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Abstract
There is now a certain consensus that transcription factors (TFs) reach their target sites, where
they regulate gene transcription, via a mechanism dubbed facilitated diffusion (FD). In FD, the
TF cycles between events of 3D diffusion in solution (jumps), 1D diffusion along DNA
(sliding), and small jumps (hopping), achieving association rates higher than for 3D diffusion
alone. We investigate the FD phenomenology through molecular dynamics simulations in the
framework of coarse-grained modeling. We show that, despite the crude approximations, the
model generates, upon varying the equilibrium distance of the DNA–TF interaction, a
phenomenology matching a number of experimental and numerical results obtained with more
refined models. In particular, focusing on the kinematics of the process, we characterize the
geometrical properties of TF trajectories during sliding. We find that sliding occurs via helical
paths around the DNA helix, leading to a coupling of translation along the DNA axis with
rotation around it. The 1D diffusion constant measured in simulations is found to be
interwoven with the geometrical properties of sliding and we develop a simple argument that
can be used to quantitatively reproduce the measured values.

Keywords: facilitated diffusion, coarse-grained modeling, transcription factor, molecular
dynamics

1. Introduction

Transcription factors (TFs) play a key role in the regulation
of gene expression, acting as gene-transcription activators or
inhibitors both in prokaryotes and in eukaryotes [1]. One of
the most fundamental issues in protein–DNA recognition is
the ability of TFs to selectively identify their specific target
sites that are embedded among tens of millions of competing
non-specific DNA sequences. A related issue pertains to the
high rate of recognition of the specific target sites. As early
as 1970, Riggs et al [2] observed that the lac repressor in
E. coli can associate with the cognate operator sequence
at a rate about two orders of magnitude higher than that
predicted by the Smoluchowski equation for a diffusion-
limited association reaction.

Berg et al [3] explained this paradox, suggesting that
TFs do not target their sequences through pure 3D diffusion,
and can also diffuse while being unspecifically associated

(mainly due to electrostatic interactions [4]) with the DNA.
Such a dimensional reduction, dubbed facilitated diffusion
(FD), can make the search more efficient, speeding up the
identification of target sites. More specifically, FD proceeds
by means of four pathways [3]: (i) sliding along the DNA,
(ii) hopping, (iii) jumping and (iv) intersegmental transfer.
During sliding, the TF remains in unspecific contact with
the DNA chain, performing mono-dimensional diffusion
along its contour. During hopping, the TF detaches from
the DNA but reassociates with it at a short distance from
the dissociation point. During jumping, the TF dissociates
from the DNA, undergoing free 3D diffusion, and rebounds
to the DNA in a completely uncorrelated location. Finally,
in the intersegmental transfer, relevant to compact DNA
conformations, the TF transiently binds two non-contiguous
DNA branches, allowing its transfer from one DNA segment
to the other. The latter process requires the possibility for the
TF to bind at multiple loci.
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FD has been extensively studied through analytical
models [3–6] which achieve closed-form solutions at the
price of a drastic simplification in the complexity and the
heterogeneity of the genome. The approximation of the TF–
DNA affinity landscape, for instance, may lead to significant
deviations from the experimental patterns. A more detailed
level of description is based on computational stochastic
models which allow large-scale simulations involving DNA
stretches of the order of 106 bp, and tens of thousands of TFs,
and can reach the time scale of a few seconds [7, 8]. This
high performance, however, relies on a set of assumptions
that are considered quite controversial and that need further
elucidation. More specifically, the issues include: (i) the
proportion of sliding and hopping during 1D diffusion; (ii)
the fraction of time that the TF spends in 3D and 1D diffusion;
(iii) the effects of molecular crowding related to the presence of
multiple copies of the TF that prevent each other’s movement,
acting as moving roadblocks.

In order to clarify these issues, experimental studies
can be profitably integrated with coarse-grained molecular
simulations. For instance, while fluorescence experiments
have allowed the direct observation of a single TF moving
along DNA (confirming the FD theory) [9], the spatial
resolution of the technique does not discriminate between
hopping and sliding. Thus a quantitative characterization of
the two types of motion still remains elusive. Another source
of ambiguity concerns the values of the mono-dimensional and
tri-dimensional diffusion constants. While there is a general
consensus on the fact that D1 < D3, the measured values of
these constants vary by several orders of magnitude according
to the particular DNA sequence and the experimental setup
[10, 11]. This variability is anything but irrelevant since it is
closely related to the so-called speed–stability paradox [5, 12].
In fact, on the one hand, a high diffusion constant allows a fast
scanning of non-specific sites, improving the searching for
the target sequences, while on the other hand, high D1 values
can only be attained at the price of a low TF–DNA affinity
that may destabilize the complex formed by the TF with its
specific target site.

