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Abstract

In this Thesis, I investigate the problem of the interplay between disorder and
low dimensionality in superconductors.

From the microscopic point of view, I show that the presence of impurities in the
superconducting condensate can produce a pairbreaking effect at the Lifshitz transi-
tion in multibands superconductors, avoiding or at least circumventing Anderson’s
Theorem. This is consistent with the observed suppression of the superconducting
critical temperature Tc in SrTiO3-based heterostructures as a function of the gate
potential VG. This study allows us to disentangle microscopic from mesoscopic
disorder in SrTiO3-based interfaces: microscopic impurities are in fact necessary to
explain the suppression of Tc observed when multiband superconductivity is involved;
the global behavior is instead well captured only if the strongly inhomogeneous
nature of such compounds is considered.

Indeed, disorder can also appear on a mesoscopic length scale. The electronic
condensate can in fact segregate into regions large enough to define a local phase
but small compared with the sample. The reasons behind this inhomogeneity of the
superconducting order parameter can be several, depending on the system in exam:
in oxides heterostructures it may be connected to the thermodynamic instability
caused by the electrostatic potential confining the electron gas at the interface, in
transition metal dichalcogenides the instability may be introduced by the gating
ionic liquid, whereas sometimes the phase separation can be caused by the presence
of microscopic impurities in addition with the competition of superconductivity with
another order parameter, e.g., the charge ordering in the case of cuprates. Such a
phase separation may appear as a filamentary structure.

Concerning mesoscopic inhomogeneities, I will focus on two different materials.
In SrTiO3-based heterostructures, where filamentary superconductivity is em-

bedded in a metallic matrix, I study the consequences of filamentarity in transport
properties, assuming a priori a fractal-like organization of the electronic condensate
and calculating the complex conductance with a Random Impedance Network model.
The geometry of the filamentary structure plays a crucial role, especially in the
behavior of the superfluid stiffness as a function of the temperature. Although the
motivation of this work is connected to resonant microwave experiments performed
on a LaAlO3/SrTiO3 interface, the results are quite general and can in principle be
applied to other materials displaying filamentary superconductivity.

In cuprates, I focus on the phase competition as the most likely reason of fila-
mentarity. The charge ordering-superconducting (CO-SC) competition is studied by
means of Monte Carlo simulations within an anisotropic Heisenberg model accounting
for the basic physical symmetries involved, the out-of-plane pseudospin component
mapping two possible charge density waves (CDW) variants while the in-plane
component standing for the SC order parameter. The anisotropy term α is taken as
the control parameter, tuning the transition from Berezinskii-Kosterlitz-Thouless
(BKT) to the charge ordered state. The phase diagram Tc vs α is studied both in
the clean case and in a random field, the presence of microscopic impurities being
necessary to stabilize the clustering of charge ordered domains and the appearance
of filamentary superconductivity.
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Introduction

More than a century after the discovery of superconductivity in mercury by H.
K. Onnes [1], this state of matter still offers many challenges. The systematic
study of the phenomenon passed through many phenomenological theories apt to
describe the odd observations, concerning in particular the Meissner effect. The
London equations and the Ginzburg Landau theories provided fine results, the
former having their basis in the Maxwell equations, the latter addressing more
generally second order phase transitions. A microscopic theory about the origin of
the attractive interaction between electrons will be given only in the early 1950s with
the famous Bardeen-Cooper-Schrieffer (BCS) theory [2, 3]. However, the discovery
of high-temperature superconductivity in cuprates [4] changed the game: until
then, the only mechanism hypothesized to justify the effective attraction between
electrons (the so-called glue) was the electron-phonon coupling, which was however
able to predict only superconductors with a low critical temperature Tc. Even
today, the origin of superconductivity in cuprates, as in many other materials, is
still debated and we still call tautologically “conventional superconductors” the ones
well described by the weak electron-phonon coupling of BCS theory, while all the
other superconductors are referred to as “unconventional”.

On the other hand, the remarkable progress made so far in material science made
it possible to engineer really low dimensional systems, such as compounds with truly
atomic thickness, paving the way for the observation of new phenomena, among
which we find topological phase transitions. One of the most fascinating examples of
topological phase transitions remains the one described by the Berezinskii-Kosterlitz-
Thouless (BKT) theory [5–7], whose applicability ranges from the quantum metal-
insulator transition in one dimension to the Coulomb-gas screening transition in two
dimensions, and of course the two-dimensional metal-to-superconductor transition.
The power of the BKT transition relies in the fact that it circumvents the Mermin-
Wagner theorem [8], which states rigorously that the one- and two-dimensional
isotropic Heisenberg models with short range interactions have no long-range order
at any finite temperature T . For their work on the transition, Kosterlitz and
Thouless have been awarded by the 2016 Nobel Prize in Physics. Nevertheless, the
experimental observations in real materials do not often follow literally the BKT
predictions. Concerning the superconductive transition, a typical example is the
behavior of the superfluid density (or stiffness): according to the BKT theory, the
stiffness is expected to exhibit a discontinuous jump to zero as soon as the BKT
critical temperature is reached coming from lower T , leading to the sudden vanishing
of the superconducting state. In real systems, the presence of disorder at different
levels can however smear, broaden and eventually cover the signatures of a BKT
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transition.
Nonetheless, the presence of disorder can make things much more complicated

yet much more intriguing, sometimes leading to completely new phenomena. This is
exactly the case of two-dimensional superconductors, where new and unexpected
transport properties arise due to disorder.

For weakly disordered superconductors, Anderson [9] showed that nonmagnetic
impurities do not affect significantly the superconducting transition: starting from
the BCS theory, the pairing mechanism leading to long-range phase coherence per-
sists and the critical temperature is almost unchanged. Localization effects appear
when the disorder is increased toward the strong disorder limit and measurements
register a gradual decrease of Tc . However, in such cases, one should expect that
superconductivity is drastically suppressed. The answer to this apparent anomaly
was given by P. Lee and M. Ma in 1985 [10], following the original idea of Anderson.
They proposed that even if single-particle states get localized by disorder, supercon-
ductivity can survive if there are enough localized states in a range of energy ∆,
i.e., the superconducting gap. However, many mechanisms other than Anderson’s
localization can intervene, generating spatial inhomogeneities.

In this Thesis, we investigated many ways in which low-dimensionality and
disorder interplay, with a particular emphasis on a new paradigm starting to emerge,
namely filamentary superconductivity. The very interesting aspect of filamentary
superconductivity is the fact that this topic can be addressed in many ways and
on many levels of understanding, also because very little is known so far, from the
theoretical point of view. In particular, two main materials will be considered as
exemplary cases, in which filamentarity can arise from very different causes: SrTiO3-
based interfaces and cuprates, both presenting a very rich variety of properties other
than superconductivity.

The presence of a highly mobile two-dimensional electron gas (2DEG) was de-
tected at the interface between two insulating perovskite oxides, Strontium Titanate
(SrTiO3) and Lanthanum Aluminate (LaAlO3), by Ohtomo and Hwang [11] in
2004. Thereafter, an increasingly intense theoretical and experimental investiga-
tion has been devoted to these systems, whose carrier density n can be tuned by
means of gate voltage VG making the 2DEG superconducting, thus opening the way
to voltage-driven superconducting devices. Besides, the 2DEG exhibits magnetic
properties and a strong and tunable Rashba spin-orbit coupling. Moreover, it is
extremely two-dimensional, with a lateral extension of ≈5 nm, enhancing the effect
of disorder, whose origin can be due to extrinsic and/or intrinsic sources. Similar
results hold true also for other heterostructures such as LaTiO3/SrTiO3, where the
role of Lanthanum Aluminate is taken by Lanthanum Titanate LaTiO3. However,
the situation about such compounds is still far from being settled, from many points
of view. From the microscopic point of view, the very origin of superconductivity
is still a matter of intense debate as it is the superconducting dome of their phase
diagram Tc vs VG. As a matter of fact, the suppression of the critical temperature
observed at high gate voltages – where multiband superconductivity seems to emerge
– is one of the unsolved issues and it will be one of the topics we will address in this
Thesis [12,13].

From a more “macroscopic” point of view, instead, many experimental indica-
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tions point towards the strongly inhomogeneous nature of the 2DEG, preventing the
observation of a BKT transition: tunneling [14,15], atomic force microscopy [16], and
critical current experiments [17] provide clear evidence of an inhomogeneous interface.
Transport measurements report further signs of inhomogeneity. Particularly, the
large broadening of the resistive transition and the long tails observed at low tem-
peratures cannot be reproduced by reasonable paraconductive effects [18]. Instead,
those features can be well described by a percolative scenario within a Random
Resistor Network model [19–22]. The tendency to an electronic phase separation [23]
has been proposed as the leading mechanism generating a deeply inhomogeneous
superconducting state with a rather filamentary character [19]. Recently, new reso-
nant microwave transport measurements on SrTiO3-based interfaces allowed direct
access to the superfluid stiffness and the optical conductivity, providing further
evidences of filamentary superconductivity [24–27]. In particular, observing the
data at different gate voltages two regimes will be identified and they will be referred
to as underdoped (UD) and overdoped (OD), depending on whether the carrier
density is smaller or larger than the carrier density at which the maximum Tc is
observed. The difference between the two regimes will be discussed henceforth in
terms of a more or less dense fractal of superconducting filaments in presence of a
proximization process on the underlying metal [25–27].

Evidences of filamentary superconductivity have been found also in cuprates.
Although the discovery of cuprates dates back to 1986, many issues remain un-
solved. Those layered insulating materials display in fact a wide phenomenology
once chemically doped. Referring here only to the hole-doped side of their phase
diagram, they present an insulating Mott phase at low dopings with long-range
antiferromagnetic order; increasing the doping, a superconducting dome is observed
above which they undergo a transition to a metallic phase which does not however
fit in the standards of a Fermi liquid. Those materials are also good candidates to
look for the BKT transition and clear BKT signatures have been recently found in
bulk La2−xSrxCuO4 [28]. However, the rich phenomenology presented by cuprates
is still far from being encompassed into a microscopic and complete theory that
can account for all the anomalies observed. What is really intriguing and diffi-
cult to model from the theoretical point of view is the presence of many different
order parameters, among which we find the charge density and superconducting
ones. Recently, evidences of filamentarity have been found in high pulsed magnetic
field resistance measurements [29] where filamentary superconductivity has been
attributed to the charge ordering-superconducting (CO-SC) competition. As a
matter of fact, the CO-SC competition has been studied from the late 1970s [30],
i.e., before the discovery of superconductivity in cuprates: both the charge density
wave (CDW) and superconductivity are in fact broken symmetry states appearing
in solids and requiring an effective attraction between electrons, condensed in real
or momentum space. In this competing scenario found in cuprates, filamentary
superconductivity appears to be a topologically protected domain boundary be-
tween different charge ordered domains, favored by the presence of impurities [31,32].

This Thesis is organized as follows: in Chapter 1 we will review the main
aspects of two-dimensional superconductivity. In particular, a quick summary of the
Ginzburg-Landau phenomenological theory will be the starting point to introduce
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superconductivity in low dimensional systems and the BKT transition will be treated
within the ferromagnetic XY model.

In Chapter 2 we will introduce the reader to some experiments performed on low
dimensional systems. On the one hand, we will provide some examples of strongly
inhomogeneous compounds in which no sign of BKT transition can be tracked
despite the low dimensionality. In this context, SrTiO3-based heterostructures will
be discussed in detail. Instead, we introduce cuprates as an example of BKT-like
physics, presenting the rich phenomenology of their phase diagram and the more
recent evidences of a filamentary superconducting state appearing in the underdoped
region and tuned by a magnetic field. We will then introduce the model proposed
so far to treat the competition between charge order and superconductivity that
explained the ground state filamentary superconductivity.

Once the state of the art, both theoretical and experimental, has been described,
we will start to investigate some of the many aspects of disorder. In Chapter 3, we
will study the role of microscopic disorder in the suppression of Tc in multiband
systems as a function of the gating potential. Indeed, we will try to unravel and
disentangle the role of impurities from the effects of mesoscopic inhomogeneities in
heavily disordered SrTiO3-based interfaces [12,13]. The pairbreaking effect observed
at the Lifshitz transition in a multiband system has been already attributed to the
combined effect of microscopic impurities and an interband repulsive interaction.
In our work, we underline the role of strong disorder in circumventing Anderson’s
Theorem. As a matter of fact, the suppression observed in Tc will be found already
when two unpaired bands are considered, the only coupling mechanism being the
broadening and mixing of the bands introduced by disorder.

While inhomogeneities at a mesoscopic level affect the Tc curves only by smoothen-
ing the minimum at the Lifshitz transition, they are instead of great interest when
dealing with transport properties. In Chapter 4 we will present the new evidences
of filamentarity in resonant microwave transport experiments on a LaAlO3/SrTiO3
interface. Those data will be analyzed by means of a Random Impedance Network
(RIN) model, being nothing but the extended version at finite frequency of the
Random Resistor Network (RRN) [33], already used in the context of percolative
metal-to-superconductor transitions. The RRN and its extension to RIN will be
explained in detail, in their exact solution and also in their effective medium theory
(EMT) approximation. As a matter of fact, a proximization process intervening in
strengthening superconductivity will be necessary to capture the phenomenology
observed. If, on the one hand, the long tails of the superfluid stiffness can be
attributed to the same filaments necessary to percolation, the sudden jump of Js
and the finite value of the optical conductivity at zero temperature will be explained
by the thickening of the filaments towards a more two-dimensional structure of the
superconducting condensate. The RIN model will be studied before in its EMT
solution to capture the main aspects, then in its exact solution where the filamentary
geometry will play a crucial role. Here, the filamentary backbone will be given as an
external structure, forgetting about its origin.

Chapter 5 is devoted instead to the study of the origin of filamentary supercon-
ductivity in cuprates as a result of the CO-SC competition and how this competition
is reflected in many physical quantities as functions of temperature. Starting from
an Heisenberg model with an effective barrier between CO and SC states, similar
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to the one proposed in [31, 32], the SO(3) symmetry of the order parameter is
mapped onto a three dimensional pseudospin on a square lattice, where the in-plane
component accounts for the BKT superconducting transition while the out-of-plane
stands for two different charge ordered states. By means of Monte Carlo simulations,
we will try a first attempt to construct a phase diagram, in which the anisotropy
term – introduced to tune the transition from BKT to Ising (CO) – will mirror the
effects of a magnetic field in a real system. Along with the CO-SC competition, the
presence of a random field mimicking impurities will appear to be necessary in order
to force the clustering of CO regions and the natural appearance of filamentary
superconductivity.
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Chapter 1

Two-dimensional
superconductivity: an Overview

“I call our world Flatland, not because we call
it so, but to make its nature clearer to you,
my happy readers, who are privileged to live
in Space.”

Flatland: A Romance of Many Dimensions,
Edwin Abbott Abbott

Since the main focus of this work is on two-dimensional materials displaying
superconductivity, it is important to talk about the theory of Berezinsky, Kosterlitz
and Thouless (BKT). In this Chapter we will therefore present the BKT transition,
right after introducing briefly some of the main general aspects of superconductivity
in the Ginzburg Landau framework.

1.1 Superconductivity: a glance

Quoting N. Nagaosa [34]: “When we have to explain in a word what superconductivity
means, the answer might be that the quantum mechanical phase of the electron
system becomes “solid” as if it were a rigid body, and gains rigidity.” Indeed,
microscopically two key ingredients are involved:

• a weak attractive interaction between electrons, leading to the formation of
bounded pairs with opposite spins and momenta, i.e., the Cooper pairs;

• the condensation of Cooper pairs into a macroscopic quantum wave function
whose global phase becomes rigid.

It is precisely this phase rigidity that gives the two peculiar properties of a super-
conductor, i.e., the zero resistance and the perfect diamagnetism. Along with the
formation of Cooper pairs and their condensation, two energy scales govern the
system: those are, respectively, the energy gap ∆, observable in the quasi particle
excitation spectrum, and the superfluid stiffness Js, i.e., the energy cost required to
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twist the phase of the Cooper pair wave function. Typically ∆� Js and the transi-
tion happens in “one-step”: this is the case of most conventional superconductors,
well described by the Bardeen-Cooper-Schrieffer (BCS) theory [2, 3]. Except for the
derivation of the superconducting energy gap in a two band system in Appendix A,
we will not explore here other aspects of the BCS theory and we refer the reader
to the wide existing literature [35, 36]. Instead, we will quickly describe below
the Ginzburg Landau theory for a superconductor that will lead us to the BKT
transition. Whenever Js � ∆ a major role is played by phase fluctuations and
superconductivity can be destroyed, even if the energy gap remains finite. This is
for instance the case of underdoped cuprates (see Section 2.2.1). The role played
by phase fluctuations becomes particularly important in two dimensions, where the
superconducting transition is led by the vortex-antivortex unbinding of the BKT
transition [37].

1.1.1 From Ginzburg-Landau theory to the XY model

The Ginzburg-Landau (GL) theory is a phenomenological theory developed to
describe second order phase transitions, such as the ferromagnetic one, and was
successively extended to superconductivity [38, 39]. The power of the GL theory
relies on the fact that it provides a simple way to describe all the main characteristics
of the superconducting transition, i.e, the spontaneous symmetry breaking in relation
to the appearance of a global rigid phase and the Meissner effect.

The general form of the GL free energy is

F = Fn + α0(T − Tc)|ψ|2 + β0
2 |ψ|

4 + 1
2m∗

∣∣∣∣(~i∇− e∗

c
A
)
ψ

∣∣∣∣2 + (∇×A)2

8π (1.1)

where ψ = |ψ(r)|eiθ(r) is the complex order parameter, Fn is the free energy of the
normal state, α0, β0 > 0 are GL parameters to be determined from experiments, A
is the vector potential, m∗ is twice the (effective) mass of electrons and e∗ = 2e is
the charge of the Cooper pair. Note that the amplitude of the order parameter can
be identified with the density of Cooper pairs |ψ|2 = ns/2, where ns is the density
of superconducting electrons per unit volume.

Above the transition, the GL free energy functional is a paraboloid with its
minimum in ψ = 0. Below the critical temperature Tc and in the absence of magnetic
fields and currents, F acquires the typical mexican hat form displayed in Fig. 1.1:
the ground state lies on a circle of amplitude |ψ| while the phase has a continuous
degeneracy in all range between 0 and 2π. Once the phase of the ground state has
been selected, a change in θ is also called a Goldstone mode. Amplitude fluctuations,
also called Higgs modes, are then energetically expensive, except at T ≈ Tc, so we
can easily assume ψ = |ψ|eiθ(r).

When A = 0, the free energy reduces to

F = Fn + α0(T − Tc)|ψ|2 + β0
2 |ψ|

4 + ~2|ψ|2

2m∗ |∇θ(r)|2 (1.2)

The last term can be identified as the kinetic term: its prefactor represents the
energy cost to deform the global phase, once suitably converted in an energy scale,
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Figure 1.1. Free energy functional of a homogeneous superconductor in the absence of
external fields and currents. The free energy minima lie on a circle, whose azimuthal
angle is indicated with θ, of radius |ψ|, i.e., the amplitude parameter. Fluctuations of the
amplitude are indicated in red, while phase fluctuations are in blue (Figure from [37]).

and it will be called superfluid stiffness Js ∝ ~2|ψ|2
2m∗ . We can anticipate and underline

the fact that Js is proportional to the square of the order parameter. In this way,
superconductivity can circumvent the Mermin-Wagner theorem. The second order
phase transition described by the GL theory is in fact prohibited in dimensions
lower than 3 and no long range order is possible in isotropic systems displaying a
continuous symmetry, i.e., 〈ψ〉 = 0. This is not surprising, since phase fluctuations
are costless.

Note that the energy cost to deform a phase is also intrinsically related to the
penetration depth of the system, since the penetration depth is λL =

√
mc2/8|ψ|2mc2.

Indeed, we can easily obtain the London equation by deriving the free energy
functional in Eq. (1.1) with respect to A:

∂F

∂A = ψ2
0e
∗2

m∗c2 A + ∇× (∇×A)
4π = 0 (1.3)

where the phase fluctuation term has been gauged away with a proper gauge
transformation on A. Using the London gauge ∇·A = 0, the former exactly reduces
to the London equation:

∇2A = 16πψ2e2

m∗c2 A ≡ 1
λ2
L

A (1.4)

where λL =
√
mc2/4πnse2 is the London penetration depth, indicating the thickness

in which an external magnetic field can penetrate inside the superconductor. One
can then connect the phase rigidity with the Meissner effect by simply noticing that
Js ∝ 1/λ2

L.
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In absence of external fields and currents, one can write the Hamiltonian just as

H = ~2ns
4m∗

∫
|∇θ(r)|2dr = J0

∫
|∇θ(r)|2dr (1.5)

This is the kinetic energy term 1
2
ns
2 m

∗v2
s , where vs = ~

m∗∇θ(r) is the superfluid
velocity. Indeed, by definition, the current density in first quantization is j =
e∗~

2m∗i(ψ
∗∇ψ − ψ∇ψ∗) so the supercurrent density is js = e∗~

m∗ |ψ|
2∇θ(r) = ns

2 e
∗vs.

The Hamiltonian in (1.5) can be exactly mapped onto a ferromagnetic XY
model [40], which undergoes the BKT transition and it will be discussed in the next
Sections. Indeed, coarse graining the system by using as a short distance cutoff
the coherence length ξ1, we can change name to the order parameter from ψ to s,
defined on the XY plane and with constant unitary modulus and note that

si · sj = 1− 1
2(si − sj)2 (1.6)

so the square gradient of the order parameter of Eq (1.5) can be written as spin
variables square differences where the integral is replaced by the sum over nearest
neighbors, i.e., |∇θ(r)|2 → (1− si · sj), thus, neglecting a constant term, we obtain
the Hamiltonian for the XY model:

H = −J
∑
<ij>

si · sj . (1.7)

where J is now the interaction between neighboring spins.

1.2 The BKT transition

In the early 70’s Berezinsky [5] and Kosterlitz and Thouless [6, 7] showed that a
phase transition occurs in the XY model in two dimensions. In those days, several
physicists were investigating the presence, or the absence, of phase transitions
in low-dimensional systems (d = 1, 2) with short-range interactions. Mermin
and Wagner [8] proved rigorously that the one- and two-dimensional isotropic
Heisenberg models, with short range interactions, have no long-range order at any
finite temperature. The Beresinskii-Kosterlitz-Thouless (BKT) topological transition
circumvents the Mermin-Wagner theorem, considering, as a marker of the ordered
phase, the behavior of the correlation function rather than the average value of the
single spin. Nonetheless, the theorem is not violated because of the main peculiarity
of this phase transition, which is the fact that it occurs without any symmetry
breaking. As it will be explained hereafter, topological defects play a central role.

Let us present the BKT transition within the context of its paradigmatic formula-
tion for the classical XY model. The model describes the ferromagnetic interactions
between planar spins with unitary modulus |si|2 = 1, placed on a square lattice,
whose Hamiltonian reads:

HXY = −J
∑
<i,j>

si · sj = −J
∑
<i,j>

cos(θi − θj) (1.8)

1ξ ∼ 4 Å in type II superconductors so in that case is of the same order of the real lattice spacing
of the underlying lattice.
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being
∑
<i,j> the sum restricted to nearest neighbor spins, J a positive coupling

constant and θi the angle that the i-th spin forms with a given direction. From (1.8),
it is straightforward to recognize that the model admits two different symmetries:

• a continuous global symmetry U(1):

θi → θi + χ ∀i; (1.9)

• a discrete local symmetry Zm:

θj → θj + 2πm, m ∈ Z. (1.10)

As we will see, the latter one is the main responsible for the topological character
of this phase transition. Indeed, a new spin excitation arises from this symmetry,
namely a vortex. We will come back to this point in Section 1.3.

We anticipated that a transition is actually possible if we look at the behavior of
the correlation functions, defined as:

Cij = 〈si · sj〉 =
〈
ei(θi−θj)

〉
(1.11)

where the average 〈...〉 is the average over the canonical ensemble of the system:

〈A〉 = 1
Z

∫ 2π

0
dθ1...

∫ 2π

0
dθNAe

−βHXY , β = 1
kBT

. (1.12)

In the high-temperature limit, i.e., when βJ � 1, one can select the dominant
contribution to the above integration and obtain the result [34]

Cij = e−|ri−rj |/ξ, ξ = 1
ln
(2T
J

) . (1.13)

Thus, the correlation function decays exponentially with the distance, as in a typical
disordered system, with a correlation length that increases as T decreases, without
any divergence at finite T .

Let us now consider the low-temperature limit. Assuming that the difference in
angle between neighboring spins is slowly varying, we can approximate θi − θi+δ =
a∂θ(r)/∂δ̂, where θ(r) is a smooth function and δ̂ = x̂, ŷ. The Hamiltonian (1.8)
reduces to:

HXY '
J

2

∫
dr|∇θ(r)|2 = J

2

∫
dq

(2π)2 q2|θq|2. (1.14)

Note that we mapped the system back to Hamiltonian (1.5).
Referring to the original paper [8] for the complete demonstration, we are going

to show now that 〈si〉 → 0 when L→∞, so no long-range order is possible at any
finite temperature, according to the Mermin-Wagner theorem. The quantity to
compute is then

〈si〉 =
〈
eiθi
〉

= e−〈θ2
i 〉/2 (1.15)

where we use a well known property of the average over a Gaussian distribution.
Indeed, the preceding calculation is:〈

θ2
i

〉
=
∫

dq
(2π)2

〈
|θq|2

〉
=
∫ 1/a

1/L

dq
(2π)2

T

Jq2 = T

2π ln L
a

(1.16)
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being L the linear size of the system and a the lattice spacing between two neighbors
spins; finally

〈si〉 = e−
T

4πJ ln
(
L
a

)
=
(
a

L

) T
4πJ
−−−−→
L→∞

0. (1.17)

Hence, at any nonzero temperature the system has no spontaneous magnetization in
the thermodynamic limit.

However, as previously mentioned, observing the behavior of the correlation
function at low temperature leads to a very interesting result. Thus, let us calculate

C(r) =
〈
ei(θ(r)−θ(0))

〉
= e−

1
2〈[θ(r)−θ(0)]2〉 (1.18)

Computing the exponent in Fourier space, we get:〈
[θ(r)− θ(0)]2

〉
=
〈∫

dq1
2π θq1(eiq1r − 1)

∫
dq2
2π θq2(eiq2r − 1)

〉
=
∫

dq
(2π)2 [2− 2 cos(q · r)]

〈
|θ(q)|2

〉
= T

πJ

∫ 1/a

1/L

dq

q
(1− cos(q · r)) ∼ T

πJ

∫ 1/a

1/r

dq

q
= T

πJ
ln
(r
a

)
.

(1.19)

Substituting in (1.18) we get:

C(r) = e−
T

2πJ ln
(
r
a

)
=
(a
r

) T
2πJ (1.20)

As in the high-temperature regime, the correlation function decays to zero at large
distance. However, in this case the decay is much slower with respect to the
exponential decay found in the high-temperature case (1.13). In terms of correlation
length, the low-temperature power-law decay (1.20) means that ξ →∞. A drastic
change in the correlation functions occurs between the two regimes. Such a change of
behavior cannot be “smooth”, i.e., a phase transition must occur in between the two
regimes. This phase transition must be of a new type, since the standard definition of
phase transition in terms of an order parameter (or spontaneous symmetry breaking)
is not viable. On the other hand, a finite J in equations 1.13 and 1.14 signals that
the system is “rigid” against spin fluctuations, so it is usually called spin stiffness.

1.3 The role of vortices

As previously mentioned, topological excitations, namely vortices, are the best
candidates to be responsible for the phase transition we are looking for and they
originate from the discrete symmetry (1.10). They are characterized by a winding
of the phase of ±2π, going around the center of the vortex:∮

∇θ · d` = 2πm (1.21)

where m represents the vorticity of the vortex itself. It is clear that if a vortex
excitation is present in the system one cannot make the assumption of smoothness of
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the phase variations in neighboring sites that led us to the approximate form (1.14).
The first attempt of Kosterlitz and Thouless [6] was to look at the cost, in terms of
free energy, of an isolated free vortex of unitary vorticity. To make this estimate, we
would like to rewrite the Hamiltonian (1.8), separating the contribution of vortices
from the contribution of spin waves, so we can keep the continuum notation for θ(r)
allowing for configurations that are singular at a position r0.

The smooth configurations allowed by the Hamiltonian (1.14) are the solutions
of the variational equation δH = 0, i.e.,

∇2θ(r) = 0. (1.22)

It is then reasonable that vortex-like configurations satisfy the equation:

∇2θ(r) = 2πδ(r− r0) (1.23)

whose solution in D = 2 is
θ = arctan y − y0

x− x0
. (1.24)

Since ∇θ = (−y/r2, x/r2), so ∇θ ‖
−→
d`, we recover the vortex configuration:∮

∇θ ·
−→
d` = 1

r

∮
d` = 1

r
2πr = 2π. (1.25)

We can now calculate the energy of the vortex configuration by inserting (1.24)
in (1.14), obtaining:

E = J

2

∫
dr(∇θ(r))2 = J

2

∫ L

a
dr2πr 1

r2 = πJ lnL
a
. (1.26)

As one can see, the energy of a single vortex configuration shows a logarithmic
divergence with the system size L: from this perspective, its generation is unlikely
in the thermodynamic limit. Nevertheless, at finite temperature we have also to
consider the entropic gain in forming such a vortex configuration. Since the number
of independent places where a vortex can be located is ∼ L2/a2 we obtain an entropy:

S = ln
(L2

a2

)
= 2lnL

a
. (1.27)

Finally, we can write the free energy of a vortex configuration:

F = E − TS = (πJ − 2T )lnL
a
. (1.28)

We can identify a critical temperature TBKT above which the entropic term wins
against the energetic one, promoting the proliferation of free vortices in the system:

TBKT = πJ

2 . (1.29)

The proliferation of such vortices destroys the quasi-long-range order entailed
by the power-law decay of the correlation function at low-temperature and it is
responsible for the sudden loss of spin stiffness. This rough estimate of the critical
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temperature neglects two principal effects: the first one is the vortex-core energy µV ,
the second is the presence of several vortex excitations. The vortex-core energy is the
energetic cost to form the vortex at the length-scale of the lattice spacing but it does
not grow with the size of the system, hence, neglecting it does not affect the previous
calculation. On the other hand, its value controls the thermal activation eβµV of
vortex-antivortex pairs, that can in principle change the “effective” large-distance
coupling J in the previous equation, including the spin stiffness Js, different from
the coupling J of the XY model, even though the two coincide at T → 0.

Nonetheless, the relation between the critical temperature and the (renormalized)
stiffness will turn out to be the same as the above (1.29), as we will see in the next
Section.

1.4 RG equations

We present here the analytical solution found exploiting the renormalization group
(RG) approach.

Let us define the quantities K = πJs
T
,

g = 2πe−βµV .
(1.30)

Addressing the reader to [41] for the complete derivation obtained from the
mapping onto the sine-Gordon model, we present the resulting RG equations, with
the usual parameterization Λ(`) = Λ0e

−`, ` = ln(La )

dK

d`
= −K2g2, (1.31a)

dg

d`
= (2−K)g. (1.31b)

As already mentioned, the stiffness is identified [42] by the limiting value of K
in the thermodynamic limit:

Js ≡
TK(`→∞)

π
. (1.32)

From the RG differential equations in (1.31), we can immediately recognise two
main regimes of the model: K & 2, region (A) in Fig. 1.2, and K . 2, region (B) in
Fig. 1.2. In the first regime, the term on the right side of (1.31b) is negative so g
is vanishing while K tends to a finite value (K & 2, g → 0, K → K∗). According
to (1.32), the system shows a finite stiffness while the role of vortices is irrelevant,
because of the vanishing of g. On the contrary, the regime K . 2 represents the
regime where the vortex fugacity grows leading to the vanishing of K. The initial
value of the term containing the vortex core energy µV is

g0 = 2πe−βµV = 2πe−βµV J = 2πe−
µV K(T )

π (1.33)
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V

(B)

(A)

BKT

BKT

Figure 1.2. RG flow for the BKT problem.

The value of µV depends on the model examined: without going into details, this is
µXY = π2

2 in the XY-model and µBCS = 3
π in the BCS-theory [43].

The red line in figure 1.2 corresponds to the critical point K = 2, g = 0 which
defines the universal relation between Js and TBKT :

K(TBKT ) = 2 ⇒ πJs(TBKT )
TBKT

= 2. (1.34)

As soon as the temperature is increased over TBKT the system loses its rigidity
because of free vortices proliferation. The system is now in the (B) region of the
phase diagram: as a result one finds

K(T+
BKT ) = 0 ⇒ Js(T+

BKT ) = 0, (1.35)

i.e., the superfluid density jumps discontinuously to zero right above the transition.
The temperature dependence of Js(T ) is shown in Fig 1.3, where we show in
panel a the ideal case, in which the stiffness follows precisely its three-dimensional
counterpart up the intersection with the critical line 2T/π (blue line), while within
the RG flow (panel b) Js(T ) starts to be renormalized at lower temperatures. The
bare temperature dependence of Js(T ) is assumed to be the one of the BCS model
(green line) JBCS(T ) = J0

∆(T )
∆(0) tanh(∆(T )/2kBT ).

As one can see, approaching the transition from below, the Js curve in the
BKT case is slightly smaller than its bulk counterpart: this is due to the difference
between the initial value of K and its limiting value K∗ = K(` = ∞) under the
RG flow. Such a difference is practically zero at T � TBKT where the RG flow
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Ideal case

J s

a

RG solution

J s

TBKT

b

Figure 1.3. Temperature dependence of the superfluid density within the BCS model in
the (a) ideal case and (b) within the RG flow solution.

is almost vertical. However as T approaches TBKT vortices renormalize at short
distances the superfluid density with respect to its bare value, but still Js is finite,
because at large distances vortices disappear effectively from the system. For this
reason one must be very careful in defining what is universal: TBKT is not universal,
what is universal is the relation between the renormalized superfluid density and
the transition temperature, as encoded in equation (1.32). Indeed, the smaller is
the ratio µV /J , the larger is the renormalization of Js due to vortices below TBKT .

