
Nonlinear Dyn (2022) 108:765–787
https://doi.org/10.1007/s11071-022-07199-8

ORIGINAL PAPER

Nonlinear wave propagation in locally dissipative
metamaterials via Hamiltonian perturbation approach

Alessandro Fortunati · Andrea Bacigalupo ·
Marco Lepidi · Andrea Arena ·
Walter Lacarbonara

Received: 2 August 2021 / Accepted: 30 November 2021 / Published online: 2 February 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract The cellular microstructure of periodic
architected materials can be enriched by local intra-
cellular mechanisms providing innovative distributed
functionalities. Specifically, high-performing mechan-
ical metamaterials can be realized by coupling the low-
dissipative cellular microstructure with a periodic dis-
tribution of tunable damped oscillators, or resonators,
vibrating at relatively high amplitudes. The benefit is
the actual possibility of combining the design of wave-
stopping bands with enhanced energy dissipation prop-
erties. This paper investigates the nonlinear disper-
sion properties of an archetypal mechanical metama-
terial, represented by a one-dimensional lattice model
characterized by a diatomic periodic cell. The intra-
cellular interatomic interactions feature geometric and
constitutive nonlinearities, which determine cubic cou-
pling between the lattice and the resonators. The non-
dissipative part of the coupling can be designed to
exhibit a softening or a hardening behavior, by inde-
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pendently tuning the geometric and elastic stiffnesses.
The nonlinear wavefrequencies and waveforms away
from internal resonances are analytically determined
by adopting a perturbation technique. The employed
approach makes use of tools borrowed from Hamil-
tonian perturbation theory, together with techniques
often used in the context of nearly-integrable Hamilto-
nian systems.The dispersion spectra are determined in
closed, asymptotically approximate, form as a nonlin-
ear function of the time-dependent decreasing ampli-
tude decrement. The invariant manifolds defined by the
harmonic periodic motions are also analytically deter-
mined. The asymptotic results are further validated
numerically.

Keywords Mechanical metamaterials · Nonlinear
wave propagation · Vibration absorbers · Cubic
nonlinearities · Energy dissipation · Asymptotic
techniques · Lie series

1 Introduction

Future aerostructures performance will be enhanced
by advances in lightweight, strong, highly damped
multifunctional composites [1–6]. In parallel with the
development of new polymeric composites with high
strength-to-mass ratios, the demand of damping capac-
ity will be increasing to ensure safe operations across
adverse dynamic conditions. Conventional approaches
based on viscoelastic or elastomeric constrained damp-
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ing tend to be not effective due to poor thermal prop-
erties and stiffness/strength mismatch with the hosting
matrix. New highly damping nanocomposite materi-
als with carbonaceous nanofillers have been proposed
to exploit nanoscale effects such as those associated
with sliding crystals on nanofillers acting as distributed
nanopistons [7,8].

Alternative to multi-phase material approaches,
innovative materials possessing periodic cellular struc-
tures are being explored in the literature [9–11] with
the objective of tailoring the dynamic properties of
the unit cells toward increased vibration absorption
properties or the creation of bandgaps which can
stop the propagation of waves across targeted fre-
quency bands and wavelengths. These materials, also
known as mechanical metamaterials, are macro/micro-
architected media characterized by non-conventional
features and designed for advanced applications such
as passive attenuation of elastic waves [12], broadband
sound absorption and low-frequency noise filtering
[13–17] or other unusual dynamic properties [18,19].
The growing success of mechanical metamaterials is
also sustained by the recent extraordinary develop-
ments in the technical and technological fields of high-
fidelity computational mechanics, micro-engineering
design and high-precision additivemanufacturing [20].

Unlike phononic crystals, mechanical (or acoustic)
metamaterials canbe also engineered at themicro struc-
tural level so as to achieve optimal dispersion proper-
ties by designing cells configurations including local
resonators and exploiting the dynamic features arising
from the modal interaction and enhanced by the peri-
odicity of the micro structure [21–23]. Densely dis-
tributed resonators can be introduced in metamateri-
als to obtain band gaps and avoid wave propagation
in the neighborhood of selected resonance frequencies
through the mechanism of energy transfer between the
periodic structure and the local resonators [24–26].

This is a radically different approach with respect
to conventional absorbers architectures making use
of one or a few macroscopic (large in scale) vibra-
tion absorbers [27,28]. Cellular material concepts with
embedded periodic devices aim to strategically spread
out the multitude of absorbers in the unit cells within
the hosting structure. In [29] a beam embedding a peri-
odic array of nonlinear absorbers was shown to pos-
sess much wider vibration suppression bandwidth. The
mass distribution allows an overall weight reduction of
the damping system not only because of its colloca-

tion in dedicated hotspots, but also because the much
smallermasses canbe supported by significantly lighter
structures.

In [30], a novel architected lattice metamaterial with
broadband and multiband bandgap characteristics was
studied showing that a slight structuralmodification in a
regular lattice structure resulted in augmented vibration
attenuation capability. The insertion of circular masses
at the center of these lattices helped induce multiband
low frequency bandgaps. In [31], a locally resonant
elastic metamaterial based on liquid solid interaction
was proposed to attenuate flexural wave propagation
across a broad low frequency range. To provide the
capability of filtering at the ultra-low frequency and,
at the same time, to ensure the lowest weight of the
structure, the topological and mechanical optimiza-
tion of acoustic metamaterials embedding local res-
onators necessarily implies that the latter must possess
a very low stiffness together and a very small mass
[32–35]. Moreover, since these resonators are charac-
terized by low dissipation properties, high-amplitude
oscillations are necessary to deliver an efficient energy
transfer between the periodic micro-structure and the
resonators, thus implying a non-negligible role of the
geometric nonlinearities [36–38]. In [39] a historical
overview of metamaterials is provided, first addressing
their interesting linear properties, and, then, showing
how these give rise to exotic nonlinear properties.

This topic has attracted the interest of nonlinear
dynamicists for years. Several authors, for example,
adopted asymptotic approaches, such as the method of
multiple scales [40], to investigate the nonlinear reso-
nance scenarios in periodic structures. This approach
leads to closed-formexpressions of the bifurcations and
sensitivity analyze. In [41] a multiple-scale approach
was presented to capture internally resonant wave
interactions in weakly nonlinear lattices and metama-
terials, while in [42] this method was employed to
study analytically the dispersion properties character-
izing the free propagation of harmonic waves in pan-
tographic metamaterials. The standing and traveling
waves in undamped periodic systems possessing cubic
nonlinearities were studied asymptotically both with or
without 3:1 internal resonances in [43,44] and, more
recently, in [45] where it was shown that the method
of multiple scales provides more general results than
Lindstedt-Poincaré in the case of wave-wave interac-
tions. Other, interesting, examples of the use of the
method of multiple scales can be found in [46] where
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the effect of nonlinear hyperelastic interactions was
investigated between a rubberlike elastomeric local res-
onator and the hosting matrix showing new dynamic
phenomena such as the appearance of half subharmonic
attenuation zones complementing the local resonance
band gap around the fundamental frequency. Recently,
the method of multiple scales has been employed in
combination with a standard continualization scheme
(see for details [47–49]) to study the effects of non-
linear wave modulations on the band structure of a
one-dimensional acoustic metamaterial characterized
by linearly damped local resonators [50]. An asymp-
totic approach was also adopted in [51] to study the
formation of discrete traveling breathers in a 1D semi-
infinite, linearly grounded, essentially nonlinear lattice,
generated by an impulsive excitation. The existence of
a nonlinear propagation zone and two attenuation zones
was proven in the acoustics of the corresponding infi-
nite lattice. Further studies [52] made use of nonlinear
maps to investigate the propagation properties of waves
in one-dimensional chains of coupled nonlinear oscil-
lators. Finally, the harmonic balance method, properly
modified according to a asymptotic ordering of the har-
monic amplitudes, was adopted in [53] to study the
influence of the nonlinearities on the filtering proper-
ties in one-dimensional chains with attached nonlinear
local oscillators.

In [54], a high-order spatio-temporal gradient expan-
sion was used to localize the multiscale problem lead-
ing to a series of recursive unit cell problems pro-
viding the appropriate micro-mechanical corrections.
More recently, the amplitude-dependent band struc-
ture of weakly nonlinear lattices with monoatomic and
diatomic periodic cells was investigated asymptotically
and numerically [55,56]. Similar periodic systems,
although featuring strong nonlinearities, were studied
via the semi-analytical series expansion method [57,
58]. The nonlinear dynamic interactions between two
internally resonant waves were addressed when these
waves travel through an undamped
monoatomic chain of point masses interconnected by
linear and cubic springs. Some of these nonlinear
phenomena were also experimentally investigated. An
experimental proof of a sub-harmonic transmission
attenuation zone due to energy exchange induced by
autoparametric resonance in locally resonant metama-
terials was presented.