Another question that has not yet been met with a
conclusive answer is that of the fraction of time spent by the
TF in 3D diffusion and in sliding. Assuming that only sliding
and jumping are at work, simple analytical arguments [4, 5]
suggest that the average time necessary to reach the target is
ts = (τ1+τ3)M/n, where M is the total number of sites, n is the
average number of sites scanned during a single sliding event,
and τ1 and τ3 are the average durations of individual episodes
of sliding and 3D diffusion, respectively. Assuming that the
search time has been to some extent optimized by evolution, ts
is minimal if τ1 = τ3, i.e. when the TF spends exactly the same
amount of time in sliding and 3D diffusion. This hypothesis
of optimality, however, contrasts with experimental studies on
bacteria suggesting that the TF spends much more time in
sliding than in 3D diffusion (τ1/(τ1 + τ3) = 0.9) [9]. Even
though the discrepancy may be due to the absence of hopping
in the above argument, of course, one cannot exclude the
possibility that evolution has selected a suboptimal solution.

All of these problems can be addressed through molecular
dynamics simulations, but unfortunately not in the framework

Figure 1. Cartoon representation of the TF (in green) and DNA (in
red) model used in this work; see the text for details.

of atomistic methods. The longest atomistic simulation for
DNA reported to date has been a few microseconds [13],
while sliding events typically involve time scales of O(s)
and sliding lengths of O(100) bp [14]. Thus, it is clear why
atomistic MD methods are not suited to the study of FD, and
resorting to a coarse-grained phenomenological modeling is
mandatory. Recently, Brackley et al [15] introduced a coarse-
grained model portraying the TF as a sphere with a binding
site on its surface and the DNA as a chain of beads. The
model, also accounting for both DNA flexibility and sequence
heterogeneity, showed that the search time could be minimized
by an appropriate tuning of the TF–DNA affinity. Givaty and
Levy [16] proposed a much more detailed model whereby
DNA is simplified as a double-stranded helix with three beads
per nucleotide, while the TF is described as a bead for each
residue. Levy’s simulations show that during sliding, the TF
remains deeply buried in the major groove and presumably
makes use of the same binding interfaces for specific and non-
specific DNA interactions.

In this work, we introduce and study a model with a
level of resolution intermediate between those mentioned
above. With reference to figure 1 TF is portrayed as a
triangular object with the first and last beads representing
the DNA binding regions, so as to mimic the basic features
of homodimeric prokaryotic TFs. The central bead models
the scaffold of the protein, imparting the correct orientation
to the DNA binding domains. The DNA is represented by a
single helix frozen in its equilibrium conformation, as this
greatly facilitates the identification of the various searching
regimes.

The aim of our work is to develop a toy model including
as few ingredients as possible, yet able to capture the known
phenomenology of the dynamics of TFs unspecifically bound
to DNA. The approach enabled us to connect the mono-
dimensional diffusion coefficient to the geometrical properties
of the TF trajectories, confirming previous results [17, 18].
This suggests that two minimal key elements are sufficient: the
helical topology of DNA and a confining DNA–TF interaction
tethering the TF in the neighborhood of the DNA.

We restricted our study to the case of purely non-
specific TF–DNA interaction whose importance cannot be
underestimated, as it is reasonable to assume that a TF before
reaching its target spends most of the time in non-specific
attraction with DNA sites. On the other hand, this is at the core
of the searching process, which being ‘unproductive’, requires
speeding up mechanisms or shortening optimal pathways.
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A preliminary exploration of parameter space has been
performed to obtain behaviors that reasonably match the
principal features of the FD phenomenology. Then we run
simulations to analyze the TF dynamics in the proximity
of the DNA in order to characterize the interplay between
three searching modes: sliding, hopping, and free diffusion.
As we shall see, our simulations show the existence of these
three different regimes whose mutual prominence depends on
σ , the minimum of the Lennard-Jones (LJ) potential, which
dramatically affects the energy landscape. Specifically, we
found that sliding occurs via the coupling of rotation and
translation along the DNA, in which the TF propagates one-
dimensionally along the DNA while rotating along the DNA-
helical contour. This characteristic motion is consistent with
experimental observations for several proteins [19].

Finally we have also quantified how each mechanism
contributes to search efficiency.

2. Materials and methods

2.1. The model

In the following we briefly describe the coarse-grained
representation used in this study for the DNA chain and the TF.

