Accepted Manuscript

Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFR_{ML}): Impact of iterative and filtered back projection reconstruction techniques

Domenico Mastrodicasa, Moritz H. Albrecht, U. Joseph Schoepf, Akos Varga-Szemes, Brian E. Jacobs, Sebastian Gassenmaier, Domenico De Santis, Marwen H. Eid, Marly van Assen, Chris Tesche, Cesare Mantini, Carlo N. De Cecco

PII: S1934-5925(18)30215-6

DOI: https://doi.org/10.1016/j.jcct.2018.10.026

Reference: JCCT 1167

To appear in: Journal of Cardiovascular Computed Tomograph

Received Date: 20 June 2018

Revised Date: 19 October 2018

Accepted Date: 24 October 2018

Please cite this article as: Mastrodicasa D, Albrecht MH, Schoepf UJ, Varga-Szemes A, Jacobs BE, Gassenmaier S, De Santis D, Eid MH, van Assen M, Tesche C, Mantini C, De Cecco CN, Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFR_{ML}): Impact of iterative and filtered back projection reconstruction techniques, *Journal of Cardiovascular Computed Tomograph* (2018), doi: https://doi.org/10.1016/j.jcct.2018.10.026.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Artificial Intelligence Machine Learning-based Coronary CT Fractional Flow Reserve (CT-FFR_{ML}): Impact of Iterative and Filtered Back Projection Reconstruction Techniques

Domenico Mastrodicasa ^{a, b, c}, Moritz H. Albrecht ^{a, d}, U. Joseph Schoepf ^{a, e*},

Akos Varga-Szemes ^a, Brian E. Jacobs ^a, Sebastian Gassenmaier ^a, Domenico De Santis ^f, Marwen H. Eid ^a, Marly van Assen ^{a, g}, Chris Tesche ^h, Cesare Mantini ^c, Carlo N. De Cecco ^{a, i}

^a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA

^b Department of Radiology and Stanford Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105

^c Department of Neuroscience and Imaging, Section of Diagnostic Imaging and Therapy -Radiology Division, SS. Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy

^d Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany

^e Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA

^f Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Rome, Italy

^g Center for Medical Imaging - North East Netherlands, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

^h Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany

ⁱ Department of Radiology & Imaging Sciences, Emory University, Atlanta, GA, USA

* Corresponding Author:

U. Joseph Schoepf, MD Heart & Vascular Center, Medical University of South Carolina Ashley River Tower 25 Courtenay Drive, Charleston, SC 29425-2260, USA Phone: +1-843-876-7146; Fax: +1-843-876-3157; E-Mail: schoepf@musc.edu

Short title: Impact of CT Reconstruction Techniques on CT-FFR

Disclosures

Dr. Schoepf receives institutional research support from Astellas, Bayer Healthcare, General Electric Healthcare, and Siemens Healthineers. Drs. De Cecco and Varga-Szemes receive institutional research support from Siemens Healthineers. Dr. De Cecco has received consulting fees from Bayer Healthcare. Dr. Schoepf has received consulting or speaking fees from Bayer, Guerbet, HeartFlow, and Siemens Healthineers. The other authors have no conflict of interest to disclose. Workstation-based flow computations of coronary blood flow are not currently approved by the Food and Drug Administration.

Abstract

Background: The influence of computed tomography (CT) reconstruction algorithms on the performance of machine-learning-based CT-derived fractional flow reserve (CT-FFR_{ML}) has not been investigated. CT-FFR_{ML} values and processing time of two reconstruction algorithms were compared using an on-site workstation.

Methods: CT-FFR_{ML} was computed on 40 coronary CT angiography (CCTA) datasets that were reconstructed with both iterative reconstruction in image space (IRIS) and filtered backprojection (FBP) algorithms. CT-FFR_{ML} was computed on a per-vessel and per-segment basis as well as distal to lesions with \geq 50% stenosis on CCTA. Processing times were recorded. Significant flow-limiting stenosis was defined as invasive FFR and CT-FFR_{ML} values \leq 0.80. Pearson's correlation, Wilcoxon, and McNemar statistical testing were used for data analysis.

