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Abstract 

The spread of extremely-drug resistant Klebsiella pneumoniae has become a 

major health threat worldwide. This is largely mediated by certain lineages, 

recognized as high-risk clones dispersed in all the world. The analysis of an 

outbreak of nine ST15, NDM-1 metallo-β-lactamase producing K. pneumoniae 

was performed. An IncC plasmid carrying the blaNDM-1 gene also carried the rare 

rmtC gene, encoding for a 16S rRNA methyltransferases (16RMTases), conferring 

resistance to all aminoglycosides. We studied the global spread of NDM variants 

and their association with the 16RMTases among K. pneumoniae complete 

genomes available in GenBank, producing a complete overview of the association 

of 16RMTases and NDM in K. pneumoniae genomics. 

NDM is more and more often associated with16RMTases and both are spreading 

in K. pneumoniae, conferring resistance to every beta-lactam and aminoglycoside. 

Our analysis suggest that aminoglycosides have limited future as second line 

treatment against NDM-producing K. pneumoniae. 

                  



Highlights 

 An outbreak of NDM-1-ST15 producing Klebsiella pneumoniae was for the first 

time reported in Italy 

 The outbreak clone carried the rarely reported 16S RNA methylase rmtC gene 

 A global genomic analysis indicates that 16S RNA methylase genes are very often 

associated with blaNDM genes K. pneumoniae 

  

                  



1. Introduction 

With the prevalence of carbapenem-resistant Enterobacterales that has increased 

since the early 2000s, the spread of antimicrobial resistant Gram-negative 

bacteria confirms itself as one of the most worrying global health threats [1,2]. 

The New Delhi Metallo (NDM) enzyme, initially described in patients receiving 

healthcare in India, is now worldwide heterogeneously distributed, with areas of 

high endemicity such as the Indian sub-continent and the Balkan region [3–5]. 

However, even in the rest of Europe, its spread is on the rise: this metallo-β-

lactamase is swiftly passing the borders of the nations, and Italy in the last years 

reported an increment of its detection [6–9].  

The NDM carbapenemases have been mainly detected in Klebsiella pneumoniae, 

Escherichia coli and, with less frequency, in other bacterial species. The blaNDM 

genes are carried on different plasmid types, IncX3, IncFII and IncC being the 

most frequent ones [4]. In Italy great emphasis has been given to several 

outbreaks, mainly caused by K. pneumoniae belonging to the ST147 producing 

NDM-5 and -9 [7,8]. 

Aminoglycosides are an important second line therapeutic choice for infections 

caused by carbapenem resistant Enterobacterales [10]. Above all, great hopes lie 

in the development of new generation aminoglycosides (neoglycosides), which 

presumably will be not affected by the most diffused resistance mechanisms to 

aminoglycosides (i.e. Aminoglycosides Modifying Enzymes, AMEs) [11]. Yet, even 

these molecules, could be rendered ineffective by 16S rRNA methyltransferases 

(16RMTases), which act by modifying the active site on which aminoglycosides 

operate [12]. Every aminoglycoside employed in clinical practice (except 

apramycin, which is used in the veterinary field [13]) is useless against 

16RMTases. 

Yet, the diffusion of 16RMTases too is growing at a fast pace [12,14] and it might 

even be underestimated, owing to the fact their detection is troublesome with 

microbiological methods, even if some systems have been developed (e.g. the use 

of arbekacin disks [15]). For these reasons the spread and diffusion of 

16RMTases is hard to track without resorting to molecular methods. 

                  



The fact that the epidemiology of 16RMTases is not well known, both from a local 

and a global point of view, poses a great threat to the use of all aminoglycosides, 

especially neoglycosides. 

This study started with the characterization of a Sequence Type (ST) 15 K. 

pneumoniae outbreak clone identified in the hospital, carrying the blaNDM and the 

rmtC 16RMTase genes. The clone was placed within a wider global view of the 

distribution of K. pneumoniae high-risk clones showing association of NDM and 

16RMTase resistant determinant. 

 

2. Materials and methods 

2.1 Strains isolation and antimicrobial susceptibility testing 

The isolation of the strains took place between June and October 2020 from 

clinical samples obtained during routine testing from hospitalized patients at the 

University Hospital Policlinico Umberto I in Rome, Italy [16]. 