We can solve the system step-by-step with a change of variable, to have more
control on the size of the system. The final scope is to extrapolate some analytical
solution for the stiffness that will be used afterwards.

A convenient change of variables is{
x = K − 2
y = 2g

(1.36)

Now, the RG equations are written as:

dx

d`
= −(x+ 2)2 y

2

4 ' −y
2 (1.37a)

dy

d`
= −xy (1.37b)

having expanded around the fixed point x = 0, y = 0. The system is simplified when
we note that:

x
dx

d`
− ydy

d`
= 0 (1.38)

whence:
x2 − y2 = A (1.39)

where A is a constant of the motion, A = x2
0 − y2

0, x0 and y0 being the initial values
for the RG differential equations, calculated once the reference model is defined, e.g.
the clean BKT or BCS models.

When A > 0 we are in the regime where the superfluid stiffness dominates over
the vortex term. Thus, it corresponds to the low-temperature region T < TBKT .
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Substituting x =
√
y2 +A and −y2 = A− x2 in equation (1.37), one obtains

dx

d`
= A− x2

dy

d`
= −y

√
y2 +A

(1.40)

whose solutions are:

x(`) =
√
A

tanh(
√
A`+ arcsinh(

√
A
y0

))
−−−→
`→∞

√
A

y(`) =
√
A

sinh(
√
A`+ arcsinh(

√
A
y0

))
−−−→
`→∞

0
(1.41)

When A→ 0+ we are on the critical line x0 = y0 of the x− y plane. The RG
equations in this regime reduce to

dx

d`
= −x2 (1.42)

whose solution is
x = x0

1 + x0`
(1.43)

so that x→ 0 logarithmically with the system size.
In the high-temperature regime (T > TBKT , A < 0), we can introduce another

constant C, such that −A = C > 0. After having expressed y2 = x2 + C, the
differential equations in (1.37) take the form:

dx

d`
= −(x2 + C)

dy

d`
= −y

√
y2 − C

(1.44)

with solution:

x(`) =
√
C tan

(
−
√
C`+ arctan

( x0√
C

))
(1.45)

so x→ 0 as ` increases. Searching for the value `∗ at which x(`∗) = 0 one can find
the exponential behavior of the correlation length in the BKT theory:

ξ = aeb/
√
t (1.46)

where t = T−TBKT
TBKT

is the reduced temperature and b is a constant that depends on
the specific model studied. This last relation will be used to find the BKT fluctuation
contribution to conductivity [44]. Obviously the variable of interest in our study is
x(`). The dependence on the size ` = ln(La ) is significant in our disordered scenario.
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1.5 I − V characteristics in the BKT theory

The jump of the superfluid density at TBKT produces an anomalous power-law
dependence of the I − V characteristics. Let us write the energy of a vortex-
antivortex pair at a distance r per unit length in a film of thickness d:

E

d
= 2πJs

d
ln r
ξ0
− f · r = 2πJs

d
ln r
ξ0
− I

Wd

Φ0
c
r (1.47)

the current density of the film being j = I/Wd, where W is the width of the film,
Φ0 is the flux quantum and ξ0 the correlation length. The force f is nothing but
the Lorentz force produced by the supercurrent that flows in the film. Supposing
that the film lies in the x̂-ŷ plane, the supercurrent flowing in the x̂ direction, the
Lorentz force moves the vortices perpendicularly with respect to it, with a direction
determined by the vorticity εi = ±1, as:

f = εij× ẑ
Φ0
c
. (1.48)

As one can see from equation (1.47), the supercurrent term tends to unbind
the vortices while the log potential tends to confine them. The critical current will
be the value of the current above which the vortices separate within the sample.
This value occurs when the energy changes sign, i.e., when its derivative vanishes
∂E(r∗)/∂r = 0:

r∗ = 2πJscW
IΦ0

(1.49)

corresponding to an energy:

E(r∗) = 2πJs ln 2πJscW
ξ0IΦ0

− 2πJs. (1.50)

When r∗ ≤ W the current is large enough to separate the vortices. Thus, the
minimum current required is

Ic = 2πJs
c

Φ0
. (1.51)

If one wants to get an estimate of the critical current near the BKT transition,
one has to substitute 2πJs with 4TBKT , according to the universal relation (1.34).
Then, since c/Φ0 = 0.5 · 1015A/J, one has

Ic[A] ' 2.76× 10−8TBKT [K] (1.52)

Increasing the current over the critical value, one can generate free vortices. If
one wants to estimate their density ρV one can use a kinetic equation such that

dρV
dt

= Γ(T, I)− ρ2
V (1.53)

where Γ is the rate at which vortices are unbound. We can take Γ(T, I) = eE(r∗)/T .
The second term in equation (1.53) accounts for the vortices recombining to form
pairs again. In the steady state then one has

ρV = Γ1/2 = e−E(r∗)/2T . (1.54)
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The electric field generated by the movement of the vortices is proportional to
nvvL, vL being the drift velocity. Indeed, because of the Lorentz force the vortices
can escape the sample flowing in the ŷ direction. The phase of the sample slips of
2π each time a vortex drifts across the sample width W ; in a time interval ∆t a
fraction of vortices ρV vL∆t escapes, so:

d∆θ
dt

= 2πρV vLL. (1.55)

generating a field in the x̂ direction that contrasts the applied current. According to
Josephson relation ∆V = (~/2e)d∆θ/dt, the field Ex is equal to

Ex = ∆V
L

= Φ0
c
ρV vL. (1.56)

Since the drift velocity is proportional to the applied current, we can conclude
that

V ∼ ρV I. (1.57)

We can estimate nv by means of equation (1.54). By using the Ic value (1.51)
into equation (1.50) we obtain:

E(r∗) = 2πJs

(
log 2πJscW

ξ0Φ0I
− 1

)

= 2πJs

(
log IcW

ξ0I
− 1

) (1.58)

where we note that only the first term depends on the applied current. Then the
fraction of vortices that contributes to transport can be written as

ρV ∼ e−πJs ln(Ic/I)/T =
( I
Ic

)πJs/T
(1.59)

This implies that the non-linear behavior of the I−V characteristics is controlled
by the exponent

V ∝ Ia(T ), a(T ) = πJs
T

+ 1. (1.60)

According to the BKT critical point at which Js(TBKT ) = 2TBKT /π, the exponent
a(T ) will jump from a(T > TBKT ) = 1 to a(TBKT ) = 3, as soon as the temperature
is lowered down to TBKT , keeping increasing at even lower temperatures.

To summarize, while usually Mermin-Wagner theorem forbids ferromagnetic
transitions in low dimensions, the XY model undergoes the BKT topological phase
transition, which is led by the proliferation of vortex-antivortex bounded pairs as the
temperature increases. Since the GL model for superconductivity can be mapped
onto an XY model, a superconducting transition is always possible in two dimensions,
where the relevant energy scale becomes the superfluid stiffness Js, accounting for
phase fluctuations (Goldstone mode), rather than the energy gap ∆, connected
instead to amplitude fluctuations (Higgs mode) of the Cooper pairs wave function.
The universal critical point of the BKT transition is translated in superconducting



14 1. Two-dimensional superconductivity: an Overview

systems in the sudden jump to zero of the superfluid stiffness Js when it crosses the
critical line at TBKT , coming from lower temperatures.

In real systems, the detection of a BKT transition is not however straightforward.
The presence of disorder can in fact partially or even totally hinder its signatures,
such as this jump of Js or the jump of a(T ) in the I − V characteristics, as we will
see in the next Chapter.
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Chapter 2

Effects of disorder in real
systems

“Would you tell me, please, which way I
ought to go from here?”
“That depends a good deal on where you want
to get to,” said the Cat.
“I don’t much care where–” said Alice.
“Then it doesn’t matter which way you go,”
said the Cat.
“–so long as I get somewhere,” Alice added as
an explanation.
“Oh, you’re sure to do that,” said the Cat, “if
you only walk long enough.”

Alice’s Adventures in Wonderland,
Lewis Carrol

In this Chapter we will summarize some of the main experimental aspects
encountered in literature that moved our curiosity, leading the work presented
throughout this Thesis. Indeed, in two-dimensional superconductors there is a jungle
of intriguing and exotic behaviors, where disorder can appear at different scales
and in different ways and the two-dimensional character can play a role itself. In
two-dimensional materials superconductivity is in fact expected to belong to the
BKT universality class.

Nonetheless, disorder on a mesoscopic scale can prevent the observation of BKT
signatures. This topic will be described in Section 2.1 with a particular emphasis
on SrTiO3-based heterostructures, for which we will summarize the main aspects of
such materials as well as the phenomenology of transport measurements.

On the other side, a BKT like transition is expected in cuprates, whose phase
diagram is however so rich that superconductivity can coexist and compete with
the charge ordered phase. In this framework, the competing mechanism, along with
impurities always present in real systems, is most likely the cause of filamentary
superconductivity.
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2.1 Hiding BKT under inhomogeneities

As matter of fact, in many materials BKT is not observable despite their two-
dimensional character. The signatures indicating the presence of the topological phase
transition can be in fact partially or totally masked by the presence of mesoscopic
inhomogeneities. The phenomenology of the superconducting transition in many two-
dimensional materials points instead towards the direction of a percolative transition,
that we will briefly present henceforth and will be deeply explored throughout
Chapter 4. The presence of a large width of the metal-to-superconductor transition
will appear as one of the main smoking guns of mesoscopic inhomogeneities, along
with other trends in transport measurements, such as the broadening of tunneling
spectra. Moreover, the presence of non-linear I −V characteristics can be attributed
to mesoscopic disorder, not to be confused with the I − V non-linearities caused
by the proliferation of free vortices of the BKT framework (see Section 1.5) [17].
All those phenomenological features will be presented in the exemplary case of
SrTiO3-based interfaces, in which the inhomogeneous nature is particularly evident.

2.1.1 SrTiO3-based interfaces

After the discovery of superconductivity in bulk SrTiO3 about 50 years ago, a two-
dimensional electron gas (2DEG) at the interface between two insulating dielectric
perovskite oxides has been found, displaying many interesting phases. The carrier
density can be tuned by means of a top- or back- gate voltage and the 2DEG can be
made superconducting, both in LaAlO3/SrTiO3 and in LaTiO3/SrTiO3 (LTO/STO)
interfaces, opening the way to novel electronic phases. The diverse phenomena
occurring at oxide interfaces include, among others, exceptional carrier mobilities,
magnetism and superconductivity. Our interest will be focused however on the
metal-to-superconductor transition.

Indeed, the very origin of the 2DEG at the interface of such compounds is still
a debated issue in which disorder is an inextricable ingredient. It it important
to point out that the number of carriers in SrTiO3-based interfaces are strictly
linked to the growth condition of the sample and the relation between VG and the
chemical potential is not straightforward, as it can be instead in the case of chemical
doping. Thus, it is not surprising that it is hard to find in the literature a settled
situation concerning, for instance, a complete phase diagram of these compounds.
To summarize the knowledge gathered so far, we need to clarify some aspects related
to the origin of the 2DEG and its band structure.

Origin of the 2DEG and phase diagram

SrTiO3 has the general Perovskite formula ABO3, where A=Sr and B=Ti and a
cubic lattice as in Fig. 2.1b. Along the cubic axis (001) they can be seen as an
alternate stack of SrO and TiO2 planes. Different heterostructures are obtained [46],
depending of what kind of planes goes to form the interface (SrO- or TiO2-type)
between the two constituent compounds, its properties determined also by the
direction of the interface with respect to crystal axes, above which is growth a more
or less thick layer of LaXO3 (X=Al or Ti). As a matter of fact, the orientation of
the interface is crucial from the point of view of the bands involved in the 2DEG.
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a b c

Figure 2.1. (a) Sketch figure of a SrTiO3-based interface, in the back gating configuration.
The upmost slab is a LAO (or LTO) cristal with a thickness of a few nanometers; the
STO slab below is about 0.5mm thick. The back gate voltage Vg is used to control the
carrier density of the 2DEG (Figure from [22]). (b) Perovskite structure of SrTiO3. (c)
Simplified band diagram across LaAlO3/SrTiO3 with band gaps and a qualitative band
bending (Figure from [45]).

Here, the valence band comes from the 2p orbitals of oxygen while the conduction
band comes from the titanium 3d orbitals. Because of the crystal field, the valence
and the conduction band are split respectively in a high energy doublet eg and
a low energy triplet t2g, the latter corresponding to dxy, dxz, dyz orbitals. When
SrTiO3 is used as a substrate in a heterostructure, a quantum well is formed at the
interface caused by the bending of the bands, needed to preserve the continuity of
the wave function. In Fig. 2.1c on can see the bending of the conduction band and
the discontinuity at the interface of the LaAlO3/SrTiO3.

The 2DEG is confined in this quantum potential well, located on the SrTiO3 side
of the device. Referring to [47] and [48] for more details, we briefly summarize here
the two main mechanisms behind the formation of the 2DEG, namely the presence
of oxygen vacancies and the so-called polar catastrophe. Both can be present in a
given sample, even simultaneously, depending on the growth conditions.

On the one hand, an oxygen vacancy at the interface can act as an impurity
donor, the oxygen having valence −2. This is also a common mechanism to dope
bulk SrTiO3 and we can refer to it as an extrinsic mechanism [49,50,50]. On the
contrary, the polar catastrophe is an intrinsic mechanism caused by the abrupt
polar discontinuity between stacked planes of (polar) LaXO3 (X=Al or Ti) and
(non-polar) SrTiO3. This generates an oscillating electric field, whose amplitude
increases monotonically with the LaXO3 thickness, that can be overcome by electronic
reconstruction, transferring extracharge from the LaXO2 side to the interfacial plane
of SrTiO3 [51].

Moreover, it has been shown in [23] that the confining electrostatic potential
may induce phase separation in the 2DEG, to avoid a thermodynamically unstable
state with a negative compressibility. This was proposed as a possible mechanism
to explain microscopically the origin of mesoscopic inhomogeneities observed in
such materials, about which we will discuss below, at the same time stating the
inextricably disordered nature of such compounds.

Some properties will depend on the crystal orientation of the SrTiO3, being the
2DEG confined in that side of the heterostructure. The confinement of carriers near
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Figure 2.2. (a) Sketch figure of the bands in LaAlO3/SrTiO3, oriented in the (001)-oriented
interface (Figure from [24]). (b) confinement energy Ec in SrTiO3 as a function of the
distance to the interface d, the Fermi energy EF and the position of the different t2g
bands at the Γ point in the (110) interface. Insets show the Fermi contours in the kz
([001]), kM ([1-10])) plane.

the interface induces the splitting of the spectrum of dxy,xz,yz orbitals into discrete
two-dimensional sub-bands. We show in Fig. 2.2 a sketch of the further splitting
of the conduction bands in two interfaces of LaAlO3/SrTiO3, oriented in the (001)
(panel a) and the (110) direction (panel b). As one can see, the dxy orbital is lower
in energy with respect to the degenerate dxz,yz orbitals in the (001)-interface, while
the bands hierarchy is reversed in the (110) case [52].

Depending on the orientation of the interface, different behaviors of Tc as a
function of the gate potential are observed. In Fig. 2.3 we presented some examples
of Tc(VG) found in literature for three differently oriented interfaces. (001)-oriented
interfaces appear to be non-superconducting at low carrier density, i.e., low VG,
resulting in the non-percolating resistivity. The critical temperature than increases
rapidly above some filling threshold, which is likely related to the filling of some
sub-band with a high density of states [21,53–55]: in Fig. 2.3a the Tc vsVG plot is
the one calculated in [56]. For (110)- and (111)-oriented interfaces, the situation
is quite different, since the system is always superconducting, displaying a finite
superconducting critical temperature already at low carrier densities. Many available
results show a general trend in which a first slowly increase of Tc is observed upon
increasing the carrier density, then Tc decreases more rapidly above an optimal
doping value V opt

G (corresponding to the maximum Tc) [57–59]. Note that this is a
general trend, although the situation is not completely settled as far as the absolute
values of the carrier concentration is concerned. We report here the results for the
(110) interface from [58] in Fig. 2.3b and for the (111) interface from [59] in Fig. 2.3c.

Several theoretical concepts have been introduced to describe this non-monotonic
behavior. In [59] and [56] the focus was on the electron–electron correlations and
spin–orbit interactions, while in [60] the role of the extended s-wave pairing symmetry
in the (001)-oriented interfaces was claimed to play a leading role. In any case, there
is not necessarily a single explanation for all orientations and it is instead important
to distinguish between the (001) and the (110) and (111) interfaces. However, what
is really intriguing about the behavior of Tc in the latter two cases is the fact that
the decrease of Tc is observed contextually to the involvement of new bands. Many
experimental and theoretical predictions point towards the direction of a multiband
system at high carrier density above VG. The decrease of Tc contextually to the
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a b c

Figure 2.3. The superconducting dome of the critical temperature as a function of gat
voltage in the (a) (001)-oriented [56], (b) (110)-oriented [58] and (c) (111)-oriented [59]
LaAlO3/SrTiO3 interfaces.

a b

Figure 2.4. Transport measurements in (001)-oriented LaAlO3/SrTiO3 interfaces. (a)
Broadening of the resistive transition (Data from [62] and Figure from [18]). (b) Sheet
resistivities at various gating potentials [55].

filling of an upper sub-band, i.e., close to the occurrence of a Lifshitz transition, is
indeed a counterintuitive mechanism. One possible explanation has been proposed
in the Ref. [61], where a two-band system is considered, with an inter-band pairing
interaction in the presence of elastic impurity scattering. In particular, for a repulsive
inter-band interaction, one finds a strong pair-breaking effect when the chemical
potential approaches the bottom of the upper band, i.e., when this second band
starts to interact with the first one. This possibility is anyhow interesting since it
accounts at the same time for the multiband character of interfaces and the presence
of microscopic disorder and we will explore it further in Chapter 3

Transport measurements

Among all the odd features in transport measurements displayed by the SrTiO3-
based heterostructures, a large broadening of the resistive transition in temperature
R(T ) along with a tailish behavior in the range of low temperatures is the main
hallmark of the presence of mesoscopic inhomogeneities. Calling Th the temperature
of the first downturn of R at high temperature and Tl the one at which the system
reaches its superconducting state R = 0, as in Fig. 2.4a, the relative width appears
to be (Th − Tl)/Tl = ∆Tc/Tl ∼ 1, which is an order of magnitude higher than what
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a b

Figure 2.5. (a) Fits (black curves) of the experimental tunneling data of [14] (colored
curves) with a Gaussian distribution of P (Tc). The curves at positive (negative) gating
have been shifted vertically by +0.3mS ( −0.3mS) for a better view. (Figure and
caption from [15]. (b) Hall measurements in a LaTiO3/SrTiO3 at various doping level
(Data from [55] and Figure from [22]).

is expected, and a long tail is observed near Tl. For the sake of comparison we recall
that in NbN thin films [17,63] the relative width of the transition is ∆Tc/Tl ∼ 0.3,
the system displaying clear BKT signatures despite the smearing produced by
the presence of microscopic disorder [64, 65]. Instead, the large broadening of
SrTiO3-based heterostructures and other materials cannot be accounted for neither
by fluctuating effects of the Cooper pairs à la Aslamazov-Larkin [66, 67], nor by
BKT fluctuations of the vortex-antivortex core energy à la Halperin-Nelson [44],
whereas the origin of the tail at low temperatures may seem even more mysterious
if inhomogeneities are not considered [18]. Nevertheless, some systems also display
a finite residual resistivity at zero temperature in their low doping regime, after
a decreasing of the resistivity qualitatively similar to a metal-to-superconductor
transition, until an insulating state is reached. This is the case, for instance, of the
(001)-LaAlO3/SrTiO3 heterostructures, shown in Fig. 2.4b. While in the literature
this has been sometimes claimed to be a new state of matter and dubbed quantum
metal [68, 69] or failed superconductor [70], its source can easily be explained by the
intrinsic inhomogeneous nature of the 2DEG [23], as it will be explained in more
detail below.

Another strong hint of mesoscopic inhomogeneity is found in the broadening
of the coherence peaks in tunneling spectra [14] (see Fig. 2.5a), which is observed
at temperatures higher than Tl, i.e., when the system is still metallic and far from
its superconducting state, both in LaAlO3/SrTiO3 [62, 71] and LaTiO3/SrTiO3
[55, 72] interfaces. Thus, the possibility that the loss of coherence in the differential
conductance dI/dV can be due to the presence of a pseudo gap in terms of preformed
Cooper pairs is a forced argument [15]. Instead, the suppression of the density of
states at the Fermi level caused by an inhomogeneous electron condensate can
naturally explain the large coherence peaks at temperatures higher than the critical
one.

Besides, measurements of the Hall resistivity in SrTiO3-based interfaces also
display a non-trivial feature at large enough doping, i.e., when the density of carriers
increases [22, 55]. The anomaly is observed at dopings higher than some optimal
value, after which the injection of more electrons does not correspond to a higher
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Figure 2.6. Example of the BKT analysis performed on a LaTiO3/SrTiO sample, leading
to inconsistent results [17]. (a) Non-linear I − V characteristics at various temperatures.
(b) Measured resistivity normalized to its normal state R/RN (in blue, right axis)
superimposed to the superfluid stiffness Jas inferred from a(T ) (in pink, left axis). (c)
Non-linear exponent a extracted from I − V data V ∝ Ia as a function of T/Tc, where
Tc = 0.155K corresponds to R = 0.

conductivity, as it is expected, but to a non-linearity of the transverse resistivity. We
present in Fig. 2.5b the anomalous Hall-effect in the LaTiO3/SrTiO3 interface [22,55].
While this scenario is at odds with a simple Drude model, where the resistance
only depends smoothly on the carrier density, Biscaras et al. proposed that the
non-linearity is associated with the appearance of two types of charge carriers with
different mobility, both present in the 2DEG but in different proportions [55]. They
refer to these carriers as lower mobility carriers (LMC) and higher mobility carriers
(HMC), the former present at all gate voltages, the latter entering at higher VG and,
thus, associated with the filling of an upper band.

Nevertheless, in both LaAlO3/SrTiO and LaTiO3/SrTiO, as in other two-
dimensional materials, the presence of non-linearities in the I − V characteristics
has been a misleading evidence to claim for BKT physics. In the BKT theory, the
non-linearity arises directly from the proliferation of free vortices caused by the
application of an external current I that breaks vortex-antivortex pairs, leading to a
response in terms of the measured potential V . As it was explained in Section 1.5,
this is strictly connected to the jump of the superfluid density Js, which is one of the
peculiar signatures of the BKT transition. The jump of Js from zero to a finite value
(lowering the temperature of the system) happens at the intersection with the critical
line 2T/π, i.e., mathematically speaking at the fixed point Js(TBKT ) = 2TBKT /π.
Recalling Eq. (1.60)

V ∝ Ia(T ), a(T ) = πJs
T

+ 1.

it follows that the exponent a is supposed to jump from a = 1 – ohmic behavior in
the last temperature within the metallic state – to a(TBKT ) = 3 at the transition.
Of course in a purely theoretical framework this jump is supposed to be abrupt
while in real systems some smearing is expected. However, in many two-dimensional
materials – such as SrTiO3-based interface – the relative width between T ac , as
we will call the lower temperature at which a(T ac ) = 1, and T aBKT is far too large
(T ac − T aBKT )/T aBKT ∼ 0.5 and this analysis of I − V characteristics can lead to
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Figure 2.7. (a) Superfluid density in temperature at optimum doping VG = 110V. The
gray area shows a systematic error. (b) Superfluid density in temperature for every
gate voltage. (c) Normalized curves from (b). The gray line shows the temperature
dependence of a weakly interacting clean BCS s-wave superconductor. The black dashed
line is a fit to the data using ns ∝ 1 − (T/Tc)2a (∆= 2.2 and a = 1.4, instead of
the BCS values ∆=1.13) (Figures from [73]) (d) Same data (circles) fitted within the
inhomogeneous random resistor network model in effective medium theory (Figure
from [21]).

inconsistent conclusions, as we show in Fig. 2.6. There, we show the results of the
BKT analysis performed on a LaTiO3/SrTiO3 sample whose resistivity is plotted
in blue of Fig. 2.6b (right axis) and the superfluid stiffness Jas inferred from a(T ) is
superimposed in pink (left axis), the exponent is presented in Fig. 2.6c as a function
of T/Tc, where Tc = 0.155K corresponds to R = 0. On the one hand, it is clear that
neither Jas (T ) nor a(T ) show any jump, the superfluid stiffness appearing already in
the regime of temperatures at which the system is metallic as the extrapolated T ac .
Note also that T aBKT is also found above the superconducting state T aBKT ≈ 1.2Tc,
thus (T ac −T aBKT )/T aBKT < 0. In other words, assuming a priori the presence of BKT
physics leads to the conclusion that superconductivity is found when the system is
still metallic, as stated from direct measurements of the sheet resistance.

Instead, the superfluid densities in a (001)-LaAlO3/SrTiO3 sample has been
measured by means of superconducting quantum interference device (SQUID) in
Ref. [73] and we report their data in Fig. 2.7. We limit ourselves to point out here
that there is no sign of the peculiar jump of the superfluid density typical of the
BKT superconducting transition. The authors also point out that the normalized
superconducting densities ns does not fit in a homogeneous BCS scenario (Fig. 2.7c).

Hereafter, we will illustrate how all the previous features, included non-linear
I − V characteristics, can be explained in terms of mesoscopic inhomogeneities,
within a percolative transition scenario.

2.1.2 Percolative transition

All the odd features mentioned above can find a natural interpretation once the
presence of disorder on a mesoscopic level is considered. Indeed, considering the
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Figure 2.8. (a) Schematic figure of the formation of the inhomogeneous cluster formed by
mesoscopic regions of local Tc randomly distributed according to some P (Tc). While
lowering the temperature, the puddles are made superconducting and the system can
become superconducting (R = 0) if the cluster percolates (Figure from [74]). (b) Sketch
figure for the appearance of non-linear I − V characteristics arising directly from the
inhomogeneities themselves: if an external current is applied to a system made by
segregated puddles with local critical currents Ic, the puddles will break to their metallic
state, thus generating the non-linearities (Figure from [17]).

electronic condensate as segregated into puddles – large enough to define local
coherence but small with respect to the sample – the appearance of a global coherent
state is related to the possibility for the system to percolate. A random resistor
network (RRN) model has been successfully applied to explain all the odd transport
phenomenology in SrTiO3-based heterostructures, in which the effective resistivity
is related to the bond percolation of a two-dimensional sheet of resistors. We limit
ourselves here to a generic discussion of the model, which will be described in detail
– and expanded – in Chapter 4.

If only a fraction w of the puddles in the 2DEG is allowed to become supercon-
ducting, with a local critical temperature Tc randomly distributed according to some
P (Tc), the system can transit from the metallic state to the superconducting one
smoothly, such that the large broadening of the resistive transition and their tails
find a natural explanation. On the other side, a superconducting non-percolating
path would display a finite residual resistivity, accounting for the enigmatic quantum
metal [18, 19]. In Fig. 2.8a the reader can find a schematic representation of the
percolating superconducting cluster reached gradually with the lowering of the
temperature. Moreover, it has been also shown that the fraction w needed to fit
the data increases with doping [21]. In fact, lower fractions of the superconducting
condensate are associated to the longer tails observed typically at low dopings and
indicating the “difficulty” of the system to form a percolating cluster.

Thus, also the pseudo gap effects observed at low dopings in tunneling spectra
find their explanation [20,22].

Note that also Hall effects measurements can be fitted within this framework.
Although in fact the non-linear behavior of the Hall resistivity alone is not a
clear evidence of inhomogeneities, since in principle LMC and HMC can coexist
homogeneously, it is compatible with the existence of mesoscopic disorder [22,
55]. Indeed, in Fig. 2.5b the dashed lines correspond to the theoretical fits of the
experimental data (full lines).
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Also the non-linearities in the I − V characteristics can be reproduced quite
well in a percolative transition scenario. Analogously to what happens to the sheet
resistivity when lowering the temperature, the application of an external current
I to a superconducting inhomogeneous medium has the effect of locally breaking
the coherence in the superconducting puddles, hence generating the non-linearities
(Fig. 2.8b).

In the LaALO3/SrTiO3 interfaces the size of a single puddle has been estimated
from critical field measurements and finite size scaling [75]. Roughly, the critical
field would correspond to the dephasing field Bd inside a single puddle of size Lpd,
hence from the relation Bd ∼ φ0/L

2
pd, φ0 being the quantum flux, one can estimate

Lpd to be of the order ∼ 100 nm.
The non-BCS behavior of the superconducting densities in Fig. 2.7c [73] then

can be explained taking into account the mesoscopic inhomogeneous nature of the
2DEG. In Fig. 2.7d are shown the same experimental data (circles) fitted within
the same percolative scenario within an effective medium theory approach. This
approximation is consistent with the fact that SQUID probes intrinsically averages
over micrometric regions, which are way larger than the estimated size of the puddles.

2.1.3 Transition metal dichalcogenides & other materials

The idea of a percolative transition can be applied also to other two-dimensional
materials displaying transport features analogous to the ones already summarized
for SrTiO3-based heterostructures.

Indeed, the RRN model was successfully applied to fit the resistivity curves
of TiSe2, MoS2 and ZrNCl, the former two belonging to the class of materials of
transition metal dichalcogenides (TMDs) while the latter is a transition metal nitride
(TMN). Both TMDs and TMNs are layered materials in their bulk structure, where
the weak interaction between stacked layers make them belong to the family of Van
der Waals materials. In particular, TMDs are characterized by the formula MX2,
where M is a transition metal element from group IV (Ti, Zr, Hf), group V (V, Nb
or Ta) or group VI (Mo, W), and X is a chalcogen (S, Se or Te), forming layered
structures of X-M-X, with the chalcogen atoms in two hexagonal planes separated
by a plane of metal atoms [76]. TMN halides’ formula is instead MNY where M=Zr
or Hf, N is nitrogen and Y = Cl, Br or I. The crystal structure is characterized by
double honeycomb metal-nitrogen layers sandwiched by halide layers [77].

In Fig. 2.9 we report the experimental data (full lines) for ZrNCl (a), MoS2 (b)
and TiSe2 (c) fitted by means of the RRN model (symbols), borrowed from [74].
This demonstrates the wide applicability of the model, whenever the metal-to-
superconductor transition displays the large broadening and tailish behavior of the
resistivity that cannot be accounted for by fluctuating effects whatsoever. The
authors in [74] also point out that those trends are generally enhanced [77–79] when
the doping is not chemical [80]. This can also give some insights about the origin
of inhomogeneities being related directly to the doping mechanism. In all three
materials the charge carriers were in fact tuned by means of ionic liquid gating, which
is a technique exploiting electrostatic doping; hence, the authors proposed that the
electronic phase separation mechanism leading the inhomogeneities is caused by the
interaction of the material with the ionic liquid and the substrate.
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a                                                             b                                                         c 
Figure 2.9. Fit (symbols) and experimental resistance (solid curves). (a) ZrNCl (from

Ref. [77]) at three different values of the ionic-liquid gating (Vlg= 5.0, 5.5, and 6.5V). (b)
MoS2 experiments of Ref. [78] (Vlg = 4.5, 5.0, 5.5, and 6.0V). (c) TiSe2 experiments of
Ref. [79] (electron density n= 2.0, 2.5, 3.0, and 5.0×1014 cm−2). The tailish character of
the resistance curves and the saturating plateau at low electron density and temperature
in panel (a) are shaded in gray, marking the regime without a percolating superconducting
subset. (Figure and caption from [74])

Two main aspects of the percolating transition were pointed out in [74] about
the geometry of inhomogeneities. On the one hand, larger superpuddles are needed
to mimic the rapid downturn of R(T ) and its first decrease at high temperatures.
Instead, the percolation a low T is related to the long distance connectivity of a
filamentary superconducting cluster embedded in the metal: longer tails do not fit in
the effective medium scenario, where inhomogeneities are homogeneously distributed,
and are in fact associated to a filamentary backbone structure.

2.2 Filamentarity arising from competing orders

The detection of superconductivity in two-dimensional samples in presence of dis-
order also provides new frameworks, once many competing orders are interacting
with superconductivity. In this Section we will summarize some observations made
on superconducting cuprates that opened a way towards the study of filamentary
superconductivity, here arising from the competition between the tendency of elec-
trons to condensate in momentum space, i.e., superconductivity, and in real space,
i.e., the charge density wave (CDW).

2.2.1 Cuprates

Among the variety of (quasi) two-dimensional materials displaying superconductivity,
cuprates still offer many challenges. Their crystal structure is made by weakly coupled
layers, which will be important from the point of view of BKT physics: in Fig. 2.10 we
report the examples of La2−xSrxCuO4, YBa2Cu3O7−x and Bi2Sr2CaCu2O8+x crystal
structures. The first cuprate superconductor was found in 1986 in LaBa2Cu3O7 by
Bednorz and Müller [4], with a critical temperature of 35K and after almost 40 years
the origin of superconductivity is still debated, as well as the physical mechanism
leading the other two mysterious phases, i.e., the pseudo gap phase and the strange
metal phase.
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Cuprates are considered an alternative route for the observation of BKT physics,
where superconductivity is expected to be a quasi-two-dimensional phenomenon
confined to the CuO2 layers. The reason to look for BKT physics in such compounds
lies in the fact that, in absence of Josephson pairing between planes, the vortex-pair
interaction on a single layer is logarithmic at all length scales [81]. However, in the
presence of an interlayer Josephson coupling, the logarithmic interaction between
vortices holds only up to ΛJ ' ξ0

√
J‖/J⊥, where ξ0 is the zero-temperature in-plane

coherence length, and J‖,⊥ are respectively the in- and out-of-plane zero-temperature
superfluid stiffness so, if the interlayer coupling is weak J⊥/J‖ � 1 this length scale is
large enough to allow for a BKT-like description of the vortex-antivortex interaction,
despite the system thickness. This in principle makes such systems the best possible
candidates for the detection of the BKT transition. Nevertheless, the situation is
still controversial. The first experimental evidence of a BKT transition in cuprates
was found in 1999 by Corson et al. [82], who extracted the superfluid stiffness from
high-frequency conductivity measurements in Bi2Sr2CaCu2O8+x. More recently,
BKT signatures were found in bulk samples of highly underdoped La2−xSrxCuO4 [28],
where the paraconductivity effects, determined from magnetoresistance measure-
ments, were compared with the non-linear current-voltage I − V characteristics. On
the other side, direct measurements of the inverse penetration depth have shown that
in the YBa2Cu3O7−x family no BKT jump is observed even in strongly underdoped
thick films [83, 84] or crystals [85]. A BKT-like superfluid-density jump is only
seen in few-unit-cell thick films of YBa2Cu3O7−x [85] or Bi2Sr2CaCu2O8+x [86], but
even in this case, as the samples get underdoped, the superfluid density jump gets
smeared out. One possible explanation for such a smearing of the BKT signatures
can most likely be associated with the presence of competing orders.