In parallel to asymptotic techniques applied directly
to the ODEs or PDEs governing the wave propaga-

tion problem, other works [59] and [60] showed how
asymptotic results involving systems of ODEs close to
integrability (either autonomous or non-autonomous)
can be obtained by using the extensively developed
tools of Hamiltonian Perturbation Theory. The key step
consists in the definition of an equivalent Hamiltonian
system in a suitably extended phase space. Along these
lines, in this paper a perturbation analysis of a nonlinear
system of ODEs is carried out in the neighborhood of
a “close-to-elliptic” hyperbolic equilibrium. Investigat-
ing the dynamics of nearly-integrable Hamiltonian sys-
tems is a problem enjoying a long and well established
tradition, dating back to Poincaré [61]. Since then,
the field of dynamic systems has witnessed an intense
development of perturbation tools in order to study and
generalize this problem, with the ultimate goal of tack-
ling the challenging small divisors problem [62–64]. In
this respect, the milestone contributions about the sta-
bility issues obtained byNekhoroshev [65], [66] and by
Kolmogorov, Arnol’d andMoser (commonly known as
KAM Theorem [67]) are worth to be mentioned.

Perturbation approaches, based on the so-called Lie
series and Lie transform [68], have been profitably
exploited in various applications for a key feature,
namely, these methods do not require any inversion of
the variable transformations. This has had remarkable
consequences for their automatic implementations, as
strategically done in this paper. More details about the
mentioned methods can be found, for instance, in [69]
and [70]. Another remarkable advantage of the Hamil-
tonian formulation is that the problem can be stud-
ied up to an arbitrary high order of normalization by
using constructive and explicit algorithms such as the
mentioned Lie Transform method. It is interesting to
point out that either the Lie series or the Lie transform
method, in the formalism developed by Giorgilli [70],
turned out to be successful in the generalization to the
case of nearly integrable non autonomous systemswith
a general (i.e., aperiodic) time dependence [59,71–73].

2 A one-dimensional dissipative metamaterial

2.1 Nonlinear equations of motion of the periodic cell

The minimal physical archetype of a mechanical meta-
material can be realized by an infinite one-dimensional
periodic chain of stiff rings, each hosting a tunable
local resonator characterized by geometric and consti-
tutive nonlinearities and playing the role of vibration
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Fig. 1 Minimal acoustic metamaterial realized by a one-dimensional lattice featuring a diatomic periodic cell with intra-cellular
nonlinear vibration absorbers

absorber (Fig. 1). The dynamic behavior of the meta-
material microstructure can be governed by a synthetic
discrete lattice model. The stiff ring of the periodic cell
can be modeled as perfectly rigid with mean radius R
and translational mass M , exchanging purely attrac-
tive or repulsive conservative forces with the adjacent
rings of the chain. Considering the static equilibrium
as the reference configuration, the current configura-
tion of the ring is described by the chain-aligned dis-
placementU (t) of the microstructural node 1© located
at the ring center of mass. The vibration absorber can
be modeled as a point mass Mr , exchanging only intra-
cellular forceswith the hosting ring.The current config-
urationof the absorber is describedby the chain-aligned
displacement V (t) of the microstructural node 2©.
Accordingly, the positions of the configurational nodes
1© and 2© are the same in the reference configuration.
The inter-cellular interactions (short-range forces)

are describedby linear elastic springs (primary springs)
with spring stiffness K , connecting the rigid ring with
the auxiliary massless nodes r© and �© located at
the cell boundaries. Accordingly, the external forces
exerted on the reference cell by the adjacent cells read

Nr (U,Ur ) = K (Ur −U ),

N�(U,U�) = K (U� −U ), (1)

where Ur and U� are the chain-aligned displacements
of the nodes r© and �©, respectively.

The intra-cellular non dissipative interaction
between the ring and the absorber can be described by a
pair of prestressed springs orthogonal to the chain (sec-
ondary springs), determining a conservative force pro-
portional to the relative displacement W (t) = V (t) −

U (t) according to the geometrically exact formula

FN (W ) = 2KrW + 2(N0 − Kr R)
W√

R2 + W 2
(2)

where Kr and N0 are the linear elastic stiffness and
pretension (N0 > 0) of the secondary springs, respec-
tively.

The intra-cellular dissipative interaction between
the ring and the absorber can be described instead
by a chain-aligned nonlinear daashpot whose consti-
tutive law was first proposed in [74], exhibiting a non-
conservative force proportional to the relative velocity
Ẇ (t) = V̇ (t) − U̇ (t) according to the formula

Ndr (W, Ẇ ) = C1

(
1 − C2 exp(−C3W

2)
)
Ẇ , (3)

where the overdot indicates differentiation with respect
to time t . The coefficients C1 and C2 regulate the lin-
ear and nonlinear contributions to the viscous damp-
ing. Phenomenologically, the sign of C2 governs the
rate of energy dissipation and a positive value produces
pinching in the resulting hysteresis cycle, thus reducing
the rate of dissipation at low displacement amplitudes.
Coefficient C3 regulates the pinching extension about
the origin of the hysteresis cycles.

By considering a characteristic length L of the peri-
odic cell (a convenient choice is L = R), nondimen-
sional variables are introduced in the form

τ = Ωt, u = U

L
, w = W

L
, ur = Ur

L
, u� = U�

L
(4)

where Ω2 = K/M is the (squared) characteristic fre-
quency of the undamped oscillator with mass M and
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spring constant K . Aminimal set of independent nondi-
mensional parameters is

�2 = Mr/M, ξ1 = C1ΩL/(RK ),

μ = N0/(K L), ξ2 = C2,

η = Kr/K , ξ3 = C3L2,

(5)

where �2 is the mass ratio between the absorber and
the ring (� �= 0), while μ and η describe the nondi-
mensional geometric and elastic stiffnesses of the sec-
ondary springs (μ > 0, η > 0), and ξ1, ξ2, ξ3 are the
nondimensional coefficients regulating the nonlinear
viscosity of the dashpots (ξ1 ≥ 0, −1 < ξ2 < 1,
ξ3 > 0). From a physical viewpoint, heavy highly-
massive and low-deformablemetamaterials (with small
�2 and η) can be conventionally distinguished from
light low-massive and high-deformable metamaterials
(with large �2 and η), for certain fixed resonator prop-
erties Kr and Mr .

The nondimensional form of the nonlinear ordi-
nary differential equations ofmotion governing the free
damped dynamics of the periodic cell is obtained as

(1 + �2)ü + �2ẅ + 2u − ur − u� = 0,

�2ü + �2ẅ + G(w, ẇ; ξ) + F(w;μ, η) = 0, (6)

where the overdot now indicates differentiation with
respect to the nondimensional time τ . The active
degrees of freedom u and w can be distinguished from
the passive degrees of freedom ur and u�. Both passive
degrees of freedom are quasi-statically coupled with
the active degree of freedom u through the nondimen-
sional linear inter-cellular constitutive relations n� =
u�−u andnr = ur−u, wheren� = N�/(K L) andnr =
Nr/(K L) are the nondimensional passive forces. The
nondimensional intra-cellular forces characterizing the
ring-resonator coupling features two contributions

G(w; ẇ, ξ) :=ξ1ẇ
(
1 − ξ2 exp(−ξ3w

2)
)

,

F(w;μ, η) :=2w
(
η + (μ − η)/

√
1 + w2

)
(7)

where ξ := (ξ1, ξ2, ξ3) is the vector collecting the vis-
cosity coefficients.

By considering the total viscoelastic restoring force
G(w, ẇ) = F(w;μ, η) + G(w; ẇ, ξ), a family of
hysteresis loops corresponding to a prescribed time-
periodic displacement w(τ) = w0 sin τ in the (G, w)-

plane is shown in Fig. 2. From a qualitative view-
point, this model enables the possibility of tailoring the
constitutive behavior of the ring-resonator coupling to
achieve a softening or hardening response for a given
geometric stiffness (μ = 1/2), by properly reducing
(η = 5/100 so that μ − η < 0, see Fig. 2a,b,c) or
increasing (η = 125/100 so that μ − η > 0, see
Fig. 2d,e,f) the elastic spring constant ratio. From a
quantitative viewpoint, the dissipated energy increases
for larger values of the parameter ξ1, while the purely
elastic backbone behavior corresponding to the nonlin-
ear force-displacement curve is recovered for ξ1 = 0
(Fig. 2a,d). The pinching effect on the hysteresis loops
caused by increasing values of the parameter ξ2 can
also be noticed (Fig. 2b,e). The hysteresis loops corre-
sponding to different amplitudes are proven to lie on the
surfaces defined by the softening or hardening restoring
force G(w, ẇ) over the (w, ẇ)-plane (Fig. 2c,f).