K. pneumoniae strains were identified using the MALDI-TOF MS system (Bruker 

Daltonik GmbH, Bremen, Germany); antimicrobial susceptibility testing was 

performed by either Vitek2 (bioMérieux, Inc., Marcy l’Etoile, France) or 

MiscroScan (Beckman and Coulter, Brea, California, USA) systems. 

Strains showing a carbapenem-resistant phenotype (according to EUCAST 

criteria; http://www.eucast.org/clinical_breakpoints/) were tested using the 

lateral flow immunoassay NG-test CARBA 5 (NG biotech, Guipry, France) to 

evaluate the presence of the VIM, IMP, KPC, OXA-48-like and NDM 

carbapenemase enzymes. 

 

2.2 Whole Genome Sequencing 

The Illumina MiSeq instrument (Illumina Inc., San Diego, CA, USA) was used to 

obtain Whole-Genome Sequencing (WGS) of the four strains isolated from 

respiratory tract samples of patients 1, 6, 7 and 8, named 0831, 1009, 1021 and 

1027, respectively. Bacteria were grown overnight at 37°C on LB agar with 

ampicillin (50 mg/mL). Genomic DNA was purified following the MachereyNagel 

DNA extraction kit procedures (Düren, Germany) directly from the LB plate.  

The strains 0831 and 1027 were also subjected to Oxford Nanopore Technologies 

sequencing. To obtain high molecular weight DNA, the bacterial pellet of 7 mL LB 

                  



liquid incubated overnight was resuspended in TE with 2% SDS and 20 μL of 25 

mg/ml proteinase K. Protein digestion was performed for 1h at 55°C followed by 

phenol (pH 8.0) extraction and isopropanol precipitation. After washing with 70% 

Et-OH, DNA was resuspended overnight in TE at +4°C and purified using AMPure 

XP beads in a 0.5/1 ratio. Libraries were prepared by the rapid barcoding 

sequencing kit (SQK-RBK004). Pooled libraries were cleaned up using AMPure XP 

beads and loaded into the MinION Flow Cell (R9.4.1) following SQK-RBK004 

sequencing procedures. Sequencing was performed on an Mk1C MinION 

platform. 

 

2.3 Bioinformatics 

2.3.1 Assembly 

Paired-end libraries generated using the Nextera XT DNA sample preparation kit 

with the 2x300PE protocol (Illumina, Inc.) and the de novo assembly of Illumina 

reads was performed using Galaxy version 3.14.1 of the SPAdes pipeline through 

the ARIES public Galaxy server (https://w3.iss.it/site/aries/).  

The assembly of the raw nanopore reads was performed at the Europe Galaxy 

Server (https://usegalaxy.eu/) using Flye version 2.6 with and estimated genome 

size of 5 megabases. 

The Unicycler tool version 0.4.8.0 was used for the hybrid assembly of short and 

long reads, using a normal bridging mode [17]. 

 

2.3.2 Genotyping 

The exact species (Klebsiella pneumoniae “sensu stricto”) of the four strains 

subjected to WGS was confirmed by the Kleborate tool, which has also been used 

to identify the MultiLocus Sequence Type (MLST), for the analysis of the K 

(capsule) and O (Lipopolysaccharides, LPS) antigen locus and of the genes 

encoding virulence determinants associated with hypervirulence (yersiniabactin, 

colibactin, aerobactin, salmochelin and regulators of the mucoid phenotype) [18]. 

The analyses of the antimicrobial resistance genes and of the replicon genes were 

carried out at the Center for Genomic Epidemiology using the ResFinder and 

PlasmidFinder online tools (https://cge.cbs.dtu.dk/services/), respectively. 

Insertion sequences were identified by ISFinder (https://isfinder.biotoul.fr). 

Phage prediction was performed at the PHASTER website (https://phaster.ca/). 

