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A regularity result for a class of non-uniformly elliptic operators
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Abstract. We obtain an explicit Hölder regularity result for viscosity solu-
tions of a class of second order fully nonlinear equations led by operators
that are neither convex/concave nor uniformly elliptic.
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1. Introduction. This note deals with the Hölder continuity issue of solutions
of degenerate elliptic equations of the form

Ma(D2u) = f(x) in Ω, (1.1)

where Ω ⊂ R
N is a domain, f ∈ C(Ω), and Ma is the weighted partial trace

operator defined, for any symmetric matrix X, by the formula

Ma(X) =
N∑

i=1

aiλi(X). (1.2)

In (1.2), λ1(X) ≤ · · · ≤ λN (X) are the ordered eigenvalues of X ∈ S
N , where

S
N denotes the space of N ×N real symmetric matrices, and a = (a1, . . . , aN )

is such that ai ≥ 0 for any i = 1, . . . , N . It is plain that Ma reduces to
the classical Laplace operator when a = (1, . . . , 1) and that it falls out the
class of uniformly elliptic operators as soon as ai = 0 for some i = 1, . . . , N .

Fausto Ferrari was partially supported by INDAM-GNAMPA 2019 project: Proprietà di
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Such operators include, as particular cases, significant examples of degenerate
operators, for instance,

P−
k (X) =

k∑

i=1

λi(X) and P+
k (X) =

k∑

i=1

λN−k+i(X),

which arise in the study of various geometric and elliptic problems, see, e.g., [1,
2,9–11,16–18,22,23], as well as the operators λk(X), for some k ∈ {1, . . . , N},
whose interest has been developed in the framework of differential games the-
ory, see [3–6].

In [15], the authors studied qualitative properties of solutions of (1.1) under
the further assumption that a1 > 0 and aN > 0, having in mind as prototype
the Isaacs operator

λ1(X) + λN (X) = min
|ξ|=1

max
|η|=1

(〈Xξ, ξ〉 + 〈Xη, η〉) , (1.3)

which is neither uniformly elliptic nor convex/concave (in dimension N ≥ 3).
Among other results, they in particular obtained an Alexandov-Bakelman-
Pucci (ABP) type inequality following the scheme of the proof showed in [7],
starting from the fact that (see [7, Section 2.2] for the notation) if u is a
viscosity solution of (1.1), then

u ∈ S(
a∗

N − 1
, |a|∞, f) ∩ S(

a∗
N − 1

, |a|∞, f), (1.4)

where from now on we denote a∗ = min {a1, aN}, |a|1 = a1 + · · · + aN , and
|a|∞ = max {a1, . . . , aN}. As a byproduct, they obtain, in the same way as
in the uniformly elliptic case, that viscosity solutions of (1.1) are C0,α

loc (Ω),
where α ∈ (0, 1), which is not explicitly known, depends on the constant that
appears in the ABP estimate. They did not obtain any further result about a
possible lower bound on α or, possibly, a sharper result about the regularity
of solutions due to the lack of structure in the nonlinear equation.

The goal of this note is to provide an explicit lower bound for α, only
depending on a1 and aN which therefore are assumed to be both positive. Let
us point out that our result does not apply to P±

k when k < N since in these
cases a1 or aN are zero. Nevertheless, some regularity results concerning such
operators, in particular for k = 1, can be found in [19] and [2, Propositions
3.1-3.2]-[15, Theorem 1.4]. Applying the Ishii-Lions approach to the problem
(see [20]), we manage to prove that viscosity solutions of (1.1) are C0,β

loc (Ω),
where

β = 1 − a1 + aN(√
a1 +

√
aN

)2 . (1.5)

From this, we infer that α ≥ β and, concerning the main example (1.3), we in
particular obtain that α ≥ 1