Results: Per-vessel analysis of IRIS and FBP reconstructions demonstrated significantly different CT-FFR_{ML} values ($p \le 0.05$). Correlation of CT-FFR_{ML} values between algorithms was high for the left main (r=0.74), left anterior descending (r=0.76), and right coronary (r=0.70) arteries. Proximal and middle segments showed a high correlation of CT-FFR_{ML} values (r=0.73 and r=0.67, $p \le 0.001$, respectively), despite having significantly different averages ($p \le 0.05$). No difference in diagnostic accuracy was observed (both 81.8%, p = 1.000). Of the 40 patients, 10 had invasive FFR results. Per-lesion correlation with invasive FFR values was moderate for IRIS (r=0.53, p = 0.117) and FBP (r=0.49, p = 0.142). Processing time was significantly shorter using IRIS (15.9 vs. 19.8 minutes, $p \le 0.05$).

Conclusion: CT reconstruction algorithms influence CT-FFR_{ML} analysis, potentially affecting patient management. Additionally, iterative reconstruction improves CT-FFR_{ML} post-processing speed.

Keywords

coronary artery disease; coronary computed tomography angiography; iterative reconstruction;

filtered back-projection; fractional flow reserve

Abbreviations

- BMI Body mass index
- CAD Coronary artery disease
- CCTA Coronary CT angiography
- CT-FFR CT-derived fractional flow reserve
- CT-FFR_{ML} Machine-learning-based coronary CT-derived fractional flow reserve
- CX Left circumflex artery
- FBP Filtered back-projection
- FFR Fractional flow reserve
- ICA Invasive catheter angiography
- IQR Interquartile ranges
- IRIS Iterative reconstruction in image space
- LAD Left anterior descending artery
- LM Left main artery
- RCA Right coronary artery
- SD Standard deviation

1. Introduction

Computational fluid dynamics (CFD) applied to coronary CT angiography (CCTA) has enabled non-invasive hemodynamic assessment of coronary artery disease (CAD).¹ CFDbased coronary CT-derived fractional flow reserve (CT-FFR) represents an established approach and has demonstrated high diagnostic accuracy for detecting lesion-specific ischemia.² However, powerful computational requirements limit the use of this technology to supercomputers in off-site core laboratories.¹

With the advent of artificial intelligence, it is now possible to non-invasively derive FFR values using on-site, physician-driven workstations.³ Several trials have reported strong diagnostic performance of a machine-learning-based coronary CT-FFR (CT-FFR_{ML}) software prototype with a broad range of clinical benefits.^{3,4}

However, the potential impact of CT reconstruction algorithms on CT-FFR_{ML} derivation has not been sufficiently investigated and the impact of different algorithms has not been evaluated in the same patient. Therefore, this study sought to assess and compare the influence of iterative reconstruction in image space (IRIS) and filtered back-projection (FBP) reconstruction algorithms on CT-FFR_{ML} values and processing time using machine-learningbased software on a regular workstation.

2. Methods

2.1 Patient Population

This retrospective single center study was approved by the local Institutional Review Board with a waiver for informed consent. The study flowchart and enrollment criteria are presented in **Figure 1**. Sixty-one consecutive patients who underwent CCTA at our institution between May 2010 and January 2014 were included.

2.2 CT image acquisition protocol and image reconstruction

All CT scans were performed on a 2nd generation dual-source CT system (Somatom Definition Flash; Siemens Healthineers, Forchheim, Germany). CCTA protocol selection was performed as previously described.³ IRIS series were reconstructed with the "I26f" algorithm ("kernel") and a strength factor of 3, while the "B26f" vascular kernel was used for the FBP series.