The DNA helix. During the simulations the DNA was kept
frozen in its initial configuration, so the DNA beads, used to
represent the DNA bases, do not interact with one another.
The DNA configuration is chosen to be a straight helix as,
unlike [15], we want to retain the helical geometry in order
to understand its effect on the FD process. However, since
we adopt a very crude model for the TF (see below), we do
not need the detailed description of the DNA double helix
proposed in [16]. We thus consider a minimal representation
in terms of a single straight helix where each bead represents a
base pair (bp). In particular, to mimic the typical conformation
of B-DNA [1] we consider a helix of radius � = 13.0 Å, with
h = 10.5 base pairs per helix turn and the distance between
two consecutive bases along the DNA axis (here chosen to
be along z) taken to be b = 3.32 Å, so the helix pitch is
P = hb = 34.86 Å. In this way the coordinates of the nth
bead are simply obtained from the parametric equations of
the helix

x(n) = � cos(2πz(n)/P)

y(n) = � sin(2πz(n)/P), n = 1, . . . , N

z(n) = bn . (1)

The total number of base pairs N in our simulations is
N = 1000 which is larger than the DNA persistence length
(about 100 bp in physiological conditions [1]). However,
assuming a linear conformation longer than that found in vivo
is relevant to single-molecule experiments, where DNA chains
are typically stretched (see, e.g., [20]).

Transcription factor. The modeling of the TF requires
some discussion. In prokaryotes, TFs are typically
homodimeric, as they target palindromic DNA sequences
[21]. In each monomeric subunit the DNA recognition region
is a helix–loop–helix motif whereby the second helix is
designed to fit into the major groove establishing hydrogen

bonds and hydrophobic interactions with the nucleotide bases.
Since the helix–loop–helix motifs of the two subunits must
fit into two adjacent major grooves, they are located at the
typical distance of one pitch P ≈ 32–34 Å. In eukaryotes,
TFs can be both homodimeric and heterodimeric so as to
increase the range of DNA sequences to be recognized. For
instance, steroid hormones receptors are typical homodimeric
receptors while the TFs containing the leucine zipper motif
are normally heterodimeric and the helix–loop–helix TF can
be both homodimeric and heterodimeric [21]. Our modeling
approach aims at reproducing the basic features of prokaryotic
TFs. Therefore, we portray the TF as three beads arranged at
the vertices of an equilateral triangle of side 32 Å, to roughly fit
the distance between two major grooves. A variation of the side
in the range 28–35 Å and isosceles TF conformations do not
affect the essence of the results. The first and third beads can
be thought of as the centers of mass of the DNA-recognizing
regions of the two subunits. The third bead represents the center
of mass of the portion of the TF not directly involved in DNA
recognition, which typically stays away from the DNA helix.

The TF triangular structure is enforced by the following
interactions. The 1–2 and 2–3 distances of the TF beads are
allowed to undergo small oscillations around their equilibrium
value, r0, via a stiff harmonic potential [22]

Vh(ri,i+1) = kh

2
(ri,i+1 − r0)

2 , (2)

whereas the 1–3 distance is maintained via a bending potential

Vθ (θ ) = kθ

2
(θ − θ0)

2 . (3)

Being interested in the phenomenology of FD and not in the
target search time, we assume only unspecific interactions
between the TF and the DNA chain, which are modeled as
described below. Bead 1 and bead 3 interact with the DNA
beads through a standard 12–10 LJ potential:

VLJ(ri j) = 5ε

[(
σ

ri j

)12

− 6

5

(
σ

ri j

)10
]

, (4)

where ri j is the distance between bead i ∈ {1, 3} of the TF
and bead j of the DNA. The parameter ε determines the well
depth of the LJ potential while σ tunes the position of the
minimum. Thus σ determines the equilibrium distance of the
TF from the helix axis: the larger σ , the farther the equilibrium
position of the TF from the DNA. Conversely, bead 2 of the
TF interacts with the nucleotides of DNA through a repulsive,
excluded-volume potential

Vrep(r2 j) = ε2

(
σ2

r2 j

)12

. (5)

This potential forces the central bead of the TF to point away
from the DNA axis, imparting the correct orientation to the TF.
In our simulation, we kept ε fixed to set the energy scale and
varied σ over a wide range of values. For the sake of clarity,
the list and the values of the parameters defining the DNA–TF
model are summarized in table 1.

Simulation box. Since the focus of our investigation was
the sliding behavior of the TF, we introduced a cylindrical
confinement potential [23]:

Vconf = Vxy + Vz = kBT

(Rxy − r)2
+ kBT

(Rz − |�z|)2
. (6)
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Table 1. Table summarizing the parameters and their values used in
the DNA–TF interaction model and in the simulations.

Parameter Value

ε 1
ε2 0.8ε
kh 50ε
kθ 20ε
kBT 0.25ε

σ2 5 Å
r0 32 Å
θ0 60◦

γ 1
m 1

In this expression r =
√

x2 + y2 is the distance between a TF
bead and the DNA axis that was set to coincide with the z-axis,
�z is the distance along the z-axis between the bead of the TF
and the center of mass of the DNA, and Rxy = 100 Å is the
radius of the cylindrical confinement region. The parameter
Rz represents half the height of the confinement region, that
we set equal to half the length of the DNA plus 1.5 helical
turns. The Vxy component of the confinement potential forces
the TF to remain in a circular region of radius Rxy centered on
the DNA axis, while the Vz component prevents the TF from
exceeding a distance equal to Rz from the DNA center of mass
along the z-axis.

