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1 Introduction

The study of metrics with positive scalar curvature is nowadays the focus of a very active area
of research. The starting point typically will be a closed spin manifold M , and one would like
to get suitable information about the possible Riemannian metrics on M .

Stephan Stolz introduced a long exact sequence for the systematic bordism classification of
metrics of positive scalar curvature. For this, one has to fix an additional reference space X.
Then this sequence is given by (ending with n = 5 at the right)

· · · // Rspin
n+1(Γ)

∂ // Posspin
n (X) // Ωspin

n (X) // Rspin
n (Γ)

∂ // · · · . (1.1)

Here Ωspin
n (X) is the usual spin cobordism group, it consists of cobordism classes of cycles

f : M → X, with M a closed n-dimensional spin manifold; Posspin
n (X) is the group of bordism

classes of metrics of positive scalar curvature on n-dimensional closed spin manifolds with refer-
ence map to X; finally, Rspin

n (Γ) := Rspin
n (X) is a relative group discussed in more detail below,

known to depend only on Γ := π1(X). The group structure in each of the three cases is given
by disjoint union.

Because the starting point typically is a fixed manifold M , one has to make a suitable choice
of X. The standard choice here is X = BΓ with Γ = π1(M). Note that with X = BΓ the
Stolz sequence then contains in Posspin

n (BΓ) information for all spin manifolds with fundamental
group Γ at once. This is the situation discussed in the majority of all the previous work.

This paper is a contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov
on his 75th Birthday. The full collection is available at https://www.emis.de/journals/SIGMA/Gromov.html
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In the current article we change the paradigm a bit. We argue that, starting with M , the
choice of X = M is even more canonical, and we study Posspin

n (M). The usual applications
to concordance classes of metrics of positive scalar curvature on M can still be made, and the
theory is richer and more specific.

A very fruitful way to get information about the Stolz sequence (for arbitrary X) uses the
index theory of the spin Dirac operator. A systematic approach was given in [15], where the
authors construct a mapping of (1.1) to the analytic surgery exact sequence of Higson and Roe
(where Γ = π1(X))

· · · // Rspin
n+1(Γ)

∂ //

IndΓ

��

Posspin
n (X) //

%

��

Ωspin
n (X) //

β

��

Rspin
n (Γ)

∂ //

IndΓ

��

· · ·

· · ·
µΓ
X // Kn+1(C∗Γ) // SΓ

n (X̃) // Kn(X)
µΓ
X // Kn(C∗Γ) // · · · .

(1.2)

A successful strategy for detecting non-trivial elements in Posspin
n (X) goes as follows: if one

can construct a cycle ξ for Rspin
n+1(Γ) such that IndΓ(ξ) maps to a nonzero element in the cokernel

of µΓ
X , then ∂(ξ) is non-zero in Posspin

n (X) because its image through % does not vanish.

Indeed, this is the line followed by Weinberger and Yu in [23], where the authors define
the so-called finite part of the K-theory of the maximal group C*-algebra, which is proven to
map injectively to the cokernel of the assembly map. Along with this they give the concrete
construction of elements in Rspin

n+1(Γ) whose higher index belongs to this finite part. Xie, Yu and
Zeidler in [25] have systematized those constructions and corrected some mistakes, giving a more
exhaustive description of the images of the vertical arrows in (1.2). These are complemented by
a long line of results which instead make use of higher numerical invariants, such as [2, 13], where
higher η-invariants are used, or [14], where Cheeger–Gromov L2-%-invariants play an important
role.

Another example of how K-theory methods could improve those which use numerical invari-
ants can be appreciated by comparing [17] with [12], where η-invariants on end-periodic ends
are used in order to study positive scalar curvature metrics on even dimensional manifolds. We
don’t want to repeat the results of this work in detail. The general pattern is: the invariants
mentioned are constructed and shown to be invariants of classes in Posspin

∗ (X) or of the con-
cordance classes, and then (many) elements are constructed which are distinguished by these
invariants, giving rise to interesting lower bounds on the rank of Posspin

∗ (X).

All the work described so far uses fundamentally that the group Γ contains non-trivial torsion.
In particular, as it is explicitly explained in [25], the ultimate source of those constructions is the
difference between EΓ, the classifying space for proper actions, and EΓ, the classifying space
for proper and free actions.

Now, if Γ is torsion-free, then EΓ and EΓ coincide. Therefore one has to find an alternative
source for non-trivial elements in Rspin

n+1(Γ) whose higher index maps to non-trivial elements of
the cokernel of the assembly map.