Along with superconductivity, cuprates display many other phases, appearing
at different chemical dopings. Their phase diagram is presented in Fig. 2.11: at
small dopings, the system is an insulating antiferromagnet (AF) up to really high
temperatures ∼ 300K while at higher dopings one finds a superconducting critical
line Tc. The superconducting dome extends in a hole doping range between some
pmin and pmax in which, however, other physical mechanisms also intervene.

A charge ordered phase (TCDW ) can be observed in the superconducting region
of the phase diagram leading to the so-called stripe region (dashed in red),the charge
order extending above the superconducting critical line, in the pseudogap region
(yellow). This name was coined in [87] to address the experimental evidences of
gap-like features above the superconducting critical temperature and up to T ∗ � Tc
observed in underdoped cuprates [88–90]. Although still largely debated, the origin
of the pseudogap has been linked with the appearance of preformed pairs missing of
a global phase rigidity [91]. It is worth underlying the importance of charge order
(CO) and charge density fluctuations in cuprates. A more accurate definition of CO
or charge density wave (CDW) will be given later on, for now let just state that a
CDW is a modulation of the electron charge in the lattice, mediated by phonons,
leading to the formation of “real space pairs” periodically arranged on the lattice.

Dynamical charge density fluctuations have also been claimed to play a crucial
role in restoring the strange metal phase [92].

Leaving aside the strange metal behavior, we will focus on the underdoped region
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a                             b                              c

Figure 2.10. Crystal structure of undoped cuprates (x = 0): (a) La2−xSrxCuO4, (b)
YBa2Cu3O7−x, (c) Bi2Sr2CaCu2O8+x. Note that they present, respectively, one, two and
three CuO2 planes. Figures from http://hoffman.physics.harvard.edu/materials/
CuprateIntro.php

of the superconducting dome where superconductivity and CDW represents two
competing orders [92–95].

2.2.2 CDW: a glance

A CDW is produced by an electronic-lattice instability, i.e., mediated by an electron-
phonon interaction, leading to a spontaneous periodic modulation of the electron
density on the crystal lattice, with a characteristic modulating wave vector .

We limit ourselves to introduce the concept of CDW in the simplest possible
two-dimensional example, within the single-band tight-binding model for electrons
on a square lattice of lattice constant a. The energy dispersion with respect to the
chemical potential µ is given by εk − µ = 2t(cos kx + cos ky) where t > 0 is the
hopping parameter. Being the spin degeneracy equal to 2, the half-filled configuration
is obtained with one electron per site (n = 1) and the Fermi surface (FS) is a rotated
square encased the reduced Brillouin zone (RBZ), as in Fig. 2.12. Note that each
point of the FS can be connected to the opposite edge by a vector Q, known as
the nesting vector, sketched in red in Fig. 2.12. This perfect nesting condition can
be linked to the one-dimensional free electron gas, characterized by the peculiar
FS made by two single points at k = ±kF = ±π/a where the nesting vector is
Q = 2kF /a. Hence, two-dimensional bands look, in general, quasi-one-dimensional
along the directions where the nesting occurs and perfectly-1D at half-filling.

By applying an external potential φ(r, t) acting on the electron gas, the rear-
rangement of the charge density ρ(r, t) can be expressed by means of linear response
theory in Fourier space as

ρ(q, ω) = χ(q, ω)φ(q, ω) (2.1)

http://hoffman.physics.harvard.edu/materials/CuprateIntro.php
http://hoffman.physics.harvard.edu/materials/CuprateIntro.php
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Figure 2.11. Cuprates’ phase diagram (Figure from [96]).

Figure 2.12. Reduced Brillouin Zone (RBZ) for a half filled tight-binding model in 2D at
µ = 0. Notice that all the Fermi surface points bordering the RBZ are linked by a single
Q = (−π, π) vector (red arrow). For simplicity, the lattice constant is set to a = 1.
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a
Figure 2.13. Sketch figure of two possible variants of CDW in a one-dimensional chain on

ions of lattice spacing a at half filling n = 1. The green dots represent the ions while the
up/down arrows are the electrons of spin ±1/2, to fulfill Pauli’s exclusion principle, .

where χ(q, ω) is the so-called Lindhard response function:

χ(q, ω) = 2
N

∑
k,iω

f(εk) + f(εk+Q)
εk − εk+Q + iω

, (2.2)

N being the number of sites in the lattice and f(εk) the Fermi function. Since at
the nesting vector Q εk+Q = ε−k, in the static limit ω = 0 the Lindhard function is

χ(q, ω = 0) = 1
N

∑
k

1
εk

tanh
(
εk
kBT

)
∼ N

2 ln
(

1.13 εF
kBT

)
(2.3)

showing a logarithmic divergence as a function of T at low temperatures. For
different values of the wave vector this divergence will not arise and, therefore, χ(q)
will exhibit a strong peak at q = Q. The divergent response at T = 0 implies that in
the presence of any attraction in the particle-hole channel the charge susceptibility
will diverge. In other words, at low temperature the electrons will tend to arrange
themselves in such a way that there is a net density modulation of period Q: the
CDW.

We can picture this charge modulation along one direction naively as a chain of
ions of lattice spacing a with the charge distributed with a periodicity λ = 2π/Q =
2a/n. At half filling (n = 1) λ = 2a, and we have two possible variants of the charge
modulation on the one-dimensional lattice, as sketched in Fig. 2.13. Note that this
situation of strongly correlated electrons can be viewed as preformed “real space
Cooper pairs”.

Nevertheless, in more realistic systems displaying CDW order – with periodicity
longer than 2a – the number of variants is usually higher than 2 and the presence of
quenched impurities can favor different variants in different regions. The result is a
polycrystalline charged ordered state, where many ordered patterns mismatch with
one another, preventing the possibility to observe a single ordered state.

We point out that the CDW scenario presented so far is an example of a
commensurate CDW, for which both the maximum and minimum charge modulations
correspond to lattice sites, so the wavelength of the charge modulation and the
underlying lattice spacing a have a common multiple. An incommensurate CDW
is instead a modulation of the charge distribution where the ratio between the
periodicity of the charge modulation and the lattice site is an irrational number.
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2.2.3 Evidences of filamentarity

Having in mind the very basics of CDWs and a global picture of the phenomenology
of the cuprates phase diagram, we discuss now some recent experiments strongly
suggesting the presence of filamentary superconductivity as a result of the competition
between CO and superconductivity, henceforth the CO-SC competition.

Adding the external magnetic field H axis, the phase diagram in Fig. 2.11 should
be extruded also in its perpendicular direction. We present here the measurements
performed in [29] on a La2−xSrxCuO4 sample at various Sr dopings in the underdoped
region, i.e., where CO is known to be hidden below the superconducting critical
line 2.14. The resistivity curves are measured varying both the amount of Sr in the
sample and the external magnetic field H, probing the superconducting-insulating
transition: the data in Fig. 2.14a, where different colors refers to different x, identifies
the resistivity at H = 0 (full lines), Hc (solid lines with dots) and for the maximal
field H (dashed lines with crosses). It is crucial to underline the fact that two
critical fields are indicated: H∗c is defined as the field corresponding in a long high
temperature plateau of R(T ) – in Fig. 2.14b is evidenced the curve corresponding to
x = 0.125 where the plateau is already present at H = 0 – and Hc is the field at
which superconductivity is finally suppressed.

Indeed, superconductivity appears to be resilient to the application of a magnetic
field, particularly in the vicinity of x = 0.09 and x = 0.19, while it is suppressed
in x = 0.125. The resulting phase diagram Tc vsx in Fig. 2.14c shows in fact that
well-known superconducting dome at H = 0 tends to split into two smaller domes
centered around x = 0.09 and x = 0.19 while increasing H up to 20T. The interesting
aspect is that those doping values corresponding to maxima are consistent with the
ones at which are expected the QCPs, signaling the presence of the CDW dome
(dashed region in Fig. 2.11. In their work [29], Caprara et al. refer to those as
“avoided QCPs”: in fact, the resistivity of the system at finite H seems to signal the
appearance of a superconducting-insulating transition, characterized here by the
presence of the plateau, yet the system drops to its superconducting state at finite
temperature.

At high magnetic fields, the authors indicates with TMIN the temperature at
which, at high fields H, the slope of the resistivity in temperature changes from
positive T > TMIN to negative T < TMIN [97], interpreting it as the onset of
a polycrystalline CDW. For some doping values, as for instance x = 0.06 and
x = 0.08, another temperature needed to be highlighted, where an inflection point
TINF is observed in R(T ), signaling the presence of strong Cooper pair fluctuations,
eventually driving the system superconducting below some temperature indicated
as TMAX . The presence of this inflection point leads again to the direction of a
competing CO-SC mechanism, in which superconductivity can only be filamentary.
In Fig. 2.15 we report the colorplot of the first (upper panels) and second (lower
panels) derivative of R(T ) with respect to T as functions of both temperature and
magnetic field, for the three exemplary cases of x = 0.06, x = 0.08 and x = 0.25. In
the upper panels, the TMIN and TMAX lines marked in purple divide respectively
the region with R′(T ) > 0 (in red) from the ones at R′(T ) < 0 (in green), thus
highlighting the CDW area, while the superconducting state correspond to the white
region (R′′(T ) < 0) in the lower panels. For x = 0.06, the line TMIN covers all the
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magnetic fields values and is independent from it. Lowering the temperature at low
fields H < 2T the system transits to its superconducting state for temperatures
lower than TMAX , corresponding to the TINF line, marked in red in the lower panel.
The x = 0.08 case, where again both CO and superconductivity coexist in a finite
range of H, presents the peculiar feature of a marked plateau in R(T ) indicated
with a yellow spot: in the upper panel, that is the point at which TMIN and TMAX

lines converge, while at higher fields a re-entrant superconducting phase still coexist
with the CDW one. From the comparison of those two cases, one can conclude that
the doping increase has moved the re-entrant superconducting state towards higher
fields. Finally, at x = 0.25 we enter the high doping region of the superconducting
dome where CDWs are suppressed and the superconducting state follows its expected
behavior.

The authors propose a schematic phase diagram (Fig. 2.16) that summarizes
what was discussed so far. At each doping level, the field H acts as a control
parameter, tuning the competition between the superconducting and the charge
ordered state. Two QCPs are identified at finite H, indicated respectively with QCP1
and QCP2, and encasing the re-entrant state, in which filamentary superconductivity
manifests. The former is what was called “avoided QCP” and corresponds to the
field H∗c at which the bulk SC state is expected to drop yet strong Cooper pairs
fluctuations generates the tail entering the CDW side of the phase diagram; the
latter (QCP2) corresponds instead to the real critical field Hc that finally suppresses
superconductivity.

2.2.4 A model for competition

Following the path of a filamentary superconducting state emerging from the CO-
SC mechanism, we present a simple theoretical model that has been proposed in
this context. The idea of an interplay between real space ordering, disorder, and
momentum space condensation (superfluidity or superconductivity) is not new and
has also been invoked in the context of supersolid behavior in 4He [98].

An important theoretical tool to mimic the desired CO-SC competition will be
the generalized attractive Hubbard model [31,32]:

H = −t
∑
<ij>σ

c†iσcjσ − U
∑
i

ni↑ni↓ + V
∑
<ij>

ninj (2.4)

where t is the hopping amplitude, c†iσ (ciσ) creates (destroy) a fermion of spin σ

at site i, U > 0 is the on-site attraction, niσ = c†iσciσ is the number of fermions,
V is the nearest neighbors repulsion and ni = ni↑ + ni↓. Referring the reader
to [99] for a complete review of the attractive Hubbard model, let us just point out
that away from half filling the ground state is purely superconducting, reproducing
both the BCS weak coupling limit for U � t and the Bose Einstein Condensation
(BEC) in the strong coupling limit U � t. At half filling for V = 0 the model has
instead a ground state degeneracy between CDW and superconductivity, making
it the perfect candidate to study their competition. The repulsive term V is thus
needed to break the symmetry, favoring the superconductivity for V < 0 or the
CDW for V > 0. More generically, the Hubbard model has a wide applicability in
tuning the competition between different order parameters, not necessarily involving
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a c

b

x=0.125

Figure 2.14. (a) Resistivity in temperature at H = 0 (full line), H = H∗c defined as the
field at which a long plateau is observed and at some higher field H. (b) Sample at
x = 0.125 for which the plateau is already present at H = 0 in a temperature range
around 28K and 55K. (c) Superconducting critical temperature R = 0 as a function of
Sr doping x at different magnetic fields ranging from 0 to 20T. (Figures from [29])

x=0.06 x=0.08 x=0.25

Figure 2.15. Top panels: Color maps of the sign of the sign of R′(T ) in the (H,T ) plane.
As a guide to the eye, the TMIN lines are marked in purple, the TMAX lines are marked
in blue and their common point (if any), is marked by a yellow spot signaling the location
of the plateau. Bottom panels: Color maps of the sign of R′′(T ) in the (H,T ) plane.
The TINF line is marked in red. Left panels: x=0.06; TINF is always much lower than
TMIN for this doping. Central panels: x = 0.08. Right panels: x = 0.25; note that at
this doping R′(T ) ≥ 0 is always true (Figure and caption from [29]).
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Figure 2.16. Proposed phase diagram T vs H (Figure from [29]).

superconductivity. For instance, it has been used to tune the competition between
ferromagnetism and antiferromagnetism in quasi-one-dimensional Ce2O2FeSe2 [100].

For U � t, the Hubbard model can be exactly mapped onto an antiferromagnetic
Heisenberg model (see Fig. 2.17)

H =
∑
<ij>

[
J‖(sxi sxj + syi s

y
j ) + J⊥s

z
i s
z
j

]
(2.5)

where the pseudospin interactions are J‖ = J = 4t2/U and J⊥ = J + V , making
more evident the anisotropy introduced by the term V . The mapping between
the attractive Hubbard model and antiferromagnet passes through the “attractive-
repulsive” transformation [31, 99]. The antiferromagnetic model can be in turn
mapped onto a ferromagnetic one by a coarse graining protocol: if a system consist
in large patches of ordered regions, the operators sxi , s

y
i , s

z
i can be replaced by their

expectation values, i.e., the local staggered magnetization, on each of the patches.
In other words, the SO(3) symmetry of the Hubbard model can be mapped onto
a three dimensional pseudospin, where the up and down directions represent two
possible variants of CDW and the in-plane component is the superconducting one.
Note that in the generalized Hubbard model, the variants encoded are only 2, but
in general there may be more, according to the periodicity of the charge modulation.
While strictly speaking the mapping applies to the Hubbard model, one can use the
coarse graining argument to apply it to a more general situation in which CDW is
in competition with superconductivity. In this framework the implicit assumption is
that at least short range order is present, considering regions with linear size greater
than the lattice spacing but smaller than the correlation length, over which one can
define si with unitary magnitude |si| = 1, neglecting fluctuations in the strength of
fermion pairing.

In Refs. [31] and [32] the CO-SC competition has been studied at T = 0 within
this Heisenberg framework, with an effective Hamiltonian defined as

H = −J
∑
<ij>

si · sj +G
∑
i

(szi )2 + w

2
∑
i

his
z
i (2.6)
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a a

Coarse
graining

U<0 Hubbard Quantum AFM FM
Figure 2.17. Sketch figure of the mapping of a charge density wave from the attractive

Hubbard to the quantum antiferromagnet (AFM). Using a coarse graining argument
one can locally map the AFM to a classical ferromagnetic system (FM).

where G breaks the symmetry of the spin, favoring the CDW for G > 0, and the
random field term hi is a random variable uniformly distributed in [−1, 1] mimicking
the impurities, always present in real samples. Varying both G and w, filamentary
superconductivity appears as a topologically protected domain wall at the boundaries
of two different CDW domain: when the up and down regions are formed, the spins
at the interface between the two opposite clusters are forced to smoothly change
from an up or down configuration to the opposite, transitioning to an in-plane state,
the superconducting (see Fig. 2.18a in which the two possible variants are called
A-CDW and B-CDW).

Already at T = 0 they managed to model the re-entrant filamentary super-
conducting state expected by tuning appropriately the anisotropy term G and the
impurity strength w. We report the phase diagram presented in [32] in Fig. 2.18b,
where the colorplot refers to the value of the superfluid density (called here ρs) with
respect to the spin interaction J .

The filamentary superconductivity scenario presented so far is still open to many
possibilities of understanding. In Chapter 5 we will analyze an Heisenberg model,
very similar to the one in Eq. (2.6), trying to move some extra steps towards the
comprehension of the phase diagram in Fig. 2.16, addressing the temperature depen-
dence of many physical quantities and the critical temperatures of the phases involved.

2.2.5 Competition in other materials

Hints of filamentary superconductivity have been reported also in iron-based super-
conductors. A recent review of iron-based materials can be found in Ref. [101]. For
our scope, we can just point out that their phase diagram is very similar to the one
of cuprates, with an antiferromagnetic phase at low dopings and a superconducting
dome at higher hole dopings. A pseudo-gap region is also present. In [102] the
presence of filamentary superconductivity has been claimed in (Ca0.73La0.27)FeAs2
from transport and magnetotransport measurements at low pressures P=1.6GPa,
becoming bulk at 3.2GPa. Hints of filamentarity were found instead in anti-
ferromagnetic CaFe2As2 [103] and, more generally, across the phase diagram of
Ba(Fe,Co)2As2 [104]. In [105] both filamentarity and inhomogeneities are observed
to interplay in Ca0.86Pr0.14Fe2As2 single crystal, the authors pointing out that
“filamentary nature is a consequence of nonuniform Pr distribution that develops
localized, isolated superconducting regions within the crystals”. This last statement
in particular seems to be in line with our considerations about the interplay of
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a

b

Figure 2.18. (a) The sphere represents the SO(3) symmetry of the pseudo-spin: the
in-plane state is the pure superconductor, while up and down states refer to two different
CDW variants called A,B-CDW. The flipping of neighbors spins from up to down should
necessarily pass from an in-plane state. (b) Zero temperature stiffness ρs as a function
of both anisotropy parameter G and quenched disorder strength W (Figures from [32]).

competing orders and impurities. Nonetheless, while in cuprates the order parameter
involved together with superconductivity is the CDW, no evidence of charge ordering
were found so far in iron-based materials, although spin density waves could be a
good candidate to consider in order to explore this topic also in iron-based. As a
matter of fact, the stripe phase detected in iron-based materials has already been
linked to the presence of spin density waves [106,107].
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Chapter 3

Microscopic disorder in a two
band superconductor

“Look - said Arthur - would it save you a lot
of time if I just gave up and went mad now?”

The Hitchhiker’s Guide To The Galaxy,
Douglas Adams

As it was already stated in the previous Chapter, 15 years after the discovery of
superconductivity in SrTiO3-based heterostructures many questions are left open.
In particular in Section 2.1.1 we described the problem of the suppression of the
critical temperature with the increase of the number of carriers in the system. In
this Chapter, we will investigate the possibility that the pairbreaking effect observed
can be simply caused by the presence of disorder in a multiband system, applying
the model proposed by Trevisan et al. in [61] to a specific sample of (110)-oriented
interfaces. The work presented in this Chapter was born as an easy task to a
theoretician – borrowing a model to fit experimental data – but it turned out to be
an interesting and systematic study of the interplay between disorder, multi-band
physics, and superconductivity. As a matter of fact, it will offer a way to disentangle
the effects of microscopic and mesoscopic disorder.

3.1 Experimental evidences of pair-breaking

Let us present as a starting point the experimental observations on a (110)-oriented
LaAlO3/SrTiO3 sample. It should be pointed out that multi-band superconductivity
has been experimentally demonstrated only in the (001) interface, which is the most
studied one, while for the (110)-orientation this has been only predicted theoretically.
Normal and Hall resistivity measurements follow the trend already presented in
Section 2.1 with a suppression of superconductivity in correspondence to an increase
of the carrier density. As it was done before [22,55], Hall resistivities can be fitted
with a two carrier model, accounting for two populations of electrons with lower (LM)
and higher mobility (HM). The resulting carrier densities nHall, nLM and nHM and
mobilities µLM , µHM are presented respectively in Fig. 3.1b and 3.1c. Comparing
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Figure 3.1. (a) Colorplot of the sheet resistance normalized by its value Rn at T = 0.45K
as a function of VG (x axis) and T (left axis). (b) Gate voltage dependence of the
carrier density of the low-mobility nLM and high-mobility nHM population of electrons
extracted from the two-carrier analysis of the Hall effect. Red circles indicate the Hall
carrier density measured in the limit of zero-magnetic field, nHall(H → 0) which only
gives the correct electron density in the one band regime, i.e., VG < 0. The total carrier
density of the 2DEG n2D has been obtained by integration of the gate capacitance and
by matching it to nHall in the one-band regime. (c) Mobility of the less mobile carriers
µLM and the more mobile ones µHM as a function of the gate voltage.

a b c

Figure 3.2. Figures from [61]: (a) Scheme of the two band model in which the Debye
energy is the greater energy scale at play, hence both bands are always in the BEC limit.
Results for the critical temperature as a function of the normalized number of particles
N/Nc, Nc being the number of electrons at the Lifshits transition, for a (b) positive
λ12 > 0 and (c) negative λ12 < 0 interband coupling constant.

those results and the colorplot of the sheet resistance as a function of the gate
potential VG and the temperature T in Fig. 3.1a one can observe a slight increase of
the critical temperature up to an optimal doping V opt

G = 0, corresponding to a single
band model; then for VG ≥ V opt

G an important suppression of the superconducting
state (the orange region) is observed right when the HM carriers enters the system.

We will explore in the next Sections the possibility that this pair-breaking effect at
the Lifshitz transition is due to an interband repulsive coupling, as it was suggested in
a work by Trevisan et al. [61]. They showed that a two band model with the presence
of a weak disorder generates a suppression of the critical temperature as soon as
the upper band is involved, whenever the two inter-bands coupling constants are
negative λ12 = λ21 < 0. Note that the greatest scale of energy in their model is the
Debye energy, hence both of the bands are always in the Bose-Einstein condensation
(BEC) regime.
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3.2 Theoretical model

The suppression of the critical temperature observed in LaAlO3/SrTiO3 interfaces
and, more specifically, presented in Fig. 3.1a is at odds with the general idea that
an increasing number of carriers involved, especially with a higher mobility, should
in principle make available a higher number of Cooper pairs thus strengthening
the superconducting state. More precisely, Anderson’s theorem [9] states that
superconductivity is robust against weak non-magnetic disorder. In his seminal
paper, the argument was strictly following from the fact that non-magnetic impurities
in s-waves cannot break time-reversal symmetry. It is then more likely that the
theorem is circumvented in its assumptions rather than failed.

3.2.1 Parameters

In our attempt to adapt and fit the model proposed in [61] to the data presented, we
start by extrapolating what we can from the experiments. Although we are aware
that a three-band model would be more appropriate, given the band structure of
SrTiO3-based interfaces (see Section 2.1.1), we decided to use a two-band model,
where the lower band is an effective single band accounting for the degenerate bands
coming from dxz/yz orbitals (see Fig. 2.2b). This will guarantee a more transparent
theoretical treatment, without affecting any of the crucial aspects we are interested
in. A three-band model would in fact simply require more computational effort and
include more free parameters to adjust. From now on, let us simplify the notation,
using subscripts 1 and 2 for the lower and upper sub-band instead of LM and HM.

The inverse scattering time τ−1 can be extrapolated from the mobility µi = eτ
mi

,
where mi are the effective masses are assumed to be m1 = mxz/yz = 2.3m0 and
m2 = mxy = 3.1m0, coherently to what is found in literature [108], e and m0 being
respectively the charge and mass of the electron. In Fig. 3.1c we indicated some of the
calculated values of the disorder ~τ−1, which settles around the value ~τ−1 ∼ 5meV
in the lower band while ranging approximately from 3.7meV down to 0.37meV in
the upper band. As a consequence, we can already state that we are no longer in the
limit of weak disorder, as for it was requested by Anderson’s Theorem to be valid.

From the measurements of the number of particles in Fig 3.1b one can extrapolate
the energy corresponding to the entering of the upper band ε0 and have already
an estimate of the mapping between gate voltage VG and chemical potential µ.
Calculating the density of states (DOS) using the usual formula for non-interacting
fermions

Ni = 2
∫

d2k

(2π)2 δ

(
ε− ~2k2

2mi

)
(3.1)

we obtain N1 = 1.1 · 1016 m−2 meV−1, N2 = 1.3 · 1016 m−2 meV−1. Hence one can
calculate ε0 = 90 meV, corresponding to the value at which N1ε0 = nH(V opt

G ) ≈
0.8 · 1014 cm−2. We can then infer the chemical potential variation of the gate
potential from V opt

G to 100V as µ′ − ε0 ≈ 7 meV. In other words, the gate variation
from −100 V to 0 V corresponds to a variation in the chemical potential µ of about
50meV while ranging Vg from 0 up to +100 V means tuning µ of just 10 meV.

Finally, we will assume a standard BCS coupling mechanism, using as a pairing
energy the Debye energy Ω = 400 · kB = 34.5meV [56]. It is worth noting that for
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bulk SrTiO3 as for SrTiO3-based heterostructures the superconducting mechanism
is still a debated issue; however, in [21] it was pointed out that a weak coupling
BCS regime can account for the odd behaviors of the superfluid stiffness measured
in [73], provided that inhomogeneities are considered. Since the ultraviolet cutoffs
are estimated to be Λ1,2 > 1 eV and given that µ′ − ε0 ∼ 7meV we find that the
appropriate model to consider consist in an intermediate regime, sketched in Fig. 3.3:
in the lower band the pairing window µ ± Ω is always fully contained within the
band as in the standard BCS description, while the upper band stays in BEC regime.
When in fact the chemical potential approaches the bottom of the upper band ε0
an effective coupling between the two bands is already at play, even if the chemical
potential is still below the Lifshitz point.

DO
S

//

//

//

ΩΩΩ            Ω

Figure 3.3. Sketch figure of the density of states (DOS) N1 and N2 as functions of the
energy ε (reduced energy ξ = ε − µ) of the two-band system. The blue dashed lines
highlight the observation window of energy (reduced energy) accessible, so far, through
experiments: according to the parameters involved in LAO/STO interfaces, the lower
band is well described by the BCS theory, the pairing window µ± Ω lying entirely in
the band, while the upper band stays in the so-called BEC regime.

3.2.2 Two-Band disordered superconductor

Let us present the equations for the two-band disordered model in the mixed BCS-
BEC regime of Fig. 3.3. Here, we assumed a constant density of states (DOS) for
both bands, N1 and N2. We indicate the matrix of the bare coupling constant with

λ =
(
λ11 λ12
λ21 λ22

)
,

the indices labeling the two bands of the clean system. Note that λij is the dimension-
less pairing interaction which has to satisfy the relation g12 = λ12/N1 = λ21/N2 = g21,
so λ12, λ21 > 0 implies an attractive interaction between the two bands, viceversa
λ12, λ21 < 0 implies repulsive.

As in Fig. 3.3, we call wj the lower band edge of the j-band (j = 1, 2), and Λj

the higher band edge; the corresponding reduced energy ξ w1 = −µ, w2 = ε0 − µ
and Λi = Li − µ.

The critical temperature Tc can be calculated from the solution of the linearized
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gap equations for the two band model (see Appendix A):

∆i = πkBT
∑
k,iωn
j

λ̃ij
Ni

∆j

(iω̃n)2 + ξ̃2
j,k

(3.2)

which corresponds to the divergence of the Cooper susceptibility and λ̃, ω̃n and
ξ̃ = ξ + hn are respectively the coupling constant, Matsubara frequency and energy
dispersion, corrected by disorder. The effect of disorder will be introduced within the
averaged T̂ -matrix approximation [49,61]. Referring to Appendix B for more details,
the self-energy coming from the presence of microscopic impurities homogeneously
distributed in the system gives the so-called line corrections to the Matsubara
frequencies and the chemical potential.

Thus, the corrected linearized gap equations will be thus be(
∆1
∆2

)
=
(
λ11 λ12
λ21 λ22

)(
A11 A12
A21 A22

)(
∆1
∆2

)
, (3.3)

where the elements of the matrix A are given by

Aij = kBT
∑
n

Mij

det (M)

∫ max [Ω,wi]

max [−Ω,wi]

dξ

ω̃2
n + (ξ + hn)2 , (3.4)

ω̃n and hn being, respectively, the Matsubara frequency shifted by disorder effects
and the frequency-dependent correction to the chemical potential µ, calculated
self-consistently: 

ω̃n = ωn + Γω̃n
2
∑
j=1,2 f̃n,j

hn = −Γ
2
∑
j=1,2 g̃n,j ,

(3.5)

where ωn = (2n + 1)πkBT , n ranging over integer numbers, is the Matsubara
frequency of the clean system, Γ = ~τ−1/2 is the disorder-induced broadening and
sets the scale for the inverse lifetime of the charge carriers,

f̃n,j = 1
π

∫ Λj

wj

dξ

ω̃2
n + (ξ + hn)2 , (3.6)

g̃n,j = 1
π

∫ Λj

wj

(ξ + hn)dξ
ω̃2
n + (ξ + hn)2 , (3.7)

and the matrix

M =

1− Γ
2 f̃n,2

Γ
2 f̃n,2

Γ
2 f̃n,1 1− Γ

2 f̃n,1

 (3.8)

introduces vertex corrections to the Cooper susceptibility due to disorder [109, 110].
We can observe that a huge but necessary simplification we made so far is

to consider a constant disorder parameter Γ for both bands and at all chemical
potentials. The Hall measurements of the LM and HM carriers in Fig. 3.1c show
instead that not only the mobilities are quite different in the two bands, but also that
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the scattering rate should strongly depend on doping, especially for what concerns
the upper band. Nevertheless, we are focused mainly in the interplay between
disorder and multi-band physics: the same way we choose to keep two bands instead
of two degenerate bands interacting with a third one, we will keep Γ constant, leaving
the system as simple as possible.

3.3 Toy model: single-band system

We first unravel the physics of the single-band system, observing both finite-
bandwidth effects and the role of disorder-induced line and vertex corrections.
Let us rewrite the linearized gap equation we want to solve as

∆ = πkBTc
∑
ωn

∆ λϕn

1− Γ
2ϕn

, (3.9)

where
ϕn = 1

π

∫ max (max (Ω,Λ),w)

min (max (−Ω,w),Λ)

dξ

ω̃2
n + (ξ + hn)2 ,

the band ranges from w = ε − µ to Λ = L − µ, and Ω is the Debye energy. The
corrected Matsubara frequency ω̃n and the correction to the chemical potential hn,
are calculated from the coupled self-consistent equations:{

ω̃n = ωn + Γω̃n
2 f̃n

hn = −Γ
2 g̃n

(3.10)

In Fig. 3.4 the critical temperature Tc is plotted as a function of the chemical potential
µ for a finite band ranging between 0 and 500meV, with a constant DOS. We used
here Ω = 30meV and λ = 0.133, so Tc ≈ 0.21K in the clean case (blue circles
in Fig. 3.4). In agreement with Anderson’s theorem, a small amount of disorder,
Γ = 0.01meV, does not change the value of the superconducting critical temperature
Tc. On the other hand, when Γ is at least 50 times greater, Γ > 0.5meV, a substantial
suppression of Tc is found. We would also like to highlight the more pronounced
kink in the suppression of superconductivity, observed when both disorder and
finite-bandwidth effects are present, at µ = w + Ω and µ = Λ− Ω.

Clearly, the only element of pair breaking here is the disorder and finite bandwidth
effects are important at the edges of the band in an energy range that is set by the
Debye energy Ω. As soon as the chemical potential enters the band and as long as its
energy distance from the bottom of the band is smaller than the characteristic Debye
energy µ < Ω, the critical temperature Tc rapidly increases Tc ∼

√
µ, coherently

to previous results [21,53,54]. When µ & Ω enters well inside the band, Tc slowly
decreases as a consequence of finite-bandwidth effects. Further increasing µ leads
to a nearly constant Tc when µ is around the center of the band, whereas Tc
symmetrically increases slowly in the upper half of the band (because of particle-hole
symmetry in a single band with constant DOS). These are rather weak effects that
might obviously be overcome by other DOS details in real band structures (like,
for example, van Hove singularities or Rashba spin-orbit couplings [20, 111, 112]),
but they are often overlooked in theoretical analyses and it might be informative
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Figure 3.4. Critical temperature Tc as a function of the chemical potential µ for a finite
band, extending from w = 0 to Λ = 500meV for different values of the disorder-induced
broadening Γ; the Debye frequency is Ω = 30meV and the coupling constant is λ = 0.133.

on some specific features (bandwidth, band edge positions, and so on) of the band
structure specifically involved in experiments. When adding the second band, this
consideration will be important in order to explain the first slow decrease (or possibly
slow increase) in the Tc curve at low doping.
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Figure 3.5. Critical temperatures for the single finite band (w = 0, Λ = 500meV,
Ω = 60meV, λ = 0.19) calculated with different disorder-induced broadening (a)
Γ = 0.01meV, (b) Γ = 0.1meV and (c) Γ = 0.5meV. The blue dots correspond to the
clean system (Γ = 0), the dirty cases are plotted in orange while in green one can see
the calculation where the vertex correction is suppressed by hand.