2.3 CT-FFR_{ML} analysis and image quality assessment

CT-FFR_{ML} computation was performed using an on-site machine-learning software prototype (cFFR version 3.0, Siemens Healthineers, not commercially available). A 5-point Likert scale was used to rate CCTA image quality according to vessel opacification, structural discontinuity, quality of contour delineation, and general image impression (0=very poor, 1=poor, 2=fair, 3=good, 4=excellent). An observer (DM) computed CT-FFR_{ML} values twice for each patient, maintaining a three-week interval between analyses to minimize recall bias. After defining the vessel centerline, lumen, and stenosis, the software allowed for the computation of coronary blood flow and pressures along a patient-specific 3D coronary tree, as previously described.^{1,5} CT-FFR_{ML} values were determined for the left main (LM) coronary artery, proximal, middle, and distal segments of the left anterior descending (LAD) and right coronary

arteries (RCA), as well as proximal and distal segments of the circumflex artery (CX). Notably, CT-FFR_{ML} measurements were computed distal to lesions with \geq 50% luminal stenosis. CT-FFR_{ML} processing time was recorded. Ten patients had invasive FFR correlations available. CT-FFR_{ML} and invasive FFR values \leq 0.80 defined a flow-limiting stenosis.^{6,7}

2.4 Statistical analysis

Pearson's correlation coefficient (r) was used to assess correlations between IRIS and FBP-derived CT-FFR_{ML} values; differences were assessed using Wilcoxon testing. Sensitivity, specificity, and diagnostic accuracy were calculated for each reconstruction technique for the detection of significant CAD using invasive catheterization as the reference standard. Diagnostic accuracy was compared using the McNemar test. All statistical analyses were performed using SPSS 24.0 (SPSS Inc., Chicago, Illinois). A *p*-value ≤ 0.05 was considered statistically significant.

8

3. Results

3.1 Patient population

Table 1 shows baseline population characteristics. Of the 61 patients, 5 (8%) with coronary revascularization and 16 (26%) with poor image quality were excluded. Therefore, 40 patients were included (23 men (57%), mean age 59±10 years).

3.2 CT-FFR_{ML} results and time of analysis

In total, 160 vessels and 420 segments were analyzed. Image quality of IRISreconstructed CCTA datasets were rated significantly higher (2.88±0.83) than FBP datasets (2.53±0.78, p≤0.001) (Figure 2). Per-vessel analysis revealed significantly different CT-FFR_{ML} values between reconstruction techniques for the LAD, RCA, and CX, but not for the LM (Table 2, Figure 3). Correlation between the two algorithms was high for the LM, LAD, and RCA, whereas CX artery values showed moderate correlation (Table 2, Figure 3). Persegment analysis revealed significantly different CT-FFR_{ML} values between the two techniques for proximal, middle, and distal segments (**Table 2**). Proximal and middle segments showed a high correlation between the two algorithms; however, distal segments demonstrated a weak correlation between techniques (Table 2 and Figure 3). In patients without invasive FFR, 41/85 (48%) lesions with ≥50% luminal stenosis were identified; however, in 12 of those lesions, the diagnosis for significant ischemia was positive based on the IRIS algorithm, but negative according to the FBP dataset. Invasive FFR measurements were available in 10 patients and a comparison with corresponding CT-FFR_{ML} values revealed no difference in diagnostic accuracy between the two reconstructions (both 81.8%, p=1.000), with identical sensitivities (87.5%) and specificities (66.67%, p=1.000). Per-lesion CT-FFR_{ML} values showed a moderate correlation with invasive FFR for both IRIS (r=0.53) and FBP (r=0.49) datasets.

CT-FFR_{ML} processing time was significantly shorter using IRIS datasets compared to FBP (15.9 vs. 19.8 min, respectively, p=0.021).