The main method of this paper is to use the homological difference between M and BΓ for
this purpose. More generally, given X (which could be M) with a classifying map u : X → BΓ
such that the homological difference between them is rich, we can construct non-trivial elements
in Rspin

n+1(Γ). Although our main motivation was to obtain results for torsion-free fundamental
groups, our constructions work for arbitrary Γ. In particular, we prove the following result.

Theorem 1.1. Let X be a finite connected CW-complex and n ≥ 5. Let u : X → Bπ1(X) be
the classifying map of its universal covering. Let us assume that the (rational) strong Novikov
conjecture holds for Γ := π1(X), i.e., the assembly map K∗(BΓ)⊗Q→ K∗(C

∗Γ)⊗Q is injective.
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Set

k := dim

(
coker

(⊕
j≥0

Hn+1−4j(X;Q)
u∗−→
⊕
j≥0

Hn+1−4j(BΓ;Q)

))
,

and

k′ := dim

(
ker

(⊕
j≥0

Hn−4j(X;Q)
u∗−→
⊕
j≥0

Hn−4j(BΓ;Q)

))
,

then

rk Posspin
n (X) ≥ k + k′.

The reason why in the statement of Theorem 1.1 we distinguish the elements coming from the
kernel and those from the cokernel of u∗ is that, if X is an n-dimensional closed spin manifold,
those coming from the cokernel can be realized by cycles in Posspin

n (X) represented by the identity
map. This fact is key for the main result of Section 3.

By standard surgery techniques we can refine the previous result if we look for metrics on a
fixed manifold M . To formulate this, denote by P+(M) the set of concordance classes of metrics
with positive scalar curvature on an n-dimensional closed spin manifold M . In the proof of [20,
Theorem 5.4], in order to construct a free and transitive action of Rspin

n+1(Γ) on P+(M), Stolz
defines a “difference” map

i : P+(M)× P+(M)→ Rspin
n+1(Γ) (1.3)

such that

� i(g, g) = 0 and i(g, g′) + i(g′, g′′) = i(g, g′′) for all g, g′, g′′ ∈ P+(M);

� the map ig : P+(M)→ Rspin
n+1(Γ), which sends g′ to i(g, g′) is bijective for all g ∈ P+(M).

This induces on P+(M) the structure of an Rspin
n+1(Γ)-torsor, or the structure of an affine space

modelled on Rspin
n+1(Γ). After picking any point g0 of P+(M) as the identity, P+(M) acquires

a group structure isomorphic to Rspin
n+1(Γ). This group structure is non-canonical as it depends

on g0 and therefore seems only useful if there is a preferred g0 (e.g., one which bounds a metric of
positive scalar curvature, as the standard metric on Sn). This kind of structure is studied (and
improved to an H-space structure on the space of metrics of positive scalar curvature) in [9].
We use the affine structure of P+(M) in the last part of the following Theorem 1.2.

Theorem 1.2. Let X, n, k and Γ be as in Theorem 1.1. Assume that there exists a cycle
in Posspin

n (X), given by (f : M → X, g) such that f is 2-connected (i.e., inducing an isomorphism
on π0 and π1 and a surjection on π2).

Then there are metrics with positive scalar curvature g, g1, . . . , gk on M , together with the
fixed map f : M → X, which

(1) span an affine lattice of rank k in the abelian group Posspin
n (X) and hence an affine space

of dimension k in Posspin
n (X)⊗Q;

(2) in particular, they span an affine lattice of rank k in Posspin
n (M) (with reference map the

identity);

(3) in particular, they span an affine lattice of rank k of concordance classes of positive scalar
curvature metrics in P+(M). The lattice is with respect to the underlying structure of an
affine space modelled on the abelian group Rspin

n+1(Γ).
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Perhaps the first result which uses index methods to classify metrics of positive scalar curva-
ture is obtained by Carr [4], where infinitely many concordance classes of metrics with positive
scalar curvature are constructed even on simply connected manifolds M like the sphere (of the
right dimension). This is different in spirit to our result: we prove in Remark 3.9 that the classes
of Carr are all equal in Posspin

n (M), i.e., although they are not concordant, they are all bordant.
Recently, Ebert and Randal-Williams in [8] developed a very sophisticated bordism category

approach to study R+(M), the space of the metrics with positive scalar curvature on M . Theo-
rem C of [8] implies that, if M has even dimension 2n, the fundamental group Γ verifies rationally
the Baum–Connes conjecture and its homological dimension is less or equal to 2n+ 1, then the
so-called index difference map is a rational surjection of π0(R+(M)) onto KO2n+1(C∗Γ).