We investigated the role of both line and vertex corrections. To emphasize the
effects, we considered larger values of the Debye energy Ω and of the coupling constant
λ, in particular, taking Ω = 60meV, to enhance finite bandwidth effects at the
edges and λ = 0.19 to increase the bare value of the critical temperature, necessary
to appreciate the effects of the corrections. The choice of a higher clean critical
temperature is clarified when looking at our results in Fig. 3.5, showing the curves
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Tc(µ) for three growing amounts of disorder Γ = 0.01, 0.1 0.5, calculated with and
without the vertex correction (VC), i.e., the factor (1−Γ/2ϕn)−1 in Eq. ??. Looking
at Fig. 3.5c, specifically at the green curve corresponding to Γ=0.5meV it is clear that
the VC is so important that it can drastically suppress the critical temperature. This
is a trend that we observe also in Fig. 3.5b and also slightly in Fig. 3.5a, although the
effect here is really small: the line correction, i.e., the correction to the Matsubara
frequency in Eq. (3.5), lowers substantially the critical temperature while the vertex
correction, i.e., the matrix M in Eq. (3.8), largely compensates the line correction
almost completely restoring the clean value of the critical temperature Tc(Γ = 0).
This is a clear manifestation of Anderson’s theorem, which, as it is well known, can be
rephrased by stating that superconductivity is robust against disorder whenever self-
energy (line) corrections coexist and get (largely) canceled by vertex corrections. On
the contrary, whenever the wave symmetry or the magnetic character of impurities
lead to vanishing or small vertex corrections, the premises for Anderson’s theorem
to apply no longer hold.

Finally, let us stress once again the importance of the numbers involved. It is
in fact of great interest for both theoreticians, whose final goal is to describe real
systems, and experimentalists to understand quantitatively how all the parameters
and quantities involved interplay and contribute individually to the suppression
of Tc. In the case at issue here, we observe that the suppression of the critical
temperature due to the presence of disorder is of the same order of magnitude, i.e.,
few tens of mK, independently of the value of Tc in the clean case. Although this
is not surprising, since Tc depends only on the Debye energy Ω and the coupling
constant λ, both unrelated to the disorder-induced broadening Γ, the relative
suppression on Tc can be significant. Calling δTc = Tc(Γ = 0)− Tc(Γ) the difference
between the critical temperature of the clean system and the one of the disordered
system, and comparing our results for Γ = 0.5meV in Fig. 3.4 (red dots), where
Tc(Γ = 0) = 0.21K, and in Fig. 3.5c (orange dots), where Tc)(Γ = 0) = 4.03K, we
find, respectively, δTc/Tc(Γ = 0) ≈ 0.1 and δTc/Tc(Γ = 0) = 0.01. This shows that
the same disorder becomes relatively more important in systems with lower critical
temperature.

3.4 Disordered unpaired bands

Let us introduce here the second band, keeping it unpaired to the other one, i.e.,
λ12 = λ21 = 0 so that the system is an intermediate case between the one-band
model studied above and the full two-band disordered model. Thus, Eq. 3.3 reduces
to {

∆1 = λ11(A11∆1 +A12∆2)
∆2 = λ22(A21∆1 +A22∆2)

(3.11)

Hence, even if formally the inter-band couplings are set to zero, the disorder still
couples the two bands because electrons can be scattered from one band to the
other. Note that in a heavily disordered system the concept of multiple bands loses
its meaning, as disorder mixes the band eigenstates, even though the pairs are still
formed within each band separately. The parameters used are λ11 = λ22 = 0.135
and Ω = 34.5meV, and the lower edge of the second band is ε0=90meV. As one can
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Figure 3.6. Two bands system with no interband coupling λ12 = λ21 = 0 and different
amounts of disorder Γ. Here the parameters used are comparable with the real ones
of LAO/STO heterostructures (Ω = 34.5meV and λ11 = λ22 = 0.135. As one can see,
already Γ = 0.01meV is enough to couple the bands and lower the critical temperature.
The dashed line indicates the bottom of the upper band ε0 = 90meV.

see from Fig. 3.6, increasing the chemical potential, a gradual decrease of the critical
temperature is observed, coherently with the decrease observed in the toy model of
Sec. 3.3, then a substantial suppression of the critical temperature is observed near
the Lifshitz transition. Further increasing µ, Tc starts to rise again, while the second
band starts to be filled. Eventually, if the chemical potential enters well inside the
second band, a situation similar to the one described in Sec. 3.3 should occur, albeit
without particle-hole symmetry (for a generic relative position of the two bands), so
that the maximum suppression of Tc with respect to the value in the clean two-band
system – due to finite-bandwidth effects – is no longer expected to be located when
the chemical potential reaches the middle of either bands.

3.5 Two coupled disordered bands

We finally discuss the complete model as presented in Sec. 3.2.2. We choose for the
disorder-induced broadening the value Γ = 0.6meV, corresponding to ~τ−1=1.2meV,
and we tune the values of the coupling constants to obtain critical temperatures
in the range of the values observed for LAO/STO. For now, we make a further
simplification, besides taking Γ as independent of the carrier density, keeping the two
DOS equal N1 = N2; otherwise, one should take the inter-band coupling constants
obeying the relation λ12 = λ21N2/N1, as we will do in the next Section. Since in
the case examined the DOS involved are of the same order (see Section 3.2.1, this
simplification is not substantially affecting our results.

Setting Ω = 34.5meV, the initial decrease of the critical temperature is due to
finite bandwidth effects, as it was clear from the one band toy model presented in
Section 3.3, while λ11 tunes the order of magnitude of Tc. The depth and shape of
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the well at µ ≈ ε0 are strongly dependent both on the amount of disorder involved
and on the values of the inter- and intraband coupling constants. Similarly to λ11,
λ22 rules the order of magnitude of Tc when the chemical potential is well inside
the upper band (µ � ε0), so necessarily it will affect both the minimum of the
decrease of Tc, at µ = ε0, and its rise, for µ & ε0, as one can see from Fig. 3.7a. A
subtler aspect is, however, the role of the inter-band coupling constants. As stated
in Ref. [61], sub-leading negative inter-band coupling constants, together with a
small disorder, can induce the observed pair-breaking effect, while an attractive
inter-band interaction only produce a much smaller suppression of Tc when the
chemical potential approaches the edge of the second band.

Nonetheless, in a strongly disordered system this statement is not so clear-
cut. In Fig. 3.7b we plot the curves Tc vs µ for different values of the inter-band
coupling constant. As one can see, while λ12 = λ21 = −λ11 · 10−1 is indeed enough
for the critical temperature to be zero in a wide range of values of the chemical
potential (90meV< µ <110meV, red dots), a sub-leading positive coupling constant
λ12 = λ21 = +λ11 · 10−2 (orange dots) still generates a suppression of Tc at µ = ε0
and the three curves with −λ11 · 10−2 < λ12 < +λ11 · 10−2 (orange, green and red
dots) present almost the same behavior in their increase inside the second band
(µ > ε0), stating the fact that the main pair-breaking effect at play is the presence
of a strong disorder.
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Figure 3.7. Calculations for the complete two-band disordered model presented in Sec.3.2.2.
Here, we considered Γ = 0.6meV, Ω = 34.5meV and λ11 = 0.135. The gray dashed
line indicates the chemical potential corresponding to the Lifshitz transition, that is,
ε0 = 90meV. (a) The inter-band coupling constant are fixed as λ12 = λ21 = −λ11 · 10−2,
while varying λ22. (b) Here, λ22 = λ11. while the values of λ12 = λ21 are varied.

3.6 Tc suppression in the (110)-LaAlO3/SrTiO3

Let us now finally apply the model to the real sample.
Going back to the experimental measurements, we need to have a clear mapping of
the chemical potential µ into the gate voltage VG. It is worth noting that the doping
potential VG cannot be defined univocally, contrary to chemical doping which is a
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Figure 3.8. Corrected DOS at different disorder amounts Γ = 0.1, 0.6 (green and red)
with respect to the clean case G = 0. The yellow shaded area corresponds to the
experimentally accessed energy range.

far more governable procedure. In Section 3.2.1, we did a first attempt to roughly
define the range of chemical doping involved, so as to have realistic numbers of the
parameters to work with. To define a more precise mapping, on a phenomenological
basis, we need first to translate the chemical potential µ in terms of the number
of particles ntot(µ, T ) and then infer from their experimental values in Fig. 3.1b
the relation VG(ntot). Besides, one needs to know how much the correction due to
disorder affects the density of states. Note that this was not necessary before, since
the self-energy corrections introduced in the gap equations implicitly correct the
bare coupling constants, hence the DOS. We computed the corrected DOS Ñ1 and
Ñ2 self-consistently according to the following equation:

Ñi = Im
∫ Λi

wi

Ni(ξ)
ε− ξ − Σi

dξ = NiIm(Σi) (3.12)

where the self-energy relative to the i-th band can be calculated iteratively as{
Σi(ε) =

∑
n

Γ
π ln ε−wi−Σi

ε−Λi−Σi
Σn=0
i = iΓ

π

. (3.13)

In Fig. 3.8 we show Ñ1, Ñ2 for two examples of disorder Γ = 0.1, 0.6 (green and
red dots) with respect to the clean case (blue). Since the smearing introduced by
the disorder affects almost only the edges of a flat DOS, the lower band appears to
be independent from Γ while the upper band gets broadened exactly in the range of
energies in which the pairing between the two is relevant. We can stress once again
the fact that the very concept of band in a strongly disordered system somehow
loses its meaning. The broadening of the upper band is also underlying the fact
that we are not dealing with a proper BEC regime: on the one hand, in fact, the
BCS lower band is somehow sustaining the formation of Cooper pairs in the upper
band and, moreover, the smearing introduced by microscopic disorder drags some
electrons of the second band towards states with ε < ε0.

Integrating the DOS one obtains the number of particles, then the corresponding
gate voltage VG can be found from the data. The integration should in principle
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consider the Fermi statistics f(ξ) = (1 + eξ/kBT )−1, i.e., n(µ, T ) =
∑
j

∫
Ñj(ξ)f(ξ)dξ

however in the range of temperatures considered here it is not necessary and we
can consider the limit of zero temperature. On the other hand, at low values of the
disorder Γ, the clean formula for the number of particles can be enough, thus when
Γ . 0.2 one can use the following expression

n(µ) = kBT
[
N1 ln

(
1 + eµ/kBT

)
+N2 ln

(
1 + e(µ−ε0)/kBT

)]
(3.14)

valid for a clean system and flat DOS.
The data of the superconducting critical temperature can be finally fitted by

means of the two disordered bands model described so far. The parameters used
to fit the data are λ11 = 0.135, λ22 = 0.14, λ12 = −λ11/10 , λ21 = N1/N2λ12 for
the coupling constants and Γ = 0.2meV for the disorder, the values of the bare
coupling constants being experimentally determined from fits of the critical field
measurements of the same sample [13] and are consistent with what was found in
literature [53,61] while the disorder correspond to the lower bound ~τ−1 found from
mobility measurements (Fig. 3.1c). The V-shape well encountered in all theoretical
calculations at the Lifshitz transition may seem a discrepancy with respect to
experiments, however one should take into account the presence of mesoscopic
inhomogeneity in SrTiO3-based heterostructures. As it was pointed out in Section
2.1.1, the inhomogeneous nature of LaAlO3/SrTiO3 has been largely studied and
the typical size of a superconducting puddle in the 2DEG has been estimated to be
of the order of ∼100 nm [75]. Translating the inhomogeneities into fluctuations of
chemical potential, we can consider the average value

T c(µ) =
∫ +∞

−∞
dµ′Tc(µ′)G

(µ− µ′
σ

)
(3.15)

where G is a Gaussian distribution of average µ and deviation standard σ. From
Fig. 3.9 one can appreciate the agreement between the experimental data (green
dots) and the theoretical calculations of Tc averaged with σ = 7meV and repulsive
couplings (full yellow diamonds), while the non-averaged case σ = 0 presents the
minimum in ε0=90meV corresponding to approximately VG ≈ 60V (black dashed
line). It is worth noting that the very same calculation, with the same parameters
and σ = 7meV, using an attractive interband pairing λ12 > 0 constant cannot
reproduce the suppression of Tc observed in experimental data (black diamonds).

3.7 Concluding remarks

The deep investigation on the two-band disordered model we carried over this
Chapter in the unconventional BCS-BEC regime needs perhaps a summary of our
main results.

The one-band toy model was a clarifying starting point, since it highlighted
the fact that microscopically the disorder involved is far from the weak limit. We
remark on this aspect to stress the fact that our system relies outside of the premises
of Anderson’s theorem. On the other side, while finite bandwidth effects were
not qualitatively surprising, from the point of view of the shape of the critical
temperature as a function of the chemical potential, quantitatively the suppression



3.7 Concluding remarks 49

-100 -50 0 50                100

0.3

0.2

0.1

0.0

T
c

(K
)

Exp.
σ = 0
σ = 7 meV

= 7 meVσ

λ12<0

λ12<0
λ12>0

VG (V)

Figure 3.9. Experimental (green circles) and calculated superconducting Tc as a function of
the gate voltage VG both in the case of attractive (black diamonds) and repulsive (orange
diamonds) interband coupling, with the variance of the chemical potential disorder σ =
7 meV and Γ = 0.2meV. Dashed line shows the computed curve in absence of meso-scale
disorder in the s± scenario.

of Tc at Ω < µ < Λ−Ω and the kinky behavior at µ = Ω, Λ−Ω were much enhanced
when a low value of the clean critical temperature were considered. In other words,
from the one band model it was already clear that in SrTiO3-based heterostructures,
in which the critical temperature is always in the range of hundreds of mK, the
effects of impurities at a microscopic level can severely affect the superconductivity.

While adding a second band, the role of intraband and interband coupling con-
stant in tuning Tc is consistent with the expectations. The striking and unexpected
result of our study is the pair-breaking effect observed in absence of interband
coupling λ12 = λ21 = 0, hence when the only source of scattering is the presence of
impurities.

From the experimental point of view a repulsive coupling between the bands –
along with fluctuations of the chemical potential due to mesoscopic inhomogeneities
– was necessary to reproduce the suppression of Tc at V > V opt

G , this was done
at constant disorder. Moreover, the chosen value corresponds to the lowest value
observed in the upper band. Anyhow, the bare coupling constants were considered
constant at all doping, hence one can think that a higher amount of disorder around
the Lifshitz transition, which goes towards a more pronounced suppression of Tc,
could be balanced by a lowering of the interband couplings. Such a model would
however contain too many parameters to be reliable.

What was instead of great theoretical interest and needs for more investigation,
is the pairbreaking effect at the Lifshitz transition strictly connected to the presence
of microscopic disorder. Anderson’s theorem can be in fact rephrased in terms of
the derivative of Tc with respect to Γ, stating that in an s-wave superconductor
in presence of non-magnetic impurities dTc/dΓ→ 0 when Γ→ 0. Instead, we can
observe from Fig. 3.10, where we plot Tc(Γ) at different chemical potentials, that the
theorem, valid when just one band is involved (panel a), does not always hold in
the two-band case. In the overdoped regime (panel c) µ = 100meV, the repulsive
interband coupling is necessary to observe a “violation” of the theorem, as it was
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Figure 3.10. Suppression of the critical temperature as a function of the disorder Γ = ~τ−1

(a) at µ = 40meV, i.e., where the system is underdoped and only one band is involved,
(b) at the Lisfshitz point µ = ε0 = 90meV and (c) at µ = 100meV, where the system is
overdoped but the upper band is still in the BEC limit. The blue curves correspond to
an attractive interband coupling while the red to a repulsive coupling between the two
bands. Here the parameters used are λ11 = λ22 = 0.135 and λ12 = λ21 = ±λ11/10 .

highlighted in the work of Trevisan et al. [61], while interestingly at the Lifshitz
transition µ = 90meV both curves for λ12 ≶ 0 clearly displays a pairbreaking effect,
enhanced in the repulsive case but present also in the attractive one, demonstrating
that disorder plays a crucial role in the suppression of the critical temperature.
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Chapter 4

The Random Impedance
Network model

“Non si può mai pensare alla strada tutta in
una volta, tutta intera, capisci? Si deve
soltanto pensare al prossimo passo, al
prossimo respiro. Sempre soltanto al gesto
che viene dopo...”“You can never think about the road all

at once, the whole thing, you know? One must only think of the

next step, the next breath. Always just what comes next...”

Momo, Michael Ende

In the previous Chapter the suppression of the critical temperature in a LaAlO3/
SrTiO3 interface was found to be caused mainly by the interplay between the
microscopic disorder and the multiband character of the system whereas mesoscopic
disorder has the effect of broadening the signature of a Lifshitz transition. As
stated in Section 2.1, the observation of a BKT transition in a real two-dimensional
superconductor can be prevented by the presence of strong inhomogeneities [17].
One of the main hallmarks of mesoscopic disorder is in fact a large broadening of
the transition in the resistivity measurements R(T ) which cannot be ascribed to
large fluctuations of the superconducting condensate. Instead, in previous works
[17–19,21–23,74,113], the physical mechanism leading the transition was proposed
to be the one of a percolative transition in all those two-dimensional superconductors
displaying inhomogeneities on a mesoscopic scale. Within this approach, not only
the broadening of R(T ) observed in SrTiO3-based interfaces find its interpretation,
but also the smearing of the coherence peaks in tunneling spectra, the non-linearity
in the I − V characteristics or the residual resistivity at zero temperature of the
(001) interface.

In this Chapter, we start observing some new data on a (001)-LaAlO3/SrTiO3
device where the superfluid stiffness and the optical conductivity are measured by
means of resonant microwave transport experiments. In Section 4.1 we start by
describing in detail the state of art of the Random Resistor Network (RRN) used
to model the percolative transition, explaining both the effective medium theory
(EMT) and the exact solution. The new resonant microwave transport data are
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then presented in Section 4.2. Finally, Section 4.3 is dedicated to implement the
necessary updates needed to globally describe the new experiments, i.e., the Random
Resistor Network will consider also finite frequencies becoming a Random Impedance
Network (RIN) model. Again, we will discuss both the EMT solution, considering
also the possibility of finite frequency dissipative effects, and the exact solution,
where the geometry of the superconducting bonds will play a crucial role.

4.1 The RRN Model

Let us first introduce the details of the Random Resistor Network (RRN) model.
The simplest RRN model one can imagine is nothing but a 2D square lattice of
resistances (see Fig. 4.1a), each one with its own local critical temperature T ic ,
randomly distributed according to a given probability distribution. It is worth
noting that each resistor consist in a puddle of mesoscopic size, small with respect
to the sample size but large enough to have a well defined coherence and a random
but well defined local critical temperature. By lowering the external temperature T ,
the resistors are switched-off to their superconducting state Ri = 0 as soon as the
condition T ≤ T ic is verified:

Ri =
{
RN , if T > T ic ,

0, if T ≤ T ic ,
(4.1)

where RN is the experimental resistance per square of the 2D material in the high-
temperature regime. We can consider two class of resistors, i.e., metallic (m) and
superconducting (s) resistors: the metallic ones will have a local critical temperature
T ic ≤ 0 so that they will maintain their finite resistance Ri = RN down to T = 0K
while the superconducting (s) will have a finite T ic , randomly distributed across the
sample. It was previously shown that different distributions give rise to qualitatively
similar physical properties [19]. For the sake of simplicity, the probability density
distributions of the local critical temperatures T ic for the superconducting fraction
will then be taken as Gaussian:

P (T ic) = ws√
2πσ

exp
(
−(T ic − µc,s)2

2σ2
s

)
(4.2)

where µc,s and σ2
s are respectively the average and the variance. The total weight

of the distribution ws corresponds to the maximum fraction that can become
superconducting. A fraction wm = 1− ws of the system will always stay metallic,
down to T = 0K.

The exact solution of the RRN model for a L × L square lattice is then the
solution of Kirchoff’s and Ohm’s Law in each bond and node. Calling here Rijx and
Rijy the resistors at the (i, j)−th site, the system of equations reads as:

Rijx I
ij
x = V ij − V i,j+1

Rijy I
ij
y = V ij − V i+1,j∑

<i,j,ν> I
ij
ν = 0

(4.3)
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Figure 4.1. Schematic draw of the network of resistors.

where < i, j, ν > stands for the sum over every bonds connected to site (i, j), in
both directions ν = x, y. The total number of equations needed to solve the system
is 3L2 − 2L, where 2L2 − 2L are the Ohm’s law for all the bonds and L2 are the
Kirchoff’s equations for all the nodes.

We consider a finite square lattice, with no boundary conditions, and an applied
external voltage V , as in Fig. 4.1b. The former equation can be rewritten as a
system of linear equations

Â · ~x = b̂ (4.4)
where b̂ contains the known terms, i.e., the external voltage, which can be either V or
zero, Â is a sparse matrix, whose elements of a single row can contain at most three
non-zero terms, which can be either ±1 or RN ; ~x is the vector containing all the
unknown currents and potentials. Once the system is solved in ~x, the total current
flowing from one edge to the other is the sum of the L currents of one column:

I =
L∑
i=1

Iijx (4.5)

Finally, the total resistivity of the lattice is of course the ratio between voltage and
current

R = V/I. (4.6)

4.1.1 Effective medium theory for the RRN model

If the inhomogeneities in the systems are homogeneously distributed and spatial
correlations are not so relevant, an effective medium theory (EMT) approach can
give us useful insights. The EMT can in fact capture the main features of transport
properties, such as the large broadening of the transition and its tailish behavior [18],
or even the strong non-linearities observed in I − V characteristics [17]. Instead of
solving exactly the system of equations (4.3) presented in the former section, the
effective resistance per square Rem of the 2D system in EMT approximation is given
by the solution of the following self consistent equation [33]∑

j=m,s
w̃j(T )Rj −Rem

Rj +Rem
= 0 (4.7)

where w̃s(T ) is the fraction of superconducting bonds at temperature T :

w̃s(T ) =
∫ +∞

T
dTc Ps(Tc). (4.8)
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The corresponding metallic fraction is by definition the sum of the metallic back-
ground wm plus all the superconducting regions with a local critical temperature
lower than T , i.e., ws − w̃s(T ):

w̃m(T ) = wm + (ws − w̃s(T )) = 1− w̃s(T ) (4.9)

where we have used the condition
∑
j wj = 1 (the sum running on all metallic and

superconducting components). We find that the normalization condition consistently
holds at all temperatures, so

∑
j w̃j(T ) = 1.

Having assumed a Gaussian distributions for the corresponding critical tempera-
tures, Eq. (4.8) reads as

w̃s(T ) = wj√
2π σs

∫ +∞

T
dTc exp

[
−(Tc − µc,s)2

2σ2
s

]
= ws

2

[
1− erf

(
T − µc,s√

2σs

)]
(4.10)

where erf(x) = 2√
π

∫ x
0 e
−z2

dz is the error function. It is now evident that 0 ≤ w̃j(T ) ≤
wj and that w̃s(T ) ≈ 0 for T − µc,s � σs, while w̃s(T ) ≈ ws for µc,s − T � σs.

Since Rm = RN and Rs = 0, the solution of Equation (4.7) can be found
analytically [18,21] and takes the form:

Rem(T )
RN

= θ

[
ws erf

(
T − µc,s√

2σs

)
+ 1− ws

]
, (4.11)

where θ (·) is the Heaviside step function.
Despite the fact that the EMT neglects all spatial structures, still it can give

important insights about the system. The Gaussian distribution in Eq. (4.2) is the
key element setting the characteristics of R(T ). The broadening of the transition
and the downturn of Rem are in this way mostly controlled by the average value
µc,s and variance σs, while setting the fraction of superconducting bonds ws < 1
can reproduce the tailish behavior at low temperature. Most importantly, the
parameter ws rules the percolation of the superconducting cluster. Being wp ≡ 0.5
the percolation threshold for a homogeneous distribution of superconducting puddles
in a 2D square lattice [33], for each ws < wp the effective resistance will saturate
to a finite value in the limit T → 0K (orange curve and yellow shaded area in Fig.
4.2), explaining in this way the so-called “failed superconductor”.

4.1.2 Spatially correlated disorder

Each time that spatial correlations cannot be neglected, the percolative nature of the
model considered is inextricably related to the geometry of the system. Referring to
previous literature [74], let us summarize here some results, explaining at the same
time how the filamentarity was implemented in the calculations.

In Refs. [19] and [74], it is shown that the enhanced tailish behavior in the
low temperatures of resistivity is most likely due to a filamentary character of the
superconducting cluster, whereas the downward curvature at higher temperatures is
caused by the presence of larger superconducting clusters with a higher local critical
temperature called in [74] superpuddles.

In other words, the long distance connectivity is needed for the system to
percolate, and in principle it could be a single superconducting filament crossing the
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Figure 4.2. Temperature dependence of the effective resistance Rem for µc,s1 = 0.15K,
σs = 0.02K and two values of ws. The red (orange) curve corresponds to the pink
(yellow) shaded area. As one can see, as soon as ws < 0.5, the zero-temperature
resistance saturates to a finite value. Observe that the area underneath each Gaussian
distribution equals the corresponding value of ws (Figure published in [25]).

network from side to side, causing the long tails observed. Therefore, the skeleton
of the superconducting resistors embedded in the metal can be implemented as a
fractal like structure. From the operative point of view, the low dimensional cluster
is constructed using a diffusion limited aggregation (DLA) algorithm. This choice
is of course arbitrary and it does not rest on a straight physical reason nor its aim
is to demonstrate that the superconducting regions has some defined fractal-like
structure. It is simply a technical way to represent strongly inhomogeneous systems
with space correlation on large scale.
The fractal is growth by diffusing nRW particles in a square of size L� larger than
the size of the network (L� > L). Each particle is a random walker, moving
one bond to the right and one bond up or down, with equal probability. This
procedure is iterated until the particle stops, as soon as it reaches the top, bottom
or right edge, where it sticks, or if it reaches a site already occupied by one of the
previously diffused particles: in this case, it takes a step back and it stops. The
cluster obtained is defined by all the bonds connecting two stuck particles (Fig.
4.3a). From this super-network, a sub-network of size L× L is selected and it will
be the superconducting backbone of the RRN. Some bulky superpuddles are then
superimposed to the DLA fractal generated, as they were needed to capture the
depletion of R(T ) right at the first downturn of the normal state resistivity. The
superpuddles are round clusters of bonds with radius rpd, added randomly to the
system until the total fraction of superconducting bonds ws is reached. Each of the
bonds belonging to the DLA fractal and the superpuddles are then assigned to a
local critical temperature, according to the distribution in Eq. (4.2). In Fig. 4.3b is
shown an example of the final sheet of resistors on which the Kirchoff’s and Ohm’s
laws will be applied: the bonds belonging to the metallic background, highlighted
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a b
Figure 4.3. (a) Example of a filamentary structure produced by letting 50 000 particles

diffuse across a 250 × 250 square lattice, according to the DLA prescription. Notice
that the underlying 2D square-lattice grid is not reported for clarity (this is the overall
blank part of the figure) and only its DLA fractal subset is represented. From this
larger fractal, a restricted 100 × 100 square sublattice is extracted from the original
250× 250 to serve as a filamentary skeleton for the superconducting component of our
RRN. (b) Example of a superconducting cluster of our RRN, obtained superimposing
bulkier circular superpuddles (in purple color), of diameter equal to 10 bonds, to the
(green) fractal skeleton generated by means of the DLA prescription. In this panel, the
underlying 2D square-lattice grid is reproduced in light yellow. (Figure and caption
from [74])

in yellow, will have a negative T ic , the resistors of the superpuddles will have a T ic
distributed according to a Gaussian with average and variance respectively (µc,b,
σb), while the fractal resistors’ distribution of critical temperature has (µc,f , σf )
(µc,f ≤ µc,b ).

4.2 New experimental evidences of filamentarity

While the RRN model can explain pretty well the features of the metallic states, it
prevents us to address the superconducting one: once the transition has occurred,
the DC transport measurement cannot highlight the properties of the inhomogeneous
superconducting cluster at lower temperatures.

Fortunately by this time experimentalists have found a way to measure the active
response at finite frequency by means of resonant microwave experiments where the
2DEG behaves like a resonant RLC circuit, giving us direct access to the optical
conductivity g′ and the superfluid stiffness Js [24,27]. To investigate those quantities
the RRN model will be extended to finite frequencies and upgraded to a Random
Impedance Network (RIN) model.

Let us recall that within a homogeneous Drude model the complex AC conduc-
tance g is written

g(T, ω) = σ0
1 + iωτ ≡

1
R+ iωL,

where σ0 ≡ ne2τ/m is the DC conductivity, n is the carrier density, e is the
electron charge, m is the carrier effective mass, and τ the scattering time. Then,
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Figure 4.4. (a) Real and imaginary part of the conductivity g = g′ − ig′′ as a function
of temperature at different gate voltages. (b) Gap energy ∆exp

s (T ' 0) extracted from
superfluid stiffness measurement (Js(0) = π~

4e2R∆(0)) as a function of the gate voltage
VG (blue triangles) compared with the expected BCS gap energy 1.76kBTc (red circles)
(Figure from [24]).

the resistance is R = 1/σ0 and the inductance is L ≡ τ/σ0 = (e2Js)−1, where
the superfluid stiffness is Js ≡ n/m. Being the impedance Z = R+ iωL, we define
the corresponding conductance g = Z−1 = g′ − ig′′. Henceforth, we will refer
sometimes to the superfluid stiffness as the imaginary part of the conductivity g′′,
being the two of them proportional by a constant factor, whose only aim is to convert
the unit of measure from an energy to a conductivity and viceversa.

Within resonant microwave transport experiments this reactive response of the
system is directly accessible, thus giving us the possibility to study the properties of
the superconducting cluster. As a matter of fact, also the superfluid densities ns
measured by means of a SQUID device presented in Section 2.1.1 were accounted
by the EMT solution of the RRN [21] extended at small finite frequencies ω. In
Fig.4.4a are reported the experimental measurements of the superfluid density and
the optical conductivity, carried out on the 2DEG of a (001)-oriented LAO/STO
interface for different values of the applied voltage. Experimental data at distinct
voltages shows substantially two regimes with different qualitative features, namely
overdoped (OD) (Vg > 26 V) and underdoped (UD) (Vg < 26 V).

This change of regime happening at Vg = 26 V was already observed at zero
temperature [24], in the superconducting gap ∆ at zero temperature as a function of
different doping potentials (Fig. 4.4b). In fact, the gap ∆(0) was indirectly measured
from the zero-temperature superfluid stiffness Js(0), since Js(0) = π~

4e2R∆(0) and
it was interpreted as a transition from a Josephson Junction array (JJ-array) to a
homogeneous BCS-like case. Today’s measurements show that this transition at 26
V remains also at finite T , corresponding to a change in the qualitative behavior
of g′(T ) and Js(T ), as one can see already from Fig.4.4b. In the following, we will
never invoke JJ-array physics, as we think that the intrinsic inhomogeneities are the
ones ruling the physics of the system.

In Fig. 4.5 the optical conductivity, superfluid stiffness and DC resistivity are
plotted together for different gate voltages, to better capture the features we are
interested in. In all the cases, just below the zero-resistance critical temperature Tc,
it appears a pronounced tail, characterized by a low value of the superfluid density.
Note that Tc is intended to be the percolative temperature at which R(T ) = 0.
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Figure 4.5. DC resistivity (green, right axis) measurements, superfluid stiffness Js and
optical conductivity g′ (respectively in black and red on the left axis) measured via
resonant microwave transport experiments at frequency ω ' 2GHz. The different panels
correspond to different gate voltages VG.

Decreasing further the temperature, at some Tcross, the superfluid stiffness raises
to a higher value, while the real part of the optical conductivity g′(ω) reaches its
maximum; finally, at very low temperature T < Tcross, the system recovers what
could seem BCS-like trend. These peculiar trends are smeared out by reducing
the applied voltage VG. The jump of the superfluid density tends to be much
less pronounced; correspondingly, the peak of g′(ω) gradually decreases, until it
completely disappear for voltage lower than 26V . Those differences found between
the two regimes and the ideal conventional case are summarized in Fig. 4.6. In
particular, in the UD regime (Vg < 26 V) one can observe that

1 - the resistivity curve R(T ) and the superfluid stiffness Js(T ) in temperature
are very distant from each other, while normally the two curves overlap;

2 - at T . Tc, Js starts to increase showing a “bump”. At lower T , Js increases
almost linearly;

3 - the conductance g′ shows a broaden peak and it saturates at values higher
than g′(T > Tc), such that g′(0) & Js(0)/3;

while in the OD regime (Vg > 26 V):

1 - R(T ) and Js(T ) in temperature are far apart, as in the UD regime;

2 - Js is very small for T . Tc and, at some lower temperature Tcross, it abruptly
increases, recovering a BCS-like behavior near T ' 0K;
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3 - g′ is very peaked and g′(0)� Js(0)

The main possible interpretation followed in this Chapter is the idea of a crossover
between a quasi-one-dimensional to a two-dimensional superconducting state that
drives the superfluid density jump at Tcross < Tc. Coherently with the results
found in the context of RRN, in which the long tails of R(T ) can be understood
in terms of a long distance connectivity, we can imagine that the same filamentary
superconducting structure is too fragile for the system to have a substantial stiffness.
The presence of a superconducting percolating path can guarantee the appearance
of a global zero-resistance state, remaining however still very fragile towards an
applied current, showing a very low value of the superfluid density. This very
thin percolating path formed, in spite of its initial fragility, may become more and
more robust as a result of a proximity effect on the metallic substrate, keeping on
lowering the temperature. Indeed, by considering the possibility for the metallic
substrate to become superconducting via some proximization process, lowering the
external temperature, the filamentary backbone will be gradually strengthen by
new neighboring superconducting bonds, reaching finally a whole two-dimensional
state This avalanche effect will then result in a significant increase of the superfluid
stiffness below the critical temperature, at which the first fragile superconducting
state forms.

Given the sharpness of the Js jump, in the high-voltage regime, this process has
to be very fast, and very likely due to an avalanche-proximization process occurring
just below Tcross. Once the whole two-dimensional superconducting state is reached,
Js(T ) recovers the standard BCS-like trend, as expected.

The hypothesis of a crossover occurring between a quasi-one-dimensional to a
two-dimensional superconducting state can account thus for all the three highlighted
features: the presence of a low superfluid-density tail close to Tc, the jump of Js(T )
at Tcross and finally the 2D BCS-like behavior at low temperature.