2.2 Wave propagation

The free propagation of elastic waves through the dis-
sipative mechanical metamaterial can be analyzed by
means of the Floquet-Bloch theory for periodic struc-
tures [75]. This theory is applicable to periodic systems
with linear intercellular coupling forces in the frame-
work of perturbation methods [22,37]. Specifically, a
family of harmonic wave solutions can be obtained by
enforcing quasi-periodicity between the dynamic vari-
ables (displacements and forces) at the opposite edges
of the cell boundary

ur = u� exp(−ıβ), nr = −n� exp(−ıβ), (8)

where β is the nondimensional wavenumber, spanning
the one-dimensional Brillouin zone B = (−π, π).
Therefore, the passive degrees of freedom can be con-
densed as quasi-static functions of the active degrees
of freedom, according to the relations

u� = 1
2 (1 + exp(iβ))u,

n� = 1
2 (1 − exp(iβ))u (9)

where the quasi-periodicity conditions (8) have been
employed. Consequently, the nonlinear equations of
motion can be reformulated in the reduced space span-
ning the active degrees of freedom only. Accordingly,

123



770 A. Fortunati et al.

(a) (b) (c)

(d) (e) (f)

Fig. 2 The constitutive behavior of the ring-resonator coupling
for fixed geometric stiffness μ = 1/2: a, b, c softening for
small stiffness η = 5/100; d, e, f hardening for larger stiff-
ness η = 125/100. Hysteresis loops for (a),(d) ξ2 = ξ3 = 1/2

and variable ξ1; (b),(e) ξ1 = 1/3, ξ3 = 1 and variable ξ2; (c),(f)
hysteresis loops and restoring force surface versus displacement
and velocity for ξ1 = 1/9, ξ2 = ξ3 = 1/2

the free wave propagation is governed by the system of
second-order ordinary differential equations

(1 + �2)ü + �2ẅ + 2θ(β)u = 0,

�2ü + �2ẅ + G(w, ẇ; ξ) + F(w;μ, η) = 0 (10)

with θ(β) := (1 − cosβ)/2. Therefore, the nonlinear
functionsG(w, ẇ; ξ) and F(w;μ, η) can be expressed
as Taylor series expansions of the variable w. It is
worth noting that the expansion of F(w;μ, η) yields
2μw+(η−μ)w3+O(w5). Thus 2μ is the linear stiff-
ness coefficient and κ := (μ − η) is the cubic stiffness
coefficient, which can give rise to either a hardening
nonlinearity (ifκ < 0, henceη > μ) or a softeningnon-
linearity (if κ > 0, hence η < μ). On the other hand,
the expansion of G(w, ẇ; ξ) delivers ξ1(1 − ξ2)ẇ +

ξ1ξ2ξ3ẇw2 + O(w5). Therefore, the linear damping
coefficient is ξ := ξ1(1 − ξ2) and is positive if ξ1 > 0
and ξ2 < 1. The coefficient ζ := ξ1ξ2ξ3 scales the
cubic nonlinear damping force of the dashpot.

After the expansion, Eq. (10) can be reduced to a first
order formvia a standard procedure. By introducing the
state vector z := (

u, w, u̇ + �2(u̇ + ẇ), �2(u̇ + ẇ)
)

(recall that � > 0 by definition), the vector-valued state
space governing equations can be cast in the form

ż = A z + εn(z), (11)

where the linear coefficient matrix is

A :=

⎛
⎜⎜⎝

0 0 1 −1
0 0 −1 χ

−2θ 0 0 0
0 −2μ ξ −ξχ

⎞
⎟⎟⎠ ,
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and the auxiliary parameter χ := 1 + �−2 is fully
related to the mass ratio. The ε-scaled vector of non-
linear forces is n = (0, 0, 0, g(z)), where the nontrivial
component is

g(z) = ξ1ξ2ξ3(z3 − χ z4)z
2
2 + (μ − η)z32 + h.o.t.

= ζ(z3 − χ z4)z
2
2 + κz32 + h.o.t. (12)

and the notable relation ẇ = z3 − χ z4 has been
employed. It is worth noting that the cubic cut-off
g(z)[≤3] of the nonlinearity is adopted in the follow-
ing, so that terms of order higher than 3 are disregarded.
The parameter ε has the meaning of scaling parameter
“introduced to study small amplitude solutions”, and it
is straightforwardly defined via the standard substitu-
tion z ← √

εz. This point is crucial for interpreting the
outcomes of the numerical experiments.

From the physical viewpoint, the case of weak dissi-
pation (small linear and nonlinear damping terms) will
be identified by small and positive ξ -values. In this
respect, attention is restricted to the case in which none
of the eigenvalues λ j ( j = 1, ..., 4) of the spectrum of
A are purely real. Despite the roots of the characteristic
quartic polynomial of A could be written explicitly, it
is easy to realize that an exact characterization of the
hyperbolicity of the originwould require quite involved
expressions. The following statement, proposing a suf-
ficient condition, is a compromise allowing to deal with
a straightforward constraint on the model parameters:

Proposition 2.1 (A sufficient condition for the exis-
tence of non-purely real eigenvalues). Suppose that

ξ2 < 4(μχ + θ)min{χ−2, μ�2θ−1}, (13)

and recall that θ �= 0. Then

λ1,2 = α1 ± iβ1, λ3,4 = α2 ± iβ2, (14)

with α1,2 ∈ R and β1,2 ∈ R. Moreover, α1,2 ≤ 0
(α1,2 = 0 ⇔ ξ = 0) and β1,2 > 0, i.e., λ j ∈ C \ {0}.
See Appendix for the proof.

Remark 2.1 Inequality (13) is always satisfied for suf-
ficiently small ξ and it will be assumed to hold here and
henceforth. It can be anticipated that the eigenvalues,
as well as the associated eigenvectors (and other related
quantities), lend themselves to an interesting perturba-
tion expansion in terms of ξ . See Prop. 5.1 and its proof.

Once the four eigenvalues (here assumed to be sim-
ple) are known, the complex-valued eigenvector v j

associated to the eigenvalue λ j can be determined

v j :=

⎛
⎜⎜⎝

1
(2θ − 2χθ − χλ2j )/λ

2
j

−2θ/λ j

(2θ + λ2j )/λ j

⎞
⎟⎟⎠ , (15)

where a suitable z1-unitary amplitude normalization
has been adopted. Therefore, it is convenient to intro-
duce the linear modal transformation

z = Ψ x, Ψ = (v1, v2, v3, v4) (16)

to express the system dynamics in normal coordinates
x. Accordingly, upon substitution of Eq. (16) into Eq.
(11) and premultiplication of both sides by Ψ −1, the
ensuing differential system is cast in diagonal form

ẋ = Λx + ε f (x), (17)

with the diagonal matrix Λ = diag(λ1, λ2, λ3, λ4) and
the nonlinear vector field

f (x) := Ψ −1n(Ψ x) = Ψ −1(0, 0, 0, g[≤3](Ψ x))


=: g[≤3](Ψ x)(r1, r2, r3, r4)

. (18)

where superscript 
 denotes the transpose. It is
straightforward to show that, as the rows of Ψ are
complex-conjugate, so are the columns of Ψ −1. This
implies, r1 = r̄2 and r3 = r̄4, where the overbar indi-
cates the complex conjugate. It may be worth noting
that the eigenvalue and eigenvector matrices Λ and
Ψ are complex-valued in the general case, since the
mechanical parameters (in particular, the dissipation
terms) are not higher order terms, as it typically hap-
pens in other perturbation problems.

3 Lie series operators and Hamiltonian
perturbation theory: a short overview

Perturbation methods are flexible and efficient mathe-
matical tools to determine analytical—asymptotically
approximate—solutions for nonlinear dynamic prob-
lems. Within the context of wave propagation in peri-
odic materials and structures, different perturbation
techniques have been employed to study the nonlin-
ear dispersion properties of harmonic waves, including
the modified harmonic balance (with ordering of the
harmonic amplitudes) [53], Lindstedt-Poincaré [55,56]
and the method of multiple scales [22,42,43,45,46].
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With respect to this well-established framework, the
original contribution offered by the present work con-
sists in approaching the damped free propagation of
nonlinear waves by means of the Hamiltonian pertur-
bation theory. To this end, the main elements of the Lie
series operator approach to Hamiltonian perturbation
theory are recalled here for the sake of a better read-
ability, aswell as to fix the notational setting.Acompre-
hensive discussion of this subject can be found in [70].

Given n ≥ 1, the space F of smooth functions
defined on M ⊆ R

2n , endowed with canonical coordi-
nates ( y, x), is considered. Hamiltonian perturbation
theory in the nearly-integrable context, usually deals
with dynamic systems defined via the Hamiltonian:

H = H0 + εH1,

where H0 is the integrable part and εH1 is interpreted
as a perturbation, being ε > 0 a “small” parameter.