The value Rxy = 100Å for the simulation box can be
justified using the following argument. The average volume
available to interphasic DNA spans the range 1011–1012 Å3.
We can assume that this is the volume of a spherical region
V = 4πR3

g/3 with Rg being the DNA gyration radius.
Following Berg and Blomberg [24], we can construct around
the DNA contour a coaxial cylinder with a volume equivalent
to the sphere 4πR3

g/3 = πR2
xyL, where L ∼ 107 Å is the typical

DNA length. This yields values of Rxy in the range 60–200 Å.
On not too long time scales, the TF may be reasonably assumed
to be confined in a cylindrical region of radius Rxy around a
DNA segment. Since metaphasic DNA is more condensed, it
can be assumed to be confined in a cylindrical region with a
smaller radius Rxy. In this situation, the TF can be expected
to spend a smaller fraction of time in 3D diffusion, which is
similar to what happens for small values of σ (see section 3.1).
Moreover the TF will have a greater tendency to rebind the
DNA in the neighborhood of the point of detachment. In this
regime there will be only a weak interplay between sliding
and 3D diffusion, leading to a low efficiency of exploration of
new sites (see section 3.4). This appears to be consistent with
the fact that tightly packed DNA is normally not transcribed
or replicated, but rigidly transferred to daughter cell during
mitosis.

We performed Langevin molecular dynamics simulations
using a stochastic position Verlet integration scheme [25]
with time step h = 0.002 and friction coefficient γ (see
table 1). The simulation time unit can be converted to the
physical one by using the time scale τ = σ2

√
m/ε [26]. With

ε = 4kBT � 16 × 10−21 J and σ2 = 5 Å, and assuming an
average mass m � 10 kDa for each bead of the TF, we obtain
τ ∼ 9 ps.

As is customary, the Lennard-Jones interactions were
truncated at a cutoff distance rc = 4σ to speed up the
calculations.

2.2. Statistical analysis.

2.2.1. Determination of sliding, hopping and jumping events.
As discussed in the introduction, the process of FD proceeds
by means of four pathways [3]: (i) sliding along the DNA,
(ii) hopping, (iii) jumping and (iv) intersegmental transfer.
In our model, due to the chosen conformation for the DNA
chain, only the first three mechanisms are at work. In order
to compute the statistics of sliding, jumping and hopping, it is
necessary to define the criteria for discriminating each event,
which are described below.

We consider the TF to be in the sliding regime if the
closest DNA neighbor of bead 1 or bead 3 of the TF is below a
distance cutoff of 1.2σ . This criterion allows the identification
of a number of sliding and non-sliding windows. With this
criterion it may happen that the TF is bound to the DNA
with only one bead, while the other is detached. We have
studied the statistics of such events and found that when sliding
occurs the percentage of time spent in two-bead sliding: is
higher than 90% for σ � 8 Å; is between 40% and 90%
for 4 Å � σ < 8 Å; and decreases by up to a few % for
1 � σ < 4 Å.

For each value of σ , the average sliding length, 〈|�Zs|〉, is
measured as the average distance covered by the TF between an
attachment and the first subsequent detachment. Non-sliding
windows are classified as hopping events if the displacement
of the TF along the DNA axis is smaller than twice 〈|�Zs|〉;
otherwise the event is considered as jumping. The idea
underlying this choice is that hopping implies short-range
flights between dissociation and reassociation points [27].

Clearly, the discrimination between sliding and hopping
and that between hopping and jumping suffer from a certain
degree of arbitrariness due to the necessity of introducing
specific thresholds in distances. However, upon varying the
threshold values, we verified that the results are qualitatively
the same except for some quantitative effects on the hopping
statistics.

2.2.2. Computation of the sliding diffusion constant. The
mono-dimensional diffusion process of the TF during sliding is
characterized by the diffusion coefficient, D1, along the DNA
axis. The constant D1 can be estimated through the trajectories
of molecular dynamics from the mean square deviation (MSD)
along the z-axis during the sliding events. First, the trajectory
of the TF is segmented into sliding, hopping and jumping
events as described above. Second, for each sliding window w

one computes the MSD on the window as (see e.g. [28])

�Z2(k, w) =
Nw−k∑
i=1

(Zi+k − Zi)
2

Nw − k
, (7)

where �t is the time interval between two successive
measurements, Nw the total number of measurements in w

and Zi = z(i �t) indicates the z-coordinate of an attractive
bead of the TF at time i �t. The square deviations (7) are then
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Figure 2. Transport mode statistics. Frequencies of sliding (black
squares), jumping (red circles) and hopping (blue diamonds). The
dashed lines are just a guide for the eye and have been obtained by
fitting the data via suitable sigmoid functions. Data are obtained by
averaging over 50 runs each lasting T = 106 time units (see
section 2).

