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Abstract. We introduce some nonlinear extremal nonlocal operators that
approximate the, so called, truncated Laplacians. For these operators
we construct representation formulas that lead to the construction of
what, with an abuse of notation, could be called “fundamental solutions”.
This, in turn, leads to Liouville type results. The interest is double: on
one hand we wish to “understand” what is the right way to define the
nonlocal version of the truncated Laplacians, on the other, we introduce
nonlocal operators whose nonlocality is on one dimensional lines, and this
dramatically changes the prospective, as is quite clear from the results
obtained that often differ significantly with the local case or with the
case where the nonlocality is diffused. Surprisingly this is true also for
operators that approximate the Laplacian.
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1. Introduction

In the last decades there has been an increasing interest in the comprehension
of second order degenerate elliptic equations. The general idea being that new
phenomena may occur when the uniform ellipticity condition is replaced by
weaker form of ellipticity, while other fundamental properties like e.g. the
comparison principle may still hold. It would be impossible and far too long
to enumerate all the works and the “kind ”of degeneracies that have been
considered: degeneracy may depend of the point of application of the operator,
on the value of the gradient of the solution, or it may be the case that the
operator is simply “monotone ” i.e. for any couple of symmetric matrices X
and Y

X ≤ Y ⇒ F (X) ≤ F (Y ).

In the realm of nonlocal equations, these very degenerate operators have only
just begun to be considered, but they seem to open very interesting and sur-
prising results as will be evident later on, for example in the strong maximum
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principle of Proposition 2.7 or the Liouville Theorem 4.1. In order to start a
theory on nonlocal degenerate elliptic fully nonlinear operators, one needs to
define general operators that are “extremal ”among that class. So that sub or
supersolutions of these extremal operators are sub or supersolutions for any
degenerate operator. We will now define the two classes of nonlocal extremal
operators we will consider in this paper. In both cases, the fractional order of
the operator is given by s ∈ (0, 1).

We start with the first model, the description is somehow long for an
introduction, so we ask for some patience from the reader: let N ∈ N, k ∈
{1, 2, ..., N}, given ξ ∈ S

N−1, x ∈ R
N and u : R

N → R, we denote by

Iξu(x) = Cs

∫ +∞

0

[u(x + τξ) + u(x − τξ) − 2u(x)]τ−(1+2s)dτ , (1.1)

where Cs = C1,s > 0 is a normalizing constant related to the well-known
fractional Laplacian −(−Δ)s, see (1.5) below. Roughly speaking, Iξ acts as the
one dimensional fractional 2s-derivative in the direction of ξ. More precisely,
for each ξ ∈ S

N−1 and with an appropriate modification in the choice of the
normalizing constant Cs in the definition, Iξ is identified with the pseudo-
differential operator in the Schwartz space defined through the symbol

v �→ −|〈ξ, v〉|2s.

Throughout the paper, when convenient, we shall use instead the formula

Iξu(x) = CsP.V.

∫ +∞

−∞
[u(x + τξ) − u(x)]|τ |−(1+2s)dτ

where P.V. stands for the Cauchy Principal Value.
An important fact related to the choice of the normalizing constant Cs

and to the understanding of the definition of Iξu(x) is the asymptotic

Iξu(x) → 〈D2u(x)ξ, ξ〉, as s → 1−,

under suitable regularity assumptions on u. We can now define the extremal
operators

I+
k u(x) = sup

{
k∑

i=1

Iξi
u(x) : {ξi}k

i=1 ∈ Vk

}
, (1.2)

and similarly for I−
k taking instead the infimum, where Vk is the family of

k-dimensional orthonormal sets in R
N . Notice that I−

k u = −I+
k (−u). Let us

emphasize that these operators are nonlocal, but the nonlocality is in some
sense one dimensional. As far as the case k = 1 is concerned, let us mention
that I−

1 has been recently considered by Del Pezzo–Quaas–Rossi [17] in order
to introduce the notion of fractional convexity.

The second class of operators are instead k-dimensionally nonlocal. For
V ∈ Vk, we denote 〈V 〉 the k-dimensional subspace generated by V . Then, for
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x ∈ R
N and u : R

N → R and V = {ξ1, ..., ξk} ∈ Vk we denote

JV u(x) =
Ck,s

2

∫
Rk

[
u

(
x +

k∑
i=1

τiξi

)

+u

(
x −

k∑
i=1

τiξi

)
− 2u(x)

](
k∑

i=1

τ2
i

)− k+2s
2

dτ1...dτk

where Ck,s > 0 is the normalizing constant of the fractional Laplacian in the
k-Euclidean space [c.f. (6.1)]. Using the change of variables formula (see [19]),
we have the equivalent formulation

JV u(x) = Ck,s

2

∫
〈V 〉

[u(x + z) + u(x − z) − 2u(x)]|z|−(k+2s)dHk(z),

where Hk is the k-dimensional Hausdorff measure in R
N .

Then, the extremal operator we consider here is

J +
k u(x) = sup

V ∈Vk

JV u(x), (1.3)

and analogously for J −
k replacing sup by inf in the above definition. Notice

that J −
k u = −J +

k (−u). Moreover J ±
1 = I±

1 and J ±
N = −(−Δ)s. For this

reason, concerning J ±
k , we only concentrate on the cases 1 < k < N .

Clearly for both classes of operators, in a suitable functional framework,
say for bounded smooth functions u, I±

k u(x) and J ±
k u(x) converge to the so

called truncated Laplacian P±
k u(x) as s → 1, where

P+
k u(x) :=

N∑
i=N−k+1

λi(D2u(x)) = max

{
k∑

i=1

〈D2u(x)ξi, ξi〉 : {ξi}k
i=1 ∈ Vk

}
,

(1.4)

λi(D2u) ≤ λi+1(D2u) being the eigenvalues of D2u arranged in nondecreasing
order, and, mutatis mutandis, similarly for P−

k u(x) which is the sum of the
smallest k-eigenvalues, we replace max by min in the above formula. The
truncated Laplacians have received a certain interest, both in geometry and
PDE. We wish to remember the works of: Harvey–Lawson [21,22], Caffarelli–
Li–Nirenberg [11], Capuzzo Dolcetta–Leoni–Vitolo [14], Blanc–Rossi [9] and of
two of the authors of this note with Ishii and Leoni [5–7]. One of the scopes of
this paper is to shed some light on different ways of defining generalizations
of these extremal degenerate elliptic operators.

The above definitions seem to be natural extensions of the nonlinear
second-order operator to the nonlocal setting, in view of the definition of the
fractional Laplacian (−Δ)s. Evaluated on a measurable function u satisfying
regularity and growth condition at infinity, its precise definition reads as

(−Δ)su(x) = −CN,s

2

∫
RN

[u(x + z) + u(x − z) − 2u(x)]|z|−(N+2s)dz, (1.5)

where CN,s > 0 is a normalizing constant making −(−Δ)s → Δ as s → 1−.
See (6.1) in the Appendix for details on this constant.
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The classes of summable functions used in the evaluations of the integral
operators considered in this paper are L1

k,σ, which are spaces of measurable
functions whose definition is given in Sect. 2. It will be clear from the definition
that a function u ∈ L1(RN ) may not belong to L1

k,σ.
The first necessity has been to find representation formulas, at least say

for radial functions with completely monotonic profile, for example, for power
type functions. If we focus on the evaluation of I+

k at a function u(x) = |x|−γ

for γ > 0, the heuristic makes it reasonable to think that the operator prefer-
ably picks a frame {ξi}i which includes the direction x̂ = x/|x| (we assume
x 	= 0), since along this radial direction the one dimensional profile of u shows
a sharper convexity. Then, the integral associated to the component Ix̂u(x)
at (1.2) involves the singularity of u at the origin, which immediately restricts
the exponent γ < 1. The mentioned representation formulas is depicted in
Theorem 3.4 below. Concerning the maximal operator I+

k , the idea discussed
above about the preference of the radial direction is confirmed.

Concerning I−
k , the representation formula shows that in the case k < N

the operator picks a frame which is orthogonal to x̂. More intriguing is the
case of I−

N . We start noticing that it does not matches −(−Δ)s, and in fact
I−

N 	= I+
N , while the equality occurs in the limit s → 1− with the asymptotics

I±
N → Δ as s → 1−. We prove that for radial functions u with convex one

dimensional profile, the operator chooses a frame in which all its elements
form the same angle with respect to x̂, and therefore we have the beautiful
geometric symmetry result

I−
Nu(x) = NIξ∗u(x) for x 	= 0, (1.6)

where ξ∗ is a unit vector such that 〈ξ∗, x̂〉 = 1/
√

N .
We would like to mention that our representation formulas are obtained

under rather strong convexity assumptions on the one dimensional profile of
u. Such conditions allow to provide a representation formula for every x 	= 0,
and therefore we believe they can be relaxed if we look for instance, for the
evaluation on bounded domains.

The representation formulas will be used in order to prove Liouville type
results, i.e. existence or nonexistence of entire solutions (or supersolutions)
bounded from below. First we will consider “superharmonic ”functions i.e.
supersolutions of

I+
k u = 0 in R

N .

When k = 1 and s ∈ [12 , 1) there are no nonconstant supersolutions bounded
from below while, in the other cases, such supersolutions do exist. Interestingly
this result is in contrast to the local second order counter-part, and it is really
due to the fractional nature of the operator. This is explained by the existence
of a “fundamental solution” of logarithmic profile in the later case. Roughly
speaking, since s < 1, there is a “gap” between the order of the operator and
the dimensionality, and it is this gap that allows us to construct power-type
fundamental solutions. We refer to the Appendix for a discussion about the
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asymptotic behaviour of the exponent of this fundamental solution when we
approach the local regime (that is, when s → 1−), see Lemma 6.2.

We also consider semilinear Liouville theorems for the equations

I±
k u + up = 0, u ≥ 0 in R

N .

These semilinear Liouville theorems usually determine a critical value of the
exponent p above which there exists supersolutions and below which such
nontrivial supersolutions don’t exist.

In the case I+
k , as it can be seen in Theorem 4.2 , and in view of the

above discussion, the critical exponent p leading to existence/nonexistence of
nontrivial supersolutions for this equation is determined by the exponent of
the power-type fundamental solution, which, by the nonlocal nature of the
problem, is restricted to be less than 1. As a consequence, we see that the
Liouville result does not meet its local counterpart (1.9) as s → 1−, in the
sense that the critical exponent of the nonlocal equation diverges to infinity
(equivalently the exponent of the fundamental solution vanishes, see the Ap-
pendix). This is a remarkably nonlocal phenomena that is influenced by the
tails of the kernel of the operator more than by its singularity.

Concerning I−
k , the representation formula shows that in the case k < N

the operator picks a frame which is orthogonal to x̂. This allows us to conclude
the existence of nontrivial supersolutions to

I−
k u + up = 0, u ≥ 0 in R

N , (1.7)

for every p > 0, see Theorem 4.7. This phenomena is closely related with its
local counterpart presented in [7].

In the case of the equation

I−
Nu + up = 0, u ≥ 0 in R

N (1.8)

let us emphasize that the representation formula (1.6) shows that for x 	= 0 the
evaluation of the integral operator I−

N does not observe possible singularities of
u at the origin. Thus, we are able to construct adequate fundamental solutions
for I−

N (at the expense of a technical redefinition of a power-type function)
leading to a Liouville result for Eq. (1.8) which is more in the direction of
classical results, and more interesting, with a critical exponent that passes to
the limit as s → 1−.

The local counterpart of these Liouville theorems concerns the equations

P±
k u + up = 0, u ≥ 0 in R

N . (1.9)

This problem was studied by two of the authors and F. Leoni in [7]. The
construction of fundamental solutions for P+

k follows a careful analysis of the
eigenvalues of the Hessian of radial functions and the use of the formula (1.4).
Once fundamental solutions are at disposal, Liouville-type results associated
to the so-called Serrin exponent in space dimension k, i.e. k

k−2 , follow the
directions of [16]. Results concerning P−

k are also provided there.
Concerning the other possible extremal operator J ±

k , we also obtain
representation formulas for its evaluation on radial, convex functions, leading
to power-type fundamental solutions for these operators. Here we would like



26 Page 6 of 49 I. Birindelli, G. Galise, and E. Topp NoDEA

to mention that J ±
1 = I±

1 , meanwhile J ±
N = −(−Δ)s, from which we restrict

ourselves to the case in which k is neither 1 nor N .
In view of the definition (1.3), the higher dimensionality of the integrand

allows to prove, in the case of J +
k , that the fundamental solutions meet the

ones of the k-th dimensional fractional Laplacian −(−ΔRk)s. This makes the
analysis simpler and closer to the local context in the sense that the critical
exponent associated to the problem

J +
k u + up = 0, u ≥ 0 in R

N (1.10)

meets the critical exponent of (1.9) as s → 1. In particular, this shows that
operators J +

k and I+
k are not equivalent, raising an interesting question related

to which of them is more adequate for applications.
The paper is organized as follows: in Sect. 2 we introduce the notion of

viscosity solution and discuss comparison/maximum principles. In Sects. 3 and
4 we concentrate on I±

k : in Sect. 3 we provide the representation formulas for
radial, convex functions, and in Section 4 we present the Liouville-type results
for semilinear problems. In Sect. 5 we discuss the results for J ±

k . Finally, in
the Appendix we discuss the asymptotics as s → 1−.

2. Preliminaries and maximum principles

We start with the definition of viscosity solution. We require certain structural
assumptions. We will say that a function u is admissible for I±

k , resp. for J ±
k ,

if u ∈ L1
1,2s, resp. u ∈ L1

k,2s, where for k > 1 and σ ∈ (0, 2) we denote the set

L1
k,σ =

{
u
∣∣∣ u ∈ L1

loc(V ),
∫

V

|u(y)|dHk(y)
1 + |y|k+σ

< +∞

∀V affine subspace of R
N , dim(V ) = k

}

where Hk is the k-dimensional Hausdorff measure in R
N .

For viscosity evaluation, we make precise some notation. Given ξ ∈ S
N−1

we denote

Iξ,δφ(x) = Cs

∫ δ

0

[φ(x + τξ) + φ(x − τξ) − 2φ(x)]τ−(1+2s)dτ

Iδ
ξ φ(x) = Cs

∫ +∞

δ

[φ(x + τξ) + φ(x − τξ) − 2φ(x)]τ−(1+2s)dτ

and, for each k = 1, . . . , N , ξ = {ξi}k
i=1 ∈ Vk, we denote

Jξ,δφ(x) =
Ck,s

2

∫
Bδ

[
φ

(
x +

k∑
i=1

ziξi

)
+ φ

(
x −

k∑
i=1

ziξi

)
− 2φ(x)

]
|z|−(k+2s)dz

J δ
ξ φ(x) =

Ck,s

2

∫
Bc

δ

[
φ

(
x +

k∑
i=1

ziξi

)
+ φ

(
x −

k∑
i=1

ziξi

)
− 2φ(x)

]
|z|−(k+2s)dz,

where z = (z1, . . . , zk) ∈ R
k.
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Notice that in the case k = 1 then Iξ,δ = Jξ,δ and Iδ
ξ = J δ

ξ for each
ξ ∈ S

N−1.