In our results, we only assume the rational injectivity instead of bijectivity of the Baum–
Connes assembly map for Γ and, as remarked in contrast with Carr, see [4], we obtain metrics
which are not only non-isotopic, but also non-bordant. On the other hand, in [8] the authors
are mainly interested in higher homotopy groups.

Finally, we provide a detailed and pedestrian proof how to pass from a bordism W
F−→ X

between M0
f0−→ X and M1

f1−→ X to a bordism W ′
F ′−→ X with same ends which we call Gromov–

Lawson admissible, meaning that it is built from M0 by attaching handles of codimension ≥ 3,
provided that f1 is 2-connected. This is certainly a well known and heavily used result, but does
not seem treated well in a pedestrian way with all details, which we try to provide here.

The paper is organized as follows:

� In Section 2 we prove Theorem 1.1, which gives a lower bound for the rank of Posspin
n (X)

in term of the difference between X and BΓ.

� In Section 3 we prove Theorem 1.2, which refines Theorem 1.1 to a result about concor-
dance classes. In particular we give details how bordisms can be made Gromov–Lawson
admissible in the sense mentioned above.

2 Mapping psc to analysis to detect bordism classes

In [15, Section 5] Piazza and Schick construct a map from the Stolz exact sequence to the
Higson–Roe exact sequence (see also [24, 27] for different approaches). Instead of working with
complex C∗-algebras as in [15], one can without extra effort adapt this construction to the
setting of real C∗-algebras (compare [26]). All of the constructions are natural. As a result,
for a finite connected CW-complex X with Γ = π1(X) and classifying map u : X → BΓ for its
universal covering we obtain the following commuting diagram of Stolz exact sequences

// Posspin
n+1(X) //

u∗
��

Ωspin
n+1(X)

jX //

uΩ
∗
��

Rspin
n+1(X)

∂X //

∼=
��

Posspin
n (X) //

u∗
��

// Posspin
n+1(BΓ) // Ωspin

n+1(BΓ)
j // Rspin

n+1(Γ)
∂ // Posspin

n (BΓ) // ,

(2.1)

which is mapped to the corresponding diagram of Higson–Roe sequences

// SOΓ
n+1

(
X̃
)

//

u∗
��

KOn+1(X)
µΓ
X //

uKO
∗
��

KOn+1(C∗Γ)
ιX //

=

��

SOΓ
n

(
X̃
)

//

u∗
��

// SOΓ
n+1

// KOn+1(BΓ)
µΓ
BΓ // KOn+1(C∗Γ)

ι // SOΓ
n

// .

(2.2)

The relevant maps are the transformation of homology theories β : Ωspin → KO, the APS-index
map IndΓ : Rspin → KO(C∗Γ) and the secondary index map ρ : Posspin → SOΓ. Moreover, we
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set SOΓ
n

(
X̃
)

:= KOn
(
D∗R
(
X̃
)Γ)

, the K-theory of the Roe’s D∗-algebra. Finally, the universal
analytic structure group SOΓ

n is the limit of SOΓ
n(Z) over all Γ-compact subspaces Z of EΓ.

Recall that the Pontrjagin character Ph: KO∗(X) →
⊕

j∈ZH∗+4j(X;Q) is defined as the

composition of the complexification map in K-homology KO∗(X)
⊗C−−→ K∗(X) and the Chern

character Ch: K∗(X)→
⊕

k∈ZH∗+2k(X;Q). It so happens that Ph takes values in the subgroup⊕
j∈ZH∗+4j(X;Q) and is a rational isomorphism onto that subgroup. Rationally, connective

real K-homology is a subspace of periodic real K-homology, ko∗(X)⊗Q ⊂ KO∗(X)⊗Q, under

the Pontryagin character isomorphism ko∗(X)⊗Q Ph−−→∼=
⊕

j≥0H∗−4j(X;Q).

Lemma 2.1. Let X be a space and n ≥ 0. Then the composition

Ωspin
n (X)⊗Q β−→ kon(X)⊗Q Ph−−→∼=

⊕
j≥0

Hn−4j(X;Q),

which assigns to a cobordism class
[
M

f−→ X
]

the class f∗
(
Â(M)∩ [M ]

)
, is a natural surjection.

The same holds for the relative groups of a map u : X → Y .