The core idea is to seek a canonical transformation
N : ( y, x) → ( y′, x′), i.e., a transformation which
preserves the Hamiltonian structure1, in such a way
that the Hamiltonian function in the new set of vari-
ables H ′( y′, x′) is cast into a form H ′ = H ′

0 + S.
The “remainder” S is ideally O(ε2) but it can possibly
include some O(ε) terms (as in the present case, see
Sect. 4). It is well known that, even in the “best” case in
which S = O(ε2), the possibility to iterate the above
described procedure in order to obtain O(εn) remain-
ders (with n arbitrarily large), is generically excluded.

Within this mathematical framework, the Lie series
operator is defined as

exp(Lg) := Id+
+∞∑
s=1

1

s!L
s
g, g ∈ F ,

where Lg· := {·, g} and the classical Poisson brackets

{ f̂ , ĥ} ≡
n∑

i=1

[
∂xi f̂ ∂yi ĥ − ∂yi f̂ ∂xi ĥ

]
, ∀ f̂ , ĥ ∈ F

has been introduced.As anticipated in the foreword, the
Lie series operator has been shown to play a remarkable
role in the context of perturbation theory. In fact, the
transformation of variables generated by the Lie series
operator

( y, x) := exp(Lg)( y′, x′), (19)

can be proven to be canonical and, remarkably, pos-
sesses an explicit form [70, Chap. 4].

1 Knowingly, a sufficient and necessary condition of canonicity
is that the Jacobian matrix of the transformation is symplectic.

Within this context, a mathematical tool to construct
the so-called “generating function” g is provided by the
Gröbner exchange theorem, stating that

H |( y,x):=exp(Lg)( y′,x′) = [
exp(Lg)H

]
( y,x)=( y′,x′) ,

(20)

see also [76]. More precisely, let g := εg̃ and require
exp(Lεg̃)H = H0 + S, where S has been defined ear-
lier. It is possible to check that, at the first order in ε,
this leads to the homological equation

Lg̃ H0 + H1 = 0. (21)

Equations of this form play a central role in the pertur-
bation framework. Their resolvability strongly depends
on the problem at hand and related internal resonance
phenomena (as shown later in Sect. 4).

To the purposes of the present work, it may be suf-
ficient to point out (see, for instance, [77]) that every
system of ODEs ẋ = v(x), x ∈ R

n can be interpreted
as (part of the) canonical equations of the Hamiltonian
system given by

H := y · v(x),

in the extended phase spaceM � ( y, x). This approach
will be profitably used later in Sect. 4 to carry out the
perturbation analysis in the Hamiltonian setting.

4 A first-order perturbation analysis

In order to apply theHamiltonian perturbation theory to
the mechanical problem under investigation, the gov-
erning Eq. (17) can also be expressed in the component
form

ẋ j = λ j x j + ε f j (x), (22)

from which the following Hamiltonian function can be
defined

H( y, x) :=
4∑
j=1

λ j y j x j + εg̃(x)

4∑
j=1

r j y j ,

with

g̃(x) := g[≤3](Ψ x) =
∑
|ν|=3

γνPν(x), (23)

where the product Pν(x) := Π4
j=1x

ν j
j has been intro-

duced and ν is a vector of N4 with each element being
one of the integer numbers 0, 1, 2, 3 and such that
|ν| = 3.
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Remark 4.1 The determination of the coefficients γν

in terms of the Taylor coefficients of n(z) is not
straightforward, but requires the solution of an implicit
algebraic equation. The full expression is given in
Appendix.

Given the structure of the Hamiltonian, by following
the lines of [59], a generating function of the form

g = ε

4∑
j=1

y jC j (x),

C j (x) :=
∑
|ν|=3

c( j)
ν Pν(x), (24)

is sought, where the coefficients c( j)
ν are unknowns. In

this respect, the homological equation of the first per-
turbation step leads to
⎧⎨
⎩g,

4∑
j=1

λ j y j x j

⎫⎬
⎭ = g̃(x)

4∑
j=1

r j y j

which, after a suitable rearrangement of terms in its left
hand side, yields

4∑
j=1

y j
∑
|ν|=3

(λ · ν − λ j )c
( j)
ν Pν(x)

=
4∑
j=1

r j y j
∑
|ν|=3

γν Pν(x)

whereλ = (λ1, λ2, λ3, λ4). Consequently, the obtained
set of equations gives rise to the expression for the coef-
ficients of the generating function

c( j)
ν = r jγν

λ · ν − λ j
(25)

(see, e.g., [78] for a direct derivation without using the
Hamiltonian formalism).

The behavior of the denominator λ ·ν −λ j is known
to play a crucial role in perturbation theory. In particu-
lar, as known, a general obstruction to a normalization
up to an arbitrarily high order lies in the fact that the
quantity L j (s) := {inf |ν|=s |λ · ν − λ j |} approaches
rapidly zero as s increases (condition known as small
divisors), thus jeopardizing the convergence of the
asymptotic series in the parameter space (see also [70]).
However, as far as the first normalization step is con-
cerned, recalling that ξ is a strictly positive constant
and independent of ε, it is sufficient to assume the fol-
lowing Ansatz.

Hypothesis 4.1 (non-resonance conditions): The def-
inition Πi, j (σ ) := {(β1, β2) ∈ [0,+∞)2 : βi = σβ j }
is introduced. It is supposed that (β1, β2) /∈ R, where

R := Π2,1(0) ∪ Π2,1(1/3) ∪ Π2,1(1)

∪Π2,1(3) ∪ Π1,2(0),

is the “internal resonance manifold”.

Such a manifold describes conditions on the imaginary
part of the eigenvalues (i.e., linear wavefrequencies)
according to which internal resonances (also called
autoparametric resonances) may occur between lin-
ear waveforms characterized by different polarizations
[13]. From the physical viewpoint, internal resonance
conditions may activate significant energy transfers
between the periodic lattice and its local resonators.

A special attention should be devoted to the fact that
limξ→0 α1,2 = 0 (more on this is reported in Sect. 6).
For instance, if j = 1, one has

λ · ν − λ1 = α1(ν1 + ν2 − 1) + iβ1(ν1 − ν2 − 1)

+α2(ν3 + ν4) + iβ2(ν3 − ν4).

Clearly, amongst those ν such that |ν| = 3, either in the
case ν = (1, 0, 1, 1) or ν = (2, 1, 0, 0) one finds that
λ · ν − λ1 vanishes as ξ → 0. By proceeding in a sim-
ilar way, one obtains three more pairs of values to be
excluded as j varies, say νa and νb. Thewhole set of ν’s
to be excluded, which will be denoted with Sr , is col-
lected in Table 1. Knowingly, the previous terms can-
not be removed with the normalization procedure but
remain in the transformed Hamiltonian as “resonance”
terms. As a consequence, by following the procedure
outlined in Sect. 3, it is possible to introduce the new
set of variables (X,Y) (implicitly) defined by the trans-
formation Ng : (X,Y) → (x, y), according to which

(x, y) = Lg(x, y)|(x, y)=(X,Y) + O(ε2), (26)

where g is given by

g = ε

4∑
j=1

y jr j

⎡
⎢⎢⎣
∑
|ν|=3
ν /∈Sr

γν Pν(x)

λ · ν − λ j

⎤
⎥⎥⎦ ,

i.e., from (24) and (25). As minor comparative remark,
the issue of small divisors in resonant or quasi-resonant
conditions is known to occur also in other perturba-
tion schemes, like – for instance – the straightforward-
expansion method. On the contrary, other perturbation
schemes, such as the method of multiple scales, deliver

123



774 A. Fortunati et al.

Table 1 The set Sr of ν-values to be excluded

j νa νb

1 (1,0,1,1) (2,1,0,0)

2 (0,1,1,1) (1,2,0,0)

3 (0,0,2,1) (1,1,1,0)

4 (0,0,1,2) (1,1,0,1)

solutions that are systematically free of small-divisor
terms, since the resonant terms are conveniently treated
a priori by imposing proper solvability conditions on
the perturbation equations [79,80].

Remark 4.2 It is possible to show that the x compo-
nents of the transformation formulae given by (26) are,
consistently, functions of X only so that (26) can be
used directly on (11). In other words, one can “forget
to have used the Hamiltonian formalism” at this point,
as the Y variables will never appear in the transformed
system. See [59] for the proof.

In this way, the transformed Hamiltonian

H̃ := exp(Lg)H |(x, y)=(X,Y),

recall (20), reads as

H̃ =
4∑
j=1

λ j Y j X j

+εr1Y1(γ(1,0,1,1)X1X3X4 + γ(2,1,0,0)X
2
1X2)

+εr2Y2(γ(0,1,1,1)X2X3X4 + γ(1,2,0,0)X1X
2
2)

+εr3Y3(γ(0,0,2,1)X
2
3X4 + γ(1,1,1,0)X1X2X3)

+εr4Y4(γ(0,0,1,2)X3X
2
4 + γ(1,1,0,1)X1X2X4)

+O(ε2).