Definition 2.1. Let f ∈ C(RN ). An upper (lower) semicontinuous function
u : R

N → R (u ∈ USC(RN ) (u ∈ LSC(RN )) for short), admissible with
respect to I+

k , is a viscosity subsolution (supersolution) to

I+
k u = f(x) (2.1)

at a point x0 ∈ R
N if for every function ϕ ∈ C2(Bδ(x0)), δ > 0, such that x0 is

a global maximum (minimum) point of u−ϕ, then there exists ξ = {ξi}k
i=1 ∈ Vk

such that (for any ξ = {ξi}k
i=1 ∈ Vk)

k∑
i=1

(Iξi,εϕ(x0) + Iε
ξi

u(x0)
) ≥ f(x0) ∀ε ∈ (0, δ)

(
k∑

i=1

(Iξi,εϕ(x0) + Iε
ξi

u(x0)
) ≤ f(x0) ∀ε ∈ (0, δ)

)
.

(2.2)

Similarly, u ∈ USC(RN ) (u ∈ LSC(RN )), admissible with respect to J +
k , is a

viscosity subsolution (supersolution) to

J +
k u = f(x) (2.3)

at a point x0 ∈ R
N if for every function ϕ ∈ C2(Bδ(x0)), δ > 0, such that x0 is

a global maximum (minimum) point of u−ϕ, then there exists ξ = {ξi}i=1k ∈
Vk such that (for any ξ = {ξi}k

i=1 ∈ Vk)

Jξ,εϕ(x0) + J ε
ξ u(x0) ≥ f(x0) ∀ε ∈ (0, δ)(Jξ,εϕ(x0) + J ε

ξ u(x0) ≤ f(x0) ∀ε ∈ (0, δ)
)
.

A continuous function is a viscosity solutions of (2.1), or of (2.3), if it is both
sub and supersolution.

Lastly we define viscosity sub/supersolutions for I−
k and J −

k in the same
fashion.

The Definition 2.1 admits unbounded or singular sub and/or supersolu-
tions as soon the nonlocal operator is well-defined.

Some comments about the consistence of the above definition with the
notion of classical sub and supersolutions are in order. In the following we shall
focus on the operator I+

k . Similar comments can be easily adapted for I−
k and

J ±
k .

The first remark we want to make is the following: whenever a viscosity
subsolution u of (2.1) can be touched from above at x0 by a test function
ϕ ∈ C2(Bδ(x0)), then there exists ξ = {ξi}k

i=1 ∈ Vk such that

k∑
i=1

Cs

∫ +∞

0

[u(x0 + τξi) + u(x0 − τξi) − 2u(x0)]τ−(1+2s) dτ ≥ f(x0). (2.4)
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That is the operator
k∑

i=1

Iξi
u(x) can be evaluated classically at x = x0 and

then

I+
k u(x0) = sup

ξ∈Vk

k∑
i=1

Cs

∫ +∞

0

u(x0 + τξi) + u(x0 − τξi) − 2u(x0)
τ1+2s

dτ ≥ f(x0). (2.5)

Indeed the very definition of viscosity subsolution implies that there exists
ξ = {ξi}k

i=1 ∈ Vk such that (2.2) holds. On the other hand,

u(x0 + τξi) + u(x0 − τξi) − 2u(x0) ≤ ϕ(x0 + τξi) + ϕ(x0 − τξi) − 2ϕ(x0)

≤ Cτ2 for all τ ∈
(

−δ

2
,
δ

2

)
,

(2.6)

where C = max
x∈B δ

2
(x0)

∥∥D2ϕ(x)
∥∥. Then the integrals

∫ δ
2

0

[u(x0 + τξi) + u(x0 − τξi) − 2u(x0)]τ−(1+2s) dτ

are bounded from above for any i = 1, . . . , k. Similarly, we have

lim
ε→0

Iξi,εϕ(x0) = 0. (2.7)

Denoting by χE is the characteristic function of the set E and using (2.6), it
also holds that for any τ > 0 and ε < δ

2

[u(x0 + τξi) + u(x0 − τξi) − 2u(x0)]τ−(1+2s)χ[ε,+∞) ≤ Cτ1−2sχ(0, δ
2 )

+[u(x0 + τξi) + u(x0 − τξi) − 2u(x0)]τ−(1+2s)χ[ δ
2 ,+∞) .

Since the right hand side of the above inequality is an integrable function in
(0,∞), for any i = 1, . . . , k, by the assumption u ∈ L1

1,2s, we are in position
to use Fatou’s lemma in (2.2) to infer that (2.4) holds.

From the above, we immediately obtain the following proposition.

Proposition 2.2. If u ∈ C2(Bρ(x0)) ∩ USC(RN ) ∩ L1
1,2s, ρ > 0, is viscosity

subsolutions of (2.1) at x0, then u is a subsolutions in the classical sense at
x0.

On the other hand, under the assumption (2.4), classical subsolutions are
in turn viscosity subsolutions as showed in the next proposition.

Proposition 2.3. Suppose that u ∈ C2(Bρ(x0)) ∩ USC(RN ) ∩ L1
1,2s, ρ > 0,

satisfies pointwise the inequality

I+
k u(x0) ≥ f(x0)

and suppose that there exists an orthonormal frame ξ ∈ Vk such that (2.4)
holds. Then u is a viscosity subsolution of (2.1) at x0.
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Proof. Let ϕ ∈ C2(Bδ(x0)), δ < ρ, be such that

u(x) − u(x0) ≤ ϕ(x) − ϕ(x0) for all x ∈ Bδ(x0).

Then for any ε ∈ (0, δ) we have

k∑
i=1

Cs

∫ ε

0

[u(x0 + τξi) + u(x0 − τξi) − 2u(x0)]τ−(1+2s) dτ

≤
k∑

i=1

Cs

∫ ε

0

[ϕ(x0 + τξi) + ϕ(x0 − τξi) − 2ϕ(x0)]τ−(1+2s) dτ

(2.8)

and so
k∑

i=1

(Iξi,εϕ(x0) + Iε
ξi

u(x0)
) ≥ f(x0) ∀ε ∈ (0, δ).

�

Remark 2.4. A sufficient condition to guarantee the validity of (2.4) from (2.5)
is the following: u ∈ C2(Bρ(x0)) ∩ USC(RN ) ∩ L1

1,2s and there exist C > 0
and 0 < α < 2s such that

u(x) ≤ C(1 + |x|α) ∀x ∈ R
N .

Indeed, in this case, and for any unit vector ξi

[u(x0 + τξi) + u(x0 − τξi) − 2u(x0)]τ−(1+2s)

≤ max
x∈B ρ

2
(x0)

∥∥D2u(x)
∥∥ τ1−2sχ(0, ρ

2 )

+ (2|u(x0)| + 2C (1 + (|x0| + τ)α)) τ−(1+2s)χ[ ρ
2 ,+∞) ∈ L1(0,+∞) .

Since the above estimate is independent of ξi, by Fatou’s lemma we infer that
the maps ξi �→ Iξi

u(x0) are upper semicontinuous and the supremum in (2.5)
is in fact a maximum.

For supersolutions the situation is similar but easier. If u is a viscosity
supersolution of (2.1) which can be touched from below at x0 ∈ R

N by ϕ ∈
C2(Bδ(x0)), then one can prove, as above, that for any choice of ξ = {ξi}k

i=1 ∈

Vk the operators
k∑

i=1

Iξi
u(x0) are defined in classical sense and that

I+
k u(x0) = sup

ξ∈Vk

k∑
i=1

Cs

∫ +∞

0

[u(x0 + τξi) + u(x0 − τξi)

− 2u(x0)]τ−(1+2s) dτ ≤ f(x0). (2.9)

In particular every viscosity supersolution u ∈ C2(Bρ(x0))∩LSC(RN )∩
L1

1,2s, ρ > 0, of (2.1) at a point x0 is also a classical supersolution at x0.
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Conversely if u ∈ C2(Bρ(x0)) ∩ LSC(RN ) ∩ L1
1,2s, ρ > 0, satisfies (2.9), then

for any ξ = {ξi}k
i=1 ∈ Vk it turns out that

k∑
i=1

Cs

∫ +∞

0

[u(x0 + τξi) + u(x0 − τξi) − 2u(x0)]τ−(1+2s) dτ ≤ f(x0). (2.10)

Arguing as in (2.8), but with reversed inequalities, we also infer that (2.9) is
fulfilled in viscosity sense.

It is worth to point out that the situation here is a little bit different
from the subsolution case, where we had to assume (2.4) in order to prove the
equivalence between classical and viscosity subsolutions. For supersolutions,
instead, the validity of (2.10) is just a consequence of the definition of I+

k

which is a sup-type operator.
The inequalities (2.4) and (2.10) are convenient to prove comparison the-

orems.

Theorem 2.5. (Comparison principle) Let Ω ⊂ R
N be a bounded open subset of

R
N and let f ∈ C(Ω). If u ∈ C2(Ω)∩USC(Ω)∩L1

1,2s and v ∈ LSC(Ω)∩L1
1,2s

are respectively classical subsolution and viscosity supersolution of

I+
k u = f(x) in Ω

such that u ≤ v in R
N\Ω, then u ≤ v in Ω.

Remark 2.6. The above result is still true if I+
k is replaced by the operators

I−
k , for k = 1, . . . , N . Moreover the hypothesis u ∈ C2(Ω) ∩ USC(Ω) ∩ L1

1,2s

and v ∈ LSC(Ω) ∩ L1
1,2s can be replaced by u ∈ USC(Ω) ∩ L1

1,2s and v ∈
C2(Ω) ∩ LSC(Ω) ∩ L1

1,2s.
We emphasize that the Theorem 2.5 continues to hold if u and v are

merely semicontinuous and bounded functions (see [8]). The boundedness as-
sumption of the solutions seems to be quite natural in the nonlocal viscosity
framework, e.g. [4, Theorem 3]–[13, Theorem 5.2], see also [1, 3, 23]. On the
other hand in this paper we are interested in fundamental solutions which in
fact play a key role for Liouville theorems. Hence we allow sub/supersolutions
to be unbounded. Nevertheless the validity of the comparison principle between
classical subsolutions and lower semicontinuous supersolutions is sufficent for
our purposes. For this reason we require u ∈ C2(Ω) ∩ USC(Ω) ∩ L1

1,2s in
Theorem 2.5.

We end this remark by stating that Theorem 2.5 and the above comments
also apply for J ±

k provided u, v are admissible for these operators, namely
u, v ∈ L1

k,2s.

Proof of Theorem 2.5. We suppose by contradiction that sup
Ω

(u−v) > 0. Hence

by semicontinuity there exists x0 ∈ Ω such that

u(x0) − v(x0) = max
x∈RN

u(x) − v(x) > 0. (2.11)
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Since u is a test function for v, then the operator I+
k v(x0) can be evaluated

in classical sense and for any ξ = {ξi}k
i=1 ∈ Vk we have

k∑
i=1

Cs

∫ +∞

0

[v(x0 + τξi) + v(x0 − τξi) − 2v(x0)]τ−(1+2s) dτ ≤ f(x0). (2.12)

Moreover for any ε > 0 there exists ξ(ε) ∈ Vk such that
k∑

i=1

Cs

∫ +∞

0

[u(x0 + τξi(ε)) + v(x0 − τξi(ε)) − 2v(x0)]τ
−(1+2s) dτ ≥ f(x0) − ε.

(2.13)

Using (2.11) and (2.12)–(2.13) we have

−ε ≤
k∑

i=1

Cs

∫ +∞

0

(u − v)(x0 + τξi(ε)) + (u − v)(x0 − τξi(ε)) − 2(u − v)(x0)

τ1+2s
dτ

≤
k∑

i=1

Cs

∫ +∞

diam(Ω)

(u − v)(x0 + τξi(ε)) + (u − v)(x0 − τξi(ε)) − 2(u − v)(x0)

τ1+2s
dτ

≤
k∑

i=1

Cs

∫ +∞

diam(Ω)

−2(u − v)(x0)

τ1+2s
dτ = −(u − v)(x0)k

Cs

s
(diam(Ω))−2s .

(2.14)

In the last inequality we used that Ω ⊆ Bdiam(Ω)(x0) and that x0 ± τξ(ε) /∈
Bdiam(Ω)(x0) for any τ ≥ diam(Ω), which yields (u−v)(x0 ± τξi(ε)) ≤ 0. From
(2.14) we obtain a contradiction for ε small enough. �

We now state the basic statement regarding the failure and the validity
of the strong maximum/minimum principles for the operators I±

k .

Proposition 2.7. For any 1 ≤ k < N there exist nonconstant smooth solutions
of

I−
k u ≤ 0 in R

N (2.15)

which attain their minimum at some point in R
N .

If u satisfies

I−
Nu ≤ 0 in R

N , (2.16)

in the viscosity sense, and it attains its minimum at some x0 ∈ R
N , then u is

constant.

Remark 2.8. In a dual fashion, for any 1 ≤ k < N there exist nonconstant
smooth solutions of

I+
k u ≥ 0 in R

N (2.17)

which attain their maximum at some point in R
N .

If u satisfies

I+
Nu ≥ 0 in R

N , (2.18)

in the viscosity sense, and it attains its maximum at some x0 ∈ R
N , then u is

constant.
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Remark 2.9. By the general fact

I+
k u ≤ 0 ⇒ I−

Nu ≤ 0 , (2.19)

we immediately obtain, via Proposition 2.7, the validity of the strong minimum
principle for supersolutions of I+

k u = 0.
To see (2.19), let x0 ∈ R

N and let ϕ ∈ C2(Bδ(x0)) be a test function
touching u from below at x0 (if there are no such ϕ then there is nothing to
check). Then, from the viscosity inequality I+

k u(x0) ≤ 0, we infer that for every
ξ = {ξi}k

i=1 ∈ Vk the operators Iξi
u(x0) are well defined for any i = 1, . . . , k

and
k∑

i=1

Iξi
u(x0) ≤ 0. (2.20)

Let
{
ξ̄1, . . . , ξ̄N

}
be an orthonormal basis of R

N . Without loss of generality
we may further assume that Iξ̄i

u(x0) ≤ Iξ̄i+1
u(x0) for i = 1, . . . , N − 1. Using

(2.20) we have
N∑

i=1

Iξ̄i
u(x0) ≤ N

k

N∑
i=N−k+1

Iξ̄i
u(x0) ≤ 0.

From this we deduce that
N∑

i=1

(
Iξ̄i,εϕ(x0) + Iε

ξ̄i
u(x0)

)
≤ 0 ∀ε ∈ (0, δ),

hence u is a viscosity supersolution of I−
Nu ≤ 0 at x0.

