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Abstract

We propose a continuum model of fibrous materials that may undergo an internal re-
organization, which turns out in a plastic change of the orientation of the fibers, if a
threshold is achieved. We find that the remodeling may induce a rich material response.
In a traction test, when the threshold condition is reached, we show that the most gen-
eral transversely isotropic material may evolve in three different ways; in particular, the
fibers asymptotically tend (regularly or with jumps): (A) to a given angle; (B) to align
perpendicularly with respect to the load direction; (C) to align with the load direction
if their initial angle is less than a given value, or perpendicularly, otherwise. We provide
analytical solutions for the evolutive homogeneous problem and some numerical results
for a non-homogeneous condition. The theory is very general and can find applications
in several problems arising in material mechanics.
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1. Introduction

Fibrous materials have recently gained an increasing interest for their preeminent role
both in biology and in the design of engineered materials, often bio-inspired. Almost all
tissues and organs of the human body are organized in fibrous structures, as in skin,
cartilage, connective tissues, collagen, all endowed with nano-/microsized fibers. On the
other hand, a variety of applications of engineered fibrous materials is growing up, such as
textiles, nonwovens, composites. The literature in the subject is huge and spans several
different fields; see [37, 6, 48, 2, 26], to mention a few.

Often fibrous materials may undergo a plastic reorganization, which turns out in a
change of the orientation of the fibers. This is a peculiar behavior of many biological
tissues, which drive reorientation by external stimuli at chemo-mechanical levels [15, 30,
16, 31, 32, 3, 28, 45, 43, 12, 33]. Their behavior is characterized by both elastic [18, 14]
and inelastic [9, 8, 4] mechanical properties. In particular, the extracellular matrix may
undergo to a plastic remodeling, leading to irreversible deformations; such a behavior
affects cell spreading, motility, and differentiation: e.g., the fibers reorient and guide
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the migration of normal and cancer cells. Several studies report this plastic behavior in
fibrous matrices after removing external physical forces [49, 4, 7].

Reorientation may also occur in other materials such as liquid crystals, nematic or
magneto-rheological elastomers, etc. In particular, in liquid crystals the reorientation
can be controlled by magnetic or electric fields [19, 13]. The seminal paper [35] deals
with nematic liquid single crystal elastomers (LSCE), and the strain-induced director
reorientation process is reported for the case of an arbitrary angle between the original
director and the external stress axis. LSCEs show a reorientation of the director, similarly
to the well known Frederiks-transition where a director reorientation is induced by electric
or magnetic fields. In [36] it is reported that, after a threshold strain, stripe-domains are
formed parallel to the external stress with alternating sense of rotation in each domain.

Adaptive structural reorientation is preeminent in many other natural materials,
which can be studied to get valuable inspiration to design engineered materials with
peculiar properties on demand [39]. For example, although strong interfaces are usually
required in man-made composites, relatively compliant and weak interfaces are often
preferred in biological materials for easy interfacial mobility [5, 22, 47, 17]. Several
mechanisms can be detected in natural materials playing a crucial role in the deforma-
tion of the composite, such as the breakage and reformation of sacrificial bonds and the
unfolding and refolding of hidden lengths; this yields the matrix a high capability to
deform, both elastically and plastically [34, 38, 20]. These mechanisms allow the rein-
forcement to reorient within the matrix in response to external loads. For example the
microfibril angle, i.e., the tilt angle of the cellulose fibrils relative to the longitudinal axis
in the one of the major parts of the wood cell wall, the S2 layer, decreases by more than
10◦ in the Picea abies [34]; in the scales of Arapaima gigas fish the mineralized collagen
fibrils can reorient towards the tensile axis by an average of 6-8◦ upon loading [50].

The effects of reorientation, in particular those occurring during the post-yield defor-
mation, remain largely unexplored in both biological and man-made composites. Here
we focus on the mechanism of a plastic threshold. For sake of simplicity, we neglect
other possible relevant physical properties, such as viscous effects; indeed, the asymp-
totic behavior basically depends on the free energy. Moreover, we focus in particular to
2D problems, since in this context it is possible to obtain analytical solutions.