In the following Section we will introduce the extension to finite frequency of
the RRN model, more appropriately called Random Impedance Network (RIN)
model, explaining step by step how the proximization idea has been numerically
implemented, both in the EMT approximation and in the exact solution.

4.3 The RIN Model

Let us present here the extension to finite frequencies of the RRN model presented
in Section 4.1. To access the superconducting state, and in particular its optical
conductivity and superfluid stiffness, all the resistors Ri will be replaced by complex
impedances Zi = Ri + iωLi, hence the change of the name to RIN.Trivially, the
condition for the local resistors in Eq. (4.1) translates into

Zi =
{
RN + iωLi, if T > T ic ,

iωLi, if T ≤ T ic ,
(4.12)

where the local inductance Li can be different depending on the considered component
of the system.
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Figure 4.6. Graphical scheme summarizing the observed features (b) with respect to the
ideal BCS case (a). The resistive transition (in green) appears broadened and tailish,
signature of mesoscopic disorder. (1) A temperature gap between R(T ) and Js(T ) (in
red) is observed. (2) After presenting a long tail for T . Tc, Js(T ) increases abruptly in
the OD regime (full line), recovering the a BCS-like trend, while in the UD case this
increase is less steep (dashed line). (3) The optical conductivity g′ (in black) displays
a peak in correspondence of the increase of Js, which is more pronounced in the OD
regime, saturating to a finite value for T → 0.

In this Section, we will implement in the RIN the idea of proximization anticipated
above. In Fig. 4.7, one can find a graphical scheme of the RIN model and the
proximization effect, as it will be implemented in this Section.

All the numerical values of the parameters will be taken coherently with the
measurements showed in Section 4.2.

4.3.1 Effective medium theory for the RIN model

Let us start solving the EMT for the RIN model, the EMT providing some first
insight to start with. Neglecting any spatial structure, we will consider a second
superconducting component entering in the system at temperatures lower than the
percolating one. We will then have three different components, and three different
impedances, distributed across the system according to the corresponding fractions:

• ws1: the superconducting fraction percolating at Tc, with local critical temper-
atures following a Gaussian distribution with parameters (µc,s1, σs1);

• ws2: the superconducting fraction arising after proximization, with local
critical temperatures also following a Gaussian distribution with parameters
(µc,s2 ≤ µc,s1, σs2);

• wm = 1−ws1−ws2: the fraction of the residual metallic matrix that will never
undergo proximization.

In analogy with the RRN case presented in Section 4.1.1, one can then proceed
by solving the EMT equation for the RIN model:

∑
j=s1,s2,m

w̃j(T )Zj − Zem
Zj + Zem

= 0 (4.13)
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Percolating puddles

Metallic Background

RIN model

Figure 4.7. Graphical scheme of the Random Impedance Network with proximization,
describing the idea of crossover between a one-dimensional to a two-dimensional structure
of the superconducting condensate. The red and orange bonds represent the percolative
superconducting cluster. As the temperature is lowered, the bonds start to become
superconducting. At temperatures lower than the critical temperature of the whole
system, a second kind of superconducting resistors gets involved (the green ones),
providing a more connected, i.e., two-dimensional structure of the condensate.

where Zem is the effective impedance of the network, the index j = s1, s2,m labels
the different components of the inhomogeneous system, and w̃j(T ) is the weight of
the corresponding component at a temperature T , as defined in Eq. (4.10).

Let us now solve the EMT equation for a generical three-component system at
finite frequency. The impedance of the single component is Zj (j = 1, 2, 3), its fraction
at temperature T being w̃j(T ) = w̃j , with the usual constraint w̃1 + w̃2 + w̃3 = 1
holding. Once one explicits the sum, Eq. (4.13) takes the form of an algebraic
equation of third degree with complex coefficients.

Z3
em + a1Z

2
em + a2Zem + a3 = 0, (4.14)

where

a1 ≡ Z1 + Z2 + Z3 − 2(w̃1z1 + w̃2Z2 + w̃3z3),
a2 ≡ 2(w̃1Z2Z3 + w̃2Z3Z1 + w̃3Z1Z2)− (Z1Z2 + Z2Z3 + Z3Z1),
a3 ≡ −Z1Z2Z3.

One can then define

Q ≡ 3a2 − a2
1

9 , R ≡ 9a1a2 − 27a3 − 2a3
1

54 , (4.15)

and
S ≡ 3

√
R+

√
Q3 +R2, T ≡ 3

√
R−

√
Q3 +R2, (4.16)
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where the square and cubic roots in the definition of S have positive imaginary
part.The only physical solution mong the three determinations of the cubic root
defining T is the one that satisfies T = −Q/S. The solution of Eq. (4.13) with the
appropriate analytic properties (positive imaginary part) is

Zem = S + T − 1
3a1. (4.17)

Going back to the specific case we want to study, the impedances of the three
components are then Zm = R0 + iωLm, Zs1 = iωL(T ), and Zs2 = iωLs2. The
temperature dependence of the inductance in the percolating cluster accounts for
the strengthening induced by the proximization and reads as

L(T ) = 1
2

[
Ls1

(
1 + erf T − µc,s1√

2σs1

)
+ Ls2

(
1− erf T − µc,s2√

2σs2

)]
. (4.18)

It should be noted that this formula is only meant to phenomenologically interpolate
between Ls1, for T � µc,s1, and Ls2, for T � µc,s2.

Let us now compute the EMT solution in Eq. 4.17 in two cases: in a system with
constant local inductances and in the case with frequency dependent inductances,
accounting for the presence of dissipative vortices. In both cases, we are interested in
the effects caused by the introduction of the proximized superconducting component.

EMT Results for constant local inductances

As far as we are interested in understanding the basic features generated by the
appearance of a third superconducting component, we need to keep the fraction of
the percolating one w2 < 1. Unfortunately, the minimum fraction required for a
two-dimensional system in EMT to percolate is wp = 0.5, hence we will need at least
ws1 = wp = 0.5. Note that if we consider the exact solution of the RIN, instead
of the solution of the EMT equation, the minimum fraction to percolate can be
in principle a single filament crossing the lattice from side to side. The absolute
numbers of fraction chosen here will then not be so much indicative from a point of
view of the density of superconducting Cooper pairs in a real system, nevertheless
the EMT solution will provide a good toy model to start with. The values of the
parameters of the distributions of the critical temperatures, such as the average
critical temperatures and the width of the Gaussian are instead chosen according to
the measurements presented in Section 4.2. Thus, we choose the angular frequency to
be ω = 2GHz, assuming then for the inductances values of the order of the nH, i.e.,
Lm ∼ 10 nH for the metallic residue and Ls1 ∼ Ls2 ∼ 1 nH for the superconducting
components [25].

• ws2 = 0

The first case to be discussed will be the simplest one, where the system is composed of
two kinds of resistors, i.e., the metallic matrixm and the percolating superconducting
cluster s1. We want to emphasize here that already in an effective medium framework,
the basic features mentioned in the introduction of the Chapter are not well captured.

Looking at Fig. 4.8, where the DC resistivity and the real and imaginary
conductivity are plotted for different values of ws1, one can convince themselves that
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the RIN model for a two component system cannot account for the peculiar features
summarized in Fig. 4.6 of Section 4.2. Here the EMT calculations were done using
Lm = 10nH and Ls1 = 1nH and the parameters of the Gaussian distribution of
the superconducting component are set to be µc,s1 = 0.2K and σs1 = 0.02K. If the
system is made by the superconducting component alone, i.e., ws1 = 1 in Fig. 4.8a,
the qualitative scenario observed is quite similar to the conventional one showed
in Fig. 4.6a: the stiffness (red dots) rises at percolation, crossing the resistivity
(green), and the conductivity (black) is zero except for a peak right at Tc. Moreover,
the resistive transition is still too sharp with respect to the experimental data.
Instead, at percolating threshold ws1 = 0.5 in Fig. 4.8c, the resistivity shows a more
pronounced tail, coherent with measurements. The real and imaginary response are
however superimposed on top of each other, both rising right before Tc, saturating
soon to a low value of about 0.02 Ω−1. The intermediate case ws1 = 0.75 in panel b
is just similar to the ws1 = 1 case, with a slightly more tailish resistivity and a lower
saturating value of the imaginary part of the conductance.

a b c

Figure 4.8. EMT calculations of the resistivity (green) and the real (black) and imaginary
(red) parts of the conductance without any proximization, for a fraction of superconduct-
ing resistors ws = 1 (a), ws = 0.75 (b) and ws = 0.5 (c). The parameters of the Gaussian
distribution of the superconducting component are µc,s1 = 0.2K and σs1 = 0.02K.
Lm = 10nH and Ls1 = 1nH.

• ws2 > 0

The percolating resistors alone apt to describe very well the properties of the metallic
state and the superconducting transition fails at temperatures lower than Tc and
cannot reproduce the important increase of the superfluid stiffness observed in
real material. We can now introduce a second fraction of superconducting bonds
(ws2 > 0) with a Gaussian distribution centered at a lower temperature (µc,s2 < µc,s1)
and investigate the impact of this new superconducting fraction on the AC transport
properties. In this paragraph, we will keep fixed the fraction of the first (percolating)
superconducting bonds to ws1 = 0.5, as well as the Gaussian distribution of their
critical temperatures, with parameters µc,s1 = 0.2K; σs1 = 0.02K), and we tune
individually the parameters relative to the second, proximity-induced, fraction of
superconducting bonds. Bare in mind that at percolating threshold, the global
resistance of the system will vanish as soon as all the bonds of the superconducting
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cluster have switched to their superconducting state (see Fig. 4.2 On the other hand,
the finite-frequency response of the system appears already above Tc, at T . µc,1:
as one can see from the trend of the black curves in Fig. 4.9a, both the superfluid
stiffness Js ∝ −g′′em (at a fixed low frequency) and the optical conductivity σ = g′em
start to increase above the percolating temperature, saturating to a constant value
around Tc. Let us start by fixing the Gaussian distribution with µc,s2 = 0.1K
and σs2 = 0.02K, and by tuning the fraction w2 of proximized bonds. As one can
see from Fig. 4.9a, increasing the value of w2 both g′′em and g′em assume a two-step
character, which can be smoother or more pronounced depending on the other
parameters at play, with opposite trends: while g′′em registers a further growth as a
consequence of a reduction of the global inductance, the optical conductivity g′em sees
a downturn after a sort of plateau, which will become more or less peaked depending
on (µc,s2, σs2) (Fig. 4.9b,c. We also stress that, by increasing w2, the ratio between
the saturation values at T = 0 of g′′em and g′em strongly increases: a fraction of just
w2 = 0.07 proximized bonds make the ratio g′′em(0)/g′em(0) 10 times bigger with
respect to the case when proximization is not taken into account, and w2 = 0.

We now set the fraction of the proximized bonds to ws2 = 0.03 and we observe
the effects in changing the variance σs2 and the mean value µc,s2 of the Gaussian
distribution of its critical temperatures. A broader probability distribution, i.e., a
larger value of σs2, smoothes out the two-step character of both response functions:
it broadens the downturn of g′em as well as the increase of g′′em (see Fig. 4.9b). On
the other hand, the value of µc,s2 rules the temperature range at which both g′em
and g′′em start to increase and, quite interestingly, it corresponds to the inflection
point of the two curves (see Fig. 4.9c). In general, from Fig. 4.9b,c, one can see that
the more the two probability distributions overlap, either because of a larger σs2
or because µc,s2 is taken closer to µc,s1, the more the growth of g′′em is continuous
and the bump of g′em peaks.

So far, we have assumed that both superconducting fractions have the same
inductance value Ls1 = Ls2 = 1nH, while the metallic residue has Lm = 10nH.
Finally, we look at the effects of changing the relative values of Ls1 and Ls2 on
the response of the system. Fixing Ls1 = 2 nH we tune the value of Ls2. As one can
see from Fig.4.9d, the variations of Ls1,s2 correspond to tuning the magnitude in
the zero-temperature limit of g′em and g′′em. In particular, an increase (decrease)
of Ls2 with respect to Ls1 corresponds to a decrease (increase) of the saturation
values of both the real and imaginary part of gem. It is worth noting that, while an
increase in ws2 acts in opposite directions in g′em and g′′em (Fig. 4.9a), the decrease
of Ls1 corresponds to an increase of both g′em(0) and g′′em(0), albeit with a different
magnitude. From Ls2 = 2Ls1 to Ls2 = Ls1, the relative increase of g′′em(0) is ≈ 1.3
while for g′em this is ≈ 0.5. Qualitatively, for Ls2 ≤ Ls1 = 1nH we also observe an
increase of g′em in the lower temperature range, while in all other cases we observe a
bump and then a decrease, while lowering T .

Finite-Frequency Dissipation

So far, the RIN model proposed considers the inductances Lj (j = s1, s2) inside the
superconducting clusters as real constants. Nevertheless, one can think of improving
the model, using more sophisticated relations for the local inductances, taking for



4.3 The RIN Model 65

a b

c d

Figure 4.9. EMT calculations of g′′em (upper panels) and g′em (lower panels), as a function of
the temperature T , for different tuning parameters. The pink filled Gaussian corresponds
to the probability distribution of the percolating superconducting component with total
fraction ws1 = 0.5, while the other filled gaussians to the distribution of the proximized
bonds. The parameters tuned in each figures are respectively: (a) the total fraction
ws2 of the proximized component; (b) its variance σs2; (c) its mean value µc,2; and (d)
the value of its inductance L2 keeping in this case fixed Ls1 = 2 nH. Where not specified
in the labels, Ls1 = Ls2 = 1nH, ws2 = 0.03. In all cases, we kept fixed RN = 800 Ω,
Lm = 10nH and ω = 2GHz. The areas underneath all Gaussian distributions equal
the corresponding fractions wj .
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instance a temperature and/or frequency dependent complex inductance Lj(T, ω), to
account for finite-frequency dissipation processes. In this paragraph, we will explore
this possibility.

In Ref. [114], the authors discuss their measurements of impedance in thin films
of superconductors at radio frequencies. They propose a dissipation model to fit
their data based on “a dynamic pinning in which the dissipation arises from the
flux-flow resistance of the moving vortices and the inductance from pinning and
acceleration of the back-ground superfluid.” We borrow their model, to describe
phenomenologically some finite-frequency dissipation effect in our EMT for the RIN.
The complex impedance was written as

Z = R0 + Zv + iωL0 (4.19)

where
Zv = A

iωτ
1 + iωτ (4.20)

described the dissipation due to vortices generated by the presence of a magnetic
field. In their work, A is proportional to the strength of the magnetic field with
the dimensions of a resistance and τ is the relaxation time for vortices. Although
in our model, we never introduce an external magnetic field, this relation can
be nevertheless used, assuming that the dissipation is due to thermally excited
vortices [26]. The expression of the complex impedance can be recast then assuming
a frequency dependent complex inductance

L(ω) = L0 + Aτ

1 + iωτ (4.21)

in Eq. (4.12)
Zi = RN + iωL(ω). (4.22)

Note that in this paragraph we are considering Lj = L(ω) the same for all the
components in the system.

Recalling that the superfluid stiffness is Js ∝ g′′, in the superconducting state
where R0 = 0 the reactive response of the system is related to the inverse of

ImZ = ReL(ω) = L0 + Aτ

1 + (ωτ)2 > L0, (4.23)

Hence, the reactive response is strongly reduced for ωτ � 1. Instead, the dissipative
response is ruled by the term

ReZv = A(ωτ)2

1 + (ωτ)2 ,

which is vanishingly small for ωτ → 0, and tends from below to the constant value
A for ωτ →∞. Thus the parameter A finds its meaning, setting the high-frequency
dissipation in the superconducting state.

More generally, within a phenomenological description, the values of the parame-
ters A and τ must be adapted to a specific system. So far, very little is known about
thermally generated vortices in two-dimensional superconductors with disorder at
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the nanoscale. Hence, we adopted values of the parameters comparable to those used
in [114], taking A = 10−3 Ω and τ of the order of 1µs. To highlight finite-frequency
dissipation we take a frequency ω = 0.1MHz, so that ωτ ≈ 0.1 is small but not
negligible.

In the following, we solve the EMT equation (4.13) for the RIN, assuming that
the complex impedance of the superconducting component s is Zj = R0 + Zv + iωL0
above the local random critical temperature and Zj = Zv + iωL0 below it, while the
eventual metallic residue has always Zj = R0 + Zv + iωL0.

We point out that, despite the apparent resemblance with the physics of the
vortex matter [115, 116], all the calculations refer to the case where the magnetic
field is absent and the dissipation in the percolative superconducting state is entirely
due to thermally excited vortices.

• ws1 = 1

As before, we will first consider the simplest case of a system where no proximization
effects are involved and all the resistors contribute to superconductivity ws1 = 1.
The parameters of the distribution of critical temperatures (Eq. (4.2)) are chosen to
be µc,s1 = 0.2K, σs1 = 0.05K. The values for resistivity and constant term of the
inductance are taken again as typical values of SrTiO3-based oxide interfaces [25]:
R0 = 600 Ω, L0 = 1 nH, and ω = 0.1MHz, which will allow us to highlight dissipative
effects, as already mentioned.

The solution of the EMT equation (4.13), gives a resistance R = Re(Zem) shown
as the blue curve in Fig. 4.10b, whose value coincides with the result obtained for the
case ω = 0 (as ωL0 � R0). The percolative transition occurs at T = µc,s1, i.e., at
percolation threshold, when half of the resistors are switched to their superconducting
state as it can be evinced from the distribution of critical temperatures (red shaded
area in Fig. 4.10). The width of the percolative transition is ruled by σc,s1 and no
tail is present.

The imaginary part of the complex conductance g′′em becomes relevant below
percolation, where the AC response of the RIN is purely reactive, as one can see from
Fig. 4.10a). The solution of Eq. (4.13) with no dissipative effects (A = 0) is plotted
in yellow. As soon as A > 0, finite-frequency dissipation suppresses the reactive
response of the system below the percolative transition. In the regime ωτ � 1, once
we fixed A = 10−3 Ω, this suppression increases with increasing τ : this is shown
in Fig. 4.10a, respectively, for the light blue (τ = 0.5µs), green (τ = 1µ s) and
red (τ = 5µs) curves. As we are considering a thermal activation mechanism for
dissipation, we can expect that A depends on T . This is shown by the violet curve
in Fig. 4.10 labeled with A(T ) (τ = 5µs), where a dependence

A(T ) = A0 e−(µc,s1−T )/T , (4.24)

is adopted to describe the thermal excitation of vortices, exponentially suppressed
at T = 0K. We take A0 = 10−3 Ω in order to make the comparison with the case of
a constant A easier, we assumed that near percolation A(T ) ≈ A0, so that the curve
with variable A(T ) collapses onto the curve with A = A0, while smoothly joining
the curve with A = 0 at low temperature.
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a                               b
Figure 4.10. (a) Imaginary part of the complex conductance of the RIN within the EMT,

g′′em, as a function of the temperature T , for R0 = 600 Ω, L0 = 1 nH, ω = 0.1MHz. The
Gaussian distribution of the superconducting critical temperatures is shaded in red; the
average value and standard deviation are, respectively, µc,s1 = 0.2K, σc,s1 = 0.05K;
the weight is ws = 1, i.e., all the resistors participate to superconductivity. The values
A and τ of the dissipative term ZV = A(iωτ)/(1 + iωτ) are specified for each curve.
In particular, for the violet curve labeled by A(T ) we took a temperature dependence
A(T ) = A0 e−(µc,s1−T )/T , with A0 = 10−3 Ω, to describe the thermal excitation of
vortices, which is exponentially suppressed at T = 0K. (b) The blue curve gives the
sheet resistance of the system above percolation, where the effects of ZV are negligible.
All the calculations are carried out assuming zero magnetic field.

• wm 6= 0 ws2 6= 0

Let us now consider the more complicated situation where the system also hosts
the smaller superconducting cluster s2 emerging by proximity effect below the
percolative transition. As before, the minimum required fraction of superconducting
bonds to have a low-temperature global superconducting state is ws1 = 1

2 . In this
case, the resistive transition is characterized by a very pronounced tail (see the blue
curve in Fig. 4.11b). Even after the appearance of a global zero-resistance state,
the superconducting cluster is in this case very fragile towards an applied current.
The appearance of this second cluster modifies the reactive response of the system
in the superconducting phase. The “proximized” superconducting cluster can in
fact boost the superfluid stiffness, although it occupies a very small fraction of the
system ws2 = 7

100 .
To describe the enhancement of the stiffness after proximization, we choose

Ls2 < Ls1 and in particular we take Lm = Ls1 = 1nH and Ls2 = 0.5nH.
The resulting reactive response without dissipative effects is shown in Fig. 4.11,

with the yellow curve labeled by A = 0. Below the percolative transition, the re-
active response of the superconducting cluster stays very small, until the second
superconducting cluster start to nucleate at T ≈ µc,s2 +σs2 (the distribution Ps2(Tc)
is shaded in red), thereby boosting the reactive response of the system. Comparison
with Fig. 4.2 shows that now there is a wide temperature gap between the drop of
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a                               b
Figure 4.11. (a) Imaginary part of the complex conductance of the three-component RIN

within the EMT, g′′, as a function of the temperature T , for R0 = 600 Ω, Ls1 = 1nH,
Ls2 = 0.5 nH, ω = 0.1MHz. The Gaussian distribution of the percolating superconduct-
ing cluster has mean value µc,s1 = 0.27K, standard deviation σ2

s1 = 0.03K and weight
ws1 = 0.5, and it is shaded in light blue; the proximized fraction distribution is shaded
in red, its parameters are µc,2 = 0.07K, σs2 = 0.02K and ws2 = 0.07. All the three
curves are calculated for τ = 1µs while the values of A are indicated in the legend. For
the violet curve we took a temperature dependence A(T ) = A0 min[e−(µc,s2−T )/T ; 1],
with A0 = 10−3 Ω, to describe the thermal excitation of vortices, which is exponentially
suppressed at T = 0K. (b) The blue curve gives the sheet resistance of the system above
percolation, where the effects of ZV are negligible.

the resistance in the metallic phase above percolation and the rise of the reactive
response below percolation.

As in the previous case, finite-frequency dissipation suppresses the reactive
response in the superconducting state, as one can see in Fig. 4.11 comparing the
yellow curve where no dissipation is present (A = 0) with the green one, where
A = 10−3 Ω and τ = 1µs.

As in the previous case, a thermal generation of the dissipative processes can be
taken into account, this time entering in correspondence of the second superconduct-
ing fraction, (see the violet curve labeled by A(T ) in Fig. 4.11a). Thus we adopted
now the expression

A(T ) = A0 min[e−(µc,s2−T )/T ; 1], (4.25)

with A0 = 10−3 Ω, the reactive response interpolates smoothly between the response
with no finite-frequency dissipation, at T = 0K, and the response with finite-
frequency dissipation, near percolation.

4.3.2 Exact solution of the RIN with proximization

From now on, we will finally focus our attention on the exact solution of the RIN
model, i.e., solving the Kirchoff’s and Ohm’s equations, in a system hosting strong
spatial correlations. Baring in mind the discussion of Section 4.2 and the results
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obtained from the EMT solution, we keep following the idea of a crossover between
a quasi-one-dimensional to a two-dimensional superconducting state driving the
superfluid density jump at some Tcross < Tc. The possibility for the metallic substrate
to become superconducting via a proximization process will need however a more
“geometrical” way to be applied in the exact solution of the RIN, especially when
strongly correlated disorder is taken in analysis as it is the case.

Lowering the external temperature, the filamentary backbone of the system
needs to be gradually strengthened by new neighboring superconducting bonds,
finally reaching a whole two-dimensional state. While in the UD regime the “bumps”
observed may lead us to think of a process happening in two steps, in the OD regime
the proximized component of the system suddenly enters, causing an abrupt jump
of Js(T ). Numerically, we implemented the proximization in the following way: the
i-th metallic bond can be promoted to superconducting if it has at least nSCb = 2
superconducting nearest neighbors and its critical temperature is set to be some
fraction of the average critical temperature of superconducting nearest neighbors:

T i,proxc = apr
1
Nj

∑
j(i)

T jc , (4.26)

where apr is a tuning parameter of the proximization process,
∑
j(i) staying for

the sum over the superconducting nearest neighbor of i and Nj for the number
of superconducting neighbors. This proximization process is made nupdate times,
so that we can span the metal background up to the nupdate-th neighbors of the
superconducting filamentary structure.

As a starting point, we show here some results using the DLA algorithm, as it
was explained in Section 4.1.2, to build the filamentary superconducting cluster,
applying patches of radius rpd = 5 until reaching a fraction w superconducting
bonds. For the sake of simplicity, we can drop here the subscript s, since we refer
to w as the total amount of superconducting resistors, i.e., the percolating fraction,
whereas the proximized bonds component strictly depends on the initial cluster and
its geometry. As in the RRN in Ref. [74] of Section 4.1.2, we keep two separated
gaussians for the critical temperatures of the fractal (with average µf and variance
σf ) and the puddles (µb, σb). For numerical reasons, the assigned impedance to
the link is normalized to the experimental value RN of the normal-state resistivity
(zi = Zi/RN ) and then the total conductance of the network is rescaled to the same
value.
In general, the local values of Li in the single bond can be either L0, Lf or Lpr if the
bonds belongs respectively to the metal (or a puddle), the fractal or the proximized
bond:

Li =


L0, if i ∈ m, b,
Lf , if i ∈ f,
Lpr if i ∈ pr

(4.27)

However, since the model has many parameters, we start by fixing – once and for
all – the distributions of the critical temperature of puddles and fractal. The mean
value and standard deviations can be chosen according to experimental data and
will of course depend on the single configuration of the 2DEG, as one can see from
Fig. 4.12a where the resistivity data are shown for all the gate voltages VG. It is
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sufficient to say that µc,f and σf acts on the percolative temperature and the more
or less tailish behavior near Tc, while µc,b and σb leads the first depletion of R(T ) at
higher temperatures. One can thus fix the distributions using the mean values and
variances as fitting parameters for the resistivity, whereas RN has to be chosen as
the experimental value in the metallic state, i.e., at T = 0.5K in the case considered.

At this stage, we are interested in studying and, possibly, understanding the
filamentary nature of the superconducting condensate of the 2DEG, so the fine
tuning of all parameters is not our priority. Hence, we decide to set those values
to µc,f = 0.19K, µc,b = 0.24K and σf = 0.02K, σb = 0.055 . Indeed, the resistivity
trends at different gate voltages are qualitatively similar, as one can see from the
inset of Fig. 4.12a, where the same data are normalized to their own RN value. Fig.
4.12b shows the computed R(T )/RN curves for different values w, using the actual
data at VG = 28V as a benchmark (black line). The distribution of the critical
temperatures in the fractal is shaded in blue, while the distribution of local critical
temperatures is shaded in purple.For how the network is constructed, a higher w
corresponds to more superpuddles and, consequently, to a lowering of the effective
resistivity right in the high temperature range of the transition, when the resistors
start to be switched to their superconducting state. Note also that all the values of
w considered are lower (or equal to) the percolating threshold wp = 0.5, while for the
EMT calculation this was the least possible fraction of bonds to have percolation.

Considering now RN = 800 Ω and w = 0.4, we look at the finite frequency
response of the system. We use ω = 2GHz, as the experimental value, and the values
L0 = 5nH, Lf = 2.5nH and Lpr = 0.5nH, remembering that the value of L0 does
not affect much the global real and imaginary responses, while Lf and Lpr can tune
the order of magnitude of the saturating values for T → 0. In order to explain the
data, the need of a proximization process to be involved is clear looking at Fig. 4.13,
where the real g′ and imaginary part g′′ are shown for different values of apr, g′
plotted in dashed line while g′′ in dots. We show the corresponding R in yellow on the
right axis as a benchmark. Indeed, looking at the orange curve apr = 0 in Fig. 4.13a,
one can see that for one hand g′′ crosses the resistivity near Tc while, on the other
hand, the saturating value of g′(0) is too low. Nevertheless, Lf and Lpr tunes g′′(0)
without affecting g′(0), whereas the quantities in the superconducting state are not
much sensitive to the value L0 . A finite apr instead, the superfluid stiffness has a
second increase, at temperatures lower than Tc if apr < 1 and at T ∼ Tc for apr = 1
(in light blue). In particular, one of the peculiar feature observed in the UD regime,
i.e., the “bump” observed right below the critical temperature (Fig. 4.5 for VG . 26V
), can be mirrored in the pink curve corresponding to apr = 0.5 where the increase
of g′′ happens in a two-step way. If not only first nearest neighbors are considered
in the proximization process and we span the system more than once (nup > 1), a
“third” increase of g′′ is observed, at even lower temperatures. This is clear from
Fig. 4.13, where we tune nup, keeping apr = 0.5.

What it is still missing in this picture is a clear cut between the two regimes.
Also, the ratio between the saturating values of the real and imaginary part of
the conductivity at T = 0, i.e., g′(0)/g′′(0), is still too small. Since roughly g′ ∝
R/(R2 + ω2L2), the real part of the conductivity is strictly related to the metallic
residue instead of the other parameters involved in the system, such as the magnitude
of the inductances Lf,pr and the proximization process accounted by apr and nup.
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a b

Figure 4.12. (a) DC resistivity transport measurements at various gate voltages. In the
inset, the same data are plotted normalized to their normal state value RN , showing
more or less the same features in terms of broadening and tailish behavior near Tc. (b)
Exact RIN calculations at zero frequency of the resistivity for a fractal with puddles
of radius rpd = 5 for different values of the total fraction of superconducting bonds,
compared, as a benchmark, with the normalized resistivity of the sample at VG = 28V
(black line). In purple and blue are shaded the Gaussian distributions of puddles and
fractal, with average and standard deviation respectively µb = 0.24K, σb = 0.055K and
µf = 0.19K, σf = 0.02K.

Besides, in the real system the increase of gate voltage corresponds to an increase of
the number of carriers in the 2DEG.

In the next Section, we will address the problem of the geometrical structure of
the fractal.

4.3.3 The role of geometry

We work here directly on the fractal structure, hoping that it can provide us a deeper
understanding of the problem, in particular for what concerns the difference between
UD and OD regimes.

Instead of doing one step on the right and one up or down as in the former
calculations (see Section 4.1.2), each random walker is now allowed to do rDLA steps
to the right and then yDLA steps up or down with a probability 1

2 . As before, a
100 × 100 network is extrapolated from the super-network constructed with the
“improved” DLA algorithm and some patches of radius rpd are then superimposed
until a fraction w of superconducting resistors is reached.

In Fig. 4.14, are shown two 250×250 different super-network constructed launch-
ing nRW = 15000 particles. In panel a, the (orange) superconducting fractal is built
from random walkers allowed to do rDLA = 2 steps on the right and yDLA = 2 steps
on the left, while in panel b the constraints were rDLA = 10, yDLA = 7 in Fig. 4.14b.
In both panels, the region colored in blue is the metallic background of the final
100× 100 network. In addition to allowing us to study the very role of filamentarity
in the superconducting state, this procedure enables us to have a higher fraction of
the metallic residue without preventing percolation. For the sake of simplicity, we
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a b

Figure 4.13. RIN calculations at frequency ω = 2GHz of the real (dashed lines) and
imaginary (dotted lines) parts of the conductance g = g′ − ig′′ corresponding to the
w = 0.4 yellow curve of Fig. 4.12, plotted in both panels on the right axis, as a reminder
of the percolating temperature. g′(T ) and g′′(T ) are calculated at different values of apr,
for one update of the bonds nup = 1 (a) and at various number of updates nup, keeping
apr = 0.5.

will refer to the fractal configurations in Figs. 4.12, 4.14a and 4.14b respectively as
the 1 − 1, 2 − 2 and 10 − 7.

From now on, the superconducting structure itself, i.e., rDLA, yDLA and the
radius rpd, will be an important fitting parameter. Of course, a systematic and
precise analysis would pretend an average on many configurations of the disorder, for
the same rDLA, yDLA and rpd, in order to be accurate. Nevertheless, our scope here
is to highlight eventual general properties arising from the geometrical filamentary
structure of the superconducting condensate, in line with the experimental ones
highlighted in Section 4.2. Thus, at this stage, the average over disorder will only
complicate the analysis and hinder our way towards understanding. Besides, as
the model is so rich, it is easy to get lost in the fine tuning of the parameters.We
choose here the fractals extrapolated from the supernetworks in Fig 4.14a and 4.14b,
attaching puddles of radius r = 5 until reaching w = 0.3.

Indeed, since the fractal is less dense, a lower density of superconducting bonds
is needed to have percolation with respect to the 1 − 1 fractal presented in the
former section. Tuning then the other parameters, such as apr and nup, we can
investigate how the geometry has affected both the superfluid stiffness and the
optical conductivity. Fig. 4.15a and 4.16a show the color maps of the two fractals –
respectively the 2 − 2 and the 10 − 7 – with a proximization parameter apr = 0.4 for
one update of the bonds’ lattice (nup = 1), the color code indicating the local critical
temperature in Kelvin. The real (dotted lines) and imaginary (dashed lines) parts,
corresponding to the 2 − 2 fractal for different values of apr are plotted in Fig.4.15b,
while Fig. 4.16 shows the same calculations for the 10− 7 fractal. Keeping apr = 0.4
fixed, we tune the number of updates of the bonds, showing the calculations in
Fig. 4.15d and Fig. 4.16d.
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a b

Figure 4.14. Examples of filamentary structures constructed via the “improved” DLA
algorithm launching nrw =15 000 diffusing particles across a 250× 250 square lattice. In
orange are shown the obtained clusters with (a) rDLA = 2, yDLA = 2 and (b) rDLA = 10,
yDLA = 7. Highlighted in blue is the metallic region that defines the final 100 × 100
square lattice.