averaged over all the M sliding windows of all trajectories such
that Nw � k:

〈�Z2(k)〉 = 1

M

M∑
w=1

�Z2(k, w) . (8)

Since our TF is perfectly symmetric, the calculation is
independent on the chosen bead apart from statistical
fluctuations whose impact can be minimized by averaging
the results of the two equivalent attractive beads. This
averaged quantity provides an estimation of the mean square
displacement along z over a time interval k �t, which for a
diffusive process behaves as

〈�Z2(k)〉 = 2D1 �t k . (9)

The constant D1 is finally obtained by linear regression.

2.2.3. Computation of the exploration efficiency. The
efficiency of the DNA exploration by the TF can be estimated
from the fraction of DNA sites not yet visited by the TF during
the sliding νsites. The procedure that we used follows [16] and
is described below. At the beginning of each run the counter
for the newly probed DNA basis is set to zero. Then, at the
beginning of every sliding window within the run, each DNA
bead is marked with a flag ‘zero’. Then if the DNA bead closest
to one of the TF attractive beads is within a distance of 1.2σ

from the latter, the corresponding flag is switched to ‘1’ and
the counter of probed sites increased by 1. At the end of each
sliding event, when the TF detaches from the DNA, the counter
is normalized to the number of DNA sites to get the fraction of
sites explored in that sliding event. Then the flag vector is reset
to zero. The overall fraction of visited sites is just the sum of
the fractions of sites visited in all the sliding windows in each
run. This quantity is then averaged over all runs to yield νsites.
The strategy of resetting the flag vector to zero is motivated by
the assumption that when the TF detaches from the DNA, it is
likely to reassociate with a completely uncorrelated sequence
exploring a completely new patch of DNA.
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Figure 3. Sliding statistics: duration and length. (a) Average
duration of individual sliding events as a function of σ normalized
to the duration of the single-run time window T = 106 code time
units. Notice that the saturation at high σ values is a consequence of
the fact that sliding occurs over the full duration of the simulation
run. (b) Average distance 〈|�Zs|〉 (full circles) and average maximal
distance 〈|�Zmax

s |〉 (empty circles) covered by the TF in an
individual sliding event as a function of σ and normalized by the
base pair distance b.

3. Results

Experimental studies of FD in vitro are conducted by varying
the salt concentration, which influences the occurrence of the
different transport modes [29–31]. As we shall see, in our
model a similar behavior is obtained by changing the parameter
σ , the equilibrium distance between the TF and the DNA helix.
An increase in the salt concentration enhances the screening
of electrostatic interactions and thus increases the TF–DNA
equilibrium distance, which in our model is controlled by σ .

3.1. The statistics of sliding, hopping and jumping

In order to understand the importance of the different transport
modes (sliding, hopping and jumping) of TFs while interacting
with the DNA, we need first to evaluate their occurrence
statistics. In figure 2, we show the empirical transport mode
frequencies of occurrence measured in simulations. The
various modes were identified and analyzed as discussed in
section 2. We find that sliding and jumping frequencies follow
a sigmoidal profile with a prevalence of 3D diffusion at low
σ and a dominance of sliding at high σ . Hopping events are
rare for every value of σ except for a small hump around
σ ≈ 4 Å. This a likely consequence of the strongly confining
features of the 12–10 LJ interactions. When the equilibrium
distance between the TF and DNA, σ , is too small, complete
dissociations with enduring jumps are the most probable
events. Conversely, for large σ values, the TF tends to linger,
bound to the DNA, with sliding events lasting for about the
entire duration of the simulation runs (figure 3(a)). Hopping
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events are statistically significant only at the transition between
the jumping dominated and sliding dominated regimes.

Sliding is the most relevant transport mode in determining
the TF–DNA interaction, as only when sliding can the TF
can actually probe the sequence of nucleotides of the DNA.
We thus studied the average distance along the DNA axis,
〈|�Zs|〉, explored by the TF during a single sliding event.
Due to the random walk character of sliding, in the interval
between the times of attachment and detachment the TF might
have moved past the future point of detachment. Therefore,
we also measured the maximal distance from the point of
attachment reached by the TF within the time of detachment,
〈|�Zmax

s |〉. Both 〈|�Zs|〉 and 〈|�Zmax
s |〉, normalized by the

base pair distance b, are shown in figure 3(b). These quantities
provide a proxy for the number of bases probed between the
point of association with the DNA and the subsequent point of
detachment from it. As one can see, when sliding is dominating
the number of bases probed by the TF can be as large as
∼150. However, for values of σ larger than 18–20 Å, while
sliding remains the prevailing mechanism of transport (figure 2
and 3(a)), the number of probed bases drops dramatically.
This behavior will be rationalized later while investigating the
behavior of the one-dimensional diffusion constant D1.