A word of caution about the title is needed. With plastic remodeling we mean a
phenomenon that refers to a reorientation of the fibers, representing the microstructure
of a continuous medium; this reorientation exhibits two basic characters: (i) a threshold
that defines the end of a reversible behavior (what is commonly referred to as “elastic”) ;
(ii) a permanent change of the microstructure, accompanied by dissipation. In our model
there is not any plastic deformation, in the usual sense. There are rather inelastic effects,
in the sense that there is something else, besides the elastic strain, that determines the
local state; the way we chose to represent these effects is through an internal variable,
that represents the fiber rotation. This is formally similar to classical plasticity, where the
internal variable is given by the plastic strain; but, at variance with classical plasticity,
in our model there is not any decomposition of the total (visible) strain. Needless to
say, the presence of this additional variable requires an additional constitutive equation,
reflecting the hypothesis that, if the local state that determines the stress and the energy
is defined by the elastic strain and the rotation, the rate of evolution of the internal
variable is also determined by the local state itself. The elastic range can be expressed
either in terms of a threshold value of the remodeling torque (power-conjugated with
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the rate of rotation) or of the elastic strain, being the set of strains for which the fiber
direction cannot evolve.

Our model is based on the formulation of continuum mechanics for materials with an
internal state variable [11, 23, 29, 24, 25], i.e., the rotation of the fiber. We find that the
remodeling may induce, in principle, different material responses. In a traction problem,
we show that the most general transversely isotropic material may evolve in three dif-
ferent ways, when the threshold is achieved; in particular, the fibers asymptotically tend
(regularly or with jumps): (A) to a given angle; (B) to align perpendicularly with re-
spect to the load direction; (C) to align with the load direction if their initial angle is less
than a given value, or perpendicularly, otherwise. Moreover, since the plastic remodeling
changes the material response, we find that, in principle, it is possible to have a transition
from auxetic to non-auxetic materials: this can happen because a virgin material with a
distribution of fibers having a given angle, if sufficiently deformed, changes permanently
the orientation, which turns out in a different global response.

The paper is organized as follows. In Sec. 2 we formulate the model of plastic
reorientation; in particular, we describe a general process, the dissipation, the yield
function. In Sec. 3 we propose a simple but general free energy and provide an analytical
characterization of the elastic range. In Sec. 4 we consider a traction problem; we first
analytically solve the homogeneous case and carefully describe the rich scenario that
reorientation may produce; we then propose numerical solutions for a non-homogeneous
problem. Conclusions and further directions of work are finally discussed in Sec. 5.

2. Plastic remodeling

We confine our analysis to a two-dimensional body B. For convenience, we introduce
a Cartesian frame {o; e1, e2}; for x a point in B, let us denote by x = x − o = xαeα
its position vector with respect to the origin o. We assume that each material point is
endowed with a fiber, whose local direction is n(ϑ) = cosϑe1 + sinϑe2.

Following [11, 23, 29, 24, 25], we consider ϑ an internal state variable, which influences
the free energy and whose rate of change is governed by an evolution law, in which the
strain appears; within this framework, the dissipation rests upon the evolution of ϑ.

A thermodynamic process for B is described by a list of functions of x and the time t,
that we fix as Λ = {E, ϑ}, where E = sym∇u is the linearized strain measure expressed
in terms of the displacement field u. We assume that there are no body forces; the
mechanical forces acting on the body B can be then resolved into a symmetric stress
tensor T. For sake of simplicity, we confine our attention to a linearized setting for
the macroscopic motion, so that there is no need to distinguish between referential and
current configurations.

A process for B is then described by the following fields: (i) the spatial position of
a material point in the motion; (ii) the symmetric Cauchy stress tensor T; (iii) the free
energy ψ; (iv) the internal variable ϑ. All these fields have to be related to the process by
extra constitutive mappings, depending on Λ. The material point is then characterized
by the response functions

T = T̂(E, ϑ), ψ = ψ̂(E, ϑ), ϑ̇ = g(E, ϑ), (1)

where g(E, ϑ) is the response function which gives ϑ̇ when E and ϑ are known at each
material point. Such a set of functions, defined for all x in B and all t is a thermodynamic
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process in B if and only if it is compatible with the balance of forces DivT = 0, and
then Div T̂(E, ϑ) = 0.