Note that, since
{
ξ̄1, . . . , ξ̄N

}
is arbitrary, then we may conclude in fact

that I+
Nu(x0) ≤ 0.

In a similar way and using Remark 2.8, we infer that the strong maximum
principle for subsolution of I−

k u = 0 holds.

Proof of Proposition 2.7. Let ϕ be a nonconstant smooth and bounded func-
tion of one variable which attains the minimum at some point in R. Consider
ϕ as a function of N variables just by setting u(x) := ϕ(xN ). It is clear that u

is a nontrivial function attaining its minimum at some point in R
N . If {ei}N

i=1

denote the canonical basis in R
N , then for any x ∈ R

N and any τ ∈ R we
have

u(x + τei) = u(x) for i = 1, . . . , N − 1.

Hence Iei
u(x) = 0 for any i = 1, . . . , N − 1 and

I−
k u(x) ≤

k∑
i=1

Iei
u(x) = 0 in R

N .

This concludes the first part of the proof.
For the second part, we use the argument of propagation of maxima

through the support of the kernel of the nonlocal operator, see [15].
Let y ∈ R

N and denote d0 = |y − x0|. Since x0 is a minimum point
for u we can use the constant function ϕ(x) = u(x0) in Bδ(x0), δ > 0, in
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the Definition 2.1 of viscosity supersolution of I−
Nu ≤ 0 at x0. Then there is

ξ = {ξi}N
i=1 ∈ VN such that

N∑
i=1

(Iξi,εϕ(x0) + Iε
ξi

u(x0)
) ≤ 0 ∀ε ∈ (0, δ).

Since Iξi,εϕ(x0) = 0 and x0 is a global minimum point of u, the above inequal-
ity yields u(x0 + τξi) = u(x0) for any τ ∈ R and i = 1, . . . , N . Now, since ξ is
a basis of R

N , there exists at least one ξi ∈ ξ such that∣∣∣〈ŷ − x0, ξi〉
∣∣∣ ≥ 1/

√
N,

where ŷ − x0 = y−x0
|y−x0| . From this there exists τ such that x1 := x0 + τξi

simultaneously satisfies u(x1) = u(x0) and d1 := |x1 − y| ≤ d0

√
1 − N−1.

Using the same argument above but with x1 and d1 replacing x0 and d0, it
is possible to find x2 ∈ R

N such that u(x2) = u(x0) and |x2 − y| =: d2 ≤
d1

√
1 − N−1. Then, repeating this argument, we find a sequence (xk)k∈N such

that u(xk) = u(x0) and xk → y. By lower semicontinuity, we conclude that
u(y) ≤ u(x0) and then u(y) = u(x0), x0 being the global minimum point of u.
Since y is arbitrary we get the result. �

3. Representation formula for I±
k

Here and in what follows we use the following notation: for x 	= 0, denote
x̂ = x/|x| and denote Vx = 〈{x̂}〉⊥ the orthogonal subspace to x̂. Given a
subspace V , we denote πV the projection onto V . Then

Lemma 3.1. Let ξ ∈ S
N−1, x ∈ R

N and u ∈ C2(RN ) ∩ L1
1,2s. Then

(a) Iξu(x) = I−ξu(x).
(b) If R is any rotation matrix in R

N and if we denote ũ(x) = u(Rx), then

Iξũ(x) = IRξu(Rx).

(c) If u is radial, that is u(x) = g(|x|) for some real valued function g, then

Iξu(x) = Iξx
u(x),

where ξx = πVx
(ξ)−〈ξ, x̂〉x̂ is the unit vector, symmetric to ξ with respect

to the hyperplane Vx.
(d) If u is radial and R : R

N → R
N is a rotation matrix leaving invariant

Vx, then

Iξu(x) = IRξu(x).

Proof. The proof of (a) and (b) are immediate, and do not require u to be
radial. For (c), we see that

|x + τξx|2 = ||x| − τ〈ξ, x̂〉|2 + |τπVx
(ξ)|2,

and using the symmetry of the kernel, we make the change of variables τ = −τ ,
and noticing that ξ = πVx

(ξ) + 〈ξ, x̂〉x̂ we conclude the result.
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For (d), we notice that

|x + τRξ|2 = |x + τ〈ξ, x̂〉x̂|2 + |RπVx
(ξ)τ |2,

and using that a rotation matrix is an isometry, we conclude the result. �

Remark 3.2. By the previous lemma, for every radial function u and every
orthonormal frame {ξi}k

i=1 the definition of the operator I±
k u(x) can be taken

in such a way that the angle between x and each ξi is in [0, π/2].

Now we present the main technical result of this section.

Lemma 3.3. Assume u(x) = g̃(|x|2) is such that u ∈ C2(RN\ {0}) ∩ L1
1,2s. For

x 	= 0 and θ ∈ [0, 1] we denote

I(|x|, θ) := Cs|x|−2s

×
∫ +∞

0

g̃(|x|2(1 + τ2 + 2τθ)) + g̃(|x|2(1 + τ2 − 2τθ)) − 2g̃(|x|2)
τ1+2s

dτ.

• If g̃ is convex and k = 1, ..., N − 1, then

I−
k u(x) = kI(|x|, 0). (3.1)

• If g̃′′ is convex, then

I−
Nu(x) = NI(|x|, 1√

N
). (3.2)

• If g̃, g̃′′ are convex, for all k = 1, ..., N we have

I+
k u(x) = I(|x|, 1) + (k − 1)I(|x|, 0). (3.3)

Proof. For a ≥ b ≥ 0, let h : [−1, 1] → R be the function

h(t) = g̃(a + bt) + g̃(a − bt),

and p : [0, 1] → R defined as p(t) = h(
√

t).
Note that h is even. If g̃ is convex, so is h. From this, 0 is a minimum

point for h and h is nondecreasing in [0, 1]. The same analysis in the case g̃′′

is convex implies h′′ is even, convex and nondecreasing in [0, 1].
We start with (3.1). Using the monotonicity of h, in particular h(0) ≤

h(1), for each a ≥ b ≥ 0 we get

2g̃(a) ≤ g̃(a + b) + g̃(a − b). (3.4)

Take an orthonormal set {ξi}k
i=1 and τ > 0. Using the last inequality with

a = |x|2 + τ2 and b = 2τ |〈x, ξi〉| we have

2g̃(|x|2 + τ2) ≤ g̃(|x|2 + τ2 + 2τ |〈x, ξi〉|) + g̃(|x|2 + τ2 − 2τ |〈x, ξi〉|).
Substracting 2g̃(|x|2) in both sides, multiplying by the factor τ−(1+2s), inte-
grating from 0 to +∞, and summing-up in i = 1, . . . , k, we conclude that

kI(|x|, 0) ≤
k∑

i=1

Iξi
u(x).

Since k < N , we can select an orthonormal set such that 〈x, ξi〉 = 0 for all i
and the lower bound is attained, from which we arrive at (3.1).
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Now we continue with (3.2). For this, we use that g̃′′ is convex. Observe
that h′(0) = 0. Now, p′(t) = 1

2
√

t
h′(

√
t) and then

p′′(t) =
1
4t

h′′(
√

t) − 1
4t3/2

(h′(
√

t) − h′(0))

=
1
4t

h′′(
√

t) − 1
4t3/2

∫ √
t

0

h′′(θ)dθ

=
1
4t

∫ 1

0

[h′′(
√

t) − h′′(
√

tθ)]dθ .

Since h′′ is nondecreasing in [0, 1] we obtain p′′ ≥ 0, which shows that p is
convex in [0, 1].

Consider the simplex Λ = {λ = (λ1, ..., λk) : λi ≥ 0 for i = 1, . . . , k ,∑k
i=1 λi = 1} and let P : Λ → R given by

P (λ) =
k∑

i=1

p(λi).

Let λ = (λ1, ..., λk) ∈ Λ. Using the convexity of p, we can write

p(λi) ≥ p

(
1
k

)
+ p′

(
1
k

)(
λi − 1

k

)

for each i. Then, we conclude that

P (λ) ≥ kp

(
1
k

)
.

In particular, since ( 1
k , ..., 1

k ) ∈ Λ, we get

min
λ∈Λ

P (λ) = kp

(
1
k

)
= k

(
g̃

(
a + b

1√
k

)
+ g̃

(
a − b

1√
k

))
.

When k = N , for each orthonormal set {ξi}N
i=1 we have

∑N
i=1〈x̂, ξi〉2 = 1,

where x̂ = x
|x| . Using the last equality with a = |x|2 + τ2, b = 2|x|τ and

λi = |〈x̂, ξi〉|2 we conclude that
N∑

i=1

g̃(|x|2 + τ2 + 2τ |x||〈x̂, ξi〉|) + g̃(|x|2 + τ2 − 2τ |x||〈x̂, ξi〉|)

≥ N

(
g̃

(
|x|2 + τ2 + 2τ |x| 1√

N

)
+ g̃

(
|x|2 + τ2 − 2τ |x| 1√

N

))
.

Again, substracting 2Ng̃(|x|2) in both sides, multiplying by τ−(1+2s) and in-
tegrating, we see that

NI

(
|x|, 1√

N

)
≤

N∑
i=1

Iξi
u(x).

The infimum is attained. For this, let consider O : R
N → R

N the orthonormal
map so that Ox̂ = 1√

N

∑N
i=1 ei, where {ei}N

i=1 the standard basis in R
N . Set

ξi = O−1ei.
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Then, using the rotation invariance of the operator, together with the
radiality of the function we conclude that

N∑
i=1

Iξi
u(x) =

N∑
i=1

IO−1ei
u(x) =

N∑
i=1

Iei
u(Ox) = NI

(
|x|, 1√

N

)
.

Now we deal with (3.3). Let {ei}k
i=1 the standard basis of R

k. Since P is convex
in Λ, then we have

max
λ∈Λ

P (λ) = max
i

P (ei).

Observe that P (ei) = p(1) + (k − 1)p(0) for each i, from which we conclude
that

max
λ∈Λ

k∑
i=1

[g̃(a + b
√

λi) + g̃(a − b
√

λi)] = g̃(a + b) + g̃(a − b) + 2(k − 1)g̃(a).

(3.5)

Let x 	= 0 and {ξi}k
i=1 and orthonormal set in R

N . Let ρ =
∑k

i=1〈x̂, ξi〉2 ≤ 1
and assume that ρ > 0. Denote λi = 〈x̂,ξi〉2

ρ . Then, for each τ > 0, by (3.5)
with a = |x|2 + τ2 and b = 2

√
ρ|x|τ , and using the monotonicity of h, we have

k∑
i=1

[g̃(|x|2 + τ2 + 2|x|τ |〈x̂, ξi〉|) + g̃(|x|2 + τ2 − 2|x|τ |〈x̂, ξi〉|)]

=
k∑

i=1

[g̃(|x|2 + τ2 + 2|x|τ
√

ρλi) + g̃(|x|2 + τ2 − 2|x|τ
√

ρλi)]

≤ g̃(|x|2 + τ2 + 2
√

ρ|x|τ) + g̃(|x|2 + τ2 − 2
√

ρ|x|τ) + 2(k − 1)g̃(|x|2 + τ2)

≤ g̃(|x|2 + τ2 + 2|x|τ) + g̃(|x|2 + τ2 − 2|x|τ) + 2(k − 1)g̃(|x|2 + τ2) .

Thus, we arrive at

k∑
i=1

[g̃(|x|2 + τ2 + 2|x|τ |〈x̂, ξi〉|) + g̃(|x|2 + τ2 − 2|x|τ |〈x̂, ξi〉|) − 2g̃(|x|2)]

≤
(
g̃(|x|2 + τ2 + 2|x|τ) + g̃(|x|2 + τ2 − 2|x|τ) − 2g̃(|x|2)

)

+ 2(k − 1)
(
g̃(|x|2 + τ2) − g̃(|x|2)

)
,

from which, after multiplying by the kernel τ−(1+2s) and integration, we get

k∑
i=1

Iξi
u(x) ≤ I(|x|, 1) + (k − 1)I(|x|, 0). (3.6)
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When ρ = 0, we use again the monotonicity of h (with a = |x|2 + τ2 and
b = 2τ |x|) to conclude

k∑
i=1

[g̃(|x|2 + τ2 + 2|x|τ |〈x̂, ξi〉|) + g̃(|x|2 + τ2

− 2|x|τ |〈x̂, ξi〉|) − 2g̃(|x|2) − 2g̃(|x|2)]
= 2k[g̃(|x|2 + τ2) − g̃(|x|2)]
≤
(
g̃(|x|2 + τ2 + 2|x|τ) + g̃(|x|2 + τ2 − 2|x|τ)

− 2g̃(|x|2)
)

+ 2(k − 1)
(
g̃(|x|2 + τ2) − g̃(|x|2)

)
,

which leads us to (3.6) as well. Noting that if we pick an orthonormal set
{ξ̄i}k

i=1 such that x̂ = ξ̄1, we see that

k∑
i=1

Iξ̄i
u(x) = I(|x|, 1) + (k − 1)I(|x|, 0)

and this concludes (3.3). �

As a consequence of the above result we have the following representation
formulas.

Theorem 3.4. Assume u(x) = g̃(|x|2) ∈ C2(RN\ {0}) ∩ L1
1,2s. Let x 	= 0 and

denote x̂ = x/|x|.
(i) For all N, k ∈ N with 1 ≤ k ≤ N , if g̃ and g̃′′ are convex

I+
k u(x) = Ix̂u(x) + (k − 1)Ix⊥u(x),

where x⊥ ∈ Vx with |x⊥| = 1.
(ii) If 1 ≤ k < N and g̃ is convex, we have

I−
k u(x) = kIx⊥u(x),

where x⊥ is as in the previous point.
(iii) If g̃′′ is convex

I−
Nu(x) = NIξ∗u(x),

where ξ∗ ∈ R
N is a unit vector such that 〈x̂, ξ∗〉 = 1√

N
.

Remark 3.5. It is easy to see that if u(x) := g(|x|) := g̃(|x|2) then the condition
g̃ convex implies, for smooth g, that g′′(r) ≥ g′(r)

r . Also examples of functions
g̃ satisfying the above assumptions include g̃(t) =

√
t
−γ

with γ ∈ (0, 1), g̃(t) =(
a +

√
t
)−γ

, g̃(t) = (a + t)−γ , g̃(t) = e−at for a > 0 and γ > 0. Another
example is the function g̃(t) = −√

t
γ

for γ ∈ (0, 2s).
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3.1. Computation on power-type functions

We start with the following lemma that can be found in [2], but that we present
here for the readers convenience.

Lemma 3.6. For γ > 0, denote vγ(x) = |x|γ . Then for s ∈ (0, 1) and γ ∈
(0, 2s), there exists a constant ĉ(γ) ∈ R such that

Ix̂vγ(x) = ĉ(γ)|x|γ−2s for all x 	= 0

and
• ĉ(γ) < 0 if γ ∈ (0, (2s − 1)+)
• ĉ(γ) = 0 if γ = (2s − 1)+
• ĉ(γ) > 0 of γ ∈ ((2s − 1)+, 2s).