2 . It is worth to point out that the fundamental
assumption in the strategy of Ishii-Lions, in order to prove the Lipschitz con-
tinuity of solutions, is the uniformly ellipticity of the equation which clearly
is outside our setting. Nevertheless, using the assumption a1 > 0 and aN > 0,
we are still able to detect some useful information encoded in the structure
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of the operator, so leading to the β-regularity of solutions, where β, defined
in (1.5), is strictly less than one. In addition, this approach can be applied to
a larger class of operators with first order terms. Thus, for stating our main
result, we introduce the class of the equations we are going to consider. Let

Ma(D2u) + H(∇u) = f(x) in Ω, (1.6)

where Ω ⊆ R
N is a domain, f is continuous in Ω, and Ma is the fully nonlinear

operator that we have introduced in (1.2).
Our assumptions are:

(H1) Ma ∈ A = {Ma(X) :=
∑N

i=1 aiλi(X) : ai ≥ 0, i = 1, . . . , N, a1 >
0, aN > 0, X ∈ S

N}.
(H2) H ∈ C(RN ) and there exists a nonnegative constant CH such that

|H(p + q) − H(p)| ≤ CH(1 + |p| + |q|)|q| (1.7)

for every p, q ∈ R
N .

A typical example of H satisfying (1.7) is H(p) = A|p|2+B|p|τ , where τ ∈ [0, 2]
and A,B ∈ R. Although we shall allow H to have a quadratic growth in the
gradient variable, the prototype equation to be kept in mind is still the one
obtained when H ≡ 0, e.g.,

a1λ1(D2u) + aNλN (D2u) = f(x) in Ω,

with a1, aN > 0.
Now, we are in position to state our main result.

Theorem 1.1. Let u ∈ C(Ω) be a viscosity solution of (1.6). If (H1)–(H2) hold,
then

u ∈ C0,β
loc (Ω), β = 1 − a1 + aN(√

a1 +
√

aN

)2 ,

and the following estimate holds: for any ω ⊂⊂ ω′ ⊂⊂ Ω, one has

‖u‖C0,β(ω) ≤ C = C
(
a1, aN , dist(ω, ω′), CH , ‖u‖L∞(ω′) , ‖f‖L∞(ω′)

)
.

The main consequence of Theorem 1.1 is a lower bound of the expected
regularity of viscosity solutions to a large class of operators that are not uni-
formly elliptic. We point out that very few results are known about the sharp
regularity of solutions to fully nonlinear equations that are not convex/concave
and that are not uniformly elliptic. In particular, we recall the fundamental
result [21]. Concerning the regularity issues of viscosity solutions of degenerate
equations closely related to ours, we refer to [8,13–15].

We conclude this introduction by pointing out that if we drop the assump-
tion (H1), in the sense that a1 = aN = 0, then there exist viscosity solutions
of

a2λ2(D2u) + · · · + aN−1λN−1(D2u) = 0 in B1,

which do not belong to any C0,α
loc (B1) for α ∈ (0, 1), even if ai > 0 for any

i = 2, . . . , N − 1. We present a simple example at the end of this note.
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2. Hölder regularity. We start with the following elementary lemma.

Lemma 2.1. Let δ > 0 and let A,B,C,D be nonnegative constants such that
A ∈ (0, 1) and C > 0. Then there exists ϕ ∈ C2((0, δ]) ∩ C ([0, δ]), depending
on A,B,C,D, δ, which is a positive solution of

ϕ′′(r) +
(

A

r
+ B

)
ϕ′(r) = −C, r ∈ (0, δ], (2.1)

and satisfies the following conditions:

ϕ′(r) > 0 and ϕ′′(r) < 0 for any r ∈ (0, δ], (2.2)

ϕ′′(r) − ϕ′(r)
r

≤ −C for any r ∈ (0, δ], (2.3)

ϕ(δ) ≥ D, (2.4)

sup
0<r≤δ

ϕ(r)
r1−A

< +∞. (2.5)