The evolution equation (1)3 for ϑ is obtained from a dissipation principle. In partic-
ular, we require that the rate of the energy dissipation — i.e., the difference between the
power expended along a process and the time derivative of the free energy — should be
non-negative for all body-parts and at all time

δ = T · Ė− ψ̇ ≥ 0. (2)

On taking into account (1), (2) implies

T = T̂(E, ϑ) = ∂Eψ̂(E, ϑ), (3)

and the residual dissipation inequality

δ = τ ϑ̇ ≥ 0, τ = τ̂(E, ϑ) = −∂ϑψ̂(E, ϑ) (4)

characterizing the energy dissipated during the remodeling; τ is the torque associated
to the fiber remodeling. We make the basic hypothesis that the remodeling flow incurs
dissipation, in the sense that

τ 6= 0 whenever ϑ̇ 6= 0. (5)

As in perfect plasticity, we let the evolution of ϑ depend on a scalar-valued yield
function f(τ, Y ), where the positive constant Y > 0 is the remodeling flow resistance:

f(τ, Y ) = |τ | − Y, (6)

so that the evolution equation (1)3 becomes the (associative) flow rule

ϑ̇ = ω ∂τf(τ,E), (7)

with ω ∈ R, subject to the Kuhn-Tucker conditions

ω ≥ 0, f(τ, Y ) ≤ 0, ωf(τ, Y ) = 0. (8)

Correspondingly,

E(Y ) = {τ | f(τ, Y ) ≤ 0)}, Y(Y ) = {τ | f(τ, Y ) = 0} (9)

respectively denote the set of torques in the elastic range for a given Y and its boundary,
namely the yield set. On choosing the yield function as in (6), (7) implies that ϑ̇ = ω sgnτ
and, as ω ≥ 0, the normality rule1

sgnϑ̇ = sgnτ. (11)

1This formulation is based on a maximum dissipation principle (see e.g. the Hill’s principle in
plasticity): the dissipation δ caused by the actual torque τ for a given ϑ̇ results in the maximum possible
value for δ over all torques τ∗ in the elastic range E(Y ), i.e.,

τϑ̇ ≥ τ∗ϑ̇, ∀τ∗ ∈ E(Y ). (10)
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Remark 1. This formulation can be easily rephrased within a variational framework. In
particular, the problem at a generic time ti can be traced back to the search of a local
minimum in a suitable space:

min
u,ϑ

∫
B

(
ψ̂(E(u), ϑ) + Y

∫ ti

0

|ϑ̇(τ)|dτ
)
, (12)

Such a formulation leads to a phase-field model, as in plasticity [42], where the role of
the plastic strain is played by the internal variable ϑ.

3. Choice of the free energy and implications on the material response

We assume the response function for the free energy as

ψ = ψ̂(E, ϑ) =
1

2
C(n(ϑ))E ·E, (13)

where C
(
n(ϑ)

)
is the elasticity tensor of a linearly elastic transversely isotropic material,

with respect to the direction n(ϑ). It is well known that the most general representation
for such an elasticity tensor leads to

ψ̂(E, ϑ) = µ|E|2 +
λ

2
(trE)2 + c1(trE)En(ϑ) · n(ϑ) + c2 (En(ϑ) · n(ϑ))2, (14)

where λ and µ are the Lamé coefficients and c1 and c2 the material constants character-
izing the transversely isotropic response. In order to ensure that the energy is a positive
definite quadratic form, the following conditions must hold true:

2µ+ λ > 0, µ > 0, 2(2µ+ λ)c2 > c21 − 4µc1 − 4µ(µ+ λ). (15)

We say that the material constants are admissible if (15) holds true. For fixed λ and µ,
the set P of constants (c1, c2) ∈ R2 such that (15)1,2 is satisfied is called the admissibility
region. This region is then bounded by a parabola and it is shown in gray Fig. 1 (left).

Remark 2. For sake of simplicity, we decided to limit our attention to a geometrically
linear setting, for what concerns the elastic strains. Customarily, soft biological tissues
exhibiting this kind of remodeling undergo finite strains. Adopting a more complex en-
ergy is of course affordable, but does not change significantly the model. In particular,
if we restrict the attention to a linear constitutive relation – such in a Saint-Venant
Kirchhoff material – interpreting E in (14) as the linearized strain tensor, or as the
Green-Lagrangian strain, is rather equivalent, in the homogeneous problem.

3.1. Elastic response at given fiber direction

Having fixed the fiber direction n(ϑ), we now study how the constants c1 and c2 affect
the anisotropic material response in terms of Young modulus and Poisson ratio. Clearly,
all this is well known, see for instance [46], but we find it useful to recall it here along
with some new definitions.