Similarly, for γ ∈ (0, 1), denote wγ(x) = |x|−γ . Then for s ∈ (0, 1) there exists
a constant ĉ(γ) ∈ R such that

Ix̂wγ(x) = ĉ(γ)|x|−γ−2s for all x 	= 0

and
• ĉ(γ) < 0 if γ ∈ (0, (1 − 2s)+)
• ĉ(γ) = 0 if γ = (1 − 2s)+
• ĉ(γ) > 0 of γ ∈ ((1 − 2s)+, 1).

Proof. We only consider the case Ix̂vγ(x), since the proof concerning Ix̂wγ(x)
follows the same ideas. We notice that Ix̂vγ(x) is well-defined since vγ ∈ L1

1,2s.
We have

Ix̂vγ(x) = CsP.V.

∫ +∞

−∞
[|x + τ x̂|γ − |x|γ ]|τ |−(1+2s)dτ = Cs|x|γ−2sI,

where

I := P.V.

∫ +∞

−∞
[|1 + τ |γ − 1]|τ |−(1+2s)dτ.

We split the last integral as

I =
∫ −1

−∞
[|1 + τ |γ − 1]|τ |−(1+2s)dτ + P.V.

∫ +∞

−1

[|1 + τ |γ − 1]|τ |−(1+2s)dτ,

and using the change of variables 1+τ = −ez, z ∈ R, for the first integral, and
1 + τ = ez, z ∈ R, for the second, we obtain

I =
∫ +∞

−∞
[ezγ − 1](1 + ez)−(1+2s)ezdz

+ P.V.

∫ +∞

−∞
[eγz − 1]|ez − 1|−(1+2s)ezdz

= 2−2s

∫ +∞

−∞
ez((γ+1)/2−s) sinh(γz/2)(cosh(z/2))−(1+2s)dz

+ 2−2sP.V.

∫ +∞

−∞
ez((γ+1)/2−s) sinh(γz/2)| sinh(z/2)|−(1+2s)dz .
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Notice that in both integrals, the term ez((γ+1)/2−s) is integrated against an
odd kernel. Thus, if s > 1/2 and γ+1

2 − s = 0 (that is γ = 2s − 1), we have
I = 0. Similarly, if γ < 2s − 1, then I < 0, and if γ > 2s − 1 then I > 0. This
concludes the lemma. �

Using Theorem 3.4 we have the following identity

Proposition 3.7. Let γ ∈ (0, 1) and denote wγ(x) = |x|−γ for x 	= 0. Then

I+
k wγ(x) = ck(γ)|x|−(γ+2s), (3.7)

where ck(γ) = ĉ(γ) + (k − 1)c⊥(γ) with

ĉ(γ) := CsP.V.

∫ +∞

−∞
[|1 + τ |−γ − 1]|τ |−(1+2s)dτ

c⊥(γ) := 2Cs

∫ +∞

0

[(1 + τ2)−γ/2 − 1]τ−(1+2s)dτ.

For k ≥ 1, the function ck : (0, 1) → R satisfies ck(0+) = 0, ck(1−) = +∞, it
is strictly convex in (0, 1) and there exists a unique γ̄ = γ̄(k, s) ∈ (0, 1) such
that ck(γ̄) = 0 in the following cases:

(i) k = 1 and s ∈ (0, 1
2 )

(ii) k ≥ 2 and s ∈ (0, 1).

Proof. Formula (3.7) follows directly by the characterization provided in The-
orem 3.4 and the fact that for each x 	= 0 we have

Ix̂wγ(x) = ĉ(γ)|x|−(γ+2s)

Ix̂⊥wγ(x) = c⊥(γ)|x|−(γ+2s),

where we have used the homogeneity of the nonlocal operator and the function
w.

Using Dominated Convergence Theorem, for each k we have

ck(γ) → 0 as γ → 0+.

Hence, defining ck(0) = 0, we have ck : [0, 1) → R is a continuous function.
On the other hand, noticing that c⊥(γ) is uniformly bounded for γ ∈ (0, 1)

and that ĉ(γ) → +∞ as γ → 1−, we have ck(γ) → +∞ as γ → 1−.
In addition, ck ∈ C2(0, 1) and for γ ∈ (0, 1) we see that

c′
k(γ) = −Cs

(∫ +∞

0

[
|1 + τ |−γ ln |1 + τ | + |1 − τ |−γ ln |1 − τ |

]
τ−(1+2s)dτ

+(k − 1)
∫ +∞

0

(1 + τ2)−γ/2 ln(1 + τ2)τ−(1+2s)dτ

)

c′′
k(γ) = Cs

(∫ +∞

0

[
|1 + τ |−γ ln2 |1 + τ | + |1 − τ |−γ ln2 |1 − τ |

]
τ−(1+2s)dτ

+
k − 1

2

∫ +∞

0

(1 + τ2)−γ/2 ln2(1 + τ2)τ−(1+2s)dτ

)
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and from here we clearly have c′′
k > 0. Hence ck is a strictly convex function

in [0, 1).
Now we prove the existence of a unique γ̄ ∈ (0, 1) such that ck(γ) < 0 for

γ ∈ (0, γ̄), ck(γ̄) = 0 and ck(γ) > 0 for γ ∈ (γ̄, 1).
The case k = 1 and s ∈ (0, 1

2 ) trivially follows from Lemma 3.6, since

c1(1 − 2s) = ĉ(1 − 2s) = 0.

In this case γ̄ = 1−2s, c1(γ) < 0 if γ ∈ (0, 1−2s) and c1(γ) > 0 if γ ∈ (1−2s, 1).
In what follows we assume k ≥ 2. If s ∈ (0, 1

2 ) we have

ck(1 − 2s) = ĉ(1 − 2s) + (k − 1)c⊥(1 − 2s) = c⊥(1 − 2s) < 0.

Then, by the convexity of ck, there exists a unique γ̄ ∈ (1 − 2s, 1) such that
ck(γ̄) = 0. Moreover ck(γ) < 0 for γ ∈ (0, γ̄) and ck(γ) > 0 for γ ∈ (γ̄, 1).

Now we consider s ∈ [12 , 1). It is easy to see that c′
k(0+) exists and we

have the expression

c′
k(0+) = −Cs

(∫ +∞

0

ln |1 − τ4|τ−(1+2s)dτ

+ (k − 2)
∫ ∞

0

ln(1 + τ2)τ−(1+2s)dτ

)
for k ≥ 2.

We claim that

c′
k(0+) < 0 for all k ≥ 2. (3.8)

From (3.8) we easily obtain the result, again by means of the convexity of ck.
To complete the proof it remains to show (3.8). Since c′

k+1(0
+) < c′

k(0+)
for any k ≥ 2, it is then sufficient to prove the claim for k = 2.

Note that

c′
2(0

+) = −Cs

2
F (s),

where

F (s) =
∫ +∞

0

ln |1 − τ2|τ−(1+s)dτ. (3.9)

The function F : [1/2, 1] → R is well defined, and we shall prove that F (s) > 0
for any s ∈ [1/2, 1).

A straightforward computation leads to

F (1) = 0. (3.10)

Moreover for any s ∈ [
1
2 , 1

]
and for a.e. τ ∈ (0,+∞)∣∣∣∣ ln |1 − τ2|

τ1+s

∣∣∣∣ ≤ ∣∣ln |1 − τ2|∣∣max
{

1
τ2

,
1

τ3/2

}
∈ L1 ((0,+∞))

∣∣∣∣ ∂

∂s

ln |1 − τ2|
τ1+s

∣∣∣∣ =
∣∣∣∣ ln |1 − τ2| ln τ

τ1+s

∣∣∣∣
≤ ∣∣ln |1 − τ2| ln τ

∣∣max
{

1
τ2

,
1

τ3/2

}
∈ L1 ((0,+∞))

(3.11)
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By (3.11), F ∈ C1
([

1
2 , 1

])
and via integrations by parts we obtain

F ′(s) = −
∫ +∞

0

ln |1 − τ2| ln τ

τ1+s
dτ

=
2
s

∫ +∞

0

τ1−s ln τ

1 − τ2
dτ − 1

s
F (s)

≤ −2
s
I − 1

s
F (s),

(3.12)

where∫ +∞

0

τ1−s ln τ

1 − τ2
dτ ≤ −I :=

∫ 1

0

√
τ ln τ

1 − τ2
dτ +

∫ +∞

1

ln τ

1 − τ2
dτ < 0.

From (3.12) we have

(sF (s))′ ≤ −2I for s ∈
[
1
2
, 1
]

.

Integrating the above inequality between s and 1, and recalling (3.10), we
obtain

F (s) ≥ 2 I
1 − s

s

which in particular implies that F (s) > 0 for any s ∈ [1/2, 1). �

Remark 3.8. If k = 1 and s ∈ [
1
2 , 1

)
the function c1(γ) is still strictly convex,

as in the above proposition, but now it is positive in (0, 1). To show this note
that c1(0) = 0 and that

c′
1(0

+) = −CsH(s), (3.13)

where H(s) =
∫ +∞

0

[ln |1 − τ2|]τ−(1+2s) dτ . Integrating by parts yields

H ′(s) = −1
s
H(s) +

2
s

∫ +∞

0

τ1−2s ln τ

1 − τ2
dτ

≤ −1
s
H(s) − 2

s
I

where I := −
∫ 1

0

ln τ

1 − τ2
dτ > 0.

Hence (sH(s))′ ≤ −2I for any s ∈ [
1
2 , 1

)
. Integrating between 1

2 and s

and using the fact that H(1
2 ) = F (1) = 0 (see (3.10)),

H(s) ≤ −2I

(
1 − 1

2s

)
≤ 0 ∀s ∈

[
1
2
, 1
)

. (3.14)

By (3.13)–(3.14) we conclude, in view of the strict convexity of c1(γ), that
c1(γ) > 0 for any γ ∈ (0, 1) and s ∈ [1/2, 1).
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Remark 3.9. In order to give an estimate of γ̄, we mention that a tedious, but
straightforward computation shows that if we compute ĉ and c⊥ at γ = 2(1−s)
for s ∈ (1

2 , 1), we get

ĉ(2(1 − s)) = Cs
1

s(2s − 1)
, c⊥(2(1 − s)) = −Cs

1
s
.

Thus, when k = 2 we have c2 (2(1 − s)) = Cs
2(1−s)
s(2s−1) > 0, and therefore γ̄ <

2(1 − s).

4. Liouville-type results for I±
k

In this section we will prove a certain number of theorems of Liouville type i.e.
of classifications of entire solutions or supersolutions that are bounded from
below.

4.1. Liouville results for superharmonic functions

We state the results for I+
k . A dual result concerning I−

k can be also given,
but we omit the details. The computations in Proposition 3.7 play a crucial
role.

Theorem 4.1. Consider the equation

I+
k u = 0 in R

N . (4.1)

(i) If s ∈ [1/2, 1) and k = 1, every viscosity supersolution u to problem (4.1)
which is bounded from below, is a constant.

(ii) If s ∈ (0, 1/2) and k = 1, or s ∈ (0, 1) and 2 ≤ k ≤ N , then there exist
bounded from below nontrivial viscosity supersolutions of Eq. (4.1).

Proof. (i). By adding a constant, we can assume that u ≥ 0. Consider first
the case s > 1

2 and fix γ ∈ (0, 2s − 1]. Let wγ(x) = wγ(|x|) = −|x|γ . By
Lemma 3.6, Ix̂wγ(x) ≥ 0 for any x 	= 0. In particular, we have that

I+
1 wγ(x) ≥ 0 for |x| ≥ 1.

Thus, for every R > 1 and denoting m(1) = min
x∈B1

u(x), the function φ

defined as

φ(x) = m(1)
wγ(|x|) − wγ(R)

−wγ(R)
,

is a classical subsolution to (4.1) for 1 < |x| < R and moreover φ ≤ u
for |x| ≤ 1 and for |x| ≥ R . Then, by the comparison principle, see
Theorem 2.5,we have φ ≤ u in R

N . Thus, for each |x| > 1 fixed, we let
R → +∞ and then

u(x) ≥ m(1),
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from which we infer that u ≥ m(1) in R
N . By the strong minimum

principle, see Proposition 2.7 and Remark 2.9, we conclude that u is
constant. Now we consider the case s = 1

2 . Fix γ ∈ (0, 1) and let

wγ(|x|) =

{
ε−γ − ln ε if |x| ≤ ε

|x|−γ − ln |x| if |x| > ε.

We claim that, for ε sufficiently small, one has

I+
1 wγ(x) ≥ 0 for |x| ≥ 1. (4.2)

Once this is proved we conclude as above by using the comparison func-
tion

φ(x) = m(1)
wγ(|x|) − wγ(R)
wγ(ε) − wγ(R)

and letting R → +∞.
It is convenient to write, for x 	= 0, the function wγ as

wγ(|x|) = |x|−γ − ln |x| + v(x),

where

v(x) =

{
ε−γ − ln ε − (|x|−γ − ln |x|) if |x| ≤ ε

0 if |x| > ε.

In this way, for x 	= 0,

I+
1 wγ(x) ≥ Ix̂(|x|−γ) − Ix̂(ln |x|) + Ix̂v(x). (4.3)

Using Lemma 3.6 and (3.9)–(3.10) it turns out that

Ix̂(|x|−γ) − Ix̂(ln |x|) = Ix̂(|x|−γ) = ĉ(γ)|x|−γ−1, (4.4)

where ĉ(γ) > 0. Moreover it is not difficult to see that for |x| ≥ 1

Ix̂v(x) ≥ −|x|−γ−1g(x, ε), (4.5)

where g(x, ε) is a positive function such that

lim
ε→0+

g(x, ε) = 0 uniformly for |x| ≥ 1. (4.6)

Then (4.2) follows by (4.3)–(4.6) and the positivity of the quantity ĉ(γ).
(ii). Let γ̄ be the constant given in Proposition 3.7 and consider for 0 <

γ < γ̄ the function u(x) = min{1, |x|−γ}. By the basic principle saying
that minima of supersolutions are supersolutions, then u is a nontrivial
viscosity supersolution to (4.1) which is bounded from below.

�

Recall that γ̄ → 0 and that I+
2 → P+

2 as s → 1−. So even if Liouville type
Theorems are valid for P+

2 see Theorem 2.2 in [7], the result of Theorem 4.1
are not in contradiction, since in a certain sense the solution construct here
converges to the trivial solution.
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4.2. Liouville-type result for the maximal operator I+
k

In this subsection we assume k = 1 and s ∈ (0, 1/2), or k ≥ 2 and s ∈ (0, 1).
The aim is to prove the following

Theorem 4.2. Let γ̄ ∈ (0, 1) be as in Proposition 3.7. The equation

I+
k u(x) + up(x) = 0, u ≥ 0 in R

N (4.7)

has nontrivial viscosity supersolutions if, and only if

p > 1 +
2s

γ̄
.