At a first glance, comparing panels b and d of both Fig. 4.15 and 4.16, we can
already convince ourselves that the geometry is crucial in the proximization, since
it corresponds to a more or less number of resistors involved in the process. In
fact, the orange curve corresponding in both panels b to apr = 0 does not present
significant differences: g′′(T ) starts to increase around T = 0.17K, reaching quite
soon the saturating value g′′(0) ∼ 0.02. In other words, if no proximization process
is considered the finite frequency response of the system is independent from the
geometry of the superconducting condensate. Although, it can be argued that a
more tailish behavior is observed in the 10 − 7 curve, stating again the need of a
more filamentary structure to account for the data, particularly in the UD regime.
If a proximization process is involved, the difference between the two configurations
is more definite: a finite apr boosts g′′(T ) up to 0.07 Ω−1 in the 2 − 2 case while
for the 10 − 7 fractal g′′(T ) reaches the value 0.03 Ω−1. The apr value sets the
temperature at which this increase of g′′(T ) is observed, while correspondingly g′(T )
slightly decreases. The other significant difference between the two configurations
is then the ratio of the saturating values of the real and imaginary part which is
g′(0)/g′′(0) ∼ 0.05 for the 2 − 2 and g′(0)/g′′(0) ∼ 0.14 for the 10 − 7 fractal.

Once apr is fixed, we can see the effect of increasing the number of updates. As
one can guess, this provides an additional increase of the superfluid stiffness, at
the expense of the optical conductance. This happens at even lower temperatures.
In fact, at each update the metallic bonds surrounding the superconducting ones
gain a local critical temperature which is gradually smaller by a factor apr < 1
with respect to the average critical temperature of their neighbors. Thus, from
panels d of Figs.4.15 and 4.16 we observe an important growth of g′′(T ), happening
around T ∼ 0.05. Besides, spanning the network more than 4 times appears to be
worthless: the stiffness has already increased its value sixfold, and the next bonds
to be proximized will have a negligible critical temperature. It should be noted
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rDLA=2 yDLA=2 - apr=0.4 nup=1

a b
rDLA=2 yDLA=2 - apr=0.4 nup=5

c d

Figure 4.15. (a) Color map of the local critical temperatures in a 100× 100 2 − 2 fractal
with rpd = 5 and proximization parameters apr = 0.4 and nup = 1. (b) Corresponding
RIN calculations of g′(T ) (dashed lines) and g′′(T ) (dotted lines) for nup = 1 and
different values of apr. (c) Colormap of the same fractal in (a), updated nup = 5 times.
(d) RIN calculations of g′(T ) (dashed lines) and g′′(T ) (dotted lines) for apr = 0.4 and
different values of nup. All the calculated quantities are made at frequency ω = 2GHz.

that in the 2− 2 case the saturating value g′′(0) increases more gradually with nup
with respect to the 10− 7 case. The boost given to g′′(T ) from the new proximized
bond is relatively greater at nup = 2 in the latter: looking at the light blue curves
with respect to the red ones for T → 0, g′′nup=2/g

′′
nup=1 . 5 in the 10− 7 while

g′′nup=2/g
′′
nup=1 ∼ 3.5 in the 2− 2. Concerning instead the absolute values of g′′(0),

they are higher in the former case, where the enlarging of the fractal covers almost
all the sheet, as it is clear observing the printed configurations for nup = 5, apr = 0.4
in panels c of both figures.

Before drawing any conclusion, let us state that so far all the calculations
within the exact solution of the RIN model were calculated with tunable but yet
constant local inductances, so the conductivity is a simple result of the percolation
of the network, as it was the resistivity in the RRN. In principle, however, one can
expect that at a microscopic scale the inductance of each bond has its own local
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rDLA=10 yDLA=7 - apr=0.4 nup=1

a b
rDLA=10 yDLA=7 - apr=0.4 nup=5

c d

Figure 4.16. (a) Color map of the local critical temperatures in a 100× 100 10 − 7 fractal
with rpd = 5 and proximization parameters apr = 0.4 and nup = 1. (b) Corresponding
RIN calculations of g′(T ) (dashed lines) and g′′(T ) (dotted lines) for nup = 1 and
different values of apr. (c) Colormap of the same fractal in (a), updated nup = 5 times.
(d) RIN calculations of g′(T ) (dashed lines) and g′′(T ) (dotted lines) for apr = 0.4 and
different values of nup. All the calculated quantities are made at frequency ω = 2GHz.
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temperature dependence.One can thus exploit some physical relation, obtaining
smoother curves with respect to those found with constant Li. Referring to previous
works where Josephson junction physics was considered, as in Refs. [17, 24], we can
thus use the Ambegaokar-Baratoff formula, developed for Josephson junctions with
a constriction [35]. Using the approximate formula for the temperature dependence
of the gap

G(τ) =
(

1− τ4

3

)√
1− τ4,

∆(0)
kBTc

' 1.76 (4.28)

and the fact that Js ∝ L, the temperature dependence of the local inductance can
be written as

Li(T ) = LiG(τ) tanh
(1.76G(τ)

2 τ

)
. (4.29)

4.3.4 Concluding remarks

In summary, we showed in this Chapter how new unexpected transport features can
arise from filamentary superconductivity. In spite of the phenomenological approach
to this topic, we can successfully interpret the very peculiar trends observed in
LAO/STO. In particular, the starting idea was the one of a proximization process
occurring at temperatures lower than the critical one. In the context of EMT this
idea was implemented in terms of a second superconducting fraction, tunable by
means of its distribution of local critical temperatures, giving us some major insights
about the problem. While addressing the exact solution, geometry really plays
a crucial role, the proximization process being modeled as an enlargement of the
superconducting backbone. Indeed, a more sparse fractal produces longer tails in
the superfluid stiffness and the sudden rise due to proximization is more pronounced
in denser structures. Furthermore, a less compact cluster allows us to consider
networks with a higher fraction of metallic residue, needed in order to explain the
saturation values of the optical conductances at various voltages.

In Fig. 4.17 we show the calculations of resistivity (green), superfluid stiffness (red)
and optical conductivity (black) for the two considered fractals, where all the other
parameters are kept to be the same, the proximization constants being set to nup = 1
and apr = 0.6 and temperature dependent local inductances following Eq. (4.29). The
tailish behavior of g′′(T ), smoothened even further by the temperature dependence,
can be observed in both cases whereas at lower temperatures the difference between
the two namely cases is really appreciable.

The residual conductivity is a little bit higher in panel b, albeit one can argue that
its absolute value is still too low. One possibility to increase it might be to account for
finite frequency dissipative effects also in the exact solution of the RIN model, that
were instead considered and studied here only in the EMT approximation and only
in the imaginary part of the conductivity. As we pointed out, those effects needed
that ωτ is low but not negligible in order to have noticeable effects. However, once
filamentary superconductivity is observed, the presence of dissipative vortices in the
lattice remains an open issue to be addressed, both theoretically and experimentally.
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Figure 4.17. Comparison between the resistivity (green), real (black) and imaginary (red)
parts of the conductivity calculated with the RIN model for the 2− 2 fractal (a) and
the 10− 7 fractal (b) configurations in Fig. 4.14, with superpuddles of radius rpd = 5
superimposed until the fraction w = 0.3 of superconducting bonds is reached. The
local inductances follow the relation in Eq. (4.29), the bare values being L0 = 5nH,
Lf = 2.5nH and Lpr = 0.5nH and the proximization parameters are apr = 0.6 for
nup = 1 update of the network.



79

Chapter 5

Filamentarity arising from
CO-SC competition

“Your ancestors called it magic, but you call
it science. I come from a land where they are
one and the same.”

Thor Odinson, Thor, film 2011

In the former Chapter the presence of filamentary superconductivity was assumed
from the observation of transport measurements in LaAlO3/SrTiO3 interfaces and
“imposed” as an initial condition in the RIN model. We treat in this Chapter instead
the problem of its origin in the context of cuprates.

As it was stated in Section 2.2, filamentary superconductivity can appear some-
times as a result of competing orders. In cuprates, as in the case of many iron-based
superconductors, hints of filamentary superconductivity can be observed in some
regions of the phase diagram. In the case of cuprates, where the presence of CO and
charge density fluctuations pervades a good part of the diagram, the tendency of
electrons to condensate in real space or in momentum space can explain the so-called
stripe region, characterized by the presence of a pseudo-gap [29, 31,32].

In this Chapter we will study this competition by means of the anisotropic
Heisenberg model in random field, similar to the model explained in Section 2.2.4.
The final goal is to study the behavior in temperature of transport measurements,
such as the superfluid stiffness Js and the fraction of CO given by the magnetization
mz. At a coarse grained level, the CDW and superconducting order parameters
will be encoded in the SO(3) symmetry of the pseudospins si, where the up and
down states represent two different CDW variants and the in-plane state is instead
the superconducting state. The complete Hamiltonian we will study will be the
following:

H = −J
∑
<i,j>

sxyi · s
xy
j︸ ︷︷ ︸

HXY

−αJ
∑
<i,j>

szi s
z
j︸ ︷︷ ︸

αHz

+ +b
∑
i

8(szi )2
(
1− (szi )2

)
︸ ︷︷ ︸
bHb: effective CO-SC barrier

+ w

2
∑
i

his
z
i︸ ︷︷ ︸

random field

(5.1)

where the indices i and j runs over the two-dimensional square lattice of linear size L
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and lattice spacing set to 1 and < i, j > indicates nearest neighbors sites. Here sxyi is
the projection of si on the xy-plane and HXY formally coincides with the XY model
Hamiltonian described in Chapter 1, with the important difference that out-of-plane
fluctuations are here allowed; HZ is instead the Ising-like component tuned by the
parameter α. The in-plane sxyi component of the pseudospin represents then the
superconducting state, while the out-of-plane encodes for two CDW variants. The
parameter α will play a similar role as the single ion anisotropy used in Refs. [31,32].
The out-of-plane random field term will mimic the impurities in a real system, hi
being statistical independent quenched random variables with a flat probability
distribution between −1 and +1. The effective CO-SC barrier term Hb is necessary
in order to break the pathological supersymmetry of the negative-U Hubbard model,
in which CDW and SC are degenerate also to an infinite number of intermediate
“supersolid” phases, represented by all other pseudospin directions. In general there
is no general symmetry of nature that enforces that degeneracy therefore one would
expect that in a generic model supersolid phases have a different energy. The effective
barrier potential Hb, whose amplitude is tuned by the parameter b, will be necessary
to break the degeneracy.

The parameter α will be the main control parameter tuning the two main phases,
represented in experiments by the magnetic field H (see Fig. 2.16 Section 2.2.3).
Indeed, the bare anisotropic Heisenberg model displays a superconducting BKT
transition for α < 1 while the Ising transition encoding the CDW phase is found
when α > 1.

We will build up the model one step at a time, studying the behavior of the
system in temperature via Monte Carlo simulations.

In Section 5.1 we will introduce the reader to Monte Carlo simulations and
describe how we implemented our code. In Section 5.2 we will define and summarize
the main thermodynamic quantities we will be referring to during the Chapter.
Thus, we can start to build our model. The bare anisotropic Heisenberg model
H = HXY + αHZ will be our benchmark: in Section 5.3 we will describe its main
features and its phase diagram, relying on previous results found in literature as a
reference [117–119]. We will refer sometimes to the anisotropic Heisenberg model as
a XXZ model, as it is often used in literature.

Once the benchmark will be set, we will start to trigger the ground state of our
model, studying in Section 5.4 the clean XXZ model with the barrier term potential:
H = HXY + αHZ + bHb.

Finally, we will address in Section 5.5 the complete model for the CO-SC
competition.

5.1 Monte Carlo simulations

In order to study the physical quantities related to the effective Hamiltonian in Eq.
(5.1) as functions of the temperature, we will perform Monte Carlo (MC) simulations
on a two-dimensional square lattice of linear size L with periodic boundary conditions.
MC simulations are indeed a powerful and very versatile tool, largely used in
statistical mechanics, to achieve thermodynamic equilibrium without the need of
sampling all the phase space, when an analytical solution of the problem is not
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possible.
The basic principles on which it is based are the ergodicity and detailed balance,

used in order to construct a Markov chain whose purpose is to achieve thermalisation
in the smallest possible number of iterations. On the one hand, ergodicity requires
the accessibility of any configuration with non-zero Boltzmann weight to any config-
uration with non-zero Boltzmann weight. This assures that the system can reach its
ground state independently of the initial conditions. On the other hand, the detailed
balance principle, stating the equivalence between each elementary process and its
reverse, prevents the simulation from being trapped in a limit cycle.

Metropolis algorithm

There are many ways to implement MC simulations and the particular choice of
the algorithm depends on the system under consideration, to ensure the fastest
thermalization possible. In order to sample the correct canonical distribution, in our
simulations we used a Metropolis algorithm. To be pedantic, we will call the two
zenital and azimuthal angles of the i-th pseudo-spin respectively

θ ∈ [0, 2π), ϕ ∈ [−π,+π]

such as the coordinates are then
sxi = cos θi sinϕi
syi = sin θi sinϕi
szi = cosϕi.

(5.2)

Each Metropolis step consist in the update of all L2 = N pseudospins of the
lattice. The new pseudospin s′i is updated in the following way{

θ′i = θi + δθ, δθ ∈ [−π
4 ,+

π
4 ]

cos(ϕ′i) ∈ [−1, 1]

and the new configuration is unconditionally accepted if it lowers the energy of
the system ∆Ei = Enew − Eold < 0, otherwise it is accepted with the canonical
probability e−β∆Ei , where β = 1/(kBT ) is the usual inverse temperature. In the
following, we will work in units of measure such that kB = 1, as it is customary in
such studies.

The lattice can be updated spanning all the pseudospins sequentially or randomly.
This choice is in general almost irrelevant in terms of computational times. One of
the few exceptions in which a small bias can be introduced by spanning the lattice
sequentially is when the spatial correlation functions are under exam. We performed
the simulations updating the system in order until we encountered the spin-spin
correlation function Czz(r) ∼< szi s

z
i+r > in Section 5.5. In that case, we had to

change the protocol in the Metropolis iteration. Instead of updating each and every
pseudospin sequentially, we extract randomly and update N pseudospins at each
Metropolis step.

Furthermore, we have used the Simulated Annealing algorithm to favor the
thermalisation of the system during its temperature evolution. Indeed, lowering
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the temperature, the free energy landscape (especially in the presence of disorder)
can develop several local minima corresponding to different metastable states. The
Simulated Annealing procedure is one of the most used algorithms to prevent the
system to be trapped in a local metastable minimum. This process consist in giving
as initial state to a lower temperature the final state of the higher one: in the highest
temperature considered the system is let evolve from an initial configuration of
random spins, until it reaches its equilibrium state, then the temperature is slightly
decreased and a new thermalization starts from the final configuration of the previous
one. This process is iterated until the lowest temperature of interest is achieved.

Overrelaxation

In Section 5.3, in order to speed up the thermalization time, the Metropolis algorithm
will be accompanied by the Overrelaxation method, which consists in microcanonical
steps, needed to better explore the phase space of configurations without changing
the energy of the system. In other words, if the Hamiltonian can be written as

H =
∑
i

si · Hi (5.3)

where Hi is the local field acting on si produced by all the other pseudospins, the
new pseudospin is calculated such that si ′ · Hi = si · Hi. Hence:

si ′ = −si + 2si · Hi
|Hi|2

Hi. (5.4)

In a two-dimensional pseudospin symmetry, i.e., the XY model, si ′ is univocally
defined as the mirrored vector in the XY plane of si with respect to Hi. Instead, in
the case where the pseudospin has three dimensions, there is a whole cone around
Hi that assures a constant scalar product. We will thus consider as symmetry plane
the one orthogonal to the plane containing Hi and si.

In the bare XXZ model both Metropolis and Overrelaxation procedures will be
used. Once the barrier term Hb in Eq. (5.1) will be introduced, the Hamiltonian will
be no longer of the form in Eq. (5.3), thus only Metropolis iterations will be used in
the MC simulations.

5.2 Thermodynamic observables

In the following Sections, where we will study the anisotropic Heisenberg model,
adding then the barrier term and a random field, we will address two main phase
transitions, namely the BKT topological phase transition and the ferromagnetic
second order transition. For the sake of definiteness, we point out here that the
ferromagnetic transition we refer to is analogous to the transition of the two-
dimensional Ising model, with the sudden emergence of a magnetization in the
out-of-plane direction, since no ferromagnetic transition can occur in-plane. Let us
summarize here all the thermodynamic quantities we will focus on hereafter, that
will be necessary in our study.
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Starting with the more trivial ones, having called N = L2 the total number of
sites, the average density of energy is simply

〈e〉 = 〈E〉
N

(5.5)

where E is the energy calculated on the single pseudospin configuration and 〈•〉
refers to the thermal average, i.e., the average over different configurations sampled
within the MC simulations. The specific heat is therefore

CV = N

T 2 (〈e2〉 − 〈e〉2). (5.6)

We will refer to the magnetization along the ν axes (ν = x, y, z) as

mν = 1
N

∑
i

sνi (5.7)

whereas the susceptibility will always be defined as

χνν = N〈m2
ν〉. (5.8)

and we will refer to the in-plane susceptibility as (χxx + χyy)/2.
We point out for sake of definiteness that in the ferromagnetic transition the

ground state is doubly degenerate, meaning that the free energy has two equivalent
minima centered in the two configurations corresponding to all pseudospins up
(siz = 1, ϕi = 0) and all pseudospins down (siz = −1, ϕi = π). Numerically, this
can lead to the so-called spin flips, particularly in small systems. As a matter of
fact, a finite size system, whose pseudospins are aligned in one of the two directions,
has a finite probability to flip to the opposite state due to thermal fluctuations.
This means that the global magnetization of the system can change sign during a
simulation run, maintaining coherent its modulus. For this reason, it will be more
convenient in Ising-like models, as it is often, to observe the absolute value of the
out-of-plane magnetization |〈mz〉|, instead of 〈mz〉.

Moreover, the out-of-plane magnetization defines only theoretically TCOc as
the temperature at which 〈mz〉 becomes finite. In numerical simulations, in fact,
magnetization, as many other quantities, is sensitive to finite size effects. Thus,
another important physical quantity in Heisenberg models is the fourth moment of
the pseudospin distribution function. In particular, the Binder cumulant defined as

UL = 1− 〈m4
z〉

3〈m2
z〉2

(5.9)

is a very useful parameter to detect the critical temperature of a transition, in
particular for Ising-like models [120–122]. In the thermodynamic limit L → ∞,
its value is supposed to go to zero UL → 0 at high temperatures T → ∞, while
UL → 2/3 in the ordered phase T → 0. The critical temperature TCOc can be
identified as the crossing point temperature where different curves UL(T ) at different
sizes L meet. The advantage of this procedure is to be detached from any bias
that can be introduced by fitting functions or by a priori scaling hypothesis and, at
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the same time, UL depends only on quantities that are directly measurable in the
numerical simulation. Henceforth, the Binder cumulant will be used to define the
Ising critical temperature TCOc corresponding to the charge ordered phase.

Concerning instead the BKT superconducting transition, one of the key thermo-
dynamic quantities in this context is the superfluid stiffness Js, which is by definition
the variation of free energy with respect to a phase twist (of the in-plane phase θ):

Js = − 1
β

∂2 lnZ(δθ)
∂δθ2

∣∣∣
δθ=0

(5.10)

where Z =
∫ ∏

dθidϕi exp(−βH(δθ, ϕ)) is the canonical partition function of the
superconducting system and δθ is the stretching of the relative phase (θi − θj) in
the direction x of the torsion and β is the inverse temperature. Neglecting the
terms independent on the in-plane phase θ, the XY term of the total Hamiltonian
presented in Eq. (5.1)

H(δθ) = HXY (δθ) = −J
∑
<i,j>

(sxi sxj + syi s
y
j ) =

= −J
∑
<i,j>

(sinϕi sinϕj cos(θi − θj + δθ) + sinϕi sinϕj cos(θi − θj)). (5.11)

The second derivative of (5.10) gives a diamagnetic and a paramagnetic term:

Js = Jd − Jp (5.12)

Jd = J

L2 〈
∑
i

sinϕi sinϕi+x cos(θi − θi+x)〉 (5.13)

Jp = βJ

L2 〈
(∑

i

sinϕi sinϕi+x sin(θi − θi+x)
)2

〉 (5.14)

As already stated in Section 1.2, the main signature of a BKT transition occurring
is the jump of the superfluid stiffness. In Section 1.4, we stated that the universal
BKT jump happens at the intersection with the critical line:

Js(TBKT ) = 2TBKT
π

.

It is worth noting that in literature, the superfluid stiffness is also referred to the
Helicity modulus Υ and it is sometimes calculated from a real twist of the phase,
obtained performing the simulations both with periodic and antiperiodic boundary
conditions: for instance, in Refs [119, 123] the helicity modulus in calculated by
integrating

1
2
d(βΥ)
dβ

= Ua − Up
π2 = dU

π2 , (5.15)

where Ua,p are the internal energies of the system with anti-periodic and periodic
boundary conditions. The minimum of dΥ/dT is supposed to be consistent, in the
limit of large size, with the intersection and crossing point of Υ(L, T ) with the
critical line 2T/π, defining the BKT transition.
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However, along our study we will follow another method to determine the BKT
critical temperature TBKT , exploiting the definition of the superfluid stiffness given
in Eq. (5.14), which is independent of the use of boundary conditions. Since in the
context of simulations it is clearly impossible to reach the thermodynamic limit and
the system remains finite, let us here derive the scaling relation we will use to address
and define the BKT superconducting state, referring the reader to Refs. [124] for
more details.

Starting from the solution of the RG equations discussed in Section 1.4, we can
rewrite Eq. (1.43) as

x = 1
`+ c

(5.16)

where we recall that x = πJs/T − 2 and c = x−1
0 is a constant determined from the

initial conditions of the RG flow x(`0) and ` = ln(L/a), a being the lattice spacing.
At the critical point x = x(L, T = TBKT ) and we can substitute the definition of x
in the former, obtaining:

Js(L, TBKT ) π

2TBKT
= 1 + 1

2 ln(L) + c
= 1 + 1

2 ln(L/L0) (5.17)

Finally, recalling the universal relation Js(∞, TBKT ) = 2TBKT /π we obtain:

Js(∞, T ) = Js(L, T )
(1 + (2 ln(L/L0))−1) (5.18)

Once the curves of superfluid stiffness for finite systems and different linear sizes
L are rescaled with the former, they will all assume the same value at criticality.
Henceforth, the crossing point of all the superfluid stiffness curves can be used to
determine the critical temperature of the transition in the limit of infinite size. With
this purpose, from the superfluid stiffness numerical data, we search for the value of
the parameter L0 giving the best crossing point at finite temperature, obtaining a
quite accurate estimate for TBKT .

Obviously, there are still other ways to extrapolate the critical temperature from
a BKT system, starting for instance from the critical exponents. We mention the
most relevant ones here, for the sake of completeness.

Approaching the transition from above, i.e., T → T+
BKT , the in-plane susceptibil-

ity χ and the correlation length ξ both diverge exponentially as:

χ ∼ e1/
√
bχ(T−TBKT ) (5.19)

ξ ∼ e1/
√
bξ(T−TBKT ) (5.20)

and remain infinite at T < TBKT .
On the other hand, we already mentioned in Section 1.2 that one of the pecu-

liarities of the BKT transition relies in the spatial correlation between the in-plane
pseudospin components, which is exponentially suppressed above the transition but
power law diverging below:

< sxi s
x
i+r + syi s

y
i+r >∼ e

−r/ξ T > TBKT (5.21)
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< sxi s
x
i+r + syi s

y
i+r >∼

1
rη

T ≤ TBKT (5.22)

While in fact in usual Heisenberg systems the phase transition is explicitly announced
by the appearing of a finite order parameter, i.e., the magnetization, defining the
presence of a long range order, in two dimensions the in-plane magnetization is
always zero and transition is led by the proliferation of free vortices, that can be
tracked from the change of behavior of the spin-spin correlation function. The
critical exponent η , which assumes the value η = 1/4 at criticality T = TBKT , can
be connected with the correlation length and the in-plane susceptibility and the
correlation length:

2− η(TBKT ) = bχ
bξ
. (5.23)

5.3 The anisotropic Heisenberg model

Let us build our model for competition presented in Eq. (5.1) one step at a time, start-
ing from the anisotropic Heisenberg model. We consider a two-dimensional square
lattice with periodic boundary conditions of three-dimensional spins, parametrized
as in Eq. (5.2). The Hamiltonian is

H = HXY + αHz = −J
∑
<i,j>

(sxi sxj + syi s
y
j )− αJ

∑
<i,j>

szi s
z
j (5.24)

where
∑
<i,j> indicates the sum over neighboring site indices i and j. Let us also

set from now on the ferromagnetic interactions to be J = 1. The key parameter
here is α. Indeed, for α < 1 the ground state of the system will be represented by a
configuration in which all the pseudospins are in plane (ϕi = 0), belonging to the
BKT universality class, with the continuous global symmetry U(1). In this case,
however, the reader will note that the limit case α = 0, often referred to as the XX0
model, is not equivalent to an XY model: while in fact the Hamiltonian is formally
the same, in the former the pseudospins are free to rotate in all the three dimensions
increasing the entropic term of the free energy with a consequent suppression of the
critical temperature.
When instead α > 1 the ground state will be the one with all the pseudospins parallel
in the out-of-plane direction, with the double degeneracy up or down.
Finally, we recall that the limit case α = 1 exactly corresponds to the isotropic
Heisenberg model, in which no long-range order is possible, according to the Mermin-
Wagner theorem [8], and no topological phase transition is present.

Approaching the isotropic limit from below, a useful formula for TBKT (α) was
calculated by Menezes et al. in [125] in the mean field approximation:

TBKT (α) = 2J
e+ I(α) . (5.25)

Here I(α) is an integral defined as

I(α) = 1
(2π)2

∫ π

−π
d2k 1

1− αγk
(5.26)

γq = 1
2(cos(qx) + cos(qy)) (5.27)
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and the spin stiffness Js was computed as the solution of the following self-consistent
equation:

Js =
[
1− T

2J I(α)
]

exp
(
− T

2JJs

)
. (5.28)

Eq. (5.25) reduces to

TBKT (α)→ 2πJ
A+ ln(1− α)−1 . (5.29)

in the isotropic limit α → 1, stating that TBKT vanishes logarithmically in the
isotropic limit. The logarithmic behavior is however difficult to reproduce with
numerical analysis without a significant computational effort, which was beyond the
scope of this work. Nevertheless, the result by Menezes et al. in Eq. 5.25 was found
in the mean field approximation thus its comparison with numerical simulations can
only be generic and concern the orders of magnitude involved.

Instead, we compared our results of the XXZ model for α < 1 with the results of
Refs. [117–119].

In particular, we can affirm that the in-plane and out-of-plane susceptibilities
and the specific heat are in perfect agreement with the simulations performed
in [117, 118]. We considered thermal averages over 105 MC configurations, after
discarding a transient of 104 MC steps, where each MC step is a combination of
tM = 2 Metropolis iterations and tOR = 4 Overrelaxation steps. Fig. 5.1 shows the
in-plane susceptibility (χxx + χyy)/2 of the α = 0, 0.5 cases, where our calculations
and the ones by Cuccoli et al. [118] are superimposed.

a b

Figure 5.1. Comparison of the in-plane susceptibility (χxx+χyy)/2 = (N〈m2
x〉+N〈m2

y〉)/2
(dots) with the calculations of Cuccoli et al. in Ref. [118] (squares). (a) Results of the
XX0 model (α = 0) for different linear size (L = 32, 48, 64, 128) (b) Results for the
XXZ model with anisotropy parameter α = 0.5 in a L = 48 size lattice. The thermal
averages are made over 105 MC configurations, after discarding a transient of 104 MC
steps, where each MC step is a combination of tM = 2 Metropolis iterations and tOR = 4
Overrelaxation steps.

The out-of-plane susceptibility is instead shown in Fig. 5.2 for values of the
anisotropy parameter α = 0, 0.5, 0.95, 0.99. As one can see, the calculations for α = 0
and α = 0.5 show a very low response in the z−direction, monotonically decreasing
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and apparently independent of the size L of the system. Instead, approaching
the isotropic limit α = 0.95, 0.99 a peak appears in correspondence to the critical
temperature of the system.

a b

c d

Figure 5.2. Comparison of the out-of-plane susceptibility χzz = N〈m2
z〉 (dots) with the

calculations of Cuccoli et al. in Ref. [117] (squares) for the XXZ model at various
anisotropies values. (a) Results for α = 0 (L = 32, 48, 64, 128) (b) α = 0.5 (L = 32, 64)
(c) α = 0.95 (L = 32, 64) and (d) α = 0.99 (L = 32, 64) . As before, the thermal
averages are made over 105 MC configurations, after discarding a transient of 104 MC
steps, where each MC step is a combination of tM = 2 Metropolis iterations and tOR = 4
Overrelaxation steps.

The specific heat CV presented in Fig. 5.3 presents a peak for all values of α
considered, right above the critical temperature. In Refs. [117] and [118], the authors
highlight that CV (T ) displays a maximum at a temperature about 10% higher than
the TBKT they calculate. Note that the values of TBKT we calculated are consistent
with theirs, at least in a confidence range of order 1% to 5% (see below in Fig. 5.4a).

Finally, we show the phase diagram in Fig. 5.4, where in panel a we specifically
compare the BKT critical temperatures we deduced with the values found in literature.
Although the comparison shows a general consistency of the data computed, this
consistency may seem a little stretched, particularly if we compare our results (green
dots) with the ones from Lee et al. [119] (orange squares). It is worth noting,
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a b

c d

Figure 5.3. Specific heat CV = N(〈e2〉 − 〈e〉2)/T 2 at different values of the anisotropy
and for different values of the linear size L as indicated in legends. Results for (a)
α = 0, (b) α = 0.5, (c) α = 0.95, (d) α = 0.99 Our simulations are compared with the
ones from [117] and [118]. Thermal averages made over 105 MC configurations, after
discarding a transient of 104 MC steps, where each MC step is a combination of tM = 2
Metropolis iterations and tOR = 4 Overrelaxation steps.

however, that the main bias introduced is the protocol adopted to define the critical
temperature. As a matter of fact, all the computations of in-plane and out-of-plane
susceptibilities and specific heat were perfectly in agreement.In their papers, Cuccoli
et al. [117, 118] deduce the critical temperatures from the fits of simulation data
using Eq. (5.19) and Eq. (5.20), which are both exponentially divergent quantities in
the thermodynamic limit and hence more sensitive to finite size effects. Instead, the
advantage of the scaling relation for Js used here to compute TBKT for α < 1 works
well already at small sizes, as it happens with the Binder cumulant UL, adopted to
address the ferromagnetic transition observed for α > 1.

Finally, let us present the results of our computations from which we extrapolated
the complete phase diagram presented in Fig. 5.4b. Here the red dots represents
the BKT critical temperatures TBKT obtained via the scaling relation in Eq. (5.18),
while the green triangles indicates the ferromagnetic transition in the out-of-plane
directions, calculated with the crossing point of the Binder cumulant UL, defined
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a b

Figure 5.4. Phase diagram Tc vs α. (a) The critical temperatures TBKT calculated from
the jump of the superfluid stiffness Js (green dots) are compared with some results found
in literature, in particular from Ref. [119] (Lee 2005, orange squares) and from Ref. [117]
(Cuccoli 1995, blue squares). (b) Full phase diagram. The red points indicates the
superconducting BKT transition calculated from the BKT scaling relation in Eq. (5.18)
while the green triangles represents the ferromagnetic transition extrapolated by means
of the Binder cumulant in Eq. (5.9).

in Eq. (5.9), at different sizes. Note that we checked that for α ≥ 1 the superfluid
stiffness was zero at all temperatures, without even displaying any size effect,
whence the red points along TBKT = 0 for α ≥ 1.01. Likewise, any out-of-plane
magnetization was observed in all simulations with α ≥ 0.99. This is consistent
with the fact that no phase transition is expected for α = 1, neither BKT nor
ferromagnetic.

In Fig. 5.5 the results of superfluid stiffness are shown, with and without the
scaling factor 1/(1 + (2 ln(L/L0))−1) in the two limit cases considered here, namely
α = 0 and α = 0.99.

From Fig. 5.5a one can observe that already at small sizes of the lattice, the
scaling relation is a powerful tool to extrapolate a quite accurate estimate of the
BKT critical temperature, thus reducing the computational time needed. In both
panels and insets the BKT critical temperature is indicated with a dashed vertical
line and it is deduced as the temperature at which we found the best crossing point
of the rescaled Js and the critical line 2T/π (full black line). The BKT points are
then TBKT = 0.69 and TBKT = 0.57 respectively for α = 0 and α = 0.99, with
fitting parameters L0 = 1.4 and L0 = 0.5, as indicated in the figures. We point out
that the superfluid stiffness in α = 0.99 (Fig. 5.5b) is much more affected by finite
size effects with respect to all other cases with smaller values of anisotropy. This is
related to the fact that we are approaching the isotropic limit, where the critical
temperature TBKT is expected to go to zero logarithmically as α→ 1, the relation
presented in Eq. (5.29).

As previously stated, we did not perform simulations in the range 0.99 < α < 1.01,
since it would have required more computational effort, irrelevant to the aim of our
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work.

a b

Figure 5.5. Extrapolations of TBKT through the crossing point of Js/(1 + (2 ln(L/L0))−1)
with the critical line 2T/π (full black line), using the BKT scaling relation defined in
Eq. (5.18), in the two opposite cases α = 0 (a) and α = 0.99 (b). In the inset are shown
the corresponding unscaled superfluid stiffness Js. The BKT critical temperatures are
marked with vertical dashed lines and the fitting parameters L0 are indicated in legends.
Here, each MC step is made by 2 Metropolis and 4 Overrelaxation iterations, discarding
the first 104 steps and calculating the averages on 105 measurements.

Concerning the α > 1 side of the phase diagram in Fig. 5.4b, we present in
Fig. 5.6 the result of two representative cases, namely α = 1.01 and α = 2. The
ferromagnetic transition is clearly visible from the insets of both Figs. 5.6a and
5.6b, where the absolute value of the out-of-plane magnetization is shown. As it
is customary in numerical simulations of Ising models, we plot the absolute value
〈|mz|〉 instead of 〈mz〉 to avoid the noise that could be introduced by spin flips. The
critical temperature TCOc is indicated as a vertical dashed line, deduced here from the
crossing point of the Binder cumulant UL and reported also in the inset. In particular,
we found in those cases that the ferromagnetic critical temperature is TCOc = 0.65
for α = 1.01, i.e., in the vicinity of the isotropic limit, and it monotonically increases
up to TCOc = 1.76 at α = 2.