                  



Complete plasmid sequences were annotated using the RAST server 

(http://rast.nmpdr.org/) 

 

2.3.3 Genomes and plasmids selection from the GenBank database 

To obtain the 16RMTases-harboring genome sequences, BLASTN was performed 

with the armA, npmA, rmtA, rmtB, rmtB2, rmtC, rmtD, rmtD2, rmtE, rmtF, rmtG and 

rmtH 16RMTases genes nucleotide sequences (GenBank Acc. Nos AY220558, 

AB261016, AB120321, AB103506, JN968578, AB194779, DQ914960, 

HQ401565, GU201947, JQ808129, JX486113, KC544262, respectively) as 

queries, against maximum 1000 target K. pneumoniae sequences from the NCBI 

GenBank database (November 2020). 

All sequences matching with a full-length 16RMTases query with 100% coverage 

and 100% identity were selected. Those associated with BioProjects, including 

whole and accessory genomes were selected for further analysis. Complete 

plasmids and chromosomes sequences were exported. Geographic distribution 

and isolation source of the 16RMTases positive genomes were reported in 

supplementary dataset 1, when available. 

The same procedure has been replicated to obtain all the K. pneumoniae strains 

harbouring blaNDM, using blaNDM-1/-24 genes as queries in the BLASTN analysis. 

In the case of presence of one or more 16RMTases or NDM encoding genes in the 

same strain, this was taken into consideration only once. 

All the downloaded K. pneumoniae strains were analysed by the Kleborate tool to 

ascertain the correctness of the species and to obtain their MSLT, K typing and 

their “virulence score” (https://github.com/katholt/Kleborate/wiki/Scores-and-

counts) 

The sequences of 145 K. pneumoniae plasmids belonging to Incompatibility group 

C (IncC) included in a phylogeny tree were obtained by BLASTN of the IncC probe 

downloaded from the Center for Genomic Epidemiology website 

(https://cge.cbs.dtu.dk/services/PlasmidFinder/) in the GenBank database 

using K. pneumoniae as target organism. 

 

2.3.4 Phylogenesis and synteny 

                  



The sequences of genomes and plasmids were annotated using Prokka, and the 

resulting General Feature Formats (GFFs) were analysed using Roary v3.11.3 to 

identify core and accessory genes and to obtain a pangenome alignment.  

Recombining regions removal was carried out by Gubbins algorithm generating a 

Maximum Likelihood (ML) phylogenetic tree using RAxML. The visualisation of 

the tree, metadata and pangenome was performed with MicroReact [19] and then 

adjusted using the open source InkScape software. 

A synteny analysis was performed on the two sequenced IncC plasmids of the 

1027 and 0831 strains and other sixteen highly related IncC plasmids. The 1027 

IncC plasmid was used as a reference for the BLASTN-based comparison between 

the plasmids; visualisation has been carried out using the Circos tool [20] at the 

public Europe Galaxy server (https://usegalaxy.eu/) 

 

2.4 Data availability 

Genomes have been submitted under BioProject no. PRJNA746265 

(https://dataview.ncbi.nlm.nih.gov/object/PRJNA746265?reviewer=nb0o7v8jsrg

6gj86rh21eoir6c). Complete plasmid sequences of strains 0831 and 1027 were 

released under EMBL accession nos MZ606383 and MZ606384, respectively. 

 

2.5 PCR typing 

PCR assays were adopted to type the NDM-producing K. pneumoniae isolated in 

the same period of our study which were not subjected to WGS, using the mtC 

primers of the already described 16RMTases multiplex [21] (rmtC forward 5’ 

CAGGGGTTCCAACAAGT 3’ and rmtC reverse 5’ 

AGAGTATATAGCTTGAACATAAGTAGA 3’) and the IncC repA primers of the PCR-

based replicon typing (IncA/C FW 5’ GAGAACCAAAGACAAAGACCTGGA 3’ and 

IncA/C RV 5’ ACGACAAACCTGAATTGCCTCCTT 3’) [22]. 

 

 

3. Results and discussion 

3.1 An outbreak of blaNDM positive K. pneumoniae 

                  



In the period between 24th August to 27th October 2020 at the Policlinico 

Umberto I University Hospital, Rome, Italy, there were 9 cases of colonization or 

infections sustained by NDM-producing K. pneumoniae  

The 9 patients (7 females, 2 males) had a median age of 70 years (IQR 52-81.5) 

and the median length of hospital stay was 38 days (IQR 20.5-89). Four patients 

were hospitalized and 7 received carbapenems in the previous 90 days (Table 1). 