Such a H̃ generates the set of canonical equations

Ẋ1 = X1
[
λ1 + εr1(γ(1,0,1,1)X3X4 + γ(2,1,0,0)X1X2)

]

Ẋ2 = X2
[
λ2 + εr2(γ(0,1,1,1)X3X4 + γ(1,2,0,0)X1X2)

]

Ẋ3 = X3
[
λ3 + εr3(γ(0,0,2,1)X3X4 + γ(1,1,1,0)X1X2)

]

Ẋ4 = X4
[
λ4 + εr4(γ(0,0,1,2)X3X4 + γ(1,1,0,1)X1X2)

]
(27)

obtained upon disregarding O(ε2) terms.

5 A suitable set of coordinates
and nonlinear spectra

In order to emphasizes the geometric features of equa-
tions (27), they can be cast in a suited set of coordinates.
Firstly, it is convenient to cast such a system into a real
form. To this end, the (classical) transformation(
X2 j−1

X2 j

)
= 1√

2

(
1 i
1 −i

)(
V2 j−1

V2 j

)
, j = 1, 2,

(28)

is considered. This procedural expedient can compar-
atively be associated to the transformation into real-
valued polar coordinates of the complex-valued mod-
ulation amplitudes in the method of multiple scales.
After slight manipulations and retaining terms up to
the first-order terms in ε, Eq. (27) take the form

V̇2 j−1 = α j V2 j−1 − β j V2 j
+ 1

2 ε
{
V2 j−1

[
M ( j)

1,2(V
2
1 + V 2

2 ) + M ( j)
3,4(V

2
3 + V 2

4 )
]

− V2 j
[
N ( j)
1,2 (V

2
1 + V 2

2 ) + N ( j)
3,4 (V

2
3 + V 2

4 )
]}

,

V̇2 j = β j V2 j−1 + α j V2 j
+ 1

2 ε
{
V2 j−1

[
N ( j)
1,2 (V

2
1 + V 2

2 ) + N ( j)
3,4 (V

2
3 + V 2

4 )
]

+ V2 j
[
M ( j)

1,2(V
2
1 + V 2

2 ) + M ( j)
3,4(V

2
3 + V 2

4 )
]}

,

(29)

with j = 1, 2, where

M (1)
1,2 = �(r1γ(2,1,0,0)), M (1)

3,4 = �(r1γ(1,0,1,1)),

M (2)
1,2 = �(r3γ(0,0,2,1)), M (2)

3,4 = �(r3γ(1,1,0,1)),

N (1)
1,2 = �(r1γ(2,1,0,0)), N (1)

3,4 = �(r1γ(1,0,1,1)),

N (2)
1,2 = �(r3γ(0,0,2,1)), N (2)

3,4 = �(r3γ(1,1,0,1)).

(30)

The damping term can now be “removed” by using the
transformation

(V2 j−1, V2 j ) = eα j τ (U2 j−1,U2 j ), j = 1, 2. (31)

In this way themotion can bemeaningfully represented
by means of polar-like coordinates

(U2 j−1,U2 j ) = √
2I j (cosϕ j , sin ϕ j ), j = 1, 2,

(32)

which represent a suitable coordinate set (I,ϕ) of
time-dependent action-angle (I j , ϕ j )-variables (with
j = 1, 2) for the unperturbed motion. By introducing
the transformations (31) and (32), Eq. (29) becomes

İ j = 2ε I j
[
M ( j)

1,2e
2α1τ I1 + M ( j)

3,4e
2α2τ I2

]
+ O(ε2),
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ϕ̇ j = β j + ε
[
N ( j)
1,2e

2α1τ I1 + N ( j)
3,4e

2α2τ I2
]

+ O(ε2)

(33)

and regulate the time-dependence of the action-angle
coordinates in a manner that is formally similar to the
ordinary differential equations governing the amplitude
modulation in the method of multiple scales. From the
geometrical viewpoint, in this set of coordinates the
unperturbed solutions are naturally interpreted as a flow
on the 2-torus T2 (that is, the two-dimensional torus
expressed as product of two circles) with frequencies
β1 and β2, i.e.

I j (τ ) = I j (0),

ϕ j (τ ) = ϕ j (0) + β jτ, j = 1, 2. (34)

Furthermore, if α1,2 < 0, it is clear that the nonlin-
ear corrections to the frequencies β j will vanish as
τ → +∞. In fact, for any set of initial conditions,
if ξ > 0, no matter how small, the system loses energy
because of the dissipation, so that its solutions will
be absorbed by any arbitrarily small open neighbor-
hoodof the hyperbolic equilibrium located at the origin.
Here, the effect of the nonlinearity becomesweaker and
weaker as the radius of such a neighborhood shrinks
over time. Moreover, one obtains from the first of (33)
that I j (τ ) = I j (0) + O(ε), so that, by substituting the
latter in the second of (33), one gets

ϕ̇ j = β j + ε
[
N ( j)
1,2e

2α1τ I1(0) + N ( j)
3,4e

2α2τ I2(0)
]

+O(ε2). (35)

This equation shows that the time-independent coef-
ficients N ( j)

1,2 and N ( j)
3,4 regulate, in the j th nonlinear

waveform, the nonlinear frequency corrections due to
the initial conditions on the acoustic ( j = 1) and opti-
cal ( j = 2) waves. Furthermore, for any fixed τ , the
spectra can be interpreted as action-dependent func-
tions S j,ε = S j,ε(I j (0)), i.e., surfaces parametrized by
the two constants I j (0) and appearing as perturbations
of the I j (0)-independent, or “flat”, surfaces S j,0 ≡ β j

representing the dispersion curves.
It is worth remarking that the two coefficients

N ( j)
1,2 , N

( j)
3,4 , known as effective nonlinearity coefficients,

incorporate the contributions of all the mechanical
parameters appearing in the problem formulation, and
depend also on the wavenumber β. Whenever one of
these coefficients is positive (or negative), the associ-
ated frequency correction is softening (or hardening).
Variations of these coefficients over the meaningful

range of the (κ, ζ )-parameters are shown in Fig. 3.
As expected, the coefficients are negative (yellow light
red) for positive values of κ (softening) and are positive
(orange and dark red) for negative κ (hardening). This
dominant scenario is slightly perturbed by the effects of
the nonlinear viscosity ζ , which become nonnegligible
only for vanishing nonlinear stiffness (κ � 0). Indeed,
while the sensitivity with respect to the nonlinear stiff-
ness coefficients is significant, much less sensitivities
are exhibited with respect to the linear viscosity coeffi-
cient ξ1 (here not reported for the sake of conciseness),
as well as with respect to the nonlinear viscosity coef-
ficient ζ .

Figure 4 offers a possible representation of the spec-
tra S j,ε for fixed parameters (μ = 1/2, � = 48/10,
η = 5/100, ξ = (1/10, 1/2, 1/2)) and for ε = 10−2 in
the (|I(0)|, β)-space at different time instants (Fig. 4a-
c), under the additional constraint I1(0) = I2(0). The
lower-frequency surfaceS1,ε andhigher-frequency sur-
face S2,ε describe the nonlinear and time-dependent
dispersion properties of the metamaterial. The depen-
dence of the surfaces on the wavenumber β and ini-
tial action norm |I(0)| is noticeable. The chosen ε-
value (condition (36) holds) corresponds to solutions
of O(10−1) magnitude (see Sect. 2). Note that the sur-
faces tend to become independent of the initial energy
for large times. This means that the metamaterial tends
to be governed by a linear behavior for longer times due
to the effects of dissipation, which induces an exponen-
tial decay of the oscillation amplitudes (related to the
square root of the action norm) assigned as initial con-
ditions. For the sake of completeness, the curve defined
by the locus Γ = (β1(θ), β2(θ)) for θ ∈ (0, 1) is ver-
ified “a posteriori” to be away from the resonant set
R, as shown in Fig. 4d (see also Rem. 5.1). The corre-
sponding zero dissipation limit (obtained for ξ1 = 0)
is reported in Fig. 5a. In this limit case, the nonlin-
ear spectrum is recognized to be amplitude-dependent
but time-independent, as expected for non-dissipative
systems and consistently with [22]. The corresponding
linear spectrum (i.e. dispersion curves) is also obtain-
able, as section of the time-independent spectrum for
I(0) = 0 (Fig. 5b). The corresponding linear wave-
forms can be proven to be real-valued [22]. The unit-
norm waveforms represented over the unit circle of the
(u, w)-space allow to distinguish the different polar-
izations of the linear nondissipative waves propagating
at selected wavenumbers [13]. A nonnegligible partic-
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Fig. 3 Variations of the
effective nonlinearity
coefficients in the wave
frequencies over the
(κ, ζ )-parameter space: a–b
acoustic coefficients and
c–d optical coefficients

(a) (b)

(c) (d)

ipation of the w-component in the waveform means
significant activation of the ring-resonator coupling.