In this Section, we studied the bar anisotropic Heisenberg model, where no extra
term of the Hamiltonian was added. This was useful in order to have a first clear
benchmark of the simplest case possible, to be comparable with the forthcoming
results.

5.4 CO-SC barrier potential

From now on, we can start to explore less known scenarios, extending the anisotropic
Heisenberg model. We add the effective barrier term in the Hamiltonian, which now
reads as:

H = HXY + αHz + bHb (5.30)
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Figure 5.6. Extrapolations of ferromagnetic critical points using the Binder cumulant
UL = 1− 〈m4

z〉/3〈m2
z〉2, for α = 1.01 (a) and for α = 2 (b). In the inset are shown the

corresponding out-of-plane magnetizations 〈|mz|〉. The vertical dashed lines mark the
critical temperature TCOc and its value is indicated in the legends. Here, each MC step
is made by 2 Metropolis and 4 Overrelaxations steps iterated 5 times, discarding the
first 4 · 104 steps and calculating the averages on 2 · 104 measurements.

where the barrier term Hb, already presented at the beginning of the Chapter in Eq.
(5.1), is

Hb =
∑
i

8(szi )2
(
1− (szi )2

)
=
∑
i

(1− cos(4ϕi)) . (5.31)

The use of powers of szi instead of the cos(4ϕi) is just a numerical trick to accelerate
the computational time, since trigonometric functions are slower in the C language in
which the code is written. As already pointed out, from now on the overrelaxation
procedure has no meaning since the barrier term Hb cannot be written in terms of∑
i si · Hi with Hi independent of si.
Since our aim is to trigger the CO-SC competition, we will consider the case

where the tuning parameter of the barrier potential is positive b > 0, such that
the three relevant values of the order parameter szi = 0,±1, corresponding to the
in-plane and out-of-plane directions, corresponds to minima of the effective potential.

In the bare anisotropic Heisenberg model, the phase diagram presented in Fig.
5.4b can be described as composed simply by two lines, one of them indicating the
ferromagnetic transition and the other one the BKT transition, both dropping to
zero logarithmically approaching the isotropic limit. The former one has its non-zero
values of TCOc on the right side of α = 1, where the order parameter is the out-of-
plane magnetization 〈mz〉 = 1

N 〈
∑
i s
i
z〉, which can assume in its ground state the

values ±1. The region of the phase diagram α < 1 is on the other hand a topological
phase transition, lead by the proliferation of free vortices, phenomenon that can be
tracked by the change of behavior of the spatial correlation function, circumventing
in this way the Mermin-Wagner theorem. The free energy minimum in this case does
not provide any indication about the appearance of a phase transition. Its ground
state is represented by all parallel in-plane spins, hence siz = 0∀i, with continuous
global degeneracy of symmetry U(1). Its free energy is always as a convex function
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of mi
z with one minimum in mi

z = 0 at all temperatures. Although this picture is not
accurate, it can be useful to imagine the phase diagram as splitted into two regions,
one in which the free energy is minimum in mz = 0 (the superconducting phase) for
α < 1 and one with two equivalent minima in mz = ±1 (the charge ordered phase).

When an effective barrier potential as Hb is considered, the topology of the free
energy will change across the phase diagram and a region in which the free energy
will present simultaneously three minima will appear in the vicinity of α = 1. The
entropic term, together with the amount of anisotropy α, will tune the absolute
values of those minima leading to metastable states and spinodal points appearing
in the phase diagram. The barrier b will stabilize the BKT transition also for values
of the anisotropy α > 1: the higher is the barrier, the higher will be the value of α
needed to suppress the superconducting response.

Thus, in order to study such intricate phase diagram we will deal with three issues
separately: first, we will address only the BKT and the ferromagnetic transitions,
forgetting for a moment about metastability and first order transitions, using a
barrier b = 1, which will enhance the region α > 1 in which superconductivity is
still stable. Then we will try to construct a more complete phase diagram, including
metastability and studying analytically the spinodal points at T = 0. However, to
address the issue of first order transition and metastability numerically, we will need
to lower the barrier down to b = 0.1.

5.4.1 Phase diagram for b = 1

Let us consider for now a barrier parameter b = 1. We point out that the barrier
potential bHb is in this way so high that thermodynamic equilibrium is really difficult
to achieve with simulations since the system cannot explore all the phase space,
unless it runs for a very huge number of MC steps. Nevertheless, some interesting
results can still be found. We will however present our simulations for systems
cooled down using the Simulated Annealing algorithm with a maximum cooling rate
of δT = 0.05, averaging the thermal observables on 104 MC configurations every
tM = 40 Metropolis iterations, discarding away the first 2 · 104 MC configurations.
The phase diagram constructed and presented in Fig. 5.7 clearly shows that the BKT
line survives for values α� 1, up to α = 1.325. All the points were extracted as in
Section 5.3: the circular dots represents the TBKT temperature computed with the
scaling relation of the superfluid stiffness and the triangles are used to indicate the
Ising transition temperature Tc.

The physical quantity that can give a quick insight about the nature of the
transition involved as the anisotropy value α varies is the susceptibility. Merely
comparing the in-plane (χxx + χyy)/2 and out-of-plane χzz responses, defined as in
Eq. (5.8) one can discriminate between the two. While in fact a superfluid density Js
is associated with an in-plane susceptibility that diverges exponentially approaching
the transition from above T → T+

BKT (see Eq. (5.19)) and a finite out-of-plane
susceptibility, as discussed for the XXZ model in Section 5.3, the situation will be
generally reversed in the ferromagnetic transition.

As a matter of fact, this can be observed in Fig. 5.8 where the in-plane and
out-of-plane susceptibilities at various level of anisotropy in the range 0.95 < α < 1.5
are plotted, where we tuned the barrier to b = 1. The data computed are referred to
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Figure 5.7. Phase diagram Tc vs α for the anisotropic Heisenberg model with the presence
of a barrier b = 1 (orange), compared with the results found in the bare XXZ model
(b = 0 in light blue). As before, the circle dots indicating the BKT transition are
calculated using the BKT scaling law for the superfluid stiffness in Eq. (5.18) and the
triangles are calculated from the crossing point of the Binder cumulant in Eq. (5.9) at
different linear sizes L of the lattice. While for the bare XXZ model α = 1 represents
the critical value discriminating between a BKT and a ferromagnetic transition, the
presence of a barrier stabilize superconductivity up to α = 1.325.

a size L = 64 and the thermal averages are taken over 104 MC configurations every
tM = 40 Metropolis steps, discarding the first 2 · 104 MC configurations. As one can
see, the in-plane response of the system is relevant for values of anisotropy as large as
α = 1.325, way greater than the isotropic Heisenberg limit, while the corresponding
out-of-plane susceptibilities decrease down to values of order 10−4. Let us notice
that a peak in χzz is observed in the data corresponding to α = 1.3, 1.325 (green
and light blue curves) right above their BKT temperature, while all the χzz plots
for α ≤ 1 seem to collapse on the same monotonic curve. This is coherent with the
results found in the pure anisotropic Heisenberg model, as the out-of-plane response
of the BKT situation gets more peaked when approaching the Ising transition.

The situation gets reversed as soon as α ≥ 1.35, where the response of the system
is in the out-of-plane direction. The α = 1.35 curve (in dark violet) in particular
seems to be a critical value of anisotropy, for the in-plane susceptibility appears
to be about to diverge while lowering the temperature down to T = 0.8, where it
assumes the value ' 228, dropping at T = 0.75 to ' 0.5; correspondingly, χzz jumps
from the value ' 3.4 to ' 273.

We can also observe that this trend is also present in the specific heat. From
Fig. 5.9 we see the presence of a peak in correspondence of the critical temperature.
In particular, the maximum specific heat is found slightly above TBKT for all those
curves displaying a BKT transition (α < 1.35) – the region between 0.74 < T < 0.79
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Figure 5.8. In-plane (χxx + χyy)/2 and out-of-plane χzz susceptibilities for b = 1 for
different values of anisotropy α for a barrier parameter b = 1 and size L = 64. The
thermal averages are made on 104 MC configurations every tM = 40 Metropolis iterations,
discarding away the first 2 · 104 MC configurations.

in which all the TBKT values collapses is highlighted in yellow – while for the
ferromagnetic transition α ≥ 1.35 the peak is right were the critical temperature Tc
is found, as indicated by a dashed line of the same color of the CV curve.

Finally, let us introduce operatively the definition for the total density of vortices.
A vortex (anti-vortex) is calculated in the lattice whenever a variation of 2π (−2π)
of the in-plane angle θi,j is found in a closed path of a single plaquette. Let us
slightly change the notation, defining the in-plane phase difference at site rk in the
ν̂-direction (ν̂ = x̂, ŷ) as

φν̂(~rk) = [θ(rk)− θ(rk + ν̂)]+π−π (5.32)

the notation [·]+π−π meaning that we take the value modulus 2π so the angle lies in
the interval (−π, π], we can define the circulation of the in-plane phase around a
plaquette sited in ~rk as:

φx̂(rk) + φŷ(rk + x̂)− φx̂(rk + ŷ)− φŷ(rk) = 2πmk (5.33)

where mk is the integer vorticity in the phase angle θ(rk) going around the plaquette
[126]. Summing over all positive (negative) vorticity for unit length we obtain the
density of vortices ρV > 0 (ρAV < 0), defining the total as ρV,tot = ρV − ρAV .

In Fig. 5.10 we observe the evolution in temperature of the total density of
vortices ρV , meaning the sum over vortices and anti-vortices, comparing the last
value of the anisotropy in which we find a BKT transition, i.e., α = 1.325, and the
first one in which the ferromagnetic transition appears, i.e., α = 1.35. As one can
observe, the density of vortices follows the typical exponential BKT behavior in
the α = 1.325 case (Fig. 5.10a). Instead, for the α = 1.35 curve, ρV,tot start to be
exponentially suppressed lowering the temperature down to its critical value, marked
in Fig. 5.10b with a vertical dashed line, then a sudden proliferation of free vortices
is observed, indicating a re-entrant state that starts in a BKT-like framework at high
temperature below which the system drops into a ferromagnetic state, in perfect
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Figure 5.9. Specific heat CV for the b = 1 case at various anisotropy values α at size
L = 64. The TBKT temperatures are all in the yellow highlighted temperature range,
while the ferromagnetic critical temperatures Tc are indicated with a dashed line of
the same color of the corresponding α. The thermal averages are made on 104 MC
configurations every tM = 40 Metropolis iterations, discarding away the first 2 · 104 MC
configurations.

agreement with the trend found in the in-plane and out-of-plane magnetizations.
Note that such re-entrant phase is also detected by finite size effects in the superfluid
stiffness plotted in the inset of Fig. 5.10b. At high temperature, the paramagnetic
phase seems to undergo a BKT transition, as it is visible from the tails of Js, while
instead at T ' 0.76 (vertical dashed line) the system develops a finite out-of-plane
magnetization and Js drops to zero right.

5.4.2 Spinodal points at T = 0

As it was stated at the beginning of this Section, the phase diagram Tc vsα of
Hamiltonian (5.30) is a little more intricate than the bare anisotropic Heisenberg
model presented in Section 5.3 and it will present a re-entrance of the superconducting
state, caused by the presence of the barrier, while two first order lines terminating
at T = 0 are expected.

The study of metastable states is particularly challenging, either in real experi-
ments and using numerical methods.

What one can do however is to search for the critical values α∗(b) for which a
local minimum of the free energy disappears along the T = 0 line of the Tc vsα
phase diagram. Indeed, increasing α at zero temperature – where all pseudospins
are supposed to be parallel ϕi = ϕ∀i – the free energy will have a single global
minimum in ϕ = 0 up to some α = α∗CO(b), after which two new local minima in
ϕ = 0, π will appear. Crossing the isotropic point α∗ = 1 the situation gets reversed:



5.4 CO-SC barrier potential 97

a b

Figure 5.10. Total density of vortices and antivortices ρV,tot as a function of temperature.
(a) For α = 1.325 the decay of ρV,tot is exponential when lowering the temperature,
confirming the BKT nature of the transition. (b) α = 1.35 shows a re-entrant phase as
ρV,tot seems to decay exponentially lowering T down to a temperature Tc where vortices
suddenly proliferate. Tc, marked with the vertical dashed line, which was deduced from
UL. In the inset, the same trend is also confirmed by the finite size effects of Js.

the new global minima will be ϕ = 0, π and the ϕ = 0 configuration will become
a local minimum, disappearing at some α∗SC(b). In other words, moving along the
T = 0 line of the phase diagram, we are looking for

• α ≤ α∗SC(b) such that ∂2H
∂ϕ2 |ϕ=π/2 > 0

• α ≥ α∗CO(b) such that ∂2H
∂ϕ2 |ϕ=0,2π > 0

Writing the Hamiltonian as

H = −
∑
<ij>

cos(θi − θj) sin(ϕi) sin(ϕj)− α
∑
<ij>

cos(ϕi) cos(ϕj)− b
∑
i

(1− cos(4ϕi))

we look for the solutions α∗CO and α∗SC for T = 0. The out-of-plane component can
either be ϕ = 0, π/2, π, corresponding respectively to sz = +1, 0,−1, thus we can
take cos(θi − θj) = 0 and ϕi = ϕ. Neglecting all constants and considering first
neighbors interactions, we can simplify the former Hamiltonian to

1
N
H(ϕ) = 2(1− α) cos2(ϕ)− b cos(4ϕ) (5.34)

whose first derivative with respect to is

1
N

∂H

∂ϕ
= −2 sin(2ϕ)(1− α) + 4b sin(4ϕ) =

= −2 sin(2ϕ)(1− α)− 8b sin(2ϕ) cos(2ϕ) =
= −2 sin(2ϕ)((1− α) + 4b cos(2ϕ)) (5.35)
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Figure 5.11. (a) Hamiltonian H(ϕ) in Eq. (5.34) for a barrier parameter b = 0.1 at various
tuning parameter α, ranging from 0 to 2. (b) Sketch figure of the T = 0 line of the
phase diagram as a function of the tuning parameter α. The shape of H(ϕ) displays
a single minimum in ϕ = π/2 (SC) for values 0 < α < α∗CO; at α = α∗CO two other
local minima appears in ϕ = 0, π (CO); for α = 1 we find three equivalent minima; in
the range 1 < α < α∗SC the CO states are global minima while SC survives as a local
minimum; for α > α∗SC only the two equivalent CO minima survives.

Taking one more derivative, we obtain

1
N

∂2H

∂ϕ2 = 4 cos(2ϕ)(α− 1) + 16b cos(4ϕ) =

= 4 cos(2ϕ)(α− 1) + 16b(2 cos2(2ϕ)− 1) (5.36)

Then substituting ϕ = π/2 and ϕ = 0, π we obtain

α∗SC(b) = 1 + 4b (5.37)

and
α∗CO(b) = 1− 4b (5.38)

Note that we could have guessed those values already from the non-trivial solutions
of ∂H/∂ϕ = 0 from the occurrence of the two maxima in cos(2ϕ) = (1−α)

4b , whose
reality condition is precisely α∗CO(b) < α < α∗SC(b) thus signaling the presence of
three local minima.

In Fig. 5.11 we report Hamiltonian for T = 0 in Eq. (5.34) at various tuning
parameter α > 0, calculated for a barrier parameter b = 0.1: the system displays a
single global minimum at ϕ = π/2, corresponding to the superconducting state for
values ranging from 0 to α∗CO = 0.6, after which the system develops two other local
minima in ϕ = 0, π, signaling the appearance of metastable CO states; at α = 1 a
first order phase transition switches the global SC minimum into a local one while
the CO states becomes global minima; the superconducting state finally disappears
for α > α∗SC = 1.4.

The situation has been settled concerning the T = 0 state and it is now time to
look for the complete phase diagram including finite temperatures.

5.4.3 Phase diagram for b = 0.1
We select now the barrier parameter b = 0.1 in order to construct a phase diagram
in which we can also numerically study the equilibrium transition temperatures.
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As it is known, the experimental and computational study of the correct equilib-
rium state, to extract the first order transition critical temperature and to determine
spinodal points, is not a trivial problem that will be treated here in a very simple
way.

Within MC simulations we decide to use small sizes, mostly L = 4, taking
histograms from which we calculate an effective probability that allows us to construct
a free energy. The need for a small size is a consequence of the fact that the free
energy barrier between the minima grows exponentially with the number of sites of
the system considered.

Although we are aware that this is not the most accurate method, it can however
give quick and approximate yet insightful results.

An effective free energy is constructed starting from the histograms of mz. Note
that we naively consider mz = 0 as the superconducting state although this is not
completely exact, since the system may not have a macroscopic stiffness. We evolve
a small system, typically L = 4, for a time much greater than the time strictly
needed to perform a realistic thermal average over the configurations.

The system evolves for 5 · 105 MC steps after discarding the first 5 · 105, each MC
step being tM = 50 Metropolis steps. We construct an effective discrete probability
density function Peff (mz) from the histograms of mz = 1

N

∑
i s
z
i , calculated at

each MC step. The effective free energy of the k−th bin is then constructed as
Fk = −T ln(Pk/

∑
Pk) ≡ F (mz). This procedure is performed both cooling down

the system from a random initial condition and by heating up the system, prepared
the metastable state, i.e., all pseudospins up if α < 1.05 and all in-plane parallel
pseudospins if α > 1.05, in order to check that the chosen protocol does not affect
the result. Once we have all the effective free energies F (mz) at each temperature
for both protocols, we can infer the first order critical temperature T1stOT and the
spinodal temperature Tsp.

The first order transition temperature will correspond to the one at which
the minimum of free energy changes from mz = ±1 to mz = 0 increasing the
temperature. Hence, we consider the minima of the effective F (mz) constructed
from the histograms at each T so to have the minimum free energy Fmin(T ) for both
the phases we are interested in: in particular, we look for the minimum value in
mz = 0, for the superconducting state, and the minimum near mz = ±1, for the CO
state. As an example, we report the resulting Fmin(T ) in Fig. 5.12a for the α = 1.04
case, were the superconducting state is shown in red and the CO in green. The
crossing point between the two curves is the first order critical temperature. One
can of course check from the histograms that this temperature really corresponds
to the coexistence of all three states. For this reason, we report some histograms
corresponding to the α = 1.04 case in panels b, c, d and e of Fig. 5.12, where the
distribution of mz is in light blue (left axis) and the corresponding F (mz) is in purple
(right axis). One can easily see how at T = 0.25 (panel b) F (mz) displays three
minima, the global ones being in mz = ± (CO); then, increasing the temperature to
T = 0.30 the three minima are equivalent while at T ≥ 0.35 the global minimum
lies in mz = 0.

The spinodal points are trickier to address. We fitted the data F (mz) in the
region around m = 0.5 to look for the temperature at which the curvature changes
from downward to upward. The difference is here more subtle but it can be seen
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Figure 5.12. Effective free energies and probability distributions of mz for a system of
linear size L = 4 with α = 1.04, b = 0.1. (a) Local minimum of the free energy as
a function of temperature Fmin(T ). The red curve corresponds to the minimum of
F (mz ≈ 0) while the colored dots F (mz ≈ 1) of panel (a). The crossing temperature
between the two indicates the first order transition T1stOT . (b) Effective probability
density function P (mz) and free energy F (mz) for T = 0.25, (c) for T = T1stOT = 0.35.
(d) T = 0.60 and (e) T = Tsp = 0.65. The free energies F (mz) at each temperature were
constructed from the distribution of mz within 5 · 105 MC steps, after discarding away
the first 5 · 105, each MC step made by tM = 50 Metropolis iterations

from panels d and e of Fig. 5.12, in panel e the curvature near mz = ±1 being finally
flat.

This procedure was repeated for many values of α in order to construct a reliable
phase diagram for a barrier parameter b = 0.1. The resulting phase diagram is shown
in Fig. 5.13. The orange circles indicate the BKT transition temperature TBKT
extrapolated by means of the scaling relation in Eq. (5.18), the superconducting
transition surviving up to α = 1.04, while for α ≥ 1.05 the Ising (CO) transition
temperature TCO(α) is indicated with orange triangles and deduced by means of
the Binder cumulant UL. The points in brown along the line T = 0 are theoretical
points: the two stars in α∗CO = 0.6 and α∗SC = 1.4 are the spinodal points at T = 0,
calculated as described in Section 5.4.2, and the brown square at α∗ = 1 is where the
free energy has three equivalent minima in mz = 0, ±1. The red stars correspond to
the spinodal points and the yellow squares are the first order critical temperatures,
inferred from the histograms of mz, the behavior of effective free energy F (mz) and
Fmin(T ).

The resulting phase diagram is very interesting. We report a cartoon figure of it
in Fig. 5.14a. As already discussed, metastability regions appear, bounded by two
spinodal lines. As the temperature increases, the region of metastability shrinks to
a single point, which seems to coincide with the triple point where charge ordered,
superconducting and disordered phases meet. The first order line separating the CO
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Figure 5.13. Phase diagram Tc vsα for the XXZ model with a barrier b = 0.1. The
light blue shaded lines refer to the bare XXZ model. The orange dots are the TBKT
points calculated with the BKT scaling law while the orange triangles refers to the
ferromagnetic transition for which Tc is found by use of the Binder cumulant UL, the
squares refers to the first order transition while the stars indicates the spinodal points.
The brown points in T = 0 are calculated analytically, while yellow squares and red
stars are computed from the effective free energies F (mz) and Fmin(T ).

phase and the superconductor is almost vertical, indicating that the two phases have
similar entropy, as one can check using the Clausius-Clapeyron relation. We can
thus make a first comparison with the case of 4He, whose phase diagram is shown in
Fig. 5.14b.. Here, it was the almost vertical line separating the solid and superfluid
phases that led to the hypothesis that superfluidity was a low entropy phase, as a
crystal, fueling explanations based on condensation in momentum space instead of
real space. Concerning again the CO-SC competition, one can then observe that the
same first order line is not exactly vertical and a re-entrance appears, thus finding
that near α & 1 one can make a transition from the CO state to the superconductor
by increasing the temperature. This clearly means that the superconducting phase
has actually slightly higher entropy than the CO phase. A posteriori, this result is
reasonable as the CDW has two gapped transverse modes while superconductivity
has only one gapped mode plus a Goldstone mode. Thus, just considering low
laying excitations near T = 0, it is reasonable that the superconductor can have
larger thermal fluctuations and entropy. Interestingly, the re-entrant behavior of the
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Figure 5.14. (a) Cartoon sketch of the phase diagram of the XXZ model with the CO-SC
effective barrier potential H = HXY +αHZ + bHb. Solid lines stand for the second order
phase transition, the thick dashed line indicates the first order phase transition between
the SC and CO states and the thin dotted lines are spinodal lines. (b) Clausius-Clapeyron
phase diagram of the 4He (Figure adapted from wikimedia commons).

superconducting phase is also reminiscent to the phase diagram of 4He, in which we
find a range of pressures in which the solid 4He, if heated, transit to its superfluid
state before becoming a simple liquid. In 4He, however, this happens in the high
temperature part of the phase diagram, while here we observe it at low temperatures.
In fact, in the low temperature region, the sloop of our phase diagram and the one
of 4He have opposite sign. We speculate that this qualitative difference is due to the
fact that in our case the CO has no Goldstone mode while in the case of 4He the
crystal has sound (Goldstone) modes.

It is worth noting that the model for describing the CO-SC competition in a dirty
system discussed in Section 2.2.4 had many similarities with the supersolid-superfluid
competition in 4He. It is then very interesting, yet not so surprising, that the analogy
is maintained already in the clean system.

5.5 CO-SC competition: XXZ model, barrier potential
and a random field

We finally address the complete Hamiltonian, adding the external random field term
along the easy-axis. Once both the barrier term b and the amount of disorder w
along the out-of-plane axis are considered, a very rich 4-dimensional phase diagram
of Tc will be associated to the complete Hamiltonian

H = −
∑
<i,j>

sxyi · s
xy
j − α

∑
<i,j>

szi s
z
j + 8b

∑
i

(szi )2
(
1− (szi )2

)
+ w

2
∑
i

his
z
i (5.39)

where hi is a random variable uniformly distributed in [−1, 1].
It is worth noting that in previous works [31, 32] the problem of filamentary

superconductivity was already studied introducing a very similar model, although
at T = 0 (see Section 2.2.4). In that case, a single-ion anisotropy was the key
term to trigger the competition in the isotropic Heisenberg model in random field.

https://commons.wikimedia.org/wiki/File:Phase_diagram_of_Helium-4-en.svg
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Introducing a random field, the ground state in the CDW state changes. The
system breaks apart into a polycrystalline CDW: at the interface of two different
domains, both ordered phases are frustrated and superconductivity wins. Once
a reasonable amount of impurities is added to the system, clusters of up and
down regions are created near those impurities, separated from a one dimensional
superconducting interface where filamentary superconductivity appears as a domain
wall between domains with opposite local magnetization and superconductivity is
hence topologically protected.

In our context, the situation gets more intricate, yet interesting. On the one
hand, because we addressed the problem of the anisotropic Heisenberg model, of
its evolution in temperature and, in particular, of its phase diagram Tc vsα. On
the other hand, we showed already in the last Section how the barrier term we
considered accounts for the competition between the CDW and the superconductor,
generating metastable states. Nevertheless, adding a random field, it is natural to
expect to recover similar signatures of filamentary superconductivity. We will keep
working on the construction of the phase diagram Tc vsα with b = 0.1, fixing w such
that the amount of disorder is suitable to observe filamentary superconductivity. In
Fig. 5.15 we report some snapshots of the final configuration scenario of pseudospins
at temperature T = 0.001 for a size L = 64 lattice with anisotropy α = 1.05 for
different realizations of disorder, with w = 0, 2, 5, 10. The colormaps show the szi
component of the pseudospin in the two-dimensional lattice, the color code being
displayed on the right hand side, ranging from 1, in green, to 0, in red, to −1,
in blue. Those ground states are consistent with the results found in [31, 32]: in
absence of disorder, the system goes through a CO transition represented by a
state with all pseudospins pointing up, corresponding to the two CDW variants;
increasing the disorder w, the system gets fragmented into up and down regions,
divided by filamentary superfluid clusters represented by in-plane pseudospins. This
is particularly evident in the w = 5 panel, in which we can distinguish filamentary
clusters surrounding the out-of-plane regions. Therefore, we will keep the amount of
disorder fixed to w = 5 in the forthcoming discussion.

Once the amount of disorder is set, we can start to study the behavior in tem-
perature of those main physical quantities carrying information about the transition.
Henceforth, every curve will have to be averaged not only on MC configurations,
but also on different disorder realizations. It is worth noting that, especially for
L ≥ 64, 10 disorder realizations are enough to have reasonable errors. For the sake
of definiteness, the errorbars relative to disorder will be simply:√

σ2
O =

√
O2 −O2 (5.40)

where the overline O indicates the average over different disorder realizations of
some physical quantity O.

In the next Sections we will describe our main results: going across the phase
diagram, the usual BKT region in α < 1 will not be very much affected by strong
disorder, whereas for α & 1 we will find filamentary superconductivity. Moreover,
for α � 1 the ground state will be fragmented into up and down regions, hence
ferromagnetism will survive only locally so we will be forced to define somehow a
new criterion for the transition.
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α = 1.05; b = 0.1; T = 0.001

Figure 5.15. Snapshots of the pseudospin configurations at T = 0.001 for a L = 64 lattice
with anisotropy α = 1.05 and barrier parameter b = 0.1 for different realization of
disorder, with w = 0, 2, 5, 10. The color code legend on the right hand side indicates the
sz component of the spin, ranging from green sz = 1 to red sz = 0 to blue sz = −1. All
the pseudospin configurations shown are the final scenario: for the clean case (w = 0) this
corresponds to the 6 · 104−th step, while for the disordered configurations (w = 2, 5, 10)
the system evolved for 105 MC steps, each MC step made by tM = 50 Metropolis
iterations.

5.5.1 α� 1: polycrystalline CDW

Let us focus before on the α � 1 side of the phase diagram. The presence of
a random field along the z-axis forces the system to fragment into up and down
clusters, whereas in-plane pseudospin configurations (SC) are of course energetically
disadvantaged the more the system is far from the degeneracy point α = 1. The
usual order parameter 〈mz〉 and its Binder cumulant UL, used to address the Ising
(CO) transition , do not provide in this case a reliable criterion to determine the
critical temperature and a different approach is needed. To convince the reader about
this last statement, we show in Fig. 5.16 some examples of different definitions of
magnetization. We used a lattice of linear size L = 128 and anisotropy α = 1.5, 1.7, 2
(respectively in panels a, b and c),averaging all the curves over 10 different realization
of disorder with strength w = 5. Remembering that 〈•〉 stays for the thermal average
over MC configurations, the orange curve in all panels is the usual magnetization
averaged over disorder:

〈mz〉 = 〈| 1
N

∑
i

szi |〉

Trivially, since the ground state is now divided into up and down regions this physical
quantity loses its meaning, as it was predictable. Moreover, the errorbars are of the
same order of the average value, thus resulting in an overall error interval twice as
large as the mean value. One can on the other hand think to define some quantities
involving the out-of-plane component of the spin.

For instance, one can be inspired by the definition of staggered magnetization
used in the context of antiferromagnetic transitions. In that case the lattice is
divided into two sub-lattices, with positive and negative magnetizations in the
ground state, whose subtraction gives the total staggered magnetization with unitary
value mAF = 1 at T = 0. In our model, however, it is impossible to define two, or
even three, sub-lattices in a proper way, for the up, down and in-plane components
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of the spin. Hence, we defined some sort of staggered magnetization as follows

〈mAF
z 〉 = 〈 1

N

∑
i

|szi |〉, (5.41)

which is plotted in purple in Fig. 5.16. Likewise, one can define the out-of-plane
fluctuations of the spin

〈m2,AF
z 〉 = 〈 1

N

∑
i

(szi )2〉, (5.42)

shown in green. While those quantities seems to be better defined in our model with
respect to the usual magnetization, they do not provide a good order parameter to
describe the system: if on the one hand both carry the information about the total
fraction of the out-of-plane component in the lattice and their errorbars are rather
small, they do not present any indication about some transition happening.

a b c

Figure 5.16. While trying to define the ground state for α� 1 we observed different possible
observables involving the out-of-plane pseudospin component: the usual magnetization
〈mz〉 (orange), 〈mAF

z 〉 (purple) and 〈m
2,AF
z 〉 (green) defined in Eqs. (5.41) and (5.42).

We report here the results for (a) α = 1.5, (b) α = 1.7 and (c) α = 2. All curves refer to
size L = 128 and are averaged over 10 different realizations of disorder with w = 5.

In the following, we will study the spatial correlation function that will provide
us more information.

5.5.2 Correlation length of the out-of-plane component

Let us show some snapshots at different temperatures of the α = 2 anisotropic
case for a single realization of disorder. In Fig. 5.17a are reported the colorplots
of the out-of-plane pseudospin component sz for the final pseudospin scenario
generated at temperatures T = 2.5, 1.5, 1.0, 0.001, displayed respectively from left
to right. All the final scenarios plotted correspond to the 105-th MC step, each
one made by tM = 50 Metropolis iterations, the annealing algorithm playing an
important part in speeding up the thermalization process especially in the random
field framework. Lowering the temperature from T = 2.5, where the system is clearly
in its paramagnetic phase, the up and down clusters that will represent the ground
state at T = 0.001 start to aggregate already at T = 1.5 and are clearly visible at
T = 1.0, although still with a certain degree of disorder. However, some reliable
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α = 2; b = 0.1; w = 5
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Czz(rx, ry) = 〈 1
N

∑
i,j s

z
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z
i+rx,j+ry〉

b

Figure 5.17. (a) Snapshots of the pseudospin configurations for a L = 128 lattice with
anisotropy α = 2 and barrier parameter b = 0.1 for the same realization of disorder, with
w = 5. The temperature is lowered from left to right, in particular T = 2.5, 1.5, 1.0, 0.001.
The color code legend on the right hand side indicates the sz component of the spin,
ranging from green sz = 1 to red sz = 0 to blue sz = −1. The pseudospin scenarios shown
are the final ones, after the system evolved for 105 MC steps, each MC step made by tM =
50 Metropolis iterations. (b) Out-of-plane spin-spin correlation function Czz(rx, ry), i.e.,
density-density response, at the same temperature, for the same realization of disorder of
the snapshots. The thermal average is done over 100 different pseudospin configurations.
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Figure 5.18. Czz(rx, ry) averaged over 10 different realization of disorder and symmetrized
with respect to the rx and ry directions, plotted at for L = 32, 64, 128, 256 at various
temperatures. The errorbars refers to the average over disorder and the dashed lines are
the exponential fits.

criterion to determine the transition between the paramagnetic to the “clustered”
phase should be defined.

Therefore, the spatial correlation function Czz(r) of the out-of-plane component
of the pseudospin can be a well defined quantity to address such a state. The out-of-
plane spin-spin correlation function in our model corresponds to the density-density
response and it reads as:

Czz(rx, ry) = 〈 1
N

∑
i,j

szi,js
z
i+rx,j+ry〉 (5.43)

where we averaged over all the pseudospins
∑
i,j , the MC configurations, i.e., the

thermal average 〈•〉, and the different disorder realizations. Note that since we used
periodic boundary conditions, the distance between two different pseudospin runs in
the range 0 < rx, ry < L/2.

In Fig. 5.17b we show the out-of-plane spatial correlation function for the same
realization of disorder of the displayed snapshots. The thermal average for Czz(r) is
made here over 100 pseudospin configurations, saved after a transient of 2 · 103 MC
steps, each one made by tM = 100 Metropolis iterations and a transient of 2 · 103.
We point out that the Metropolis steps are now made randomly. This choice was
made to reduce the bias that is introduced in Czz(rx, ry) when the lattice is spanned
in an ordered way, from which thermodynamic quantities were immune. Here we
double the autocorrelation time (tM = 100) and the computational time is reduced.