In particular, the Young modulus and the Poisson ratio are defined with reference to
a uni-axial traction test T̄ = σ t⊗ t where t = cosαe1 + sinαe2 is the testing direction.
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Figure 1: Left. The admissibility region P (in gray) in the plane (c1/E0, c2/E0) where E0 is the Young
modulus of the isotropic case. The polar plots of the Young modulus, for the two sequences of points
within P, show the material stiffening effect due to c1 and c2 parameters. Right. The region S of
stiffening fibers.

The corresponding strain is Ē = C−1(n(ϑ))T̄ with the elasticity tensor C being defined
by (14). The Young modulus and Poisson ratio are defined as

E(α, ϑ) =
T̄ t · t
Ē t · t

= Ê(α− ϑ), ν(α, ϑ) = − Ē t⊥ · t⊥

Ē t · t
= ν̂(α− ϑ), (16)

respectively. They clearly depend only on the difference (α − ϑ) between the testing
and fiber directions and reduce to the standard isotropic expressions when c1 = c2 = 0.
The explicit expressions for the functions Ê and ν̂ are given in the Appendix A. Polar
plots of these functions in terms of the angle (α−ϑ) are meaningful visualizations of the
stiffening effects of the constants c1 and c2 and are used extensively, see Fig. 1.

Denoting (Ef , νf ) and (E⊥f , ν
⊥
f ) the Young modulus and the Poisson ratio in the di-

rections parallel (α = ϑ) and orthogonal (α = ϑ−π/2) to the fiber, we have respectively2

Ef =
4µ(c2 + µ+ λ) + 4c1µ+ 2c2λ− c21

2µ+ λ
, νf =

c1 + λ

2µ+ λ
,

E⊥f =
4µ(c2 + µ+ λ) + 4c1µ+ 2c2λ− c21

2µ+ λ+ 2(c1 + c2)
, ν⊥f =

c1 + λ

2µ+ λ+ 2(c1 + c2)
.

(17)

We say that a fiber is stiffening whenever the ratio

Ef
E⊥f

= 1 +
2(c1 + c2)

2µ+ λ
(18)

is greater than 1; since (15)1 has to be satisfied, the set of all stiffening fibers S is,
therefore,

S = {(c1, c2) ∈ P, c1 + c2 > 0}, (19)

and it is shown in Fig. 1 on the right.

2From (15), we notice that the Poisson ratio νf is not bounded.
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3.2. The elastic range

In this section we characterize the elastic range in terms of the strain. Since the
remodeling torque has not reached the critical threshold, E(Y ) can be regarded as the
set of strains for which the fiber direction ϑ cannot evolve (cf. (6) and (7)), and the
material response is purely elastic.

With (14), labeling n⊥(ϑ) = ∂ϑn(ϑ) = − sinϑe1 + cosϑe2, the remodeling torque is

τ(E, ϑ) = −∂nψ̂(E,n(ϑ)) · ∂ϑn(ϑ) = −2
(
c1trE + 2 c2 En(ϑ) · n(ϑ)

)
En(ϑ) · n⊥(ϑ) =

= −
(
(c1 + c2)(E11 + E22) + c2(E11 − E22) cos 2ϑ+ 2c2E12 sin 2ϑ

)
×

×
(
2E12 cos 2ϑ+ (E22 − E11) sin 2ϑ

)
.

(20)
where Eij = E · ei ⊗ ej , (i, j = 1, 2), and the elastic range can be explicitly expressed in
terms of the strain E, the only visible state variable:

E(Y ) = {E ∈ Sym, sup
−π/2≤ϑ≤+π/2

|τ̂(E, ϑ)| ≤ Y }. (21)