Proof. By a straightforward computation, for any K ∈ R, the function

ϕ(r) =

r∫

0

ψ(s) ds where ψ(s) =
e−Bs

sA

⎛

⎝K − C

s∫

0

tAeBt dt

⎞

⎠

is a solution of (2.1). Pick K = K(A,B,C,D, δ) such that ψ(δ) = D
δ . Hence

ϕ′(r) > 0 for r ∈ (0, δ] and, since ϕ(0) = 0, then ϕ(r) > 0 for any r ∈ (0, δ].
Moreover, just using the equation (2.1), we infer that (2.2) holds. Condition
(2.3) easily follows by (2.2) and again using (2.1). Since ψ is a decreasing
function in (0, δ], we have

ϕ(δ) =

δ∫

0

ψ(s) ds ≥ δψ(δ) = D

by the choice of K. This shows (2.4). To conclude, it is sufficient to observe
that, for any r ∈ (0, δ],

ϕ(r) ≤ K

r∫

0

1
sA

ds =
K

1 − A
r1−A.

�

Proof of Theorem 1.1. Take δ > 0 small enough such that ω2δ =
{
x ∈ R

N :
dist(x, ω) < 2δ

} ⊂ ω′. Fix z ∈ ω and let

Δz = {(x, y) ∈ Ω × Ω : |x − y| < δ, |x − z| < δ} .

Note that if (x, y) ∈ Δz, then both x and y belong in particular to ω′. For
(x, y) ∈ Δz, let

φ(x, y) = u(x) − u(y) − ϕ(|x − y|) − L|x − z|2,
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where ϕ(r) is, for r ∈ [0, δ], the function provided by Lemma 2.1 and depending
on the parameters A,B,C,D. Let A = 1 − β ∈ (0, 1). We claim that for an
appropriate choice of B,C,D and L, then

max
(x,y)∈Δz

φ(x, y) ≤ 0. (2.6)

This will imply the desired result, taking first x = z, then making z vary and
using (2.5).

Set

L =
2 ‖u‖L∞(ω′)

δ2
,

D = 2 ‖u‖L∞(ω′) ,

C =
2
(
L (|a|1 + CHδ(1 + 2Lδ)) + ‖f‖L∞(ω′) + 1

)

(√
a1 +

√
aN

)2 ,

B =
2LδCH(√

a1 +
√

aN

)2 .

(2.7)

By contradiction, we suppose that (2.6) does not hold. Let (x̂, ŷ) ∈ Δz be such
that

max
(x,y)∈Δz

φ(x, y) = φ(x̂, ŷ) > 0. (2.8)

By (2.8), it is clear that x̂ �= ŷ. Moreover, using (2.7), we exclude that |x̂−ŷ| = δ
or |x̂ − z| = δ. Hence (x̂, ŷ) ∈ Δz. By a standard result in theory of viscosity
solutions, see [12, Theorem 3.2 and Remark 3.8], for any ε > 0, there exist
matrices Xε, Yε ∈ S

N such that

(∇ϕ(|x̂ − ŷ|) + 2L(x̂ − z),Xε + 2LI) ∈ J
2,+

u(x̂), (2.9)

(∇ϕ(|x̂ − ŷ|), Yε) ∈ J
2,−

u(ŷ), (2.10)

and
(

Xε 0
0 −Yε

)
≤

(
Θε −Θε

−Θε Θε

)
, (2.11)

where I ∈ S
N is the identity matrix and Θε ∈ S

N is given by

Θε = ϕ′′(|x̂ − ŷ|) (1 + 2εϕ′′(|x̂ − ŷ|)) P

+
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
(

1 + 2ε
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)

(I − P )

where P = x̂−ŷ
|x̂−ŷ| ⊗ x̂−ŷ

|x̂−ŷ| . Note that the eigenvalues of Θε are ϕ′′(|x̂ − ŷ|)(1 +

2εϕ′′(|x̂−ŷ|)), which is simple, and ϕ′(|x̂−ŷ|)
|x̂−ŷ|

(
1 + 2εϕ′(|x̂−ŷ|)

|x̂−ŷ|
)

with multiplicity
N − 1. In view of (2.3), we can assume that, for ε sufficiently small, one has

λ1(Θε) = ϕ′′(|x̂ − ŷ|) (1 + 2εϕ′′(|x̂ − ŷ|))
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and that

λ2(Θε) = · · · = λN (Θε) =
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
(

1 + 2ε
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)

.