Figure 6 shows the backbone curves σ j = ϕ̇ j/ϕ̇
◦
j

(where ϕ̇◦
j is the frequency ϕ̇ j evaluated at I(0) = 0

for ξ1 = 0, corresponding to the undamped linear fre-
quency) at the limit of short wavelengths (β = π) for
the conservative case (colored lines).Due to nonlineari-
ties, the acoustic and optical frequencies showamarked
dependence on the oscillation amplitude (related to the
square root of the action norm). Fixing different sets of
mechanical parameters, a heavy metamaterial shows a
softening behavior (Fig. 6a, b), while a lightmetamate-
rial shows a hardening behavior (Fig. 6c, d). The time-
independent non-dissipative case is also comparedwith
the dissipative case at different times (gray lines). The
interesting feature is that the dissipation delivered by
the dashpots reduces the softening/hardening effect
induced by the nonlinearities until it becomes vanish-
ing (that is, nonlinear damped frequency tending to the
damped linear frequency) for sufficiently long times.

While this result is expected from a purely physical
standpoint, its quantification as to the timewindowover
which the nonlinearity is dominant is a key contribution
here provided.

Remark 5.1 Amongst the other parameters, the imagi-
narypartsβ1,2 dependon θ . If the remainingparameters
are supposed to be fixed once and for all, as θ varies
in (0, 1), the planar curve (β1(θ), β2(θ)) might cross
one ormore resonant lines belonging toR. Clearly, this
would not satisfy Hyp. 4.1, so that the whole perturba-
tive argument and, in particular, expression (35) itself,
would break down.

In the light of this possibility, it is important to stress
that, despite a machine-based (“a posteriori”) valida-
tion would be straightforward (e.g., by comparing the
curve (β1(θ), β2(θ)) with R), it is not easy to estab-
lish “a priori” conditions in order to avoid such a phe-
nomenon.However, if one supposes that the dissipation
size ξ is “sufficiently small”, an easily checkable con-
dition can be derived for this purpose:
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Fig. 4 Nonlinear
time-dependent spectra of
the 1D metamaterial lattice
with μ = 1/2, � = 48/10,
η = 5/100,
ξ = (1/10, 1/2, 1/2) for
ε = 10−2 in the
(|I(0)|, β)-space for
different time instants: a
τ = 0; b τ = 7.5; c τ = 50;
d curve Γ for the
frequencies β j obtained for
the chosen parameters, as
θ ∈ (0, 1) (red dashed line),
compared with the resonant
set R (green lines). (Color
figure online)

(a) (b)

(c) (d)

Proposition 5.1 (parametric condition for no internal
resonances and eigenvalues expansion in the weak dis-
sipation case). Assume

�2 > 100/(9μ). (36)

Then, by setting Θ := √
(μχ + θ)2 + 4θμ(1 − χ),

one has Θ ∈ ((4/5)μ,μχ + θ) and the following
expansions hold:

α1,2 = −a1,2ξ + O(ξ2),

β1,2 = √
b1,2 + O(ξ2), (37)

where

a1,2 =
[
χΘ ± (χθ − 2θ − μχ2)

]
/(4Θ), (38)

b1,2 = μχ + θ ∓ Θ . (39)

In particular, one obtains for j, k = 1, 2,

M (k)
2 j−1,2 j = O(ξ). (40)

Moreover, for sufficiently small ξ ,

{(β1(θ), β2(θ)) : θ ∈ (0, 1)} ∩ R = ∅, (41)

i.e., no internal resonances occur for any value of θ .

The proof of Prop. 5.1 is reported in Appendix.
Furthermore, the approximation of the resonant sub-
setΠ1,2(3) in the parameters space (θ, χ, μ), as can be
obtained byusingProp. 5.1, is portrayed inFig. 7.Away
from the approximated subsetΠ1,2(3) (i.e., 3:1 internal
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Fig. 5 Nonlinear
time-independent spectra of
the 1D metamaterial lattice
with μ = 1/2, � = 48/10,
η = 5/100, for ε = 10−2 in
the (|I(0)|, β)-space (i.e.,
the zero dissipation limit for
ξ1 = 0): a nonlinear
spectrum; b linear spectrum
(i.e., intersection of the
nonlinear spectra with the
plane |I(0)| = 0) and the
polarization of waveforms
for selected wavenumbers

(a) (b)

resonance), the locus Γ of (θ, χ, μ)-parameters asso-
ciated with the spectra reported in Fig. 4 is represented
by the dashed red line.

Remark 5.2 It is worth stressing that such a result is not
needed if θ is chosen as a fixed value (as in the compu-
tations of Sect. 6). In this case the non-resonance con-
dition is straightforwardly checked, e.g., with a one-off
numerical evaluation of β1,2 or via the approximation
provided by (39).

6 Weak dissipation and invariant manifolds

According to the discussion of Sect. 5, the limit case of
zero dissipation, studied also in [22], can be recovered
by letting ξ = 0. It is immediate to check fromProp. 5.1
that such a limit implies that λ j are purely imaginary,
i.e., the origin degenerates into an elliptic equilibrium
(also called center). However, one wonders if part of
the structure of the elliptic case persists also for ξ > 0.
A discussion about this issue is given next.

The argument relies on Prop. 5.1, which provides
the quantitative tools in order to exploit the smallness
of ξ for a substantial simplification of the structure
of Eq. (33). More precisely, by choosing ξ = O(ε)

(weak dissipation), by (40) and (33) one finds that
I j (τ ) = I j (0) + O(ε2), i.e., I j approximates (in the
perturbative sense) the first integrals of motion. As a
consequence, in this setting, the invariant manifolds of

the normalized system simply read as

M := M1 ∪ M2,

M j := {I j ≡ A j ∈ (0,+∞), ϕ ∈ T
2}, (42)

being A j a real variable parameterizing the “flat” man-
ifold I j = const. in the normalized system. A conve-
nient (and often customary) way to visualize M is by
plotting M1 and M2 separately.

A way to compute the first-order approximation
of the invariant manifolds, in the nonnormalized sys-
tem, is to map “back” the above-defined (flat) mani-
folds M j via the variables transformation (26). The
obtained objects are conveniently represented via the
variables I , implicitly defined by the transformation
Tx : (I,φ) → (x) given by

(x2 j−1, x2 j ) = √
I j

(
exp(i φ j ), exp(−i φ j )

)
, (43)

for j = 1, 2. The set (I,φ) is easily interpreted as
equivalent, under the weak dissipation assumption, to
the set (I,ϕ) used in the normalized system. In fact,
if ξ = O(ε), from (38) one obtains that exp(α jτ) =
1+O(ε) for any τ = O(1). Hence, (43) is equivalent to
the transformation TX : (I,ϕ) → (X) obtained as the
composition of (28), (31) and (32) where terms of order
O(ε) are disregarded. This implies that the invariant
manifolds of the weak dissipation case possess exactly
the same structure as the ξ = 0 limit. As a standard
remark in classical perturbation theory, it is understood
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(a) (b)

(c) (d)

Fig. 6 Backbone curves σ j versus squared initial action |I(0)|
in the limit of short wavelengths β = π for (a),(b) heavy meta-
material with properties μ = 1/2, � = 48/10, η = 5/100,
exhibiting softening behavior; lightmetamaterial with properties

μ = 5/100, � = 15, η = 1/2, exhibiting hardening behavior.
Nonlinear backboneswithout dissipation (colored lines) andwith
dissipation for increasing time instants (gray lines): a, c acoustic
branch, b.d optical branch. (Color figure online)

that such an equivalence holds as long as τ = O(1),
i.e., τ � ε−1. More on this aspect is given in Sect. 7.

In conclusion, the first-order approximation of the
invariant manifolds can be written as

M̃ j :=
{(

T −1
x ◦ Nr ◦ TX (A,ϕ)

)
| j , ϕ ∈ T

2
}
.

Similarly, by denoting with Tu : (u, w, u̇, ẇ) → (x)

the sequence of variables transformations from the
state-space of configurational variables (u, w, u̇, ẇ) to
the original modal coordinates x, one can define

M̂ :=
{(

T −1
u ◦ Nr ◦ TX (A,ϕ)

)
, ϕ ∈ T

2
}
.
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μ

θ
χ

Fig. 7 Approximation of the resonant subset Π1,2(3) in the
parameters space (θ, χ, μ) obtained by using Prop. 5.1 (green
surface), and locus Γ of (θ, χ, μ)-parameters associated to the
spectra reported in Fig. 4 (red dashed line) showing that the
waves are sufficiently separated and away from the resonance
conditions. (Color figure online)

This manifold can be conveniently visualized by pro-
jecting it on the two three-dimensional subspaces of
configurational state variables (u, u̇, w) and (w, ẇ, v),
emphasizing the quasi-periodic nature of the motion.

