
∂m

(A12)

A transversality condition useful for the present demonstration is

λm�tf� � 1 (A13)

Finally, because the terminal time tf is free, the Lagrangian is null at
the final boundary:

L�tf� � 0 (A14)

Now we show that the constraint of (33) must be active almost
everywhere. In particular, first we assume that Eq. (33) is strictly
satisfied; i.e., it is not active, and then argue that it is not possible
because it generates a contradiction. When Eq. (33) is not active, the
complementary condition (A4) requires that μu � 0. Thus, the KKT
condition (71) becomes

λv�t� � 0 (A15)

For the purpose of the demonstration, we also suppose that the heat
flux constraint is inactive a.e., as stated in Assumption 1. Thus,
according to Eq. (A3)

μQ � 0 (A16)

Replacing (A15), (A16), and μu � 0 in the costate equations (A10–
A12) leads to

λr�t� � 0 (A17)

_λm � 0 (A18)

Because of Eqs. (A15) and (A17), the Lagrangian condition (A14)
requires

λm�tf� � 0 (A19)

However, this violates Eq. (A13), thus generating a contradiction.
This contradiction proves that the optimal solution ofPR must satisfy
Eq. (33) with the equality sign. □
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