Using (2.9)-(2.10), and the equation (1.6), we then obtain

−2 ‖f‖L∞(ω′) ≤ a1λ1(Xε) + aNλN (Xε) − a1λ1(Yε) − aNλN (Yε)

+
N−1∑

i=2

ai (λi(Xε) − λi(Yε)) + 2L|a|1

+ H (∇ϕ(|x̂ − ŷ|) + 2L(x̂ − z)) − H (∇ϕ(|x̂ − ŷ|)) .

Since Xε ≤ Yε and ai ≥ 0, then using (1.7) and (2.2), we have

−2 ‖f‖L∞(ω′) ≤ a1λ1(Xε) + aNλN (Xε) − a1λ1(Yε) − aNλN (Yε)

+ 2L|a|1 + 2LδCH(1 + ϕ′(|x̂ − ŷ|) + 2Lδ) .
(2.12)

In order to reach a contradiction, we now estimate the right hand side of (2.12)
using the inequality

(
Xε 0
0 −Yε

)(
v
w

)
·
(

v
w

)
≤

(
Θε −Θε

−Θε Θε

)(
v
w

)
·
(

v
w

)
∀v, w ∈ R

N

(2.13)

and choosing v, w in a suitable way. With the choice

v =
√

a1
x̂ − ŷ

|x̂ − ŷ| , w = −√
aN

x̂ − ŷ

|x̂ − ŷ| ,

then (2.13) yields

a1λ1(Xε) − aNλN (Yε) ≤ a1Xε
x̂ − ŷ

|x̂ − ŷ| · x̂ − ŷ

|x̂ − ŷ| − aNYε
x̂ − ŷ

|x̂ − ŷ| · x̂ − ŷ

|x̂ − ŷ|
≤ (

√
a1 +

√
aN )2 Θε

x̂ − ŷ

|x̂ − ŷ| · x̂ − ŷ

|x̂ − ŷ|
= (

√
a1 +

√
aN )2 ϕ′′(|x̂ − ŷ|) (1 + 2εϕ′′(|x̂ − ŷ|)) .

(2.14)

On the other hand, taking

v =
√

aN ξ , w = 0,

where |ξ| = 1 and Xεξ = λN (Xε)ξ, we have

aNλN (Xε) ≤ aN Θεξ · ξ ≤ aN
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
(

1 + 2ε
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)

. (2.15)

In a similar way, we also obtain that

− a1λ1(Yε) ≤ a1Θεξ · ξ ≤ a1
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
(

1 + 2ε
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)

. (2.16)



Vol. 118 (2022) A regularity result for a class of non-uniformly elliptic operators 545

Putting together (2.12), (2.14)-(2.16), we infer that

−2 ‖f‖L∞(ω′) ≤ (
√

a1 +
√

aN )2 ϕ′′(|x̂ − ŷ|) +
(

a1 + aN

|x̂ − ŷ| + 2LδCH

)
ϕ′(|x̂ − ŷ|)

+ 2L (|a|1 + CHδ(1 + 2Lδ))

+ 2ε

[
(
√

a1 +
√

aN )2 (ϕ′′(|x̂ − ŷ|))2 + (a1 + aN )

(
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)2]

.

(2.17)

By (2.7) and Lemma 2.1, the function ϕ(r) is a solution, for r ∈ (0, δ], of the
ordinary differential equation

(
√

a1 +
√

aN )2 ϕ′′(r) +
(

a1 + aN

r
+ 2LδCH

)
ϕ′(r) =

= −2
(
L (|a|1 + CHδ(1 + 2Lδ)) + ‖f‖L∞(ω′) + 1

)
.