Without loss of generality, we use a spectral decomposition of the deformation

E = ε1 a⊗ a + ε2 a
⊥ ⊗ a⊥,

where ε1 ≥ ε2 and a, a⊥ are two orthogonal unit vectors. Substituting in (20), the elastic
range E(Y ) simplifies into the set of deformations such that

sup
0≤ϕ≤π

|(2 (c1 + c2) εc + c2R cos 2ϕ) sin 2ϕ| ≤ Y/R, (22)

with R = ε1 − ε2 ≥ 0, εc = (ε1 + ε2)/2 the radius and the center of the Mohr’s circle
corresponding to E and cosϕ = a ·n. Assuming c2R 6= 0, the sup condition can be easily
solved in terms of tanϕ and the ratio r = 2(c1 + c2)εc/(c2R). Its solution reads

h(r) = sup
0≤ϕ≤π

|(r + cos 2ϕ) sin 2ϕ| ≤ Y

|c2|R2
, (23)

where the dimensionless function h(r) is found to be

h(r) =

√
r2 + 8 + 3|r|

16

√
2|r|

(√
r2 + 8− |r|

)
+ 8, (24)

plotted in Fig. 2 on the left. When r is small, say for instance (c1 + c2) → 0, we have
h(r → 0) = 1/2 and the elastic range (21) reduces essentially to limit the maximal
shear deformation: R2 ≤ 2Y/|c2|. Instead, for large r, say for instance c2 → 0, we have
h(r →∞) = |r| and the elastic range (21) reduces to a far less common condition, namely
R|εc| ≤ Y/(2|c1 + c2|), where the product of the radius and center of the Mohr’s circle is
bounded.
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Figure 2: Left. The function h(r) defined in (24); the gray dashed lines indicate to the plot of |r|. Right.
The elastic range E(Y ) in the plane (εc, R) for c1 = c2 = 0.1. The top left inset shows a sequence of
Mohr’s circles on the yield set.

4. The traction problem

We examine the traction problem sketched in Fig. 3. A rectangular sample, of length
L and height H, is left free on the upper and lower sides and clamped on the left side;
the horizontal displacement of the points on the right side is imposed to be u = εLe1
whilst their vertical displacement is left free. The material is homogeneous: the initial
fiber orientation3 is ϑ0 ∈ [0, π/2]. We study the solution, in terms of strain and fiber
rotation, as the imposed displacement εL monotonically increases starting from 0.

Figure 3: Left. The traction problem of a rectangular sample: ϑ0 is the initial direction for all the fibers.
Right. Local behavior of a stiffening material under traction.

In our set-up the strain field is not allowed to be homogeneous. Indeed, assuming a
non-vanishing Poisson effect, the horizontal stretch is associated to a contraction in the
vertical direction; near the left side this contraction is impeded by the clamp condition.
However, the Saint-Venant principle [21] suggests that, sufficiently far from left side, a
homogeneous strain field is possible, despite its stability outside the elastic range is not
guaranteed.

Hence, in the next section, we study and find a complete analytical characterization
of the homogeneous case, where both the strain E and the fiber rotation ϑ are uniform in
space. Its interest will be relevant beyond the particular set-up chosen for the material
and the boundary conditions.

3It suffices to consider ϑ0 ∈ [0, π/2] as ϑ0 ≡ ϑ0 +π and, for the symmetry of the problem, ϑ0 ≡ −ϑ0.
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4.1. The homogeneous solution (far from the clamped side)

All the relevant fields (strains, stresses, fiber rotations and remodeling torques) are
assumed uniform in space. Hence E11 = ε and the boundary conditions on the up
and bottom sides, namely T22 = T12 = 0, are used to determine E12 and E22, see the
expressions in Appendix B. Using the constitutive relation and (20)2, also the stress

T11 = T̃11(ε, ϑ), the elastic energy ψ = ψ̃(ε, ϑ) and the remodeling torque

τ(ε, ϑ) =
C3

(
cos 2ϑ

(
2c2(λ+ µ)− c21

)
+ 2µ(c1 + c2)

)
sin 2ϑ

(cos 4ϑ (c21 − 2c2(λ+ µ))− c21 − 8µ(c1 + c2) cos 2ϑ+ C4)
2 ε

2, (25)

are determined in terms of ε. Here C3 and C4 are combinations of the material parameters
only: the interested reader can find the explicit expressions of C3, C4, T11 in Appendix
B.

To completely solve the problem, it remains to compute ϑ = ϑ̂(ε) for ε ∈ [0,∞)
using (7). Here, the yield set Y is implicitly given by the lowest strain value ε̄ such that
|τ(ε̄, ϑ0)| = Y . For ε ≤ ε̄, i.e. in the elastic range, the fiber orientation cannot evolve:

ϑ̂(ε) = ϑ0, for 0 ≤ ε < ε̄.