3.2. The geometry of sliding TF trajectories

We now focus on the geometrical properties of TF trajectories
during sliding. The basic phenomenological features are
illustrated in figures 4 and 5, showing the positions of one
of the attractive beads (i.e. bead 1 or bead 3) during sliding,
for three representative values of σ . Figure 4 shows a three-
dimensional view, while figure 5 displays two-dimensional
projections. Denoting with (x, y, z) the Cartesian coordinates
of the bead position, the left panels show the projection onto
the (x, y)-plane, transverse to the DNA axis, while the right
ones show the cosine of the angle of rotation around the DNA
axis as a function of the position along the DNA axis, i.e.
(z, x/

√
x2 + y2) = (z, cos(θ )).

For all values of σ we found that, during sliding, the TF
traces the helical path of the DNA, as is clear from the 3D plots
(figure 4), so diffusion along the DNA chains proceeds with
a characteristic roto-translation as suggested by experimental
studies [20, 32–35]; see also the review [19]. However, some
differences are observed with varying σ , as discussed in the
following.

For σ = 6 Å, the TF traces circular orbits orthogonal
to the helix contour around each DNA bead, so the overall
motion draws a superhelical trajectory (figure 4 and 5(a), left).
In this case the envelope path is in phase with the DNA helix, as
demonstrated by the behavior of the points representing cos(θ )

versus z (figure 5(a), right), which accumulate around the curve
cos(2πz/P) (P being the DNA-helix pitch). For smaller values
of σ sliding becomes less frequent, but is always in phase with
the DNA helix (not reported). For larger values of σ , the TF
sliding beads trace a helix in antiphase with respect to the
DNA helix (figures 4 and 5(b), (c) (right)), meaning that the
TF recognition domains reside in the DNA groove. As far as
the distance from the DNA axis is concerned, for σ = 6 Å the

TF bead moves both in and out of the DNA helix (figure 5(a),
right), while it remains well inside and outside it for σ = 15 Å
and 21 Å, respectively (as shown in (figure 5(b), (c) (left)).
As we will show in the next section, these observations will
be key to understanding the behavior of the one-dimensional
diffusion coefficient D1.

We complete the description of the geometrical aspects of
TF sliding motion by discussing its orientation with respect to
the DNA. Given the TF triangular geometry, its orientation
can be characterized in terms of the angle φ between the
segment joining bead 1 and bead 3 and the DNA axis.
Since the dynamics is fully symmetric under the exchange
of bead 1 and bead 3, we can restrict the angle to the range
[0 : 90] degrees. Measurements are made only when the TF
is associated with DNA, i.e. in the sliding windows. Figure 6
shows that the orientation statistics depends on σ . For σ < 6 Å
(figure 6(a)), sliding occurs very rarely and typically only one
of the attractive beads is in contact with DNA; this can be
appreciated from figures 4(a) and 5(a), left, where the spots
out of the superhelical path correspond to the instants at which
the TF is sliding but with one of the beads not attached to the
DNA. As a consequence, the probability density, p(φ), is rather
broad with no preferential orientation. The peaks observed in
the figure result from the loops that the TF makes around
DNA beads. For intermediate values of σ (6 Å < σ < 18 Å;
figure 6(b)), the TF describes a helical path in the interior of
the DNA helix (central panel of figure 4 and figure 5(b)) and
p(φ) takes on a well defined peak around φ = 0◦ meaning that
the TF slides along the DNA in parallel orientation, with beads
1 and 3 residing in two consecutive grooves of the DNA. As
we shall discuss below, this appears to be the fastest TF–DNA
configuration in terms of diffusive properties. For σ > 18 Å
(figure 6(c)) the peak around zero broadens and a new peak
appears between 70◦ and 80◦. These features signal that now
the attractive beads, while performing a helical motion outside
the DNA helix, flip between a parallel orientation with respect
to the DNA axis and an almost orthogonal one, where the two
beads straddle the helix.

3.3. The one-dimensional diffusion coefficient

To characterize the TF sliding along the DNA, we estimated
from the runs the one-dimensional diffusion coefficient D1

from the linear behavior of the mean square displacement
along the DNA axis; see equation (9) in section 2.

The results reported in figure 7(a) show the dependence
of D1 on σ . The diffusion constant displays small values
for both large and small σ , while exhibiting a bump for
intermediate values. Figure 7(b) shows the average distance
� of the attractive beads (1 and 3) from the z-axis. A negative
correlation between D1(σ ) and �(σ ) is apparent, indicating
that high values of D1 require a TF deeply embedded into the
DNA groove, as highlighted by the horizontal line that marks
the DNA radius � = �.