Most patients were hospitalized in Intensive Care Unit (ICU, n=5), 3 were 

hospitalized in pneumology wards and only one patient was followed after lung 

transplantation as outpatient. In-hospital mortality was observed in 7 subjects. 

Antimicrobial-susceptibility testing revealed that these strains were resistant to 

all tested beta-lactams (amoxicillin/clavulanic acid, cefepime, cefotaxime, 

ceftazidime, piperacillin/tazobactam, imipenem, meropenem 

ceftolozane/tazobactam and ceftazidime-avibactam). . All strains were susceptible 

to colistin, tigecycline and fosfomycin with the exception of strain 0831, which 

resulted resistant to fosfomycin (MIC= 64 mg/L). Among them, the four blaNDM-

positive strains (namely 0831, 1021, 1027, and 1009) causing respiratory tract 

infections underwent Whole Genome Sequencing (WGS). The strains 1021 and 

1009 were subjected to Illumina, while the 1027 and 0831 to both Illumina and 

Nanopore sequencing. 

In silico MLST assigned all strains to the high-risk ST15 clone and detected the 

KL112 capsule locus type (wzi 93), O2v1 O-antigen locus and ybt16 

yersiniabactin siderophore gene cluster, associated with an Integrative 

Conjugative Element ICEKp12. None of the strains carried other virulence 

determinants (such as colibactin, aerobactin and salmochelin siderophores, or 

the rmpA and rmpA2 genes). The aac(6')-Ib3, sul1, ΔqacE, rmtC, blaNDM, bleMBL and 

blaCMY-6 resistance genes were found in all genomes, located on incompatibility 

type C (IncC) plasmids [23]. Furthermore, these strains presented a ColRNAI and 

a IncFIB/FII(K) [K7: A-: B-] plasmids. Strain 0831 presented a frameshift 

mutation in the glycerol-3-phosphate transporter GlpT protein (ΔGlpT[pE286fs]). 

To the best of our knowledge NDM-producing ST15 K. pneumoniae were not 

previously reported in Italy.  

 

3.2 The IncC plasmid carrying blaNDM and rmtC genes 

                  



By assembling with the Unicycler tool [17] the short Illumina reads and the 

Oxford Nanopore Technologies long reads, we obtained the 137600 bp complete, 

circular sequence of two highly related plasmids assigned to the IncC group by 

pPlasmidfinder, from strains 1027 and 0831, respectively [24]. 

The blaNDM, aac(6')-Ib-3, sul1 and ΔqacE genes were all distributed in the same 

ARI-A resistance island on the IncC plasmid, while blaCMY-6 was found, as already 

described, between an ISEcp1 and the blc-sugE genes (encoding for lipocalin, an 

outer membrane protein, and for a small multidrug resistance efflux transporter, 

respectively) [25]. 

To assign these IncC plasmids to types identified by Ambrose and colleagues [23], 

we performed a phylogenetic study based on a SNPs analysis on 20 conserved 

genes, using IncC plasmid already assigned to types as references. The 

phylogenesis allocated IncC plasmids identified in 1027 and 0831 strains into the 

type 1 group (data not shown). In these plasmids, like in all the other type 1 IncC 

plasmids the ARI-A region was located between the two tra loci [26]. 

A synteny study of the sequenced 1027 and 0831 plasmids was obtained, 

including sixteen type 1 IncC plasmids from the global epidemiology, 

demonstrating that all type 1 were phylogenetically related (0-6 SNPs) and 

showed tight evolutive correlation based on the blaNDM and the rmtC gene 

presence and location (Supplementary Figure 1). The synteny study also 

demonstrated that there was at least one of these IncC plasmids with no blaNDM 

and rmtC genes (FDAARGOS_445), and at least one plasmid showing the presence 

of the blaNDM gene alone with no rmtC (p12085-Ct1). Despite it cannot be 

demonstrated, this observation is presumptive of an evolutionary sequence of 

acquisition of resistance modules, which indicates the blaNDM gene arriving as 

first in the IncC plasmid. However, it has been reported how, even very closely 

related plasmids, may have acquired blaNDM genes by different mechanisms [27]. 