Proof. If x ∈ Hn−4j(X;Q) then by [25, Proposition 3.1] there exists a spin manifold M of
dimension n − 4j and a map f : M → X such that a non-zero multiple of x is the Pontrjagin
character of β([f : M → X]) = f∗[ /DM ] ∈ KOn−4j(X)⊗Q. Finally, recall the Kummer surface V ,
a spin manifold whose index generates KO4(∗) ⊗ Q. Observe that the cartesian product of
f : M → X with V j → ∗ is n-dimensional with a map to X such that the push-forward of its
Pontrjagin character is still a non-zero multiple x, thanks to the multiplicativity of the Pontrjagin
character with respect to Cartesian products.

The relative generalized homology groups of u are the (reduced) generalized homology groups
of the mapping cone of u. Therefore, the absolute version immediately implies the relative
version. �

We are now able to prove the first main result of this paper.

Proof of Theorem 1.1. It is well known that the natural map KO∗(BΓ)⊗Q→ KOΓ
∗ (EΓ)⊗Q

is injective, compare, e.g., [1, Section 7]. Secondly, the rational strong Novikov conjecture for
real and complex K-theory are equivalent, compare, e.g., [19]. Therefore, if the strong Novikov
conjecture holds for Γ, it follows that µΓ

BΓ : KO∗(BΓ)⊗Q→ KO∗(C
∗Γ)⊗Q is injective.

As Ωspin
n+1(X) is mapped to KOn+1(X) under the map β from the Stolz sequences (2.1) to

the Higson–Roe sequences (2.2) of [15, Section 5], after factoring out their images in the ap-
propriate places, the following maps are well-defined: β∗ : cokern+1

(
uΩ
∗
)
→ cokern+1

(
uKO∗

)
and (IndΓ)∗ : cokern+1(jX) → cokern+1

(
µΓ
X

)
. Hence we obtain the following commuting dia-

gram (using along the way the inverses of the third vertical arrow in (2.1) or (2.2), which are
isomorphisms)

Ωspin
n+1(BΓ) // //

β

��

cokern+1

(
uΩ
∗
) j∗ //

β∗
��

cokern+1(jX) �
� (∂X)∗ //

(IndΓ)∗
��

Posspin
n (X)

%

��

KOn+1(BΓ) // // cokern+1

(
uKO∗

) (µΓ
BΓ)∗// cokern+1

(
µΓ
X

) � � (ιX)∗ // SOΓ
n

(
X̃
)
.

(2.3)

The two rightmost horizontal arrows are injective by the exactness of the top rows of (2.1)
and (2.2). The middle lower arrow

(
µΓ
BΓ

)
∗ becomes injective after tensoring with Q, due to the

assumption that Γ satisfies the (rational) strong Novikov conjecture, i.e., that µΓ
BΓ is injective
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after tensoring with Q, and an injective map remains injective if we quotient out the images of
the same group (here KOn+1(X)⊗Q) in source and target.

By using Lemma 2.1 and that

k = dim

(
coker

(⊕
j≥0

Hn+1−4j(X;Q)
uH∗−−→

⊕
j≥0

Hn+1−4j(BΓ;Q)

))
,

we pick x1, . . . , xk ∈ Ωspin
n+1(BΓ) such that their images span a k-dimensional subspace in

coker

(⊕
j≥0

uHn+1−4j

)
∼= cokern+1

(
uko∗
)
⊗Q ⊂ cokern+1

(
uKO∗

)
⊗Q.

By commutativity of (2.3) and the injectivity of the lower row after tensoring with Q, the images
of x1, . . . , xk in Posspin

n (X) under the composition of the top horizontal arrows then span a free
abelian subgroup W of Posspin

n (X) of rank k.
Let Ωspin

∗ (u) be the relative generalized homology group (here spin bordism) for the map
u : X → BΓ. In the following commutative diagram

Ωspin
n+1(u)⊗Q // //

����

kern
(
uΩ
∗
)
⊗Q //

��

Ωspin
n (X)⊗Q

uΩ
∗ //

��

Ωspin
n (BΓ)⊗Q

��⊕
j≥0

Hn+1−4j(u;Q) // //
⊕
j≥0

kern−4j(u∗) //
⊕
j≥0

Hn−4j(X;Q)
u∗ //

⊕
j≥0

Hn−4j(BΓ;Q)

the leftmost vertical arrow is surjective by the relative version of Lemma 2.1 and the left hori-
zontal arrows are surjective by the exactness of the pair sequence. It follows immediately that
the second vertical arrow is also surjective.