We divide the proof in several partial results. We start with the sufficient
condition in the previous theorem.

Proposition 4.3. For any p > 1+ 2s
γ̄ there exist positive viscosity supersolutions

of (4.7).

Proof. For any q ∈
[

1
p−1 , γ̄

2s

)
, let

u(x) =
1

(1 + |x|)2sq .

As a consequence of Theorem 3.4, we have for any x ∈ R
N\ {0} (note that

there are no test functions touching u from below at x = 0)

I+
k u(x) = Cs P.V.

∫ +∞

−∞

[
(1 + ||x| + τ |)−2sq − (1 + |x|)−2sq

]
|τ |−(1+2s) dτ

+ (k − 1)Cs

∫ +∞

−∞

[(
1 +

√
|x|2 + τ2

)−2sq

− (1 + |x|)−2sq

]
|τ |−(1+2s) dτ

=
1

(1 + |x|)2sq

(
Cs P.V.

∫ +∞

−∞

[(
1

1 + |x| +
∣∣∣∣ |x|
1 + |x| +

τ

1 + |x|
∣∣∣∣
)−2sq

−1] |τ |−(1+2s) dτ

+(k − 1)Cs

∫ +∞

−∞

⎡
⎣
(

1
1 + |x| +

√
|x|2

(1 + |x|)2 +
τ2

(1 + |x|)2
)−2sq

−1] |τ |−(1+2s) dτ
)

.

By the triangular inequality, for any x ∈ R
N and τ ∈ R,

1
1 + |x| +

∣∣∣∣ |x|
1 + |x| +

τ

1 + |x|
∣∣∣∣ ≥

∣∣∣∣1 +
τ

1 + |x|
∣∣∣∣

and a straightforward computation yields
(

1
1 + |x| +

√
|x|2

(1 + |x|)2 +
τ2

(1 + |x|)2
)2

≥ 1 +
τ2

(1 + |x|)2 .
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Hence, using the change of variable t = τ
1+|x| , we obtain

I+
k u(x) ≤ 1

(1 + |x|)2s(q+1)

(
Cs P.V.

∫ +∞

−∞

[
|1 + t|−2sq − 1

]
|t|−(1+2s) dt

+(k − 1)Cs

∫ +∞

−∞

[(
1 + t2

)−sq − 1
]
|t|−(1+2s) dt

)

=
1

(1 + |x|)2s(q+1)
ck(2sq),

where ck(·) is the function defined in Proposition 3.7. Since 2sq < γ̄, then
ck(2sq) < 0. For ε ∈ (0, (−ck(2sq))1/(p−1)) and v(x) = εu(x) we conclude

I+
k v(x) + vp(x) ≤ ε

(1 + |x|)2s(q+1)

(
ck(2sq) +

εp−1

(1 + |x|)2s(qp−q−1)

)

≤ ε

(1 + |x|)2s(q+1)

(
ck(2sq) + εp−1

) ≤ 0 .

�

For the necessary condition, we shall follow the ideas in [16] and we
require some preliminary lemmas.

Lemma 4.4. Let γ̄ be as in Proposition 3.7. Given r > 0 and u ∈ LSC(RN ),
we denote m(r) = min

Br

u.

(i) If u is a nonnegative viscosity supersolution of (4.1), for any γ > γ̄ there
exists a positive constant c = c(γ) such that

m(r) ≥ cm(1)r−γ ∀r ≥ 1. (4.8)

(ii) If u is a positive supersolution of (4.7) for some p < 1+2s
γ̄ , then there

exists a positive constant c̄ = c̄(γ̄, p, s,m(1)) such that

m(r) ≥ c̄ r−γ̄ ∀r ≥ 1. (4.9)

Proof. (i) The statement (4.8) is trivial if u ≡ 0. By the strong minimum
principle, see Proposition 2.7, we can then assume u > 0 in R

N .
We claim that for ε small enough (depending on γ) the function

w(|x|) =

{
ε−γ if |x| ≤ ε

|x|−γ if |x| > ε

is a classical subsolution of I+
k u(x) = 0 for |x| ≥ 1. Then (4.8) follows from

the claim, since the function

φ(x) = m(1)
w(|x|) − w(R)
w(ε) − w(R)

is, for any R > 1, classical subsolution of I+
k u(x) = 0 for 1 < |x| < R.

Moreover u(x) ≥ m(1) ≥ φ(x) for |x| ≤ 1 and u(x) ≥ 0 ≥ φ(x) if |x| ≥ R. The
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comparison principle, see Theorem 2.5, yields u(x) ≥ φ(x) for 1 < |x| < R and
letting R → +∞ we infer that

m(r) ≥ m(1)εγr−γ ,

leading to (4.8) with c = εγ .
We proceed with the proof of the claim. For |x| ≥ 1, we use that

I+
k w(x) ≥ Ix̂w(x) + (k − 1)Ix⊥wγ(x)

where wγ(x) = |x|−γ . Now we concentrate on Ix̂w(x). For |x| ≥ 1 we see that

Ix̂w(x) = Ix̂wγ(x) −
∫ −|x|+ε

−|x|−ε

||x| + τ |−γ − ε−γ

|τ |1+2s
dτ,

from which, by Proposition 3.7 we conclude that

I+
k w(x) ≥ ck(γ)|x|−(γ+2s) −

∫ −|x|+ε

−|x|−ε

||x| + τ |−γ − ε−γ

|τ |1+2s
dτ

= |x|−(γ+2s)

⎛
⎜⎝ck(γ) −

∫ −1+ ε
|x|

−1− ε
|x|

|1 + τ |−γ −
(

ε
|x|
)−γ

|τ |1+2s
dτ

⎞
⎟⎠ .

Let us denote I the integral term in the right-hand side of the last inequality.
Using that |x| ≥ 1 and ε < 1/2 we have

I ≤ 21+2s

∫ −1+ε

−1−ε

|1 + τ |−γ dτ =
22(1+s)

1 − γ
ε1−γ ≤ 16

1 − γ
ε1−γ .

Using this, we conclude that

I+
k w(x) ≥ |x|−(γ+2s)(ck(γ) − Cε1−γ), (4.10)

with C = 16(1 − γ)−1. Since γ > γ̄ we have ck(γ) > 0 and therefore it is

sufficient to take ε ≤ min
{

1
2 ,
(

ck(γ)
C

) 1
1−γ

}
to conclude the proof of the claim.

(ii) Let us consider

w(|x|) =

{
ε−γ̄ if |x| ≤ ε

|x|−γ̄ if |x| > ε.

Similarly to (4.10), using the fact that ck(γ̄) = 0, we have for |x| ≥ 1

I+
k w(x) ≥ −

∫ −|x|+ε

−|x|−ε

||x| + τ |−γ̄ − ε−γ̄

|τ |1+2s
dτ.

Assuming ε ≤ 1
2 , we infer that

I+
k w(x) ≥ − 21+2s

|x|1+2s

∫ −|x|+ε

−|x|−ε

||x| + τ |−γ̄ − ε−γ̄ dτ = −41+s γ̄

1 − γ̄
ε1−γ̄ 1

|x|1+2s
.

(4.11)
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For any R ≥ 2
1−γ̄

γ̄ , the function

φ(x) = m(1)
w(|x|) − w(R)
w(ε) − w(R)

satisfies, for |x| ≥ 1, the inequality

I+
k φ(x) ≥ −c̃ ε1−γ̄ 1

|x|1+2s
, (4.12)

with c̃ = m(1)23+2s−γ̄ γ̄
1−γ̄ .

Now we apply (4.8) with γ = 1+2s
p . Note that γ > γ̄ by the assumption

p < 1+2s
γ̄ . From (4.7) we then obtain

I+
k u(x) ≤ −up(x) ≤ −(cm(1))p 1

|x|1+2s
, (4.13)

where c is the constant appearing in (4.8). Now, from (4.12)–(4.13), taking
ε = ε(γ̄, p, s,m(1)) small enough, we have

I+
k u(x) ≤ I+

k φ(x) ∀|x| ≥ 1.

Since u ≥ φ for |x| ≤ 1 and |x| ≥ R, by comparison principle u ≥ φ for
|x| ∈ [1, R]. Sending R → +∞, we obtain

m(r) ≥ m(1)εγ̄r−γ̄ ,

which is exactly (4.9) with c̄ = m(1)εγ̄ . �

Lemma 4.5. Let γ̄ be as in Proposition 3.7. Let u be a nonnegative viscosity
supersolution of (4.1). Then, for any γ ≥ γ̄ there exists a positive constant
c = c(γ) such that

m(R) ≥ cm

(
R

2

)
∀R > 0. (4.14)

Proof. Let γ ≥ γ̄, R > 0 and R0 = εR for some ε ∈ (0, 1/4) to be fixed.
Consider the function

wR(|x|) =

{
R−γ

0 if |x| ≤ R0

|x|−γ if R0 < |x|.
We claim that the function φ(x) = (wR(|x|) − (2R)−γ)+ is a classical

solution of

I+
k φ ≥ 0 in B2R \ BR/2.

Assuming the claim is true, the function

φ̃(x) = m

(
R

2

)
φ(x)

R−γ
0 − (2R)−γ ,

solves I+
k φ̃(x) ≥ 0 for |x| ∈ (

R
2 , 2R

)
. Since u(x) ≥ m

(
R
2

) ≥ φ̃(x) for |x| ≤ R
2

and u(x) ≥ 0 = φ̃(x) if |x| ≥ 2R, by comparison principle we get u(x) ≥ φ̃(x)
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for |x| ∈ (
R
2 , 2R

)
. In particular, we have m(R) ≥ minBR

φ̃ from which we
obtain

m(R) ≥ m

(
R

2

)
R−γ − (2R)−γ

R−γ
0 − (2R)−γ

= c m

(
R

2

)
,

where c = c(ε, γ) := 1−2−γ

ε−γ−2−γ . Then (4.14) holds with this constant c.
Now we prove the claim. By definition, for each |x| ∈ (

R
2 , 2R

)
we have

I+
k φ(x) ≥ Ix̂φ(x) + (k − 1)Ix⊥φ(x). (4.15)

As in Proposition 3.7 we denote wγ(x) = |x|−γ . Denoting A = {τ ∈ R :
|x|2 + τ2 ≤ (2R)2} we have φ(x + τx⊥) = wγ(x + τx⊥) − (2R)−γ for τ ∈ A,
while for τ ∈ Ac it holds that φ(x + τx⊥) = 0 and wγ(x + τx⊥) ≤ (2R)−γ .

Then we have

Ix⊥φ(x) = Cs

∫
A

[wγ(x + τx⊥) − wγ(x)]|τ |−(1+2s)dτ

+ Cs

∫
R\A

[(2R)−γ − wγ(x)]|τ |−(1+2s)dτ

≥ Ix⊥wγ(x)

(4.16)

We employ a similar argument for Ix̂φ(x). This time we denote the (disjoint)
sets

A = [−R0 − |x|, R0 − |x|], B = {τ ∈ R : ||x| + τ | ≥ 2R}.

Thus, by definition we have

Ix̂φ(x) = Ix̂wγ(x) + Cs

∫
A

[R−γ
0 − wγ(x + τ x̂)]|τ |−(1+2s)dτ

+ Cs

∫
B

[(2R)−γ − wγ(x + τ x̂)]|τ |−(1+2s)dτ

=: Ix̂wγ(x) + I1 + I2.

For I1, notice that |τ | ≥ R/4 for each τ ∈ A. Then, we have

I1 ≥ −Cs

∫
A

||x| + τ |−γ |τ |−(1+2s)dτ ≥ −Cs

(
4
R

)1+2s ∫ R0

−R0

|τ |−γ dτ

from which, by the choice of R0 we conclude

I1 ≥ −c1R
−γ−2s, (4.17)

where c1 = Cs23+4s ε1−γ

1−γ . Observe that this constant tends to zero as ε → 0.
As far as I2 is concerned, notice that the integrand is nonnegative. Thus,

if we denote B′ = {τ ∈ R : ||x| + τ | ≥ 3R} ⊂ B we have

I2 ≥ Cs(2−γ − 3−γ)R−γ

∫
B′

|τ |−(1+2s)dτ ≥ Cs(2−γ − 3−γ)R−γ

∫ +∞

5R

τ−(1+2s)dτ,
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from which we get

I2 ≥ c2R
−(γ+2s), (4.18)

with c2 = Cs(2−γ − 3−γ) 5−2s

2s . Observe that this constant is independent of ε.
Putting together (4.17)–(4.18) into the expression of Ix̂φ(x) above, we

conclude that for ε small enough we get

Ix̂φ(x) ≥ Ix̂wγ(x),

and from here, replacing this and (4.16) into (4.15), we conclude the claim
using Proposition 3.7. The proof is now complete. �

Lemma 4.6. There exists a positive constant c = c(k, s) such that the function

Γ(x) =
ln |x|
|x|γ̄ , x 	= 0

satisfies

I+
k Γ(x) ≥ − c

|x|γ̄+2s
, x 	= 0. (4.19)

Proof. Let wγ̄(x) = |x|−γ̄ . For x 	= 0 we have

I+
k Γ(x) ≥ Ix̂Γ(x) + (k − 1)Ix⊥Γ(x)

= ln |x| I+
k wγ̄(x) +

1
|x|γ̄+2s

[
CsP.V.

∫ +∞

−∞

ln |1 + τ |
|1 + τ |γ̄ |τ |1+2s

dτ

+Cs(k − 1)
∫ +∞

0

ln(1 + τ2)
(1 + τ2)γ̄/2 τ1+2s

dτ

]
.

Since, by Proposition 3.7, w̄(x) solves I+
k wγ̄(x) = 0 for x 	= 0, then (4.19)

follows. �

Now we are in position to provide the

Proof of Theorem 4.2. The existence of nontrivial supersolutions of (4.7) when
p > 1 + 2s

γ̄ is a consequence of Proposition 4.3.
Let p ≤ 1+ 2s

γ̄ . We shall prove that u ≡ 0 is the only nonnegative superso-
lution of (4.7). By contradiction we suppose the contrary. Let u be a nontrivial
supersolution of (4.7). By the strong minimum principle, see Remark 2.9, u > 0
in R

N .
Let η(|x|) be a cut-off function such that η(|x|) = 0 for |x| ≥ 1 and

η(|x|) = 1 for |x| ≤ 1
2 . Define ξ(x) = m

(
R
2

)
η
(

|x|
R

)
. Since I+

k η(x) ≥ −Cη, for
some positive constant Cη, by scaling it turns out that

I+
k ξ(x) ≥ −Cηm

(
R
2

)
R2s

. (4.20)

Moreover u(x) ≥ ξ(x) for |x| ∈ [0, R
2 ] ∪ [R,+∞] and u(x) = ξ(x) for some

|x| = R
2 . Then there exists xR ∈ R

N such that |xR| ∈ [R
2 , R) and u(x)−ξ(x) ≥
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u(xR) − ξ(xR) for any x ∈ R
N . Then I+

k ξ(xR) + up(xR) ≤ 0 and by (4.20) we
infer that

mp(R) ≤ up(xR) ≤ −I+
k ξ(xR) ≤ Cηm

(
R
2

)
R2s

.