The archetype of the ARI-A island has been described in the pRMH760 IncC 

plasmid as a complex mosaic structure composed of a class 1 integron and 

multiple transposons. In our plasmids, the structure of the ARI-A is bounded by 

38-bp inverted repeats (IR) interrupted by integration of an IS4321, which as 

described for other IncC “secures” the resistance island in place [26]. The 

bleomycin resistance gene, bleMBL, trpF (encoding a phosphoribosylanthranilate 

isomerase), dsbD (encoding a twin-arginine translocation pathway signal 

                  



sequence domain protein), cutA (encoding a periplasmic divalent cation tolerance 

protein), and groES-groEL (encoding chaperonin), and the TnAs3 from Aeromonas 

salmonicida followed the 3’-end of the blaNDM gene in the ARI-A. 

The rmtC gene has initially been described flanked by the 3'-end of an ISEcp1-like 

element (which provides the promoter sequence for the expression) in a Proteus 

mirabilis strain of clinical origin [28,29]. Here it can be found in the ARI-A of the 

IncC plasmids closely linked to the blaNDM gene, bracketed within a gene encoding 

for a type III endonuclease and an ISKpn14. This insertion sequence interrupted 

the ISAba125 upstream of blaNDM.  

 

3.3 Phylogenesis of the Italian ST15 against global 16RMTases-producing K. 

pneumoniae  

The strains sequenced in this study were compared with a total of 126 genomes 

carrying one of the ten 16RMTase genes available from the NCBI GenBank 

database (Supplementary dataset). Fifty genomes were submitted to NCBI from 

China, 23 from USA, 13 from Republic of Korea and 7 from Europe (United 

Kingdom, Czech Republic, Italy and Germany). Despite these data were biased by 

the NCBI collection that has not epidemiological value, there were few reports 

about 16RMTase genes in K. pneumoniae isolates from Europe. The genomes of 

strains isolated at the Policlinico Umberto I were compared with the 126 genomes 

from GenBank generating a Maximum Likelihood (ML)-phylogenetic tree based on 

the SNPs present in the 3304 genes of the core genome (Figure 1 A). The 0831, 

1009, 1021 and 1027 strains were highly related to each other, differing for 0-6 

SNPs on the core genome (Supplementary dataset 2). 

The analysis of the phylogenetic tree of the 16RMTases depicts a peculiar 

epidemiology of these genes; the rmtC gene was always associated to blaNDM-1, 

even if the spread among K. pneumoniae isolates was limited to a handful of 

described cases. 

Yet, except the firm tie that bonds rmtC and blaNDM on IncC plasmids, already 

been described worldwide even in species different from K. pneumoniae (e.g. [30–

32]), there still is no univocal relationship between these two classes of genes. 

The 16RMTase of preference in K. pneumoniae is armA gene located on diverse 

plasmids, in various STs (Figure 1 A). Despite it has been demonstrated how in E. 

                  



coli the presence of armA impacts on the fitness of the bacteria [33], the armA 

diffusion in K. pneumoniae may in explained by the physical association to blaNDM 

on the same plasmid. This can be demonstrated for 44 strains from GenBank 

harbouring armA, 22 (50%) also carried blaNDM, in 19 cases located on the same 

plasmid (in 5 genomes armA was associated with rmtB or rmtF, suppl. Dataset 1). 

Conversely, the rmtB gene (detected in 61/126 genomes Genbank) was not linked 

to blaNDM but was strictly related with the high-risk ST11 clone (mainly on 

IncFII/IncR plasmids) (Suppl. dataset). 

No rmtA, rmtD, rmtD2, rmtE, rmtH and nmpA genes were found K. pneumoniae in 

the GenBank database. 

 

3.4 Phylogenesis of the Italian ST15 against global NDM-producing K. pneumoniae 

population 

Phylogenesis comparing the four ST15 K. pneumoniae sequenced in this study 

with 91 strains of the same species carrying the blaNDM gene showed how our 

strains fit into a well-described ST15 cluster of NDM-1-producing K. pneumoniae 

isolated worldwide, co-producing RmtC or other 16RMTases [34–36]. 