The strong spatial anisotropy of the szi component, evidently visible in the
snapshots for T ≤ 1.0, are transposed in the Czz(rx, ry) of the same configuration.
Since large clusters of up and down regions appear lowering the temperature, it is
not so surprising that we find negative spin-spin correlations. To restore almost
completely the spatial isotropy, one needs to average over many disorder realizations,
bearing in mind that we are ultimately interested to have some information about
the average size of up and down clusters. In other words, in order to extrapolate the
correlation length ξz in the most accurate way possible we need that the correlation
function is almost the same in all directions, at least in the limit r→ 0.

Once Czz(r) is averaged over many disorder realizations, spatial isotropy is
restored, as we checked that Czz(rx, ry) was the same in the directions (rx, 0), (0, ry)
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a b c

Figure 5.19. Correlation length ξz(T ) in logarithmic scale for sizes L = 64, 128, 256 for
(a) α = 1.5, (b) α = 1.7, (c) α = 2. The numerical data fitted with the function
ξz = A/(T − Tc) are those in the right region of the vertical line, assuming that the
system at high T still belongs to the random field Ising model universality class, hence
its critical exponent is ν = 1.

and on the diagonal rx = ry. We study the spatial correlation functions Czz(r) in
the proximity of |r| → 0, hence we take the range [0, 16) × [0, 16). Moreover, we
symmetrised Czz(r) with respect to the (rx, 0) and (0, ry) directions before fitting
the data. Simplifying here the notation, we refer to the correlation function along
the rx and ry axes respectively as Czzx , Czzy , thus

Czz(r) =

(
Czzx + Czzy

)
2 ∝ exp

(
− r

ξz

)
. (5.44)

One interesting feature of such clustered state we are examining consist in the
fact that the decay of the correlation function does not seem to follow some size
dependence for |r| → 0, as it can be seen from Fig. 5.18, where Czz(r) is plotted in
the same range [0, 15] for different sizes of the system, doubling it from 32 to 256,
for the case α = 2 for various temperatures. The computed Czz(r) are indicated
with dots and errorbars refers to different disorder realizations, whereas dashed lines
are the exponential fit of the data, from which we extrapolate ξz. Obviously, the
independence from the size of the system will be preserved also in the behavior of
the correlation length.

The correlation lengths ξz extrapolated are plotted as function of the temperature
T for sizes L = 64, 128, 256 for the three values of α � 1 that we examined, in
particular, the α = 1.5 case is shown in Fig. 5.19a, α = 1.7 in Fig. 5.19b and α = 2
case is shown in Fig. 5.19c. It is not surprising that we do not observe a clear
dependence on the size L. Although, what is quite interesting is the fact that the
saturation value for T → 0+ not only does not display an increasing monotonic
behavior with L, but even seems to be slightly decreasing with the size. The
emblematic case happens for α = 1.7, where all the curves collapse on the same
saturating value ξ(T → 0) ∼ 10. A possible interpretation of the phenomenon, yet
not definite and still open, is the possibility that the system at high temperature
still belongs to the random field Ising model universality class. Indeed, at high
temperature the presence of the barrier potential in the Hamiltonian is masked by
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the presence of strong thermal fluctuations. Hence, to define a critical temperature,
we imagined this was an applicable scenario and we fitted the data with this ansatz.
The ξ(T ) curves were fitted assuming a priori a random field Ising model critical
exponent ν = 1 to extract Tc:

ξ(T ) = A

T − Tc
(5.45)

The results of the fitting parameter are displayed in Figs. 5.19a, 5.19b and 5.19c,
obtaining Tc = 0.42±0.05 for α = 1.5, Tc = 0.90±0.02 for α = 1.7 and Tc = 1.20±0.01
for α = 2.

5.5.3 α & 1: filamentary superconductivity

Finally, let us spend a few words about the BKT transition, trying a first attempt
towards the description of filamentary superconductivity.

In Section 5.4, where we introduced the effective barrier Hb to introduce the
CO-SC competition in the clean system, we already observed how the presence of
the barrier alone strengthens the superconducting state even for values α & 1 of the
phase diagram, whereas in the anisotropic Heisenberg model the BKT transition
temperature is supposed to go to zero logarithmically as the isotropic limit is
approached from below, i.e., TBKT (α) → 2πJ/(A + ln(1 − α)−1) for α → 1− (Eq.
(5.29)).

Once disorder is set in the system, this framework might change. We already
know that uncorrelated disorder should not affect substantially the BKT phase
transition, at least in the α < 1 region of the phase diagram [64] whereas correlated
disorder, on the other side, can mask the presence of a BKT transition by smearing
its very signatures, such as the jump of the superfluid density, providing a natural
interpretation of the tails observed experimentally [65]. Besides, in the context
of XY models it has been shown that disorder can also support and strengthen
the superconducting state once a transverse magnetic field is applied: instead of
fragmenting the global phase coherence, the presence of disorder can in fact work
against thermal phase fluctuations [127].

Considering all of the above, it is not surprising that superconductivity is robust
against the disorder introduced with the random field. Leaving aside for a moment
the case α = 1.1, which will deserve some more attentions, the superfluid stiffness
for α < 1.1 maintains almost intact all of its signatures, except for its saturating
value Js(T → 0), which is suppressed by the presence of an important fraction of
pseudospins in the out-of-plane direction, forced by the quenched disorder.

The scaling relation in Eq. (5.18), used towards all the Chapter to extrapolate
the superconducting critical temperature, works fine. The crossing point is still
clearly visible also for anisotropy values slightly above the isotropic limit, although
it is not so precise as in the clean case. We present in Fig. 5.20 the crossing point
of the superfluid stiffness – rescaled with Eq. (5.18) – for the values α = 1 and
α = 1.05 and sizes L = 16, 32, 64, 128, 256. The extrapolated TBKT ± δTBKT is
indicated with a vertical dotted line and a gray shaded area, shown also in the insets,
where the corresponding Js is presented as it is, i.e., without being rescaled. Note
that the errorbars on Js refers to the uncertainty caused by different realizations of
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disorder and they naturally reduce with the size, despite the fact that small sizes
were averaged over more runs. In particular, we averaged over 20 runs for L = 16, 32,
15 for the size L = 64, 10 for L = 128 and 7 for L = 256. As usual, the tail observed
in Js becomes less and less evident as L increases, and all curves collapse on the
same average value for T < TBKT . The saturating value Js(T → 0) in both cases is
suppressed by about 50% with respect to its expected value in absence of disorder,
where Js(0) = 1.

a b

Figure 5.20. Crossing point of the rescaled superfluid stiffness Js(L, T )/(1+(2 ln(L/L0))−1)
with the BKT critical line 2T/π (full black line) at various size for (a) α = 1 and (b)
α = 1.05. The vertical dashed line indicates the extrapolated TBKT . In insets are
represented the corresponding unscaled Js with errorbars.

Last but not least, let us consider the case α = 1.1, where we find a finite
superfluid stiffness Js and yet the usual BKT scaling relation does not work properly,
as one can see observing Fig. 5.21a. Rescaling the curves at different L with the
customary logarithmic factor does not lead to a clear and definite crossing point
of all Js(L, T ) with the critical line 2T/π. Moreover, comparing the behavior of
the rescaled functions with their corresponding Js shown in the inset, one can
observe that not much has changed. One can also point out that the stiffness
displays a downward curvature in the low temperature limit, arguing that the finite
superconducting response we observe is nothing but a finite size effect. On the
one hand, however, a 256× 256 lattice with periodic boundary conditions should
provide already a reasonable size to observe reliable thermodynamic quantities; in
addition, 9 configurations of disorder were considered for this size. On the other
hand, the superfluid density at low temperature does not seem to be size dependent
at T → 0. Therefore, we proceeded to fit the data at our disposal anyway, trying to
be as reasonable as possible in the choice of L0, which however is not so decisive.The
extrapolated TBKT = 0.31 ± 0.08 was also compared with the minimum value of
the derivative of the superfluid stiffness ∂Js/∂T , along the line of Refs. [119,123]:
in these works, the crossing point of the superfluid stiffness of the bare anisotropic
Heisenberg model was calculated by integrating Eq. (5.15) and the crossing point was
consistent with the minimum of ∂Js/∂T in the limit of large size, already at L = 64.
As the BKT critical temperature is not clearly defined, neither with the scaling
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a b

Figure 5.21. (a) Crossing point of the rescaled superfluid stiffness Js(L, T )/(1 +
(2 ln(L/L0))−1) with the BKT critical line 2T/π (full black line) at various size for
α = 1.1, in insets are represented the corresponding unscaled Js with errorbars. (b)
Corresponding temperature derivative of the superfluid stiffness ∂Js/∂T . In both panels,
the vertical dashed line and the gray shaded area indicatea the extrapolated TBKT and
its errorbar TBKT = 0.31± 0.08.

relation nor the derivative of Js, we considered a large uncertainty, highlighted in
gray in both panels a and b of Fig. 5.21. It is worth noting that some crossing
point between almost all curves Js(L) (with the exception of L = 64) is visible in
Fig. 5.21a, but it does not however intersect the critical line 2T/π. This fact can be
linked to the emergence in the system of some new scales presumably related to the
geometrical structure of the system, along with the typical sizes of vortex-antivortex
pairs in BKT theory.

Indeed, the fact that the BKT transition and its signatures are pretty confused
can be taken as a sign of a very interesting open problem that needs to be explored
further. In Fig. 5.22 we show the snapshots of the final pseudospin scenario in a single
disorder configuration for a size L = 128 system. The system is cooled down from a
temperature T = 2.5 and at T = 1.2 we still observe a disordered phase. Lowering
the temperature, superconducting filaments (in red) start to emerge at temperatures
around T = 0.6. A filamentary structure is rather definite at T = 0.3, i.e, inside
the BKT critical temperature interval we extrapolated with the scaling relation.
Lowering again T , the spatial structure stays rather fixed down to T = 0.001, and
the up and down areas are more definite as the red filaments also appear.

5.5.4 Phase diagram for b = 0.1 and w = 5

We can conclude this Section by summarizing the results obtained so far, finally
sketching a first attempt of a phase diagram Tc vsα of the complete Hamiltonian
presented in Eq. (5.39) for the barrier tuning parameter b = 0.1 and quenched
disorder w = 5. This is shown in Fig. 5.23a, where it is superimposed to the standard
anisotropic Heisenberg model phase diagram we illustrated in Section 5.3, plotted
here in light blue just as a visual benchmark.

The BKT physics, expected in α < 1 and stabilized here up to α = 1.05, does not
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α = 1.1; b = 0.1; w = 5

Figure 5.22. Snapshots of the pseudospin configurations for the L = 128 lattice with
anisotropy α = 2 and barrier parameter b = 0.1 for the same realization of disorder (w =
5). The temperature is lowered from left to right, in particular T = 1.2, 0.6, 0.3, 0.001.
The color code legend on the right hand side indicates the sz component of the spin,
ranging from green sz = 1 to red sz = 0 to blue sz = −1.

a b

Figure 5.23. Phase diagram Tc vsα for the complete Hamiltonian presented in Eq. (5.39)
with b = 0.1 and w = 5. The light blue phase diagram is the one for the bare XXZ model,
calculated in Section 5.3. The blue pentagons indicates the charge ordered state (see
Section 5.5.2) and TCOc was deduced from ξz(T ). The dots refers to the BKT critical
temperature calculated by means of the scaling relation in Eq. 5.18. We distinguish
here the values of α < 1 (in orange), where the BKT transition is almost unaffected
by disorder, and the α & 1 (in magenta), where the we start to observe filamentary
superconductivity.
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present surprising features. The orange dots correspond here to the standard BKT
transition α < 1. For those values of anisotropy, the usual BKT scaling relation holds
and the crossing point between different Js(L) gives clean and quick results in terms
of the BKT critical temperature. The TBKT points are lower than those found in
the absence of both barrier and quenched disorder, meaning that superconductivity
is partially suppressed, as one can see comparing orange dots with the light blue
ones of the bare anisotropic Heisenberg model. While the lowering of the critical
temperature TBKT with respect to the clean system at b = 0 was predictable, the
random field is able to suppress also the saturating value of the superfluid stiffness
at T → 0, i.e., Js(T = 0) < 1, yet the system stays in the BKT universality class.

Going towards α ≥ 1, we enter the region in which filamentary superconductivity
(TFSC) is expected. From Fig. 5.24, where we summarize the snapshots at T = 0.001
for various α, one can see that up to α ≤ 0.9 the ground state is represented by almost
all pseudospins in-plane (in red). Slightly increasing the anisotropy α = 1, 1.05, 1.1
one can observe the emergence of up (green) and down (blue) clusters appearing
in the lattice, surrounded by a filamentary structure of superconducting spins.
Alongside, the BKT superconducting response at low temperature is halved with
respect to the clean case. However, for α = 1, 1.05 the usual BKT scaling relation
was applicable almost effortless whereas the case α = 1.1 was more delicate, hence
the large errorbar in the phase diagram. We used the BKT scaling relation to
indicate its TFSC temperature, aware of the fact that more analysis is needed.

Far away from the isotropic limit for α� 1, the presence of the barrier together
with quenched disorder has the effect of drastically changing the ground state and
the system tends to a state composed by large disordered clusters of up and down
local magnetizations. Hence, we cannot state that this regime belongs anymore to
the Ising universality class, as it was for α > 1 in the clean anisotropic Heisenberg
model with b = 0 (light blue triangles) and b 6= 0. The need to find some reliable
criterion to address this phase transition led us to consider the spin-spin spatial
correlation function of the out-of-plane component. Thus, we fitted the correlation
lengths found at different temperature: after realizing that the saturating value in
the low temperature regime ξz(T → 0) was not monotonically increasing with L,
we assumed a priori the critical exponent of the random field Ising model, in order
to deduce the critical temperature, indicated in Fig. 5.23a as TCOc . This ansatz is
based on the assumption that the system at high temperature is still in the random
field universality class, due to large thermal fluctuations overcoming the barrier
potential. Lowering the temperature, the large value of the anisotropy together with
the barrier and the strong disorder act in the direction of creating such up and down
structures, as it is shown in Fig. 5.24.

Finally, we can use the definition of magnetization presented in Eq. (5.41) to
quantify the out-of-plane pseudospin component. What we called< mAF

z >, although
it does not provide a clear cut in any definition of a phase transition, it defines the
fraction of pseudospins pointing in the out-of-plane direction and it can give some
insights about the ground state when looking at many α values, ranging in all the
phase diagram proposed, as it was done in Fig. (5.23b).

The clear cut between the curves a ≥ 1.5 and the ones at α ≤ 1.1 is the saturating
value, which is < mAF

z > = 1 in the former case and < mAF
z > < 1 in the latter.

Moreover, those values of anisotropy that we identified as BKT-like scenarios
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b = 0.1, w = 5, T = 0.001, L = 128
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Figure 5.24. Ground state (T = 0.001) final configuration of pseudospins for a lattice of
linear size L = 128 of the complete Hamiltonian in Eq. (5.39) with b = 0.1 and w = 5 at
various anisotropies α.

α ≤ 1 present a decreasing behavior for temperatures lower than their critical one
T < TBKT .

For α = 1.05 and especially α = 1.1 one can note some sort of crossover between
the two regimes: lowering the temperature, the fraction of out-of-plane pseudospins
seems to increase, down to a temperature where a kink in < mAF

z > is observed.
Lowering the temperatures towards zero, the α = 1.05 curve (in violet) does not
decrease monotonically, saturating to a value approximately ∼ 0.5. The α = 1.1 case
(in magenta) increases again, consistently with what we found in the corresponding
superfluid stiffness.

Although it may seem evident, it must be pointed out that the work presented so
far, although satisfactory in many aspects, is still in a preliminary stage. For instance,
many more points of the phase diagram presented in Fig. 5.23a needs to be studied,
in order to fill the gap in the range 1.1 < α < 1.5. On the other hand, a systematic
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analysis of the in-plane correlation function Cxy(rx, ry) would be necessary to study
the superconducting correlation length. On the other hand, while the out-of-plane
correlation function Czz(rx, ry) carried no information for values α ≤ 1.1, one may
find that in a narrow region both charge-charge and superconducting responses are
needed, as it was for the α = 1.35 value of the clean system, discussed in Section 5.4.1,
where both susceptibilities were indicating the re-entrant state. More importantly,
we observed that the usual BKT relation was already starting to fail in addressing
the superconducting transition for α = 1.1, despite the finite superfluid stiffness.
One can argue that the phase rigidity is only connected to a size effect, although
we did not see an important suppression of Js doubling the size of the system from
L = 16 to L = 256.

Finally, it could be interesting to introduce the filamentary superconducting
patterns arising from CO-SC competition into the RIN model, to study also transport
measurement.
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Conclusions and outlooks

“Tell me one last thing,” said Harry. “Is this
real? Or has this been happening inside my
head?”
“Of course it is happening inside your head,
Harry, but why on earth should that mean
that it is not real?”

Harry Potter and the Deathly Hallows,
Joanne Kathelin Rowling

In this Thesis, we investigated the problem of the interplay between disorder
and low dimensionality in superconductors, where disorder can affect the system in
many ways.

From the microscopic point of view, we addressed the issue of the suppression
of the superconducting critical temperature in SrTiO3-based heterostructures as a
function of the gate potential VG. The peculiarity of this pairbreaking effect observed
is that it seems to coincide with the presence of multiband superconductivity, thus
avoiding, or at least circumventing, Anderson’s Theorem. Using an effective two-
band model for a disordered superconductor, the maximum effect of pairbreaking was
already found to be precisely at the Lifshitz transition [61], although the pairbreaking
was claimed to be caused mainly by the repulsive coupling between the two bands.

In Chapter 3, we applied the same model using more reliable parameters, ex-
trapolated from critical fields and Hall measurements on a (110)-LaAlO3/SrTiO3
interface: indeed, multiband superconductivity was found to be in an intermediate
BCS-BEC regime, where the pairing window µ± Ω is always fully contained within
the lower band as in the standard BCS description, while the upper band stays in
the BEC regime.

Although the model may be further improved – for instance considering a doping
dependent tensor Γ−1

ij (µ) instead of a global constant disorder Γ – two main aspects
are already standing out.

First, from a purely theoretical point of view, we observed that a strong pair-
breaking effect is intrinsically connected with the presence of microscopic disorder
at the Lifshitz transition, and this is independent from the attraction or repulsion
between the two bands involved, as it is indeed observed in unpaired bands. This is
a striking result and more can be done in this direction, to better understand what
symmetry breaking is involved at the Lifshitz point in presence of non-magnetic
disorder.

Second, this study allowed us to disentangle microscopic from mesoscopic disor-
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der in SrTiO3-based interfaces: the dirty limit is in fact necessary to explain the
suppression of Tc observed when multiband superconductivity is involved, where a
role is most likely played also by the effective repulsion between the two bands; the
global behavior is instead well captured only if the strongly inhomogeneous nature
of such compounds is considered.

As a matter of fact, the presence of submicrometric inhomogeneities has been
widely discussed in literature – not only in the context of SrTiO3-based interfaces
– the main consequence being the inability to observe BKT signatures. This was
confirmed also by some recent transport experiments on a LaAlO3/SrTiO3 sample,
where the superfluid stiffness and the optical conductivity were measured via a
resonant RLC microwave circuit, the stiffness showing no signatures of the peculiar
BKT jump. In Chapter 4, we analyzed those measurements in terms of a percolative
transition scenario.

To this aim the RRN model, already used to account for the large broadening
of the resistive transition, was extended to finite frequency, the resistors being
substituted by complex impedances so the resulting model was called more appro-
priately RIN. Here, the main features were explained in terms of a filamentary
superconducting structure embedded in a metallic background and enlarged by some
proximization effect apt to strengthen superconductivity.

Filamentarity was already invoked in such systems to account for the long tails
of the resistive transition, this scenario being consistent with the long tails of Js
observed right below the percolative temperature (R = 0); besides, the rather high
value of the optical conductivity at low temperatures provides another indication
that the system still presents an important metallic residue.

This quasi-one-dimensional picture of the electronic condensate however is not
sufficient to describe the sudden jump of Js, which tends to be more pronounced with
the increase of voltage doping. Hence, some proximization process must intervene
on the underlying metal.

After a preliminary study within the EMT approximate solution of the RIN
model, we solved the RIN exact solution, where geometry plays a crucial role. In
particular, the two regimes of doping identified – UD and OD – can be explained
in terms of a more or less dense fractal of superconducting filaments. The increase
of Js at temperatures lower than the critical one finds its meaning in the resulting
proximized background, whose superconducting condensate appears as a quasi-two-
dimensional system in the OD case, justifying the abrupt jump of Js, while, on the
other side, a more sparse fractal produces the longer tails and the more smooth
behavior of Js in the UD regime.

While we can state the emergence of an interesting phenomenology connected
with filamentary superconductivity, at least two more paths can be followed towards
a wider comprehension of it. On the one hand, more can be done including dissipative
effects, addressed quickly in this Thesis only in the EMT approximation and only
concerning the superfluid response, to recover the higher values found in the residual
conductivity. For instance, one can consider the possibility that Abrikosov-like
vortices can be generated in the system, i.e., in any closed loop of superconducting
current, contributing to dissipation. Although it is insightful, the phenomenological
approach of the RIN neglects the very cause of why such filamentary structure can
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arise. While it has been suggested in fact that in SrTiO3-based heterostructures and
TMDs, the inhomogeneities are due to phase separation of the electronic condensate
caused by electron instability [23], this does not answer the question: why phase
separation sometimes collapses into this fractal-like structure? And, moreover, what
is the physical origin of the proximization of the filamentary structure?

Another aspect of filamentary superconductivity was treated in Chapter 5,
concerning this time its origin in cuprates superconductors. Along the lines of the
model proposed in [31, 32], superconducting filaments are expected to appear as
the topologically protected boundaries between two different CDW wave variants,
hence directly resulting from the competition between the tendency of electrons
to condensate in real or in momentum space. A similar idea of competing orders
was also applied to solid 4He, in which superfluid characteristics can be caused
to the frustration of the solid phase at grain boundaries [98]. We studied the
CO-SC competition by means of Monte Carlo simulations within an anisotropic
Heisenberg model accounting for the basic physical symmetries involved, where
the out-of-plane pseudospin component maps two possible CDW variants while the
in-plane component stands for the superconducting order parameter. In particular,
the anisotropy term α tuning the out-of-plane component of the Hamiltonian was
taken as the control parameter, playing the same role as the external magnetic field
H in real systems [29]. The bare anisotropic Heisenberg model, used as an initial
benchmark, identifies two kinds of transition: the BKT superconducting one for
α < 1 and the Ising one (CO) for α > 1, while in the isotropic point α = 1 no
transition is possible according to Mermin-Wagner theorem [8]. A tunable effective
potential barrier Hb was introduced to trigger the CO-SC competition, breaking the
SO(3) symmetry also in α = 1. The phase diagram Tc vs α was then studied in the
clean case and with a random field, apt to mime impurities.

Concerning the clean case, we found the emergence of metastability and a first
order transition between CO and superconductivity; the phase diagram was studied
both analytically for T = 0 and numerically at finite temperature for a barrier
potential parameter b = 0.1. A triple point was found at α & 1, were the second
order line of the Ising transition met with the BKT line and the first order line, this
last one terminating in α = 1; from this triple point also two spinodal lines come
out, terminating at T = 0 in α∗SC,CO = 1± 4b. A re-entrant superconducting state is
found for α & 1, underlying the analogy between supersolid-superfluid competition
in 4He and the CO-SC competition in cuprates.

Introducing a random field, the CO state breaks into a polycrystalline CDW,
where filamentary superconductivity can arise from the frustration of two different
CDW domains. We tuned opportunely the amount of disorder to observe such one-
dimensional-like superconducting clusters in the T ' 0 pseudospins configuration.
Concerning the states at α � 1, where superconductivity is fully suppressed, the
polycrystalline state has been studied by means of the spatial correlation function of
the out-of-plane direction, since the magnetization was no more a reliable criterion
to address the state. On the other hand, superconductivity was found to be resilient
up to values α & 1, consistently with experiments [29]. Specifically, both the critical
temperature TBKT and the saturating value of Js(T → 0) were slightly suppressed
for α < 1, although clear BKT signatures were still observables. This was not
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the case for α & 1, where a finite superfluid stiffness was found, indicating the
presence of a phase rigidity of the system, but the BKT scaling relation was not so
straightforward to apply and the BKT jump of Js was difficult to address. This was
particularly true for α = 1.1, while for α = 1 and α = 1.05 the situation was more
settled.

So far, we only scratched the surface in the study of the main properties of
filamentary superconductivity in cuprates. While on the one hand we confirmed
that filamentary superconductivity appears as a topologically protected boundary
between different CDW variants, many issues are left to be solved, concerning, for
instance, the universality class of the superfluid response at α ≥ 1.1. Among the
many possible paths, the next one to follow would be the study of the in-plane
spatial correlation function and the corresponding correlation length, apt to analyze
the vortex dissipation in α = 1.1 as in all the range between 1.1 < α < 1.5, where
we expect BKT signatures to be definitely suppressed but were we still expect some
superfluid response of the system.

Finally, the Heisenberg model, where the filamentarity arises naturally as a
consequence of the CO-SC competition, and the RIN model, where instead the
filamentarity is imposed by hand, can be connected to one another in order to study
both the presence of vortices and the percolative nature of the transition.
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Appendix A

Two band superconductivity

In this Section, we will derive the general BCS formula for the gap equation in a
multi-band system. Calling gαβ the dimensional couplings in the bands indices α
and β, the BCS Hamiltonian reads as

H =
∑
k,σ
α

ξα,kc
†
α,kσcα,kσ −

∑
k,k′

α,β

gαβc
†
α,k↑c

†
α,−k↓cβ,−k′↓cβ,k↑ (A.1)

where k and k′ are the moment indices, σ indicates the fermionic spin and c and c† are
respectively the annihilation and creation operators. Renaming A†α =< c†α,k↑c

†
α,−k↓ >

and Aβ =< cβ,−k′↓cβ,k↑ >, the mean field approximation lead us to write

c†α,k↑c
†
α,−k↓cβ,−k′↓cβ,k↑ =< c†α,k↑c

†
α,−k↓ > cβ,−k′↓cβ,k↑+

+ c†α,k↑c
†
α,−k↓ < cβ,−k′↓cβ,k↑ > +

− < c†α,k↑c
†
α,−k↓ >< cβ,−k′↓cβ,k↑ >

= A†αcβ,−k′↓cβ,k↑ + c†α,k↑c
†
α,−k↓Aβ −A

†
αAβ.

(A.2)

Using the anti-commutation relations, the kinetik term in Eq. (A.1) takes the
form:

c†α,k↑cα,k↑ − c
†
α,−k↓cα,−k↓ + 1.

Finally, with the help of the Nambu notation:

ψ†α,k =
(
c†α,k↑
cα,−k↓

)
, ψα,k = (cα,k↑, c†α,−k↓) (A.3)

one can write the effective mean field Hamiltonian as

HMF =
∑
k,α

ψ†α,kĤα,kψα,k +
∑
k,α

ξα,k +
∑
k
α,β

gαβA
†
αAβ (A.4)

with

Ĥ =


ξ1,k ∆1 0 0
∆∗1 −ξ1,k 0 0
0 0 ξ2,k ∆2
0 0 ∆∗2 −ξ2,k

 (A.5)
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The associated Green’s function is defined as G−1 = iωn − Ĥ, so the free energy
potential assumes the form

F = −T lnZ = −T
∑
k,iωn

Tr(lnG)−
∑
k,α

ξα,k +
∑
k
α,β

gαβA
†
αAβ. (A.6)

The self-consistent gap equations for the two bands system can be found from
∂F
∂∆α

= 0 and can be written as

∆α = kBT
∑
k,iωn
β

gαβ∆β

ω2
n + ξ2

β,k + ∆2
β

(A.7)

where kB is the Boltzmann constant.
Note that gαβ refers to the dimensional couplings and they should respect the

relation g12 = g21 in order for the Hamiltonian to be hermitian. Henceforth we will
define the matrix of dimensionless couplings λ̂ such that λαβ = gαβNα, Nα being
the density of state of band α. Summing over Matsubara frequencies one can use
the relation kBT

∑
iωn

1
iωn−a

1
iωn−b = f(a)−f(b)

a−b where f(x) = (1 + exp(x/kBT ))−1 is
the Fermi distribution, we can rewrite the term

kBT
∑
iωn,k

1
(iωn)2 + ξ2

α,k + ∆2
α,k

=
∑
|k|<Ω

1
2(ξ2

α,k + ∆2
α,k)

tanh
(
ξ2
α,k + ∆2

α,k

2kBT

)
(A.8)

valid for a clean system in the BCS limit, with a Debye energy Ω. Finally, linearizing
the gap equation at the critical point the former becomes Nα ln(1.13Ω/kBTc) and
we obtain

∆α =
∑
β

λαβ∆β ln
(1.13Ω
kBTc

)
(A.9)
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Appendix B

Self energy corrections: the
averaged T−matrix

We derive here the self-energy corrections caused by the presence of non-magnetic
impurities in a two band superconducting system [61,128].

Let us define the scattering potential matrix Û with respect to the band index,
which accounts for intra- and inter-band scattering, as

Û =
(
vτ3 uτ3
uτ3 vτ3

)
(B.1)

where v and u defines respectively the intra- and inter-band scattering rates, τi being
the set of Pauli Matrices

τ0 =
(

1 0
0 1

)
; τ1 =

(
0 1
1 0

)
; τ3 =

(
0 −i
i 0

)
; τ3 =

(
1 0
0 −1

)
(B.2)

The Green’s functions of the two-band system can also be written in terms of
the band index as

Ĝ =
(
Gk,i 0
0 Gk,i

)
(B.3)

where Gk,i is the Green’s function of the i-th band:

Gk,i = 1
(iωn)2 + ∆2

k,i + ξ2
k,i

(
iωn + ξk,i ∆k,i

∆∗k,i iωn − ξk,i

)
, (B.4)

ω stands for the Matsubara real frequencies, ξ = ε− µ is the reduced energy and ∆
is the superconducting gap.

The corrected scattering matrix T̂ for a single impurity in a singlet superconductor
(s-wave symmetry) can be found by means of the Dyson equation, written in its
compact form as

T̂ = Û + T̂ ĜÛ (B.5)

which exactly accounts for and sums over the processes of multiple scattering off
that impurity. Being the scattering matrix Û only dependent on the band index, so
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it will be the T̂ -matrix:

T̂ij = Ûij +
∑

Ûil

[∑
k′
Gk,l

]
T̂lj . (B.6)

Solving it, we have
T̂ = (Û−1 − Ĝ)−1

At this point, calculating explicitly all the terms T̂ij one finds that the off-diagonal
terms (in the band index) are all linear combinations of odd powers of u and v.
Then, assuming an homogeneous distribution of impurities and averaging over u
and v the off-diagonal terms disappears and the T̂ matrix becomes diagonal in the
band index, restoring the translational invariance [128]. Note that, although we kept
separated the band indices and the intra- and inter-band scattering rates, both the
diagonal terms T̂11 and T̂22 contains u and v, meaning that the impurities have in
fact coupled the two bands, still respecting the momentum conservation.

The self-energy in the i-th band i = 1, 2 can be thus taken as Σi = nimpTii,
nimp being the number of impurities considered in the system. We also assumed
that u = v and, moreover, we can use the Born approximation result for which
~τ−1 = nimp|u|2 [129], where τ is the mean free time between collisions. We can
then correct the Green’s function in the i-th band with the self-energy

Gi = 1
iωnτ0 + ξk,iτ3 −∆iτ1 − Σi

(B.7)

where Σ takes the general form

Σi = Σωτ0 + Σµτ3 + Σ∆i
τ1. (B.8)

However, from the averaging over the impurities the correction to the gap is found
to be zero Σ∆i

= 0. The diagonal terms of the self-energy are instead:
Σω = Γω̃n

2
∑
j=1,2,k

1
Nj

1
ω̃2
n+(ξk+hn)2

Σµ = −Γ
2
∑
j=1,2,k

1
Nj

(ξk+hn)
ω̃2
n+(ξk+hn)2

(B.9)

where we have substituted the Born result as Γ = ~τ−1/2, ωn = (2n+ 1)πkBT , n
ranging over integer numbers, is the Matsubara frequency of the clean system and
Nj is the DOS of the j-th band.

By transforming the sum over k in the integral over ξ, ranging in the finite band
having edges wj and Λj , we can define the functions

f̃n,j = 1
π

∫ Λj

wj

dξ

ω̃2
n + (ξ + hn)2 ,

g̃n,j = 1
π

∫ Λj

wj

(ξ + hn)dξ
ω̃2
n + (ξ + hn)2 ,

finally writing the self-consistent form given in Eq. (3.5)
ω̃n = ωn + Γω̃n

2
∑
j=1,2 f̃n,j

hn = −Γ
2
∑
j=1,2 g̃n,j .
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Appendix C

Vertex corrections

We can derive the vertex correction to the gap equation in (A.7) within the more
compact notation of Feynman diagrams:

The dotted line is the impurity scattering correction, i.e., the inverse scattering
time ~τ−1/2. Note that we consider τ−1

αβ = τ−1 as a constant along all Chapter 3.
The corrected vertex (double line) is then:

Lαβ =
~τ−1
αβ

2 +
~τ−1
αβ

2

(∫
G(ξ)γdξ

)
Lγβ (C.1)

We can re-arrange the terms as[
Lαγδγβ +

~τ−1
αβ

2

(∫
G(ξ)γdξ

)
Lγβ

]
=

~τ−1
αβ

2 (C.2)

so that

M−1
αγ L̂γβ =

~τ−1
αβ

2 (C.3)

having defined M−1
αγ = δαγ −

~τ−1
αβ

2
∫
G(ξ)γdξ.

Finally we obtain

Lγβ = Mγα

~τ−1
αβ

2 (C.4)

and the bare coupling constants λ are

λαβ → λαβ
Mαβ

det(M) . (C.5)

Remembering that we defined a constant disorder Γ = ~τ−1/2 and

f̃n,α = 1
π

∫ Λj

wα

dξ

ω̃2
n + (ξ + hn)2 , (C.6)
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the matrix M takes its final form of Eq. (3.8)

M =

1− Γ
2 f̃n,2

Γ
2 f̃n,2

Γ
2 f̃n,1 1− Γ

2 f̃n,1

 (C.7)
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