Then, using (4.14), we have

mp−1(R) ≤ C

R2s
(4.21)

for a positive constant C.
If p ≤ 1 then

mp−1(1) ≤ C

R2s
(4.22)

for any R ≥ 1. Letting R → +∞ in (4.22), we obtain a contradiction. In what
follows, the case p > 1 is considered.

1. Case p < 1 + 2s
γ̄ . Let γ > γ̄ be such that

2s

p − 1
− γ > 0. (4.23)

From (4.8) and (4.21) we have

m(1) ≤ C

R
2s

p−1−γ
,

for a positive constant C. Sending R → +∞, and using (4.23), we again reach
the contradiction that m(1) = 0.

2. Case p = 1 + 2s
γ̄ . By contradiction let u be a positive supersolution of (4.7).

From (4.21) we have the bound

m(R)Rγ̄ ≤ C, (4.24)

for some C > 0. For x 	= 0, let Γ(|x|) = ln |x|
|x|γ̄ . We have Γ

(
e1/γ̄

)
= max|x|>0

Γ(|x|) and, by Lemma 4.6,

I+
k Γ ≥ − c

|x|γ̄+2s
for x 	= 0. (4.25)

Consider now, for r2 > r1 > e1/γ̄ , the comparison function

φ(x) = m(r1)
Γ(|x|) − Γ(r2)
Γ(e1/γ̄) − Γ(r2)

,

which, by construction, satisfies φ(x) ≤ u(x) for |x| ≤ r1 and |x| ≥ r2. More-
over, by (4.25),

I+
k φ(x) ≥ − cm(r1)

Γ(e1/γ̄) − Γ(r2)
1

|x|γ̄+2s
for x 	= 0.

For r2 sufficiently large we may further assume that Γ(e1/γ̄)−Γ(r2) ≥ 1
2Γ(e1/γ̄),

so that

I+
k φ(x) ≥ −2cm(r1)

Γ(e1/γ̄)
1

|x|γ̄+2s
. (4.26)
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By Lemmas 4.4 and (4.9), we also have

I+
k u(x) ≤ −(u(x))1+

2s
γ̄ ≤ −(m(|x|))1+ 2s

γ̄ ≤ −(c̄)1+
2s
γ̄

1
|x|γ̄+2s

. (4.27)

Since m(r1) → 0 as r1 → +∞, in view of (4.24), we can fix r1 large enough
and use (4.26)–(4.27) to obtain that I+

k u(x) ≤ I+
k φ(x) for any |x| ∈ (r1, r2).

Hence, by comparison, u(x) ≥ φ(x) and passing to the limit as r2 → +∞ we
deduce that

m(r)rγ̄ ≥ m(r1)
Γ(e1/γ̄)

ln r ∀r > r1,

which is in contradiction to (4.24). �

4.3. Liouville-type result for the minimal operator I−
k with k < N

When k < N , we infer from Theorem 3.4-(ii) (see also Remark 3.5) that for
any smooth bounded radial function u(x) = g̃(|x|2) such that g̃(r) is convex
for r ≥ 0, one has

I−
k u(x) = k Ix⊥u(x), (4.28)

x⊥ being any unit vector orthogonal to x.
This is the key fact to conclude the following theorem

Theorem 4.7. Let s ∈ (0, 1), 1 ≤ k < N and consider the equation

I−
k u(x) + up(x) = 0 in R

N . (4.29)

Then
(i) for any p ≥ 1 there exist positive classical solutions of (4.29);
(ii) for any p ∈ [1 − s, 1) there exist nonnegative viscosity solutions u 	≡ 0 of

(4.29);
(iii) for any p ∈ (0, 1−s) there exist nonnegative viscosity supersolutions u 	≡ 0

of (4.29).

Proof. (i). We first consider the case p > 1. For r ≥ 0, let

g̃(r) =
α

(1 + r)
s

p−1
.

We claim that for a suitable choice of α = α(k, s, p) > 0 the function
u(x) = g̃(|x|2) is solution of (4.29). Since

Ix⊥u(x) = 2Csα

∫ +∞

0

[
(1 + |x|2 + τ2)− s

p−1 − (1 + |x|2)− s
p−1

]
τ−(1+2s) dτ

= 2Csα(1 + |x|2)− s
p−1

×
∫ +∞

0

[(
1 +

( τ√
1 + |x|2

)2)− s
p−1 − 1

]
τ−(1+2s) dτ

= 2Csα(1 + |x|2)− sp
p−1

∫ +∞

0

[
(1 + τ2)− s

p−1 − 1
]
τ−(1+2s) dτ ,
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we obtain from (4.28) that

I−
k u(x) = kIx⊥u(x) = −αc̄(1 + |x|2)− sp

p−1

where c̄ = 2Csk

∫ +∞

0

[
1 − (1 + τ2)− s

p−1

]
τ−(1+2s) dτ > 0. Hence, we get

that

I−
k u(x) + up(x) = (1 + |x|2)− sp

p−1

(
− αc̄ + αp

)
,

from which, taking α = c̄1/(p−1) we conclude the result. Moreover, by
scaling, it turns out that for any a 	= 0, the function

u(x) =
α

(a2 + |x|2) s
p−1

is again solution to (4.28) for the same choice of α as before.
In the case p = 1 we follow a similar argument with a different radial

profile. More specifically, for β > 0 to be fixed, we consider the function

g̃(r) = e−βr.

As above, for u(x) = g̃(|x|2), we have that I−
k u(x) = kIx⊥u(x) . It is

easy to see that

Ix⊥u(x) = −e−β|x|2F (β),

where

F (β) = 2Cs

∫ +∞

0

(
1 − e−βτ2

)
τ−(1+2s) dτ > 0.

Thus, we see that

I−
k u(x) + u(x) = −e−β|x|2(kF (β) − 1).

By Fatou’s lemma, one has

+∞ =
∫ +∞

0

τ−(1+2s) dτ ≤ lim inf
β→+∞

∫ +∞

0

(
1 − e−βτ2

)
τ−(1+2s) dτ,

from which we conclude that

lim
β→+∞

F (β) = +∞. (4.30)

Moreover, for β ∈ (0, 1],
(
1 − e−βτ2

)
τ−(1+2s) ≤ min

{
1

τ2s−1
,

1
τ2s+1

}
∈ L1((0,+∞))

and by Lebesgue’s Theorem we infer that

lim
β→0+

F (β) = 0. (4.31)

Since F (β) is continuous (again by Lebesgue’s Theorem) we infer, by
(4.30)–(4.31), that there exists β̄ > 0 such that F (β̄) = 1

k . Then u(x) =
e−β̄|x|2 is solution of (4.29) with p = 1. We conclude observing that, by
homogeneity, for any b > 0 the function u(x) = be−β̄|x|2 is still a positive
entire solution of (4.29).
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(ii). We shall prove that the bounded and radial function

u(x) = α(R2 − |x|2)
s

1−p

+ (4.32)

is, for a suitable choice of α > 0 and for any R > 0, a nonnegative
viscosity solution of the equation

I−
k u(x) + up(x) = 0 in R

N . (4.33)

Note that u(x) = g̃(|x|2) with g̃ convex by the assumption p ∈ [1 − s, 1).
Moreover u is a smooth function for |x| 	= R. Then using the arguments of
Lemma 3.3-(ii) and Theorem 3.4-(ii) we can still conclude that if |x0| 	= R
then

I−
k u(x0) = kIx⊥u(x0) . (4.34)

In particular we have

Ix⊥u(x0) = 0 = up(x0) if |x0| > R, (4.35)

while if |x0| < R

Ix⊥u(x0) = −αc(R2 − |x0|2)
ps

1−p , (4.36)

where c = 2Cs

∫ +∞

0

(
1 − (1 − τ2)

s
1−p

+

)
τ−(1+2s) dτ > 0. Choosing α =

(ck)− 1
1−p , we infer from (4.34)–(4.35)–(4.36) that u satisfies, in the clas-

sical sense, the equation I−
k u(x) + up(x) = 0 for any |x| 	= R.

It remains to consider the case |x0| = R. To show that u is a viscosity
subsolution we have to prove that if ϕ ∈ C2(Bδ(x0)), δ > 0, is such that

(u − ϕ)(x) ≤ (u − ϕ)(x0) = 0 ∀x ∈ Bδ(x0), (4.37)

then for any {ξi}k
i=1 ∈ Vk

k∑
i=1

(Iξi,εϕ(x0) + Iε
ξi

u(x0)
) ≥ 0 ∀ε ∈ (0, δ). (4.38)

If s
1−p < 2, then there are no test functions touching u from above at

x0, so there is nothing to prove. If instead s
1−p ≥ 2 and ϕ ∈ C2(Bδ(x0))

satisfies (4.37), then both u and ϕ attains their global minimum at x0,
hence it is readily seen that (4.38) holds.
In order to prove that u is a supersolution of I−

k u(x) + up(x) = 0 at
x = x0, let ϕ ∈ C2(Bδ(x0)), δ > 0, be such that

(u − ϕ)(x) ≥ (u − ϕ)(x0) = 0 ∀x ∈ Bδ(x0). (4.39)

Consider {ξi}k
i=1 ∈ Vk such that 〈ξi, x0〉 = 0 for any i = 1, . . . , k. Since

u(x0 ± τξi) = u(x0) = 0 ∀τ ≥ 0

and

ϕ(x0 ± τξi) ≤ u(x0 ± τξi) = ϕ(x0) ∀τ ∈ [0, δ),

then for any i = 1, . . . , k we have

Iξi,εϕ(x0) ≤ 0 , Iε
ξi

u(x0) = 0 ∀ε ∈ (0, δ).
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Thus we conclude
k∑

i=1

(Iξi,εϕ(x0) + Iε
ξi

u(x0)
) ≤ 0 ∀ε ∈ (0, δ) .

(iii). Consider the function u defined by (4.32), with α ≥ (ck)− 1
1−p , see case

(ii) for the definition of c. Differently from (4.34), we do not have a
representation formula for I−

k u(x), since u does not satisfy the convexity
assumption of Theorem 3.4-(ii). Nevertheless using the inequality

I−
k u(x) ≤ kIx⊥u(x),

which holds for any admissible function u, just using the minimality of
the operator I−

k u among the family of k-dimensional orthonormal subsets
of R

N , we can still conclude that u is a viscosity supersolution of (4.29),
using the same computations of case (ii).

�

4.4. Liouville-type theorem for the minimal operator I−
N

We start with the critical exponent associated to this operator. Let us remem-
ber that, by Theorem 3.4-(ii), the minimal operator I−

Nu coincides, within a
suitable class of radial function including as the main example the function
u(x) = |x|−γ , with NIξ∗u. Then a fundamental solution for the integral oper-
ator Iξ∗ is in turn a fundamental solution for I−

N .

Lemma 4.8. For s ∈ (0, 1) and γ > 0, let

c(γ) :=
∫ +∞

0

(
1 + τ2 + 2√

N
τ
)−γ/2

+
(
1 + τ2 − 2√

N
τ
)−γ/2

− 2

τ1+2s
dτ .

(4.40)

Then, there exists a unique γ̃ = γ̃(N, s) > 0 such that c(γ) < 0 for γ < γ̃,
c(γ̃) = 0 and c(γ) > 0 for γ > γ̃.

Proof. By Lebesgue’s theorem we easily infer that c(γ) → 0 as γ → 0+ and
that

c′(0) = −1
2

∫ +∞

0

ln
(
1 + 2

(
1 − 2

N

)
τ2 + τ4

)
τ1+2s

< 0. (4.41)

Moreover, for any γ > 0, we have

c′′(γ) =
∫ +∞

0

f(τ) + f(−τ)
τ1+2s

dτ

where f(τ) =
(
1 + τ2 + 2√

N
τ
)−γ/2

ln2
(
1 + τ2 + 2√

N
τ
)
. Since f(τ) ≥ 0 for

any τ , then c(γ) is convex in [0,+∞). We claim that

lim
γ→+∞ c(γ) = +∞. (4.42)

Then, using (4.41)–(4.42), we deduce that there exists γ̃ = γ̃(N, s) > 0 such
that c(γ̃) = 0, c(γ) < 0 for γ < γ̃ and c(γ) > 0 for γ > γ̃.
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To show (4.42) let

g(τ) =
(

1 + τ2 +
2√
N

τ

)−γ/2

+
(

1 + τ2 − 2√
N

τ

)−γ/2

− 2,

so that

c(γ) =
∫ +∞

0

g(τ)
τ1+2s

dτ

=
∫ 1

4
√

N

0

g(τ)
τ1+2s

dτ +
∫ 1

2
√

N

1
4

√
N

g(τ)
τ1+2s

dτ +
∫ +∞

1
2

√
N

g(τ)
τ1+2s

dτ

=: I1 + I2 + I3.

(4.43)

We shall prove that I1 and I3 are bounded from below, while I2 → +∞ as
γ → +∞.
Since g(τ) ≥ −2 for any τ > 0, we have

I3 ≥ −2
∫ +∞

1
2

√
N

1
τ1+2s

dτ = − (2
√

N)2s

s
.

Moreover

g′′(τ) = γ

(
1 + τ2 +

2√
N

τ

)−γ/2−2
(

(γ + 2)

(
τ +

1√
N

)2

− 1 − τ2 − 2√
N

τ

)

+ γ

(
1 + τ2 − 2√

N
τ

)−γ/2−2
(

(γ + 2)

(
τ − 1√

N

)2

− 1 − τ2 +
2√
N

τ

)
.

Then, for γ sufficiently large, g(τ) is convex in [0, 1
4
√

N
]. Since g′(0) = 0 we

infer that g(τ) ≥ 0 for any τ ∈ [0, 1
4
√

N
]. Hence I1 ≥ 0.

For τ ∈ [ 1
4
√

N
, 1

2
√

N
]

g(τ) ≥
(

1 + τ2 − 2√
N

τ

)−γ/2

− 2 ≥
(

1 − 7
16N

)−γ/2

− 2

and

I2 ≥
((

1 − 7
16N

)−γ/2

− 2

)∫ 1
2

√
N

1
4

√
N

1
τ1+2s

dτ → +∞ as γ → +∞.

�

Remark 4.9. If N ≥ 3 the value γ̃ in Lemma 4.8 is in fact strictly larger than
1. This is a consequence of the fact that the function

f(τ) =
(

1 + τ2 +
2√
N

τ

)−1/2

+
(

1 + τ2 − 2√
N

τ

)−1/2

− 2

is negative for any τ > 0, i.e. c(1) < 0, which, together with the convexity of
c(γ), leads to c(γ) < 0 for any γ ∈ (0, 1].