4. Discussion

This study investigated the influence of IRIS and FBP on the results and processing time of CT-FFR_{ML}. Results demonstrate that IRIS and FBP-reconstructed datasets lead to significantly different CT-FFR_{ML} results, despite maintaining moderate-high correlations. The influence of IR on specific aspects of CCTA has been largely documented (i.e. calcium scoring).^{8–10} In prior investigations, differences between reconstruction algorithms were likely attributable to reduced image noise and overall improved image quality.^{10,11} Thus, we believe our findings somewhat resemble what was already addressed.

Additionally, in accordance with previous studies, our subgroup analysis performed on patients with invasive FFR (n=10) showed comparable diagnostic accuracy for detecting lesion-specific ischemia.^{1,12} Nonetheless, in patients without invasive FFR, 12 lesions with ≥50% luminal stenosis had a corresponding CT-FFR_{ML} positive for ischemia with IRIS, but non-ischemic with FBP. Interestingly, this discrepancy may lead to varying patient management strategies if CT-FFR was used in a stand-alone clinical fashion.

The significantly faster CT-FFR_{ML} analysis achieved with IRIS-based datasets was another important finding. The timeliness afforded by IRIS can likely be attributed to decreased image noise, which allows for improved automated vessel segmentation and a reduced number of manual coronary segmentation corrections, as previously reported.¹³

Our study should be considered hypothesis-generating, as it highlights a topic that has been largely neglected in the scientific discussion of a novel application. However, our investigation has several limitations beyond its retrospective nature. First, the investigation was performed on a small patient population. Studies with larger cohorts are advisable to confirm or extend our findings. Second, not all technical CT parameters were evaluated, since we only included a strength factor of 3. Prospective studies are warranted to elucidate additional sources of disparity between iterative and FBP datasets, particularly with the new generation of iterative reconstruction algorithms. Lastly, invasive FFR measurements were not available in all patients.

In conclusion, the present study demonstrates that CT reconstruction algorithms influence CT-FFR_{ML} analysis results, thus warranting further investigations to assess clinical implications and develop suitable guidelines. Additionally, iterative reconstruction can improve CT-FFR_{ML} post-processing speed.

other with

References

- Tesche C, De Cecco CN, Albrecht MH, et al. Coronary CT Angiography–derived Fractional Flow Reserve. *Radiology*. 2017. doi:10.1148/radiol.2017162641
- Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). *J Am Coll Cardiol*. 2014. doi:10.1016/j.jacc.2013.11.043
- Tesche C, Cecco CN De, Baumann S, et al. Coronary CT Angiography–derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. *Radiology*. 0(0):171291. doi:10.1148/radiol.2018171291
- Yang DH, Kim YH, Roh JH, et al. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. *Eur Heart J Cardiovasc Imaging*. 2017. doi:10.1093/ehjci/jew094
- Tesche C, De Cecco CN, Caruso D, et al. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. *J Cardiovasc Comput Tomogr.* 2016. doi:10.1016/j.jcct.2016.03.002
- Bech GJW, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: A randomized trial. *Circulation*. 2001. doi:10.1161/01.CIR.103.24.2928
- Coenen A, Lubbers MM, Kurata A, et al. Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-

operated Computational Fluid Dynamics Algorithm. *Radiology*. 2015. doi:10.1148/radiol.14140992

- Renker M, Nance JW, Schoepf UJ, et al. Evaluation of Heavily Calcified Vessels with Coronary CT Angiography: Comparison of Iterative and Filtered Back Projection Image Reconstruction. *Radiology*. 2011. doi:10.1148/radiol.11103574
- Wang R, Schoepf UJ, Wu R, et al. Diagnostic accuracy of coronary ct angiography: Comparison of filtered back projection and iterative reconstruction with different strengths. *J Comput Assist Tomogr.* 2014. doi:10.1097/RCT.0000000000000005
- Geyer LL, Glenn GR, De Cecco CN, et al. CT Evaluation of Small-Diameter Coronary Artery Stents: Effect of an Integrated Circuit Detector with Iterative Reconstruction. *Radiology*. 2015. doi:10.1148/radiol.15140427
- 11. Kurata A, Dharampal A, Dedic A, et al. Impact of iterative reconstruction on CT coronary calcium quantification. *Eur Radiol*. 2013. doi:10.1007/s00330-013-3022-8
- Renker M, Schoepf UJ, Wang R, et al. Comparison of Diagnostic Value of a Novel Noninvasive Coronary Computed Tomography Angiography Method Versus Standard Coronary Angiography for Assessing Fractional Flow Reserve. *Am J Cardiol.* 2014. doi:10.1016/j.amjcard.2014.07.064
- Spears JR, Schoepf UJ, Henzler T, et al. Comparison of the effect of iterative reconstruction versus filtered back projection on cardiac CT postprocessing. *Acad Radiol.* 2014. doi:10.1016/j.acra.2013.11.008