A representation of the obtained manifolds is given
in Figs. 8 and 9. Specifically, Fig. 8a illustrates the
invariant manifold M̂ projected in the subsets of the
state-space of the (u, u̇, w)-variables while Fig. 8b
shows the manifold projected in the space of the
(w, ẇ, u)-variables. Differently, Fig. 9 portrays sep-
arately the invariant manifolds M̃1 and M̃2 in the sets
of the (ϕ1, ϕ2, I1)-variables (Fig. 9a) and (ϕ1, ϕ2, I2)-
variables (Fig. 9b), in which they are conveniently rep-
resented as open mono-valued surfaces.

7 Numerical validation

In this final section a validation example of the pertur-
bation approach here employed is provided. The pro-
posed procedure is straightforward: given an arbitrarily
chosen point p on the invariant manifold, e.g., M̃1, the
equations of motion (17) with ξ = 0 are integrated by
using a fourth-order Runge-Kutta (RK4) scheme (see
e.g., [81]) with p as initial condition. The resulting tra-

jectory is superimposed in the plot ofM̃1. By definition
of M̃1,2, it is clear that the trajectory is expected to lie
on the invariant surface for all τ ∈ [0, τ+], provided
that τ+ is not “too large”. For instance, the numerical
time integration reported in Fig. 10 is performed for
τ+ = 10, whilst ε−1 = 106.

Remark 7.1 The real version of (17) has been used for
numerical integration purposes as it avoids themachine
treatment of complex numbers. More precisely, by
using a transformation x = T u where T is the same
matrix as the one defined in the right hand side of (28),
system (17) is cast into the form

u̇2 j−1 = α j u2 j−1 − β j u2 j + √
2ε(�r2 j−1)g̃ (T u) ,

u̇2 j = β j u2 j−1 + α j u2 j + √
2ε(�r2 j−1)g̃ (T u) ,

(44)

for j = 1, 2. Note that variables u j can be interpreted
as the equivalent of Uj defined in (32).

As shown in Sect. 6 by means of perturbation tools,
the system with a weak dissipation possesses the same
first-order expansion of the invariant manifolds as the
system in which the limit ξ = 0 is considered. The
agreement between thesemanifolds and the trajectories
(white curves) for the case ξ = 0was proven in Fig. 10.

A completion of the numerical validation consists
in showing that a similar agreement persists for tra-
jectories for which 0 < ξ = O(ε) is considered. By
denoting with uξ (τ ) the solutions of system (44) with
a given initial condition u(0) and given dissipation ξ ,
the relative error is defined as

E(τ ) := ||uξ (τ ) − u0(τ )||
maxτ∈[0,τ+] ||u0(τ )|| ,

under the assumption that maxτ∈[0,τ+] ||u0(τ )|| is
bounded away from zero. The reference solution u0(τ )

stands for the undamped solution (ξ = 0). Figure 11
shows the behavior of such a function, which is found
to depend almost linearly on time, for increasing val-
ues of ξ . As expected, the error function grows propor-
tionally to ξ . Specifically, a one-order-of-magnitude ξ -
increment causes a like-order amplification of the error
at a certain time instant.

8 Conclusions

A microstructured lattice waveguide, characterized by
a diatomic periodic cell, was proposed as archety-
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(a) (b)

Fig. 8 Invariant manifold M̂ in the subset of configurational state variables: a subset (u, u̇, w)-variables, b subset (w, ẇ, u)-variables

Fig. 9 Invariant surfaces
where (A1, A2) = (1/2, 1)
have been chosen: a, b
three-dimensional view and
contour plot of the manifold
M̃1; c, d three-dimensional
view and contour plot of the
manifold M̃2. The
parameters are set as
follows: μ = 1/40,
�2 = 1/2, η = 1/2, ξ1 = 0,
ξ2 = ξ3 = 1/2 and
ε = 10−6, i.e., solutions
with O(10−3) magnitude.
In this particular case the
frequencies (β1, β2) =
(0.5174, 0.9355) are away
from R

(a) (b)

(c) (d)
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Fig. 10 The invariant
surfaces M̃1,2 of Fig. 9 and
the corresponding
projections of the solution
starting from p. The
parameters are the same as
those employed in Fig. 9

(a) (b)

pal physical realization of an acoustic locally dissi-
pative metamaterial with highly tunable properties.
A discrete Lagrangian two-degree-of-freedom model
was formulated to govern the damped free dynam-
ics of the periodic cell. The free propagation prob-
lem for the nonlinear waves through the dissipa-
tive lattice was formulated according to the Floquet-
Bloch theory for periodic structures. In the frame-
work of a finite kinematic formulation, the intracel-
lular restoring forces are ruled by a nonlinear con-
stitutive law, according to a parallel arrangement of
nonlinear prestretched springs and a nonlinear dash-
pot, whereby the displacement and velocities of the

Fig. 11 Error function Eξ (in logarithmic scale) versus time for
μ = 1/40, η = 1/2, �2 = 1/2, ξ2 = ξ3 = 1/2, ε = 10−6 and
different ξ -values

principal atom and the secondary atom are coupled.
The periodic cellwas designed to act as a highly tunable
vibration absorber featuring nonlinear hardening/softe-
ning response with nonlinear hysteretic dissipation.

In order to study the dynamic regime of relatively
high oscillation amplitudes, the nonlinear interatomic
interaction was consistently approximated by retaining
cubic terms in the intracellular stiffness and damping.
A valuable functional customization is enabled by the
high nonlinear tunability of the cell according to which
the cubic stiffness can be designed to realize either a
softening or a hardening behavior, by independently
regulating the geometric (i.e., pretension) and elastic
stiffness contributions of the intracellular springs.

The linear dispersion properties ensuing from the
linearized eigenproblem governing the free wave prop-
agation in the small-amplitude oscillation regime were
summarized. The linear spectrum is composed by a
low-frequency acoustic branch and a high-frequency
optical branch, described by complex-valued disper-
sion functions. A perturbation expression of the nega-
tive real part (ruling the wave attenuation) and imag-
inary part (ruling the wave frequency) of the disper-
sion function was achieved, assuming the weak damp-
ing coefficient as small parameter. The parametric con-
ditions of 2:1, 1:1 and 3:1 autoparametric resonances
between the waves associated with the acoustic and the
optical branches were determined analytically so as to
study asymptotically the nonlinear waves propagating
as distinct, individual acoustic or optical waves away
from internal coupling conditions.

The nonlinear dispersion properties were unfolded
by employing an extended Hamiltonian perturbation
technique accounting also for the nonlinear dissipa-
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tion. By restricting the attention onto internally non-
resonant metamaterial lattices, a perturbation scheme
based on Lie series operators was devised to asymptoti-
cally approximate the freewavemotion up to the lowest
significant perturbation order. The nonlinear dispersion
properties were obtained as analytical time-dependent
functions, depending linearly on the initial values of a
suitable pair of variables (action-angle).

An original contribution is that the nonlinear wave
frequencies were found to (i) exhibit softening or
hardening backbone curves for increasing amplitudes
depending on the cubic stiffness coefficient of the intra-
cellular spring, and (ii) consistently tend to coalesce
toward the linear spectrum of undamped, conservative
metamaterials, for sufficiently long oscillation times
when the decaying effects of the dissipation are such
that the wave amplitudes become effectively small.
Furthermore, the lowest-order approximation of the
invariant manifolds, describing the harmonic periodic
motions in the limit case of weak dissipation, were
also analytically determined. An excellent agreement
was systematically obtained from the direct compari-
son between the invariant manifolds predicted by the
asymptotic results and the orbits described by numeri-
cal simulations.

The main findings of this work highlight the pos-
sibility of tailoring the metamaterial lattice properties
to make the nonlinear waves faster (hardening case) or
slower (softening case) and of making these nonlinear
effects more or less persistent over time depending on
the level of dissipation. Nonlinear hysteretic dissipa-
tion has far deeper effects on the nonlinear dynamics
of engineered architectured waveguides which will be
the focus of future works.
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A Appendix

A.1 Proof of Proposition 2.1

Let Pλ(A) denote the characteristic polynomial of A
expressed as

Pλ(A) = λ4 + ξχλ3 + 2pλ2 + 2(χ − 1)ξθλ + q

= λ2
[
λ2 + ξχλ + p

]

+
[
pλ2 + 2(χ − 1)ξθλ + q

]
, (45)

where p := μχ+θ and q := 4(χ−1)μθ , respectively.
A sufficient condition for the statement to be true is

that the two polynomials between square brackets do
not possess real roots. This happens if either ξ2χ2 <

4p or (χ − 1)ξ2θ < 4μp, respectively. It is immediate
to check that both of them hold under condition (13).