The main result of this subsection is the following
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Theorem 4.10. (Liouville) The equation

I−
Nu(x) + up(x) = 0, u ≥ 0 in R

N (4.44)

has nontrivial viscosity supersolutions if, and only if, p > 1 + 2s
γ̃ .

As before, we divide the proof of the previous theorem in several partial
results. We start with the

Proposition 4.11. For any p > 1 + 2s
γ̃ there exist positive viscosity supersolu-

tions of the equation

I−
Nu(x) + up(x) = 0 in R

N .

Proof. For q ∈
[

1
p−1 , γ̃

2s

)
we consider the function

u(x) =
1

(1 + |x|)2sq
.

Using Theorem 3.4, see also Remark 3.5, for any fixed x ∈ R
N , x 	= 0, it holds

I−
Nu(x) = NIξu(x),

ξ ∈ R
N being a unit vector such that 〈x̂, ξ〉 = 1√

N
. Thus we have

I−
Nu(x) =

NCs

(1 + |x|)2sq

∫ +∞

0

(
1+|x+τξ|

1+|x|
)−2sq

+
(

1+|x−τξ|
1+|x|

)−2sq

− 2

τ1+2s
dτ .

(4.45)

By the triangular inequality we have
1 + |x ± τξ|

1 + |x| ≥
∣∣∣∣x̂ ± τ

1 + |x|ξ
∣∣∣∣ ∀τ ≥ 0.

Then, by (4.45), we infer that

I−
Nu(x) ≤ NCs

(1 + |x|)2sq

∫ +∞

0

∣∣∣x̂ + τ
1+|x|ξ

∣∣∣−2sq

+
∣∣∣x̂ − τ

1+|x|ξ
∣∣∣−2sq

− 2

τ1+2s
dτ

=
NCs

(1 + |x|)2s(q+1)

∫ +∞

0

|x̂ + τξ|−2sq + |x̂ − τξ|−2sq − 2
τ1+2s

dτ

=
NCs

(1 + |x|)2s(q+1)
c(2sq)

where c(·) is the function defined by (4.40). Using Lemma 4.8 and the assump-
tion 2sq < γ̃, we see that c(2sq) < 0. Let v(x) = εu(x) for
ε ∈ (0, (NCs|c(2sq)|)1/(p−1)). Using q ≥ 1

p−1 we finally obtain

I−
Nv(x) + vp(x) ≤ ε

(1 + |x|)2s(q+1)

(
NCsc(2sq) +

εp−1

(1 + |x|)2s(qp−q−1)

)

≤ ε

(1 + |x|)2s(q+1)

(
NCsc(2sq) + εp−1

) ≤ 0 ,

completing the proof. �
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Lemma 4.12. Let u be a nonnegative viscosity supersolution of

I−
Nu(x) = 0 in R

N .

Then the following statements hold:
• there exists a positive constant a = a(γ̃) such that

m(r) ≥ am(1) r−γ̃ ∀r ≥ 1; (4.46)

• for any γ ≥ γ̃ there exists a positive constant b = b(γ) such that

m(R) ≥ bm

(
R

2

)
∀R > 0. (4.47)

Proof. Let g̃(|x|) be the radial function

g̃(|x|) =

{
f̃(|x|) if |x| ≤ 1

2

|x|− γ̃
2 if |x| > 1

2 ,
(4.48)

where f̃ is defined, for r ≥ 0, by the formula

f(r) = 2
γ̃
2

[
−1

6
γ̃(γ̃ + 2)(γ̃ + 4)

(
r − 1

2

)3

+
1
2
γ̃(γ̃ + 2)r2

−1
2
γ̃(γ̃ + 4)r + 1 +

1
8
γ̃(γ̃ + 6)

]
.

With the choice of such f̃ , the function g̃′′ is convex in [0,+∞), since the graph

of f̃ ′′(r) is in fact the tangent line of the function
(
r− γ̃

2

)′′

= γ̃
2 ( γ̃

2 + 1)r− γ̃
2 −2

at r = 1
2 .

Set w(x) = g̃(|x|2). By Theorem 3.4-(iii), for any x ∈ R
N we have

I−
Nw(x) = NIξw(x),

where ξ ∈ R
N is an unit vector such that 〈x̂, ξ〉 = 1√

N
. Hence

I−
Nw(x) = NCs

∫ +∞

0

w(|x + τξ|) + w(|x − τξ|) − 2w(x)
τ1+2s

dτ. (4.49)

If |x| ≥ 1 and τ > 0 it holds that

|x ± τξ| ≥
√

|x|2 + τ2 − 2
τ |x|√

N
≥ |x|

√
1 − 1

N
≥ 1√

2
.

Then, using (4.48)–(4.49) and the definition of γ̃ given in Lemma 4.8, we infer
that

I−
Nw(x) = NCs

∫ +∞

0

|x + τξ|−γ̃ + |x − τξ|−γ̃ − 2|x|−γ̃

τ1+2s
dτ = 0.

In this way the function

φ(x) = m(1)
w(|x|) − w(R)
w(0) − w(R)
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is for any R > 1 a classical solution of I−
Nw(x) = 0 for |x| ∈ [1, R]. Moreover

u(x) ≥ m(1) ≥ φ(x) ∀|x| ≤ 1

and

u(x) ≥ 0 ≥ φ(x) ∀|x| ≥ R.

Then by comparison principle, see Theorem 2.5 and Remark 2.6, we infer that
u(x) ≥ φ(x) for any |x| ∈ [1, R]. Letting R → +∞ we obtain

u(x) ≥ m(1)
w(|x|)
w(0)

∀|x| ≥ 1,

which easily imply (4.46) with

a =
(

2
γ̃
2

[
1
48

γ̃(γ̃ + 2)(γ̃ + 4) + 1 +
1
8
γ̃(γ̃ + 6)

])−1

.

The proof of (4.47) follows the same idea used before. Fix γ ≥ γ̃. For R > 0,
consider the function

g̃(|x|) =

⎧⎪⎨
⎪⎩

f̃(|x|) if |x| ≤
(

R
2
√

2

)2

|x|− γ
2 if |x| >

(
R

2
√

2

)2

,

where

f̃(r) =
(

R

2
√

2

)−γ
[
−32

3
γ(γ + 2)(γ + 4)

R6

(
r − R2

8

)3

+
8

R4
γ(γ + 2)r2

− 2
R2

γ(γ + 4)r + 1 +
γ

8
(γ + 6)

]
.

Set w(x) = g̃(|x|2). Since g̃′′ is convex, we are in position to use the represen-
tation formula (4.49). Taking into account that for |x| ≥ R

2

|x ± τξ| ≥
√

|x|2 + τ2 − 2
τ |x|√

N
≥ |x|

√
1 − 1

N
≥ R

2
√

2
,

then

I−
Nw(x) = NCs

∫ +∞

0

|x + τξ|−γ + |x − τξ|−γ − |x|−γ

τ1+2s
dτ ≥ 0

the last inequality being a consequence of the fact that γ ≥ γ̃. Consider now
the function

φ(x) = m

(
R

2

)
w(|x|) − w(2R)
w(0) − w(2R)

,

which is in turn a solution of I−
Nφ(x) ≥ 0 for |x| ∈ [R

2 , 2R] and satisfies

u(x) ≥ m(1) ≥ φ(x) ∀|x| ≤ R

2
and

u(x) ≥ 0 ≥ φ(x) ∀|x| ≥ 2R.
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By comparison principle we conclude

m(R) ≥ m

(
R

2

)
w(R) − w(2R)
w(0) − w(2R)

= m

(
R

2

)
1 − 2−γ

(2
√

2)γ
[
1 + γ

48 ((γ + 2)(γ + 4) + 6(γ + 6))
] .

�

Proof of Theorem 4.10. We shall detail the proof in the critical case p = 1 +
2s
γ̃ , since if p > 1 + 2s

γ̃ the conclusion follows by Proposition 4.11, while the
subcritical case p < 1+ 2s

γ̃ can be treat in the same way as we did in the proof
of Theorem 4.2, using now Lemma 4.12. When p = 1 + 2s

γ̃ we need some extra
work. In particular we are not in a position to use the analogous of Lemma 4.6
for the operator I−

N , due to the lack of validity of the representation formula
for Γ(|x|) = ln |x|

|x|γ̃ . Note that Γ doesn’t even belong to L1
1,2s when N ≥ 3, since

γ̃ > 1 (see Remark 4.9). Moreover moreover Γ is concave near the origin. On
the other hand, for x far away the origin, we shall still obtain some useful
information that are sufficient to conclude.

Let Γ̃(|x|) = 1
2

ln |x|
|x|γ̃/2 . The function Γ̃′′(r) is convex for r ≥ r0 :

= exp
(

2
γ̃ + 2

γ̃+2 + 2
γ̃+4 + 2

γ̃+6

)
. Let f̃ ′′(r) = Γ̃′′(r0) + Γ̃′′′(r0)(r − r0) be the

tangent line of Γ̃′′ at r = r0. By construction the function

g̃(|x|) =

{
f̃(|x|) if |x| ≤ r0

Γ̃(|x|) if |x| > r0,

where

f̃(|x|) =
1
6
Γ̃′′′(r0)(r − r0)3 +

1
2
Γ̃′′(r0)r2 +

(
Γ̃′(r0) − Γ̃′′(r0)r0

)
r

+ Γ̃(r0) − 1
2
Γ̃′′(r0)r2

0 −
(
Γ̃′(r0) − Γ̃′′(r0)r0

)
r0,

is such that g̃′′ is convex in [0,+∞). Hence, setting w(x) = g̃(|x|2) and using
Theorem 3.4 we have

I−
Nw(x) = NIξw(x),
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ξ ∈ R
N being an unit vector such that 〈x̂, ξ〉 = 1√

N
. Moreover for |x| ≥ √

2r0

it holds that |x ± τξ| ≥ √
r0 for any τ > 0. Then for any |x| ≥ √

2r0

I−
Nw(x) = NCs

∫ +∞

0

Γ(|x + τξ|) + Γ(|x − τξ|) − 2Γ(|x|)
τ1+2s

dτ

= NCs

(
ln |x|

∫ +∞

0

|x + τξ|−γ̃ + |x − τξ|−γ̃ − |x|−γ̃

τ1+2s
dτ

+
1

|x|γ̃+2s

∫ +∞

0

ln |x̂+τξ|
|x̂+τξ|γ̃ + ln |x̂−τξ|

|x̂−τξ|γ̃

τ1+2s
dτ

⎞
⎠

= NCs
1

2|x|γ̃+2s

∫ +∞

0

⎛
⎜⎝

ln
(
1 + τ2 + 2τ√

N

)
√

1 + τ2 + 2τ√
N

γ̃
+

ln
(
1 + τ2 − 2τ√

N

)
√

1 + τ2 − 2τ√
N

γ̃

⎞
⎟⎠ τ−(1+2s) dτ

≥ − C

|x|γ̃+2s

where C = C(N, s) is a positive constant.
Now for r2 > r1 >

√
2r0 we consider the function

φ(x) = m(r1)
w(|x|) − w(r2)
w(0) − w(r2)

∀|x| ∈ [r1, r2].

Without loss of generality we may further assume that w(0)−w(r2) > 1
2w(0),

so that

I−
Nφ(x) ≥ −Cm(r1)

1
|x|γ̃+2s

(4.50)

where C is a positive constant depending only on N and s. In addition u(x) ≥
φ(x) for any |x| ∈ [0, r1] ∪ [r2,+∞).
Using the Eq. (4.44) and (4.46) we also have

I−
Nu(x) ≤ −(m(|x|))1+ 2s

γ̃ − ≤ (am(1))1+
2s
γ̃

1
|x|γ̃+2s

∀|x| ≥ 1. (4.51)

Since m(r1) → 0 as r1 → +∞, in view of the inequality

m(R)Rγ̃ < C ∀R > 0, (4.52)

for some positive constant C, by (4.50)–(4.51) we can then pick r1 sufficiently
large such that

I−
Nu(x) ≤ I−

Nφ(x) ∀|x| ∈ [r1, r2].

By comparison principle we have u(x) ≥ φ(x) for any |x| ∈ [r1, r2]. Letting
r2 → +∞ we deduce that

m(r) ≥ m(r1)
w(0)

w(r) =
m(r1)
w(0)

ln r

rγ̃
∀r > r1,

leading to a contradiction to (4.52) in the limit as r → +∞. �
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5. On the operator J±
k

In this section we concentrate on the operators J ±
k defined in (1.3). We leave

off the analysis the cases k = 1, where J ±
1 meets I±

1 studied in the previous
sections, and k = N , case in which J ±

k = −(−ΔRN )s, already studied in [20].
For simplicity, we write Δs

Rk = −(−ΔRk)s, to denote the fractional Laplacian
in R

k.
The key technical result of this section is the following

Proposition 5.1. Assume 1 < k < N . Let u(x) = g̃(|x|2) be such that u ∈
C2(RN ) ∩ L1

k,2s. If g̃ is convex, then:

(i) J −
k u(x) = JV u(x), where V is any k dimensional subspace which is

orthogonal to x;
(ii) J +

k u(x) = JV u(x), where V is any k-dimensional subspace containing x.
Moreover, defining ũ : R

k → R as ũ(y) := g̃(|y|2), we have

J +
k u(x) = Δs

Rk ũ(y), (5.1)

where y ∈ R
k is such that |y| = |x|.

Proof. Let x ∈ R
N . For k-dimensional subspace V , we choose an orthonormal

basis {ξ1, . . . , ξk} such that 〈x, ξi〉 = 0 for i ≥ 2. Then

JV u(x) =
Ck,s

2

∫
Rk

[g̃(|x|2 + |τ |2 + 2τ1 〈x, ξ1〉)

+g̃(|x|2 + |τ |2 − 2τ1 〈x, ξ1〉) − 2g̃(|x|2)]|τ |−(k+2s) dτ .

Assuming the convexity of g̃ and setting

h(t) = g̃(a + bt) + g̃(a − bt) for a ≥ b ≥ 0 and t ∈ [0, 1],

we recall, see the proof of (3.1), that h is nondecreasing. Then h(0) ≤ h(1)
yields 2g̃(a) ≤ g̃(a + b) + g̃(a − b) for a ≥ b ≥ 0. Choosing

a = |x|2 + |τ |2 , b = 2 |τ1 〈x, ξ1〉|
we infer that

2g̃(|x|2 + |τ |2) ≤ g̃(|x|2 + |τ |2 + 2τ1 〈x, ξ1〉) + g̃(|x|2 + |τ |2 − 2τ1 〈x, ξ1〉).
(5.2)

Consider now

a = |x|2 + |τ |2 , b = 2 |τ1| |x| .
For x 	= 0 and x̂ = x

|x| , the inequality h(| 〈x̂, ξ1〉 |) ≤ h(1) yields

g̃(|x|2 + |τ |2 + 2τ1 〈x, ξ1〉) + g̃(|x|2 + |τ |2 − 2τ1 〈x, ξ1〉)
≤ g̃(|x|2 + |τ |2 + 2τ1|x|) + g̃(|x|2 + |τ |2 − 2τ1|x|) .