Considering all STs, the diffusion of the 16RMTases genes among NDM-producing 

strains is high: 48,3% of the analysed strains (44/91) co-harboured at least one 

of these genes, 9 strains carried two or three 16RMTases (Figure 1 B). These 

findings reveal that the worldwide spread of NDM-16RMTases-producing K. 

pneumoniae is not limited to a few high-risk clones but involves many different K. 

pneumoniae STs. 

 

4. Conclusions 

The association between blaNDM and 16RMTases is, as time passes by, more and 

more tangible, and this fact puts in great risk the use of aminoglycosides against 

the most diffused metallo-β-lactamase. 

Our data suggest that, against NDM-producing K. pneumoniae, the use of every 

aminoglycoside, even of neoglycosides, should be limited to the cases in which 

there is a proven susceptibility but cannot be used as a support empiric 

treatment. 

                  



This study, though being limited by the fact that most of the analysed strains 

come from the GenBank database and not from impartial collection performed 

worldwide, supplies a complete insight on the association between the 

16RMTases and NDM.  

Further studies are needed to assess the relationship between 16RMTases and 

the other major carbapenemases (i.e. KPC, which in our epidemiology is strictly 

associated to armA in K. pneumoniae ST101, OXA-48, and VIM), in order to 

evaluate the usefulness of new generation aminoglycosides against 

Enterobacterales carrying these specific resistance genes. 
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Figure 1. Phylogenetic analysis of several K. pneumoniae downloaded from the GenBank database 

compared with the ones sequenced in this study 

Panel A: Unrooted ML phylogenetic tree comparing 130 K. pneumoniae belonging to several different STs 

harbouring at least one 16S rRNA methyltransferases (16RMTases) and (panel B) 95 K. pneumoniae carrying 

one of the blaNDM genes. Nodes are colour coded according to their ST, with the main STs listed in the 

upper left corner. The three inner metadata rings represent the presence of one (or more) 16RMTases and the 

outer one represents (colour coded according to the legend in the middle part of the left hand of the figure). 

 

 

 

 

 

 

 
Age/s

ex 

Days of 

hospitaliza

tion 

Comorbiditie

s 

Previous 

(90-d) 

hospitaliza

tion 

Previous 

(90-d) 

antibiotic 

therapy 

Previous 

(90-d) 

carbapen

em 

therapy 

Ward of 

isolation 

Type of 

samples 

Infection/ 

colonizatio

n 

Type of 

microorgan

ism 

Pt#

1 
40/F 13 None yes yes yes ICU 

Bronch

ial 

aspirat

e 

Infection 

K. 

pneumoni

ae 

Pt#

2 
74/F 57 

COPD, 

tetraparesis 
no yes yes 

Pneumol

ogy 

Rectal 

swab 

Colonizat

ion 

K. 

pneumoni

                  



ae 

Pt#

3 
79/F 109 

DM, AH, 

COPD, 

CAD, 

Obesity, PH 

yes yes yes ICU 
Rectal 

swab 

Colonizat

ion 

K. 

pneumoni

ae 

Pt#

4 

51/

M 
28 

CAD, AH, 

obesity 
no yes yes ICU 

Rectal 

swab 

Colonizat

ion 

K. 

pneumoni

ae 

Pt#

5 
58/F 92 

CAD, AH, 

obesity 
yes yes yes 

Pneumol

ogy 

Rectal 

swab 

Colonizat

ion 

K. 

pneumoni

ae 

Pt#

6 
70/F 38 

Lung 

transplanta

tion 

no yes yes ICU BAL Infection 

K. 

pneumoni

ae 

Pt#

7 
53/F 1 

CF, lung 

transplanta

tion 

no no no 

CF  

Day 

hospital 

BAL Infection 

K. 

pneumoni

ae 

Pt#

8 
89/F 32 None no yes yes 

Pneumol

ogy 

Bronch

ial 

Aspirat

e 

Infection 

K. 

pneumoni

ae 

Pt#

9 

50/

M 
27 AH yes 

yes 

(piperacil

lin 

tazobact

am) 

No ICU 
Rectal 

swab 

Colonizat

ion 

K. 

pneumoni

ae 

 

                  