Now observe that kern
(
uΩ
∗
)
⊗Q, by the commutativity of the middle square in (2.1), is also

contained in the kernel of jX : Ωspin
n (X) ⊗ Q → Rspin

n (X) ⊗ Q. Since dim
(

kern
(
uΩ
∗
)
⊗ Q

)
≥ k′

and by exactness of the Stolz sequence, it lifts to a subspace W ′ of Posspin
n (X)⊗Q of dimension

greater or equal to k′. It is a general fact that W ′ is generated by a free abelian subgroup
of Posspin

n (X) whose rank is dim(W ′). Finally, the exactness of the Stolz sequence implies that
W ⊗Q ∩W ′ = {0} in Posspin

n (X)⊗Q and the result is proven. �

Remark 2.2. We are thankful to a referee for stressing a more conceptual approach to the
proof of this estimation, using more directly the relative generalized homology groups. By [5,
Proposition 2.4] and [5, Corollary 2.6] we have the following long exact sequence of groups

· · · // Posspin
n+1(BΓ) // Ωspin

n+1(u) // Posspin
n (X)

u∗ // Posspin
n (BΓ) // · · · . (2.4)

Moreover in the following commutative diagram

Posspin
n+1(BΓ)⊗Q //

��

kon+1(BΓ)⊗Q

��

� � µ
Γ
BΓ //

��

KOn+1(BΓ)⊗Q

��

µΓ
BΓ // KOn+1(C∗RΓ)⊗Q

Ωspin
n+1(u)⊗Q // kon+1(u)⊗Q �

� // KOn+1(u)⊗Q

the composition of the horizontal arrows in the first row is zero as a consequence of the exactness
of (2.1) and (2.2). As µΓ

BΓ is injective by assumption, it follows that the map Posspin
n+1(BΓ)⊗Q→

kon+1(BΓ) is zero, too. Thus, we get the following factorization of the bottom line

Ωspin
n+1(u)⊗Q→ coker

(
Posspin

n+1(BΓ)→ Ωspin
n+1(u)

)
⊗Q→ kon+1(u)⊗Q.
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Since by Lemma 2.1 we know that Ωspin
n+1(u) ⊗ Q → kon+1(u) ⊗ Q is surjective, we have that

coker
(
Posspin

n+1(BΓ) → Ωspin
n+1(u)

)
⊗ Q → kon+1(u) ⊗ Q is surjective, too. Then, since by the

relative Stolz exact sequence (2.4) coker
(
Posspin

n+1(BΓ) → Ωspin
n+1(u)

)
is a subspace of Posspin

n (X),
we conclude that

dim Posspin
n (X)⊗Q ≥ dim kon+1(u)⊗Q = dim

⊕
j≥0

Hn+1−4j(u;Q) = k + k′.

3 Concordance classes

The basis of most constructions of positive scalar curvature metrics is the surgery theorem of
Gromov and Lawson, see [10] or [7] for full details. It says that, given a bordism W from M0

to M1 such that W is obtained from M0 attaching handles only of codimension ≥ 3, then a metric
of positive scalar curvature on M0 can be extended to a metric of positive scalar curvature on W
with product structure near the boundary. In particular, one obtains a “transported” positive
scalar curvature metric on M1. We call bordisms satisfying the codimension condition Gromov–
Lawson admissible.

In the following, we discuss the details how Gromov–Lawson admissible bordism W can be
obtained, focusing on the not quite so obvious question why finitely many surgery steps suffice.
The result appears also, e.g., as [18, Theorem 2.2] where the finiteness questions are not discussed
or in a much more general setup in [11, Appendix 2].

Proposition 3.1. Let X be a CW-complex. Let F : W → X be a spin bordism with reference
map between f0 : M0 → X and f1 : M1 → X. Assume f1 is 2-connected (πj(f1) is an isomor-
phism for j < 2 and an epimorphism for j = 2) and n := dim(M1) ≥ 5. Then we can change W
in the interior to F ′ : W ′ → X such that W ′ is a Gromov–Lawson admissible bordism from M0

to M1.

Proof. By standard results from surgery theory (compare [22]), the desired bordism W ′ is
Gromov–Lawson admissible if the inclusion M1 ↪→ W ′ is 2-connected. We perform surgeries in
the interior of W to achieve this.

Isomorphism on π0. We treat each component A ofX (or equivalently ofM1) at a time. We
have then to modify WA := F−1(A) so that it becomes connected. This is achieved by (interior)
connected sum of the finitely many components of W ′. Because also X is path-connected, the
map F : W → X can be extended over the connected sum of its components.