The property α1,2 < 0 follows from the celebrated
Routh-Hurwitz Theorem [82]. More precisely, from
(45) it is possible to define

M := {mi, j } =

⎛
⎜⎜⎝

ξχ 1 0 0
2(χ − 1)ξθ 2p ξχ 1

0 q 2(χ − 1)ξθ 2p
0 0 0 q

⎞
⎟⎟⎠ ,

and the quantitiesΔk := det
(
M(≤k)

)
, whereM(≤k) :=

{mi, j }i, j≤k is the square submatrix ofM formed by the
first k rows and columns. The property �λ j < 0 for
ξ > 0 easily follows from the mentioned Theorem, by
observing that either Δ1 ≡ ξχ , or

Δ2 = 2ξ(μχ2 + θ),Δ3 = 4θ2ξ2(χ − 1),

Δ4 = 16μθ3ξ2(χ − 1)2,

are positive by assumptions on the parameters.
Finally, the property β1,2 > 0 is easily shown by

reductio ad absurdum. For this purpose, it is worth
recalling that the eigenvalues are non-purely real, as
previously shown. On the other hand, Prop. 5.1 states
that for any ζ̃ := (ξ̃ , �̃, μ̃, θ̃ ) satisfying Eq. (36) and
sufficiently small ξ , it turns out that β1,2 = β1,2(ζ̃ ) >

0. Next, suppose by contradiction, that for some other
value ζ̂ (under the sole assumption (13)), one has
β1(ζ̂ ) < 0 (the argument for β2 is the same). Hence,
once defined, for all j = 1, ..., 4, ζ j (s j ) := s j ζ̃ j +
(1 − s j )ζ̂ j , with s ∈ [0, 1]4, there exists s∗ such that
β1(ζ (s∗)) = 0, i.e., λ1 ∈ R, which is a contradiction.
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A.2 Proof of Prop 5.1

The stated range of variation ofΘ follows directly from
(36) and the fact that χ > 1 by definition. By assump-
tion, the characteristic polynomial Pλ(A) is factorized
as

Pλ(A) =
4∏
j=1

(λ − λ j ), (46)

with λ2k−1 = λ̄2k , k = 1, 2. By using the expansions
(37) in (14), then substituting back into (46) and finally
comparing the obtained expression with (45), one gets
at zero order in ξ

b1 + b2 = 2(μχ + θ), (47)

b1b2 = 4θμ(χ − 1), (48)

which give (39). On the other hand, at first order in ξ ,
the following set of conditions is obtained:

b2a1 + b1a2 = (χ − 1)θ, (49)

2(a1 + a2) = χ, (50)

leading to (38).
Focusing first on the non-resonance property, it is

clear from (16) that

Ψ = Ψ 0 + O(ξ),

Ψ 0 := Ψ |(λ1,λ2,λ3,λ4)=(β1,β1,β2,β2). (51)

In particular, the third row entries of Ψ 0 are pure real
at order zero in ξ . Hence, as ξ1 = O(ξ) by definition,
a comparison between (12) and (23) yields

�γν = O(ξ). (52)

Moreover, from (51), it is easy to check that

det (Ψ 0) = 16(β1β2)
−3(β2 − β1)

2

×(β1 + β2)
2(χ − 1)θ2,

i.e., Ψ 0 is invertible away from R, so is Ψ , for suffi-
ciently small ξ . In particular, the fourth column ofΨ −1

0
yields

r1,2 = ∓i[2(b1 − b2)]−1
√
b1 + O(ξ),

r3,4 = ±i[2(b1 − b2)]−1
√
b2 + O(ξ),

where the expression in terms of the parameters is
obtained from (39). The latter implies �r j = O(ξ),
which compared with (52) gives (40).

Focusing finally on Eq. (41), it can be observed that
lim(ξ,θ)→(0,0)+(β1, β2) = (0, 2

√
μχ). Hence, by con-

tinuity, for any sufficiently small ξ and θ , the curve
(β1(θ), β2(θ)) “starts” inside the region

T := {β2 > 3β1, β1 > 0} ⊂ R
2.

The statement easily follows for sufficiently small ξ

by using (39). In fact, it is easy to check that, under
assumption (36), one has b2 > 9b1 for all θ ∈ (0, 1).

A.3 Expression of the coefficients γν

Recalling that ζ := ξ1ξ2ξ3 and κ := μ−η and denoting
byΨi j the elements ofmatrixΨ , the coefficientsγν read

γ(3,0,0,0) = Ψ 3
21κ − ζΨ 2

21Ψ41χ + ζΨ 2
21Ψ

2
31

γ(0,3,0,0) = Ψ 3
22κ − ζΨ 2

22Ψ42χ + ζΨ 2
22Ψ

2
32

γ(0,0,3,0) = Ψ 3
23κ + ζΨ 3

23(Ψ33 − χΨ43)

γ(0,0,0,3) = Ψ 3
24κ + ζΨ 2

24(Ψ34 − Ψ44χ)

γ(1,1,1,0) = 6Ψ21Ψ22Ψ23κ

− 2ζχ(Ψ21Ψ22Ψ43 − Ψ21Ψ23Ψ42 − Ψ22Ψ23Ψ41)

+ 2ζ(Ψ21Ψ22, Ψ33 + Ψ21Ψ23Ψ32 + Ψ22Ψ23Ψ31)

γ(1,0,1,1) = 6Ψ21Ψ23Ψ24κ

− 2ζχ(Ψ21Ψ23Ψ44 − Ψ21Ψ24Ψ43 − Ψ23Ψ24Ψ41)

+ 2ζ(Ψ21Ψ23Ψ34 + Ψ21Ψ24Ψ33 + Ψ23Ψ24Ψ31)

γ(0,1,1,1) = 6Ψ22Ψ23Ψ24κ

− 2ζχ(Ψ22Ψ23Ψ44 − Ψ22Ψ24Ψ43 − Ψ23Ψ24Ψ42)

+ 2ζ(Ψ22Ψ23Ψ34 + Ψ22Ψ24Ψ33 + Ψ23Ψ24Ψ32)

γ(0,0,1,2) = 3Ψ23Ψ
2
24κ − ζχ(Ψ 2

24Ψ43 − 2Ψ23Ψ24Ψ44)

+ ζ(Ψ 2
24Ψ33 + 2Ψ23Ψ24Ψ34)

γ(0,1,0,2) = 3Ψ22Ψ
2
24κ − ζχ(Ψ 2

24Ψ42 − 2Ψ22Ψ24Ψ44)

+ ζ(Ψ 2
24Ψ32 + 2Ψ22Ψ24Ψ34)

γ(1,0,0,2) = 3Ψ21Ψ
2
24κ − ζχ(Ψ 2

24Ψ41 − 2Ψ21Ψ24Ψ44)

+ ζ(Ψ 2
24Ψ31 + 2Ψ21Ψ24Ψ34)

γ(0,0,2,1) = 3Ψ 2
23Ψ24κ − ζχ(Ψ 2

23Ψ44 − 2Ψ23Ψ24Ψ43)

+ ζ(Ψ 2
22Ψ34 + 2Ψ22Ψ24Ψ32)

γ(2,0,1,0) = 3Ψ 2
21Ψ23κ − ζχ(Ψ 2

21Ψ43 − 2Ψ21Ψ23Ψ41)

γ(2,0,0,1) = 3Ψ 2
21Ψ24κ − ζχ(Ψ 2

21Ψ44 − 2Ψ22Ψ24Ψ42)

+ ζ(Ψ 2
22Ψ34 + 2Ψ22Ψ24Ψ32)

γ(0,1,2,0) = 3Ψ22Ψ
2
23κ − ζχ(Ψ 2

23Ψ42 − 2Ψ22Ψ23Ψ43)

+ ζ(Ψ 2
23Ψ32 + 2Ψ22Ψ23Ψ33)
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γ(1,0,2,0) = 3Ψ21Ψ
2
23κ − ζχ(Ψ 2

23Ψ41 − 2Ψ21Ψ23Ψ43)

+ ζ(Ψ 2
23Ψ31 + 2Ψ21Ψ23Ψ33)

γ(0,2,1,0) = 3Ψ 2
22Ψ23κ − ζχ(Ψ 2

22Ψ43 − 2Ψ22Ψ23Ψ42)

+ ζ(Ψ 2
22Ψ33 + 2Ψ22Ψ23Ψ32)

γ(2,0,1,0) = 3Ψ 2
21Ψ23κ − ζχ(Ψ 2

21Ψ43 − 2Ψ21Ψ23Ψ41)

+ ζ(Ψ 2
21Ψ33 + 2Ψ21Ψ23Ψ31)

γ(1,2,0,0) = 3Ψ21Ψ
2
22κ − ζχ(Ψ 2

22Ψ41 − 2Ψ21Ψ22Ψ42)

+ ζ(Ψ 2
22Ψ31 + 2Ψ21Ψ22Ψ32)

γ(2,1,0,0) = 3Ψ 2
21Ψ22κ − ζχ(Ψ 2

21Ψ42 − 2Ψ21Ψ22Ψ41)

+ ζ(Ψ 2
21Ψ32 + 2Ψ21Ψ22Ψ31)

Remark A.1 It can be noted that ζ vanishes in the “zero
dissipation limit” ξ1 = 0.
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