For ε ≥ ε̄, the fiber orientation must evolve in order to remain at equilibrium; thus ϑ̂(ε)
is implicitly defined by:

τ(ε, ϑ̂(ε)) = ±Y, for ε ≥ ε̄,

the correct branch being determined by the normality rule (11).
To establish the stability of these equilibrium branches at each given level of strain,

it is sufficient to check whether they correspond to minima of the elastic energy, namely

∂2ϑ2 ψ̃(ε, ϑ) ≡ −∂ϑτ(ε, ϑ) > 0. (26)

Notice that ψ̃(ε, ·) can serve as a Lyapunov function for the evolution equation ϑ̇ = g(ε, ϑ)

since ∂ϑψ̃(ε, ϑ) g(ε, ϑ) ≤ 0 due to (4). Therefore any stable equilibrium point, according
to (26), is Lyapunov-stable.

Finally, the asymptotic values of the fiber orientation for ε→∞ are found as the roots
of the function γ(ϑ) = τ(ε, ϑ)/ε2 i.e. when the remodeling torque vanish disregarding of
the actual strain value. Inspecting (25) we see that γ(ϑ) can vanish for ϑ = 0, ϑ = π/2
and

ϑ∞ =
1

2
arccos

(
2µ(c1 + c2)

c21 − 2c2(µ+ λ)

)
, (27)

which is real only if the argument of the arccos function is bounded in modulus by 1. This
circumstance leads to classify the stiffening materials defined in (19), into the following
three classes:

A)− 2µ(c1 + c2) > c21 − 2c2(µ+ λ), ∃ ϑ∞ ∈ R, ϑ∞ is a minimum of ψ, (28)

B)− 2µ(c1 + c2) < c21 − 2c2(µ+ λ) < 2µ(c1 + c2), @ ϑ∞ ∈ R, (29)

C) c21 − 2c2(µ+ λ) > 2µ(c1 + c2), ∃ ϑ∞ ∈ R, ϑ∞ is a maximum of ψ. (30)
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Figure 4: Left. Three types of stiffening materials are possible. Right. The graphs of ψ (gray) and
∂ϑψ = −τ (dashed) when (c1, c2) are chosen as the points in the regions A, B, C on the left.

These regions are plotted on the left in Fig. 4. In the same figure on the right the elastic
energy ψ (gray) and the its derivative (i.e., the opposite of remodeling torque τ) (dashed)
are plotted against the fiber orientation for three materials in the regions A, B, and C.

For materials in the class A, there is one minimum 0 ≤ ϑ∞ ≤ π/2 and two maxima
ϑ = 0, π/2 of the elastic energy (Fig. 4 top right). The evolution of the homogeneous
traction problem is depicted in Fig. 5 on the left by means of sequences of gray arrows.
Starting from 0 < ϑ = ϑ0 < π/2, first the yield set is reached and then the fiber rotates;
if the yield set is reached in an unstable branch (dashed), ϑ(ε) suffers a jump to reach
the stable branch and then smoothly tends to ϑ∞ in (27). Note that for such materials,
apart from the unstable situations of perfectly horizontal and vertical fibers, any initial
fiber orientation ϑ0 will asymptotically tend to ϑ∞. If ϑ0 < ϑ∞ the rotation ϑ̇ is positive
as in Fig. 3 right; otherwise the fibers rotate clockwise.

For materials in the class B, ϑ = π/2 is the only minimum, while ϑ = 0 is a maximum
of the elastic energy (Fig. 4 center right). Again the evolution of the homogeous traction
problem is depicted in Fig. 5 center by means of sequences of gray arrows. Here, apart
when starting from horizontal fibers, the rotation can be discontinuous or continuous
but is always positive (counterclockwise): asymptotically all the fibers tend to dispose
vertically.

Finally, for materials in the class C, ϑ∞ exists but it is a maximum while ϑ = 0, π/2
are minima of the elastic energy (Fig. 4 bottom right). Hence, as shown in Fig. 5
right, any fiber which is initially lower than ϑ∞ will rotate clockwise up to ϑ = 0;
viceversa any initial orientation greater than ϑ∞ will rotate counterclockwise and tend
to dispose vertically. This case is particularly interesting and calls for the analysis of an
initial random distribution of orientations where the fibers, violating the hypothesis of
homogeneity, will possibly segregate into two phases.