Figure legends

Figure 1

Study flowchart detailing enrollment, scanning procedures, and CT-FFR_{ML} computation.

Figure 2

Curved MPR (A) and transverse section (C) of IRIS and corresponding FBP datasets (D and F) showing a calcified plaque (A and D, white arrows) causing moderate stenosis of the LM artery in a 49-year old woman. B and E show a close-up of the calcified plaque (white arrowhead). IRIS (G) and FBP-based (H) color-coded 3D mesh reveals different values (CT-FFR_{ML}: 0.86 vs 0.90).

Figure 3

Scatterplots showing per-vessel (upper) and per-segment (lower) correlation of IRIS- and FBPbased CT-FFR_{ML}. Same legend as Table 2.

Tables

Table 1.

Baseline population characteristics

		Total population (n=40)	Patients with invasive FFR (n=10)	<i>p</i> -value	
Patients		40	10		
Male		23(58%)	5(50%)	0.816	
Age		59±11	65±12	0.792	
Weight		79±24	85.4±26.8	0.401	
Height		172.7±15.6	166.4±85.4	0.211	
BMI		29.2±6.7	30±6	0.426	
CV Risk factors					
	Hypertension	27(67%)	8(80%)	0.234	
	Diabetes	7(18%)	2(20%)	0.316	
	Dyslipidemia	27(68%)	8(80%)	0.234	
	Smoking history	31(78%)	8(80%)	0.687	
	Family history of CAD	24(60%)	5(50%)	0.665	
. .			. (6()		

Data are presented as mean ± standard deviation, numbers with percentages (%), or median with interquartile range if not normally distributed.

Legend: CV - cardiovascular; BMI - body mass index; CAD - coronary artery disease; FFR - fractional flow reserve

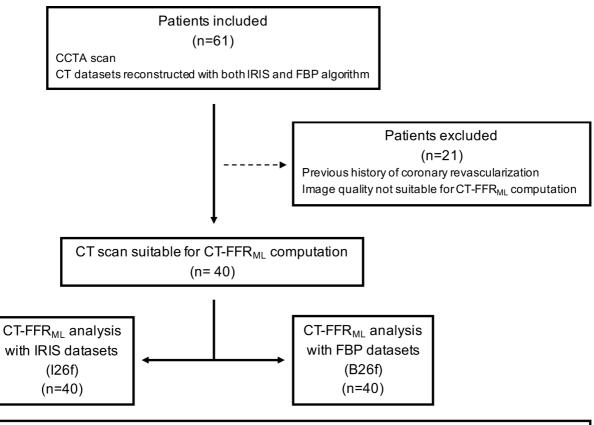
Table 2.