Isomorphism on π1. The composition π1(M1) → π1(W ) → π1(X) is an isomorphism,
therefore the map π1(W ) → π1(X) is surjective. We want to modify W with further surgeries
which eliminate its kernel, then π1(W ′) → π1(X) and consequently also π1(M1) → π1(W ′) is
an isomorphism. As π1(M1) ∼= π1(X) is finitely presented (as fundamental group of a smooth
compact manifold) and π1(W ) is finitely generated, this kernel is finitely generated as a normal
subgroup, see Lemma 3.2 below. So we have to do a finite number of surgeries along embedded
circles (in the interior of W ). Because W is oriented, these automatically have trivial normal
bundle, so surgery is possible. It is also well-known that, possibly after changing the trivialization
by the non-trivial element of π1(SO(n)) ∼= Z/2, one can equip the result of the surgeries with
a spin structure. The fact that we do surgery along elements which lie in the kernel of π1(F )
means precisely that F can be extended over the disks and thus over the new bordism, which
we continue to denote W by small abuse of notation.

Epimorphism on π2. We finally have to perform surgeries so that ι∗ : π2(M1) → π2(W )
becomes surjective, where ι : M1 ↪→W is the inclusion. We follow the proof of [20, Lemma 5.6]
adapted to our situation. Since M1 and W are compact manifolds, the relative 2-skeleton
(W,M1)(2) of W is obtained by attaching a finite number of 2-cells to M1. To see this one
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starts with a handlebody decomposition of W relative to M1 and then uses handle cancellation
(the standard results from surgery theory, [22], alluded to above) to get rid of 0-handles and
1-handles using the fact that M1 ↪→ W now is 1-connected. The 2-skeleton (W,M1)(2) of
the CW-decomposition of W relative M1 arising from this new handlebody is then homotopy
equivalent to M1 ∨

(∨
j∈J S

2
)
.1

Now, the cokernel of ι∗ : π2(M1)→ π2(W ) is finitely generated by these spheres xj , for j ∈ J .
Since (f1)∗ : π2(M1) → π2(X) is surjective, there exist elements {yj ∈ π2(M1)}j∈J such that
(f1)∗(yj) = F∗(xj). It follows that the alternative generators of the cokernel given by ι∗

(
y−1
j

)
xj

satisfy

F∗
(
ι∗
(
y−1
j

)
xj
)

= (ι ◦ F )∗
(
y−1
j

)
F∗(xj) = (f1)∗

(
y−1
j

)
F∗(xj) = 0 ∀ j.

These generators we can assume embedded because n ≥ 5. Since W is spin, the normal bundle
of these embedded spheres is automatically trivial and surgery along them is possible.

Because of this, we can extend F over the surgeries along the alternative generators ι∗
(
y−1
j

)
xj

and we obtain the desired cobordism F ′ : W ′ → X such that the inclusion of M1 into W ′ is a 2-
equivalence.

We conclude by explaining why this now is a Gromov–Lawson admissible bordism. Start
with an arbitrary handle decomposition of W relative to M1. Now we are in the situation to
apply the handle cancellation method [22] again: because the map is 2-connected, we find an
alternative handle decomposition without 0-, 1-, or 2-handles. Turning this upside-down this
handle decomposition can be interpreted as a handle decomposition of W relative to M0. In this
interpretation, what was previously the dimension of the handle now becomes the codimension.
As the result, we obtain W from M0 attaching handles only of codimension ≥ 3, as desired. �

Lemma 3.2. Let α : Γ′ → Γ be a surjective group homomorphism between finitely generated
groups. Assume in addition that Γ is finitely presented. Then the kernel of α is finitely generated
as a normal subgroup of Γ′.

Proof. Let us fix a finite presentation Γ = 〈x1, . . . , xh; r1, . . . , rk〉, where the relations rj are
given by fixed words wj

(
x±1

1 , . . . , x±1
h

)
. Let us fix also a finite set of generators {y1, . . . , yn}

for Γ′. Pick a1, . . . , ah ∈ Γ′ such that α(aj) = xj for all j and set w′l
(
x±1

1 , . . . , x±1
h

)
:= α(yl).

Then it follows that{
w1

(
a±1

1 , . . . , a±1
h

)
, . . . , wk

(
x±1

1 , . . . , x±1
h

)
, y−1

1 w′1
(
x±1

1 , . . . , x±1
h

)
, . . . , y−1

n w′n
(
x±1

1 , . . . , x±1
h

)}
is a finite set of generators as a normal subgroup for kerα. �

Now we are ready for the proof of the main result of this section.

Proof of Theorem 1.2. Let us consider again the situation of Theorem 1.1, where we have

classes x1 =
[
M1

f1−→ X,h1

]
, . . . , xk =

[
Mk

fk−→ X,hk
]

in Posspin
n (X) which span a subgroup

of rank k, but are trivial when mapped to Ωspin
n (X) (and a fortiori to Ωspin

n (BΓ)), in particular
they are null-bordant. Let us pick such null-bordisms F i : Yi → X, so that Mi is the boundary
of Yi and fi is the restriction of F i to the boundary.