(2.18)

Coupling (2.17)-(2.18), then

1 ≤ ε

[
(
√

a1 +
√

aN )2 (ϕ′′(|x̂ − ŷ|))2 + (a1 + aN )
(

ϕ′(|x̂ − ŷ|)
|x̂ − ŷ|

)2
]

,

leading to a contradiction for ε small enough. �

Remark 2.2. We note that in the case H ≡ 0, the function ϕ(r) used in the
proof of Theorem 1.1 is more explicit, in fact it is given by ϕ(r) = Arβ − Br2

for a suitable choice of A,B > 0.

2.1. Lack of regularity. Let N ≥ 3 and consider the equation

a2λ2(D2u) + · · · + aN−1λN−1(D2u) = 0 in B1. (2.19)

We are going to exhibit a continuous function u which is a solution of (2.19)
for any ai ≥ 0 and i = 2, . . . , N − 1, but which does not belong to C0,α

loc (B1)
for any possible choice of α ∈ (0, 1].

Let f : (−1, 1) �→ R be the function

f(t) =
{ 1

2−log |t| if t �= 0,

0 if t = 0,

and consider it as a function of N variables just by setting u(x) = f(x1) for
x ∈ B1. It is clear that u ∈ C(B1) but u /∈ C0.α

loc (B1) for any α ∈ (0, 1]. We
claim that u is a viscosity solution of (2.19).

The function u is smooth for x ∈ B1\ {x ∈ B1 : x1 = 0} and

D2u(x) = diag(f ′′(x1), 0, . . . , 0).

Since f ′′(t) ≤ 0 for any t ∈ (−1, 1)\ {0}, we infer that u is in fact a classi-
cal solution of (2.19) in the set B1\ {x ∈ B1 : x1 = 0}. Now we prove that u
satisfies (in viscosity sense) the equation (2.19) also in {x ∈ B1 : x1 = 0}. For
x ∈ R

N such that x1 = 0, we adopt the notation x = (0, x′) with x′ ∈ R
N−1.

Let x0 = (0, x′
0) ∈ B1. Since there are no test functions φ ∈ C2(B1) touching

u from above at x0, we infer that u is a viscosity subsolution of (2.19). As
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far as the supersolution property is concerned, it is sufficient to prove that if
φ ∈ C2(B1) is such that

0 = u(0, x′
0) = φ(0, x′

0) and u(x) ≥ φ(x) ∀x ∈ B1, (2.20)

then λN−1(D2φ(0, x′
0)) ≤ 0. Set ψ(x′) = φ(0, x′) for |x′| < 1. From (2.20), we

deduce that ψ(x′) attains its maximum at x′
0. Hence

〈
D2ψ(x′

0)v, v
〉 ≤ 0 ∀v ∈ R

N−1. (2.21)

Using the Courant-Fischer formula

λN−1(D2φ(0, x′
0)) = min

dim W=N−1
max
w∈W

|w|=1

〈
D2φ(0, x′

0)w,w
〉
,

with the particular choice of W =
{
(0, v) : v ∈ R

N−1
}
, and (2.21), we then

obtain

λN−1(D2φ(0, x′
0)) ≤ max

v∈RN−1

|v|=1

〈
D2ψ(x′

0)v, v
〉 ≤ 0.

This shows that u(x) is a viscosity solution of (2.19), for any ai ≥ 0 and
i = 2, . . . , N − 1.

We end this note by pointing out that the regularity issue for solutions
of (1.1) in the case a1 = 0 and aN > 0 (or a1 > 0 and aN = 0) is an
open problem and only partial results are known: Lipschitz regularity for P±

1 ,
see [2], Hölder estimates for Ma in the case of asymmetric distributions of
weights concentrated on the smallest or on the largest eigenvalue, namely
a1 > a2 + · · ·+aN or aN > a1 + · · ·+aN−1, see [15] and the references therein.
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