The observed behavior of the diffusion constant, D1 can
be rationalized by a simple phenomenological argument based
on the geometrical properties of TF sliding motion that have
been characterized in the previous section. Basically, during
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(a) (b) (c)

Figure 4. Roto-translation of the TF during sliding. The green dots represent the positions on one of the attractive TF beads for each frame
satisfying the sliding condition. The trajectory traced by the TF is overlaid to the structure of the DNA chain (red). Panels (a)–(c) refer to
three representative σ values as labeled in the figure.
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Figure 5. Two-dimensional projections (red dots) of the TF–bead trajectories of figure 4 for σ = 6 Å (a), 15 Å (b) and 21 Å (c). Left panels
refer to the projection onto the (x, y)-plane. Right panels show the cosine of the angle of rotation of the TF around the z-axis (DNA axis) as a
function of the position along the z-axis itself. The black curves correspond to the DNA helix cos(2πz/P). Black full circles identify the
DNA beads.

sliding, TF beads diffuse, drawing a helical path (figure 4) at
distance � from the DNA axis (figure 7(b)). Such a helical path
has the same pitch P = hb as the DNA helix with, possibly,
a phase shift (figure 5(b), (c)), which is inessential for the
following derivation. This scenario occurs for σ large enough
(figure 4(b), (c)). For smaller σ the path drawn by the TF
is slightly more complex (figure 4(a)), but on average still
helical. Assuming an ideal helical motion, the displacement

along the axis, δz, is linked to the arc-length of a curvilinear
displacement, δ, along the helix by the formula

δz = δ√
1 + (2π�/P)2

. (10)

From the Einstein equation for a three-atom molecule, like our
TF, the mean square curvilinear displacement along the helical
path is 〈δ(t)2〉 = 2D3t with D3 = kBT/(3γ ), while along the
z-axis we have 〈δz(t)2〉 = 2D1t. Then, using equation (10) to
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Figure 6. Probability density function p(φ) of the orientation angle φ of the TF with respect to the DNA axis: (a)–(c) are for small,
intermediate and high values of σ as labeled. Notice the difference in y-axis scale between panel (a) and panels (b), (c).

convert displacements along the helix to displacements along
the DNA axis yields

D1 = D3

1 + (2π�/P)2
= kBT

3γ [1 + (2π�/P)2]
, (11)

which relates the diffusion constant along the z-axis to the
geometrical properties of the helical path followed by the TF.
The shaded region in figure 7(a) is bracketed by the upper and
lower bounds of D1 obtained using equation (11) by replacing
� with � ± s�, where s� is the standard deviation of the
TF distance from the z-axis. The region accurately brackets
the simulation data, supporting the reliability of the prediction
(11). For instance, if the TF were diffusing on a helix with
radius equal to that of the DNA, it would correspond to a D1

with the value marked by the solid line in figure 7(a).
It is interesting to observe that equation (11) is consistent

with the theoretical prediction of Bagchi et al [17] based on
the computation of the translational friction induced by the
TF helical track along the DNA. To obtain the connection,
one should neglect the friction contribution of TF self-rotation
predicted by Schurr [18] which is not relevant to our model.

The ability of equation (11) to quantitatively explain the
behavior of the simulated sliding diffusion constant suggests
that, within our model, D1 is mainly determined by the
geometrical properties of the sliding path. In other words,
the DNA geometry conspires with the interaction potential
to constrain the TF to diffusing along a helical path without
being much influenced by possible potential barriers; indeed
the derivation was based on the free diffusion coefficient D3.
Essentially the effect of the interaction potential is embodied
in the fact that � in figure 7(b) turns out to be a non-trivial
function of σ . In principle, the potential of interaction between

TF and DNA depends on the nucleotide sequence, so diffusion
is modified by the presence of a rugged energy landscape
[6, 14]. This effect typically depresses the diffusion; in
particular it will affect the value of D3 used in the argument
above by decreasing it by a factor that is ∝ exp[−(Ev/kBT )2],
Ev being the standard deviation of the TF–DNA (now
disordered) binding energy. However, experimental data
suggest that this effect, when present, is very small with Ev �
1kBT –2kBT [14]. Of course, the model that we introduced can
be easily generalized to include sequence heterogeneity.

3.4. Search efficiency

Even in a scenario of non-specific TF–DNA interaction it is
interesting to quantify the efficiency of sequence exploration
during sliding. Following [16], we estimate the exploration
efficiency in terms of ‘probed positions’, i.e. we measure
the fraction of new sites, νsites, visited by the sliding TF; see
section 2.