For i ∈ {1, . . . , k}, the disjoint union of M and Mi is spin bordant to M , with bordism
Gi : Wi → X given by the disjoint union of f× id : M× [0, 1]→ X and Fi : Yi → X. By Proposi-
tion 3.1 we can modify these bordisms in the interior and then assume thatWi is Gromov–Lawson
admissible.

1Note that this implies a special case of the following result of Wall [21, proof of Lemma 1.1]: if X, Y are
finite connected CW-complexes and f : X → Y induces an isomorphism on π1, then π2(f), here isomorphic to
coker(π2(f) : π2(X) → π2(Y )) is finitely generated as a module over the (common) π1.
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Now we can use the Gromov–Lawson surgery theorem to “push” the given metrics g q hi of
positive scalar curvature from M qMi through the new bordism to positive scalar curvature

metrics gi on M . We obtain new representatives
[
M

f−→ X, gi
]

of xi. As the xi span an affine
lattice of rank k in Posspin(X), this finishes the proof. �

Let us spell out the special case X = M of Theorem 1.2:

Corollary 3.3. Let (M, g) be an n-dimensional connected spin manifold of positive scalar cur-
vature with π1(M) = Γ, n ≥ 5. Let u : M → BΓ be an isomorphism on fundamental groups.
Set

k :=
∑

0≤j≤n+1
j−n≡1 (mod 4)

dim (coker(u∗ : Hj(M ;Q)→ Hj(BΓ;Q))) .

Then M admits metrics g1, . . . , gk of positive scalar curvature such that the elements (M, g),
(M, g1), . . . , (M, gk) span a k-dimensional affine subspace of Posspin

n (M) ⊗ Q. In particular,
these metrics form a k-dimensional lattice of non-concordant metrics of positive scalar curvature
on M .

Example 3.4. Let (M, g) be a connected n-dimensional spin manifold of positive scalar cur-
vature such that dim(Hn+1(Bπ1(M);Q)) = k. Then the cokernel of the map induced by the
inclusion in homology of degree n + 1 is Hn+1(Bπ1(M)), as Hn+1(M) = 0 for degree reasons.
Therefore there exist k metrics g1, . . . , gk of positive scalar curvature on M which span together
with g an affine space of rank k in Posspin

n (M) and, in particular, give rise to a lattice of rank k
of concordance classes of positive scalar curvature metrics on M .

For example, if π1(M) ∼= ZN then we have dim
(
Hn+1

(
ZN ;Q

))
=
(
N
n+1

)
.

Example 3.5. Assume that n ≥ 5 and Γ = 〈x1 . . . , xk | r1, . . . , rh〉 is finitely presented. Then
there exists a closed spin manifold M of dimension n with fundamental group Γ which admits
a metric g of positive scalar curvature.

Indeed, take the wedge of k circles and, for each relation ri, attach a two cell. Denote
by X this 2-dimensional CW-complex. Finally embed X into Rn+1 and consider a tubular
neighbourhood N of X. Then M := ∂N is an n dimensional spin manifold with fundamental
group Γ. Observe that N is a spin BΓ null-bordism for M or, after cutting out a disk, a BΓ
bordism from Sn to M . By Proposition 3.1 we can assume that this bordism is Gromov–Lawson
admissible. Then M admits a metric g of positive scalar curvature by the Gromov–Lawson
surgery theorem.

In addition, observe that for the manifold we constructed we have a factorization u : M →
N → BΓ and N is homotopy equivalent to a 2-dimensional CW-complex. Therefore

im(u∗ : Hj(M)→ Hj(BΓ)) = {0} ∀ j ≥ 3.

By Corollary 3.3, with k =
∑

3≤j≤n+1, j≡n+1 (mod 4) dim(Hj(BΓ;Q)) we find metrics g1, . . . , gk
of positive scalar curvature on M such that the (M, gi) together with (M, g) span a k-dimensional
affine subspace of Posspin

n (M) ⊗ Q. Note that this includes many examples where k = +∞,
whenever the rational homology of Γ is not finitely generated in the appropriate degrees.