(5.3)
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Note that the above inequality is also true for x = 0. From (5.2)–(5.3) we
obtain

2

∫
Rk

[g̃(|x|2 + |τ |2) − g̃(|x|2)]|τ |−(k+2s) dτ

≤
∫
Rk

[g̃(|x|2 + |τ |2 + 2τ1 〈x, ξ1〉) + g̃(|x|2 + |τ |2 − 2τ1 〈x, ξ1〉)

− 2g̃(|x|2)]|τ |−(k+2s) dτ

≤
∫
Rk

[g̃(|x|2 + |τ |2 + 2τ1|x|) + g̃(|x|2 + |τ |2 − 2τ1|x|) − 2g̃(|x|2)]|τ |−(k+2s) dτ .

Therefore if x ∈ V ⊥, then 〈x, ξ1〉 = 0, while if x ∈ V then | 〈x, ξ1〉 | = |x|.
Thus,

min
dim V =k

JV u(x) = Ck,s

∫
Rk

[g̃(|x|2 + |τ |2)

−g̃(|x|2)]|τ |−(k+2s) dτ

which is realized when x ∈ V ⊥, and

max
dim V =k

JV u(x) =
Ck,s

2

∫
Rk

[g̃(|x|2 + |τ |2 + 2τ1|x|) + g̃(|x|2 + |τ |2 − 2τ1|x|)

−2g̃(|x|2)]|τ |−(k+2s) dτ

which is achieved when x ∈ V .
In order to prove (5.1), let V =

〈{ξi}k
i=1

〉
a k-dimensional subspace con-

taining x. In this way J +
k u(x) = JV u(x) and without loss of generality we can

further assume that 〈x̂, ξi〉 = 0 for all i = 2, ..., k.
Let {ei}k

i=1 the canonical basis in R
k. Using the rotation invariance of

the fractional Laplacian, for y ∈ R
k such that |y| = |x| we have

Δs
Rk ũ(y) = Δs

Rk ũ(|y|e1)

=
Ck,s

2
P.V.

∫
Rk

[
g̃

(
||y|e1 +

k∑
i=1

ziei|2
)

+ g̃

(
||y|e1 −

k∑
i=1

ziei|2
)

−2g̃(|y|2)] |z|−(k+2s) dz

=
Ck,s

2
P.V.

∫
Rk

[
g̃(|x|2 + 2|x|τ1 + |τ |2) + g̃(|x|2 − 2|x|τ1 + |τ |2)

−2g̃(|x|2)] |τ |−(k+2s) dτ

= JV u(x)

as we wanted to show. �

Using known results for the fractional Laplacian (see [10,12]) and the
previous proposition we get the following

Corollary 5.2. The function u(x) = |x|−(k−2s) satisfies

J +
k u(x) = 0 for x ∈ R

N\{0}.
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Using the representation formula and Theorem 1.3 in Felmer and Quaas
[20], we can get the Liouville Theorem for J +

k

Theorem 5.3. Let 1 < k < N . Then, the equation

J +
k u(x) + up(x) = 0 in R

N (5.4)

has nontrivial viscosity supersolutions if, and only if,

p >
k

k − 2s
.

Proof. For the existence of nontrivial supersolution, we consider 1
p−1 < q <

k−2s
2s and v(y) = c(1 + |y|)−2sq, where y ∈ R

k and c is a positive constant.
According to [20], if c is small enough we have

J +
k v(x) + vp = Δs

Rkv(y) + vp ≤ 0.

On the other hand, if p ≤ k/(k−2s) and there exists a nontrivial supersolution
u for (5.4), the function

v(x) = min{u(Ox) : O is a rotation matrix in R
N}

is a positive, radial supersolution for (5.4). Let h̃ : [0,+∞) → R such that
v(x) = h̃(|x|) and denote w(y) = h̃(|y|), y ∈ R

k. Then, we have

Δs
Rkw(y) =

Ck,s

2

∫
Rk

[
h̃

(∣∣∣∣∣
k∑

i=1

yiei +
k∑

i=1

ziei

∣∣∣∣∣
)

+h̃

(∣∣∣∣∣
k∑

i=1

yiei −
k∑

i=1

ziei

∣∣∣∣∣
)

− 2h̃(|y|)
]

|z|−(k+2s) dz

≤ J +
k v

(
k∑

i=1

yiei

)
,

where {ei}N
i=1 is the canonical basis (we have identified ei ∈ R

k for i ≤ k).
Then, w is a nontrivial supersolution to

Δs
Rkw + wp ≤ 0 in R

k,

which contradicts the nonexistence result in [20]. �

For J −
k , in analogy to Theorem 4.7 we have the following

Theorem 5.4. Assume 1 < k < N and consider the equation

J −
k u(x) + up(x) = 0 in R

N . (5.5)

Then
(i) for any p ≥ 1 there exist positive classical solutions of (5.5);
(ii) for any p ∈ [1 − s, 1) there exist nonnegative viscosity solutions u 	≡ 0 of

(5.5);
(iii) for any p ∈ (0, 1−s) there exist nonnegative viscosity supersolutions u 	≡ 0

of (5.5).
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6. Appendix

In this section we provide a sketch of the proof of some results related to the
convergence of the nonlocal operators presented here towards the local regime,
that is, when s → 1−. It is worth to mention that the normalizing constant
in (1.5) is given (see [18]) by

CN,s =
(∫

RN

1 − cos(z1)
|z|N+2s

dz

)−1

. (6.1)

We start with the following convergence result that is at the core of the stability
of viscosity solutions. Recall that we denote Cs = C1,s.

Lemma 6.1. Let u ∈ C2(RN ) be such that

‖u‖L1
1,2r0

:= sup
dim(V )=1
V affine

{∫
V

|u(y)|dH1(y)
1 + |y|1+2r0

}
< ∞

for some r0 ∈ (0, 1).
Then, for each x ∈ R

N we have

I±
k u(x) → P±

k u(x) as s → 1−.

Analogously, if u ∈ C2(RN ) and

‖u‖L1
k,2r0

:= sup
dim(V )=k

V affine

{∫
V

|u(y)|dHk(y)
1 + |y|k+2r0

}
< ∞

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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for some r0 ∈ (0, 1), then for each x ∈ R
N we have

J ±
k u(x) → P±

k u(x) as s → 1−.

Proof. We write the proof for I+
k and J +

k , those for I−
k and J −

k being similar.
Let us first show that for r0 ≤ s < 1 and k ≥ 1

‖u‖L1
k,2s

:= sup
dim(V )=k

V affine

{∫
V

|u(y)|dH1(y)
1 + |y|k+2s

}
≤ C

for C = C(k, ‖u‖L1
k,2r0

) independent of s. Indeed

‖u‖L1
k,2r0

≥ sup
dim(V )=k

V affine

∫
V

|u(y)|dHk(y)
(1 + |y|)k+2r0

≥ sup
dim(V )=k

V affine

∫
V

|u(y)|dHk(y)
(1 + |y|)k+2s

≥ 1
2k+1

sup
dim(V )=k

V affine

∫
V

|u(y)|dHk(y)
1 + |y|k+2s

=
1

2k+1
‖u‖L1

k,2s
.

Let ε > 0. For s ∈ [r0, 1), there exists a frame {ξj = ξj(ε, s)}k
j=1 ∈ Vk such

that

I+
k u(x) − P+

k u(x) ≤
k∑

j=1

Iξj
u(x) − P+

k u(x) + ε

≤
k∑

j=1

(
Iξj

u(x) − 〈D2u(x)ξj , ξj〉
)

+ ε.

For δ ∈ (0, 1) to be fixed, we can write for each j

Iξj
u(x) =

1

2
Cs

∫ δ

−δ

1
2
〈(D2u(x̃(ξj(ε, s), τ)) + D2u(x̃′(ξj(ε, s), τ))

)
ξj , ξj〉

|τ |2s−1
dτ + CsO(δ−2s),

where x̃(ξj(ε, s), τ), x̃′(ξj(ε, s), τ) ∈ Bδ(x) for all ε, j, s, τ , and O(δ−2s) just
depend on the ‖u‖L1

2s
≤ C for some C independent of s and ε. Using the

continuity of D2u, we can fix δ = δ(ε) small enough in order to have∣∣∣∣12
(
D2u(x̃(ξj(ε, s), τ)) + D2u(x̃′(ξj(ε, s), τ))

)− D2u(x)
∣∣∣∣ ≤ ε,

for all s ∈ [r0, 1), j = 1, . . . , k and |τ | < δ. Then, we can write

I+
k u(x) − P+

k u(x) ≤ Cskε

2 − 2s
δ2−2s

+
k∑

j=1

〈D2u(x)ξj , ξj〉
(

Cs

2 − 2s
δ2−2s − 1

)
+ CsO(δ−2s) + ε.

(6.2)

Since
Cs

2(1 − s)
→ 1 as s → 1−,
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(see [18]), then passing to the limit in (6.2), we have

lim sup
s→1−

I+
k u(x) − P+

k u(x) ≤ (k + 1)ε.

A reverse inequality can be found in the same way, and the result follows.
For J ±

k the proof is similar, so we will be sketchy. Given any V =
{ξi}k

i=1 ∈ Vk and δ > 0 we can write

JV u(x) =
Ck,s

2

k∑
i,j=1

∫
Bδ

1
2 〈(D2u(x̃) + D2u(x̃′)

)
ξi, ξj〉τiτj

|τ |k+2s
dτ + Ck,s O(δ−2s),

where x̃ = x̃(V, τ), x̃′ = x̃′(V, τ) are such that |x̃ − x| ≤ δ. Then, using the
continuity of u, for each ε > 0 we can get δ(ε) > 0 and {ξj = ξj(ε, s)}k

j=1 ∈ Vk

such that

JV u(x) ≤ Ck,s

2

k∑
i,j=1

(
ε + 〈D2u(x)ξi, ξj〉

) ∫
Bδ

τiτj |τ |−(k+2s)dτ + Ck,s O(δ−2s),

and using the symmetry of the integral term, we have∫
Bδ

τiτj |τ |−(k+2s)dτ = δij

∫
Bδ

τ2
1 |τ |−(k+2s)dτ = δijk

−1

∫
Bδ

|τ |2−k−2sdτ

= δijk
−1|Sk−1| δ2−2s

2 − 2s

where δij is the Kronecker delta and |Sk−1| denotes the (k − 1)-dimensional
measure of the unit sphere in R

k. For k > 1, since we have the estimate (see
Corollary 4.2 in [18])

Ck,s |Sk−1|
4k(1 − s)

→ 1 as s → 1−,

we obtain

lim sup
s→1−

J +
k u(x) − P+

k u(x) ≤ O(ε).

From this the result follows. �

Lemma 6.2. Let γ̄ = γ̄(k, s) defined in Proposition 3.7. Then, γ̄ → 0 as s →
1−.

Let γ̃ = γ̃(N, s) defined in Lemma 4.8. Then, γ̃ → N − 2 as s → 1−.

Proof. We already know that γ̄ ∈ (0, 1) and γ̃ > 0. Moreover from the proof of
Lemma 4.8 we can also infer that, for any s ∈ (1

2 , 1), γ̃ < c where c is a positive
constant depending only on N . Hence both γ̄ and γ̃ are uniformly bounded.

For γ̄, let us first observe that, by Proposition 3.7, one has

γ̄(k, s) < γ̄(k + 1, s).

Then it is sufficient to prove that γ̄ → 0, as s → 1−, for k large, say k ≥ 4. If
not, let γ1 ∈ (0, 1] be an accumulation point of γ̄ as s → 1−. Then, by stability
of viscosity solutions, the function wγ1(x) = |x|−γ1 would be a solution of
P+

k (D2w) = 0 for x 	= 0. But this contradicts the fact that the only positive
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exponent γ such that wγ(x) = |x|−γ is solution for P+
k is γ = k − 2, see [7],

while γ1 < k − 2 for k ≥ 4. Thus, γ̄ → 0 as s → 1−.
On the other hand, let γ1 ≥ 0 be an accumulation point of γ̃ as s → 1−.

Using the definition of c(γ) in (4.40), for each s we have

0 = Cs

∫ +∞

0

(
1 + τ2 + 2√

N
τ
)−γ̃/2

+
(
1 + τ2 − 2√

N
τ
)−γ̃/2

− 2

τ1+2s
dτ,

and from here we have

0 = Cs

∫ 1
2

√
N

0

(
1 + τ2 + 2√

N
τ
)−γ̃/2

+
(
1 + τ2 − 2√

N
τ
)−γ̃/2

− 2

τ1+2s
dτ + CsO(1),

where O(1) is independent of s close to 1. By a Taylor expansion, we have
(

1 + τ2 +
2√
N

τ

)−γ̃/2

+
(

1 + τ2 − 2√
N

τ

)−γ̃/2

− 2

= γ̃τ2
(

− 1 +
γ̃ + 2

N

)
+ O(τ3),

where O(τ3) is independent of s. Thus, replacing this into the integral term
we get

0 =
γ̃

(4N)1−s

(
− 1 +

γ̃ + 2
N

) Cs

2 − 2s
+ CsO

( 1
3 − 2s

)
+ CsO(1),

from which, taking limit as s → 1− we arrive at

0 = γ1

(
− 1 +

γ1 + 2
N

)
,

for some C > 0, from which the result follows. If N ≥ 3 we know that γ1 ≥ 1
(see Remark 4.9), from which the result follows. In the case N = 2, we see
that γ1 = 0. �
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[17] Del Pezzo, L., Quaas, A., Rossi, J.: Fractional convexity. Math. Ann. (2021).
https://doi.org/10.1007/s00208-021-02254-y

[18] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional
Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

[19] Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions.
Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

[20] Felmer, P., Quaas, A.: Fundamental solutions and Liouville type theorems for
nonlinear integral operators. Adv. Math. 226, 2712–2738 (2011)

[21] Harvey, R.F., Lawson, H Blaine, Jr.: Dirichlet duality and the nonlinear Dirichlet
problem. Commun. Pure Appl. Math 62(3), 396–443 (2009)

http://arxiv.org/abs/2107.07303


NoDEA Fractional truncated Laplacians: representation ... Page 49 of 49 26

[22] Harvey, R.F., Lawson, H Blaine, Jr.: p-convexity, p-plurisubharmonicity and the
Levi problem. Indiana Univ. Math. J. 62(1), 149–169 (2013)

[23] Kassmann, M., Rang, M., Schwab, R.: Integro-differential equations with non-
linear directional dependence. Indiana Univ. Math. J. 63(5), 1467–1498 (2014)

Isabeau Birindelli and Giulio Galise
Dipartimento di Matematica Guido Castelnuovo
Sapienza Universitá di Roma
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