Remark 3. A stiffening material can exhibit a negative Poisson ratio, for some choice of
(c1, c2, ϑ0). For instance , the material A in Fig. 4 if the initial orientation is sufficiently
low (0 < ϑ0 . 15◦) is auxetic having ν ' −0.1. However, under traction, the evolution
of ϑ follows the gray sequence of arrows on the left of Fig. 5: ϑ starts at ϑ0 ' 6◦ suffers a
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Figure 5: The yield sets |τ(ε, ϑ)| = Y in the plane (ϑ, ε2/Y ) for the three materials chosen in Fig. 4: the
unstable branches are dashed. For each case we show different evolution paths (in gray with arrows) for
different values of the initial fiber orientation ϑ0.

jump of almost +25◦ and then evolves continuously toward ϑ∞ ' 53◦. The corresponding
values of the Poisson ratio are plotted in Fig. 6, its asymptotic value being around 0.2.
Since the plastic remodeling changes the material response, this example shows that, in
principle, it is possible to achieve a permanent transition from auxetic to non-auxetic
materials (and viceversa) by simply applying mechanical loads .

Figure 6: Transition from auxetic to non-auxetic behavior, for the material A in Fig. 4 starting from
ϑ0 ' 6◦.

4.2. Numerical solution of the non-homogeneous traction problem

As already discussed, the traction problem, see Fig. 3 left, is necessarily non homo-
geneous and calls for a numerical solution. To this aim we have used an incremental
energy minimization framework [44] where the imposed displacement ε is discretized in
steps and the total energy (elastic energy and remodeling dissipation) is minimized with
respect to the displacement u and fiber orientation fields ϑ. Specifically, an alternate
minimization strategy has been adopted: at each step a sequence of minimizations with
respect to u at fixed ϑ and minimizations with respect to ϑ at a fixed u is performed until
convergence. While the former requires to solve a linear elasticity problem, the latter de-
mands the solution of a nonlinear problem (a modified Newton-Raphson scheme is used).
Nevertheless, the minimization in ϑ has the advantage to be local in space and, there-
fore, effectively parallelizable. The domain has been discretized with an unstructured
mesh. The displacement field has been taken in a piece-wise affine finite element space
CG1 (continuous Galerkin-grade 1) [10]) over the domain. Instead, the fiber rotational
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field, due to the intrinsic locality is projected onto a discontinuous finite element space
DG0 (discontinuous Galerkin-grade 0). The time has been discretized with non-uniform
steps. The code has been written in python as interface to FEniCS, a popular open-
source computing platform for solving partial differential equations [40, 1]. In particular
the package DOLFIN [41], a library aimed at automating solution of PDEs using the finite
element method, has been used extensively.

The Lamé constants are chosen λ = µ = 3/8 in order to have a unitary Young
modulus E0 = 1 and ν0 = 1/3. The anisotropic parameters c1 = 0 and c2 = 0.2 are
chosen in the region A: hence, the asymptotic value (27) exists, ϑ∞ ' 60◦, and it is a
minimum of the elastic energy in the homogeneous case. The initial fiber orientation is
uniform and equals ϑ0 = 67.5◦. Since ϑ0 > ϑ∞, at least far from the clamped side, we
expect the fibers to rotate 7.5◦ counterclockwise to reach the 60◦ orientation from above.

Figure 7: Distribution of the asymptotic fiber rotation, namely ϑ(ε → ∞) − ϑ0, on the deformed
configuration of the traction problem. The initial fibers are marked in light gray, the final in dark gray.
In the color legend positive degrees means counterclockwise rotations.

Figure 7 shows the asymptotic distribution of fiber rotations starting from ϑ0 over the
deformed configuration of the sample. Note that already at a distance ' H from the left
side the solution is almost homogeneous and coincide with the analytical predictions of
Sec. 4.1. The white dashed curve indicates the locus where ϑ has not evolved; indeed the
presence of shear near the clamp alters the fiber orientation value at which the remodeling
torque vanishes. The shear strains are also responsible for the two zones, respectively
red and blue, where the asymptotic rotation is sensibly bigger and lower than −7.5◦.