Remark 3.6. In Example 3.5 we focused on Posspin
n (M)⊗Q. Nevertheless, as one of the referees

suggested, if we consider P+(M) we can obtain the better estimate of its rank as follows:

dimP+(M)⊗Q = dim Rspin
n (M)⊗Q ≥ dim

(
im(Ωspin

n+1(BΓ)⊗Q→ KOn+1(BΓ)⊗Q)
)
,
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where the last inequality is obtained by combining the mapping from the Stolz exact sequence to
the Higson–Roe exact sequence and the assumption that Γ verifies the (rational) strong Novikov
conjecture. Then we deduce from to Lemma 2.1 that

dimP+(M)⊗Q ≥
∑
j≥0

dimHn+1−4j(BΓ;Q). (3.1)

The difference between this lower bound and the one obtained in Theorem 1.2 is due to the
fact that there can be metrics which are not concordant (hence different in P+(M)) but bor-
dant (hence equal in Posspin

n (M)). Indeed, to understand where the larger number of linearly
independent metrics predicted by (3.1) compared to Theorem 1.2 come from, let us consider

im

(⊕
j≥0

Hn+1−4j(M ;Q)
u∗−→
⊕
j≥0

Hn+1−4j(BΓ;Q)

)
.

Let V ′ ⊂
⊕

j≥0Hn+1−4j(M ;Q) be a subspace of maximal dimension on which u∗ is injective.

By Lemma 2.1 we can lift it to a subspace V of Ωspin
n (M) ⊗ Q and, because of the assumption

about the (rational) strong Novikov conjecture, V injects into Rspin
n (M) ⊗ Q and provides an

additional subspace of P+(M) ⊗ Q. It is immediate to see that, by the exactness of the Stolz
sequence, V is mapped to 0 in Posspin

n (M)⊗Q and therefore all the metrics given by V in R+(M)
are null-bordant. We are going to see examples of this kind of metrics in Remark 3.9.

Remark 3.7. In special situations, the different metrics constructed in Theorem 1.2, Corol-
lary 3.3 and the examples remain different also in the moduli space of Riemannian metrics of
positive scalar curvature on M , the quotient by the action of the diffeomorphisms group. This is
worked out in detail in [16]. As indicated in the introduction, this is based on the use of higher
numeric rho invariants, whose behavior under the action of the diffeomorphism group can be
controlled.

Remark 3.8. Consider the map i from (1.3). If we compose it with the map IndΓ in (1.2), it
is easy to see that we obtain the map

Ind diffΓ : P+(M)× P+(M)→ KOn+1(C∗Γ)

used in [8, Section 5.3]. More precisely, in [8] the map is defined on the space of isotopy classes
of metrics with positive scalar curvature, but it descends to P+(M), using that the different
definitions of Ind diffΓ all coincide, proved in detail in [6] and for non-trivial Γ in the Münster
dissertation of Buggisch [3].

It is straightforward to see that, rationally, the affine subspace generated by the lattice
of P+(M) in Theorem 1.2, (3) is mapped surjectively onto the image of the rational assembly
map kon+1(BΓ)⊗Q→ KOn+1(C∗Γ)⊗Q.

Remark 3.9. As a predecessor construction of concordance classes which does not make use of
non-trivial torsion, let us recall the construction of Carr, see [4].

First, consider the sphere S4n−1. Carr takes a 2-connected 4n dimensional spin manifold B
with Â(B) = 1 and removes two disks to obtain a bordism W from S4n−1 to S4n−1. Positive
scalar curvature surgery produces a metric of positive scalar curvature on W starting with the
canonical metric on S4n−1 and ending with a non-concordant new metric of positive scalar
curvature on S4n−1.

However, these metrics are equal in Posspin
4n−1

(
S4n−1

)
. To see this, we have just to construct the

reference map F : W → S4n−1 which restricts to the identity on the boundary components. For
this, choose a path which is a clean embedding of the closed interval into W , joining two points
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in the two boundary spheres. Choose then a tubular neighbourhood of this one dimensional
submanifold of W , which is necessarily trivial. Now a trivialization of the tubular neighbourhood
defines a collapse map from W to S4n−1, whose restriction to the boundary components is
homotopic to the identity. Putting these homotopies on collar neighbourhoods of the boundary
components, we obtain the desired map F .

More generally, given an arbitrary closed spin manifold M of dimension 4n− 1 with positive
scalar curvature metric g, Carr makes a connected sum of M × [0, 1] with W along a path
parallel to the previously chosen one, to obtain a psc bordism V from (M, g) to (M, g′). These
two metrics have non-zero index difference and therefore they are not concordant. Nevertheless,
they are equal in Posspin

4n−1(M). We obtain the desired reference map from V to M by connected
sum of the previous map with the projection from M × [0, 1] to M .
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