Time requirements, per-vessel, and per-segment CT-FFR_{ML} values for IRIS and FBP CT datasets

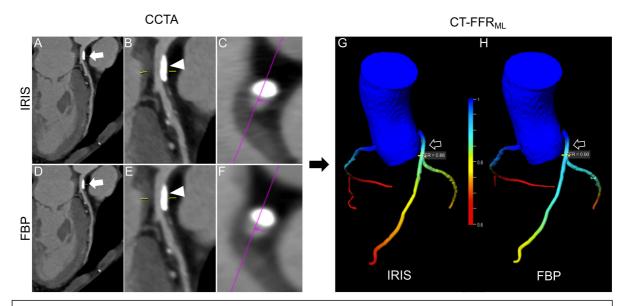
			IRIS	FBP	<i>p</i> -value	Pearson's correlation (r)
Time (min)			16±5	20±10	0.021*	7
\mathbf{CT} -FFR _{ML} values						
	Per-segment					
		Proximal	0.99±0.03	0.99±0.02	0.008*	0.73
		Middle	0.92±0.09	0.93±0.07	0.050*	0.67
		Distal	0.80±0.20	0.83±0.15	≤0.001*	0.43
	Per-vessel					
		LM	1±0.1	1±0.1	0.094	0.74
		LAD	0.88±0.18	0.87±0.16	0.002*	0.76
		СХ	0.93±0.17	0.90±0.16	0.024*	0.53
		RCA	0.95±0.12	0.96±0.10	0.002*	0.70

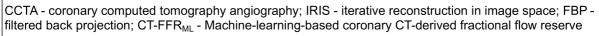
Data are presented as mean ± standard deviation, numbers with percentages (%), or median with interquartile range if not normally distributed; * indicates statistical significance between IRIS and FBP datasets.

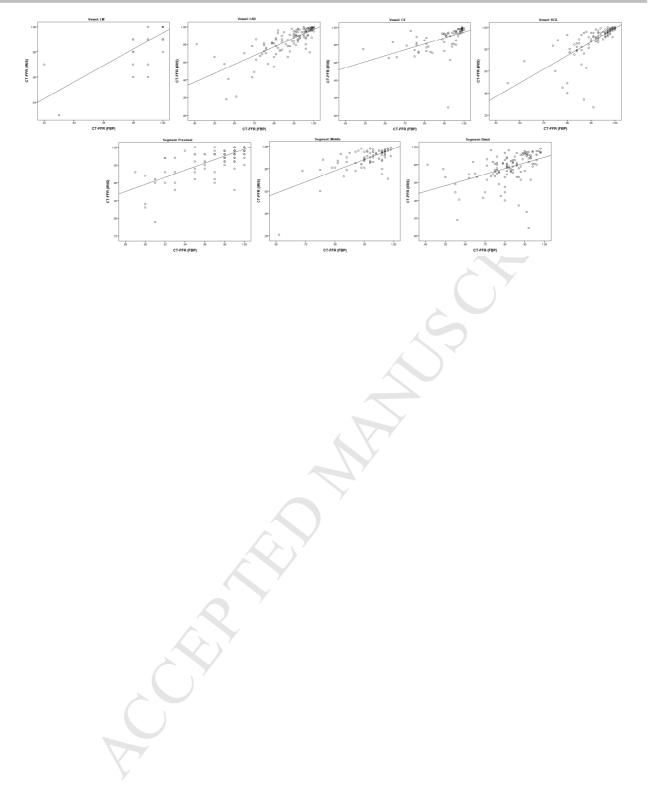
Legend: CT-FFR_{ML} Machine-learning-based coronary CT-derived fractional flow reserve; IRIS - iterative reconstruction in image space; FBP - filtered back projection; LM - left main; LAD - left anterior descending; CX - circumflex artery; RCA - right coronary artery



Legend: ED - Emergency Department, CCTA - coronary CT angiography, CT-FFR - Computed Tomography Fractional Flow Reserve, CA - coronary arteries







Conflict of Interest Form:

Dr. Schoepf receives institutional research support from Astellas, Bayer Healthcare, General Electric Healthcare, and Siemens Healthineers. Drs. De Cecco and Varga-Szemes receive institutional research support from Siemens Healthineers. Dr. Schoepf has received consulting or speaking fees from Bayer, Guerbet, HeartFlow, and Siemens Healthineers. The other authors have no conflict of interest to disclose. Workstation-based flow computations of coronary blood flow are not currently approved by the Food and Drug Administration.

1