5. Conclusions and perspectives

We have presented a simple model of fibrous materials that may undergo an internal
reorganization, which turns out in a plastic change of the orientation angle of the fibers,
if a threshold is achieved. In particular, we have proposed an analytical description
of the elastic range and the yield set, we analytically determined the solution of the
evolution problem in the homogeneous case and proposed some numerical results for a
non-homogeneous condition.
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The model assumes that the material is homogeneous, so that each material point is
endowed with an additional kinematical descriptor, representing the fiber direction, to be
intended as a proper statistical mean of the fiber directions in a sufficiently small neigh-
borhood of that point. We have also considered that the fibers are sparsely dispersed,
so that there is not any direct interaction between them. Although the macroscopic
displacement is assumed small, and a linear strain measure has been adopted, there is no
limitation on the rotation of the fibers. Within these assumptions, we have considered
the most general energy accounting for the anisotropy induced by the fibers.

In our present model, we have focused on the plastic-like threshold mechanism and we
have neglected other possible sources of dissipation, such as those coming from viscous
effects. A first generalization that we will present in a forthcoming work includes rate-
dependent effects. As an outcome, it can be expected that the non-regular evolution that
our model encompasses (see the jumps in Fig. 5) becomes more realistically smooth, so
that the asymptotic behavior that we were able to analytically describe, could be reached
in a characteristic time, depending on the viscosity.

Another interesting point that we postpone to a future specific analysis concerns a
deeper investigation on type C materials (see Fig. 4): in this case the energy exhibits a
double-well landscape which may induce a phase transition phenomenon, with eventually
segregation. This circumstance is indeed detected in some experiments involving fibrous
biological materials [27]. A deeper insight for these kind of materials demands, moreover,
for the possibility that the anisotropic constants c1 and c2 be allowed to evolve, in order
to mimic the tendency to stiffen the matrix when new fibers are generated during the
remodeling process.
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Appendix A. Young modulus and Poisson ratio at given ϑ

The explicit expressions for the quantities defined in Sec. 3.1 are here reported. Specif-
ically, with ϑ the fiber direction and α the direction of the uni-axial traction test, (16)1
and (16)2 are respectively:

Ê(α− ϑ) = 8µ
(
−c21 + 4c1µ+ 4µ(c2 + λ+ µ) + 2c2λ

)
×(

cos(4(α− ϑ))
(
c21 − 2c2(λ+ µ)

)
− c21 − 8µ(c1 + c2) cos(2(α− ϑ))+

8c1µ+ 2c2(λ+ 5µ) + 8µ(λ+ 2µ)
)−1

, (A.1)

and

ν̂(α− ϑ) =
(
cos(4(α− ϑ))

(
c21 − 2c2(λ+ µ)

)
− c21 + 8c1µ+ 2c2(λ+ µ) + 8λµ

)
×(

cos(4(α− ϑ))
(
c21 − 2c2(λ+ µ)

)
− 8µ(c1 + c2) cos(2(α− ϑ))− c21 + 8c1µ+

2c2(λ+ 5µ) + 8µ(λ+ 2µ)
)−1

. (A.2)
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Appendix B. Strain and stress in the homogeneous case

The explicit expressions used in Sec.4.1 for the strains

E22 =
c21 − 8c1µ− 8λµ− 2c2(µ+ λ)− (c21 − 2c2(µ+ λ)) cos 4ϑ

8
((

2c1µ− (c21 − 2c2λ) cos2 ϑ
)
sin2 ϑ+ 2c2µ sin

4 ϑ+ µ(2µ+ λ+ c2 sin
2 2ϑ)

) ε,
E12 =

((
c21 − 2c2(µ+ λ)

)
cos 2ϑ− 2µ(c1 + c2)

)
sin 2ϑ

(2µ+ λ)
(
4µ+ c2(1− cos 4ϑ)

)
− 2c1(c1 − 4µ+ c1 cos 2ϑ) sin

2 ϑ+ 8c2µ sin
4 ϑ

ε,

(B.1)

the only non-vanishing stress component T11

T11 =
4µ

(
2c2(λ+ 2µ) + 4c1µ− c21 + 4µ(λ+ µ)

)
4c2 sin

2 ϑ cos 2ϑ(λ+ µ) + λ+ 3µ) + 8c1µ sin
2 ϑ− c21 sin

2(2ϑ) + 4µ(λ+ 2µ)
ε (B.2)

and the constants

C3 = 32µ
(
4c1µ− c21 + 4µ(c2 + λ+ µ) + 2c2λ

)
, C4 = 8c1µ+ 2c2(λ+ 5µ) + 8µ(λ+ 2µ), (B.3)

introduced in (25).
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