In figure 8 we show the fraction νsites as a function of σ .
The exploration efficiency displays a well pronounced peak in
the range 4 Å < σ < 5.5 Å. At first sight, this result may look
surprising, as for such values of σ the diffusion constant D1 is
rather smaller than its maximum value attained at σ ≈ 13 Å
(figure 7). However, this behavior represents the essence of
FD whereby slow sliding can be compensated by frequent
jumping and hopping. Indeed, a direct comparison between
figures 2 and 8 reveals that the search efficiency peaks in the
region where hopping is maximal and jumping/sliding events
have comparable frequencies. In other words, the possibility of
realizing an efficient search through the DNA chain to localize
as quickly as possible the DNA target sequence requires a
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Figure 7. Sliding diffusion coefficient. (a) Dependence of the
diffusion constant along the DNA axis, D1, on σ . Filled circles
denote the measured D1 from simulations; the solid line
interpolating data is formula (11) with � being the average
TF–DNA distance from numerical simulations; the shaded region is
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where s� is the standard deviation of the TF distance from the
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as a function of σ .

suitable interplay of all transport modes. The result shown in

figure 8 is in qualitative agreement with those observed in [16].

4. Discussion and conclusions

In this work we performed molecular dynamics simulations
of facilitated diffusion using a very simplified model. We
represented DNA as a single helical chain of beads frozen in the
standard conformation of B-DNA. To capture the main features
of typical prokaryotic homodimeric transcription factors (TFs)
that target palindromic DNA sequences [21], the TF was
represented as a three-bead triangular structure, where the first
and last beads correspond to the binding regions, whereas
the central bead corresponds to the scaffold. Our model does
not include electrostatics, and the TF–DNA interactions are
modeled through a Lennard-Jones potential of well depth ε and
equilibrium distance σ . In our simulations, ε is kept constant
while exploring a wide range of σ values.

Our simulations show that the DNA–TF equilibrium
distance σ crucially affects the dynamics of the TF. For
small σ the TF spends most of its time in 3D diffusion. At
intermediate values of σ a sharp transition occurs, with a
drop in the jumping frequency and an abrupt increase in the
sliding frequency paralleled by the appearance of a hump in
the hopping frequency and an increase of the D1 diffusion
constant. The shape of the trajectory traced by the TF is also
very sensitive to σ . For intermediate σ the TF forms circular
orbits orthogonal to the DNA contour, creating a superhelical
path. For larger σ the TF traces a helical trajectory in phase
with the DNA groove. Both of the attractive beads of the TF
are accommodated at the bottom of the groove, imparting a
parallel orientation to the DNA axis. Finally, for even larger
σ the coils of this helical path in antiphase with the DNA
helix become wide enough to cause a drop in the D1 diffusion
constant. The behavior of the D1 constant was explained
by a simple geometric argument based on the projection of
the mean square displacement of the TF trajectory onto the
DNA axis. The expression that we derived is similar to the
one introduced in [17] save for the self-rotation frictional
contribution [18], which in our simulations is not relevant.
We did not find any apparent dependence of D1 on possible
energetic barriers. However, the latter enter the expression for
the diffusion constant in an implicit way by setting the average
distance of the TF from the DNA.

An interesting feature of our model is that, despite the
crude approximations, it was able to reproduce a number
of known phenomenological patterns. For instance, for
intermediate values of σ , the TF always remains deeply buried
in the groove of the DNA molecule with a parallel orientation
with respect to the DNA axis. This result is in agreement
with a circular dichroism study by Johnson et al [36] showing
that the TF interaction with unspecific DNA sequences is
sufficient to induce the structuring of typical DNA binding
motifs, and is confirmed by recent NMR analyses by Iwahara
et al [37] revealing that protein HoxD9 interacts with non-
specific binding sites using the same interface as was employed
for the recognition of the specific target site. This result,
also consistent with the Givaty and Levy findings [16], might
have far reaching biological implications [38] suggesting the
existence of only a very low barrier separating the search and
recognition states postulated in [5].
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It is also interesting to notice that in our model the
translational move of the TF during sliding is always coupled
to rotation around the DNA axis induced by the helical
path, which is in phase either with the DNA strand or with
its groove. This result is consistent with single-molecule
fluorescence tracking assays performed by Blainey et al [20]
for the calculation of D1 for labeled human oxoguanine DNA
glycosylase (hOgg1). This study was based on the observation
that in the case of pure translation the D1 coefficient depends
on the TF radius R like 1/R, while in the case of roto-translation
D1 ∝ 1/[(4/3)R3 + R(ROC)2] (with ROC being the distance of
the TF from the DNA axis, i.e. � in our notation; see figure
7(b)), so purely translational and roto-translational sliding can
be discriminated from each other. This work, along with other
recent studies [32–34] extending the analysis of sliding to
several other proteins, supports the suggestive idea that the
coupling between rotation and translation might be a feature
shared by, at least, a group of TFs.

As an overall conclusion, our model, despite its crude
approximations, turns out to reproduce fairly well a number
of experimental patterns. This represents an a posteriori
validation of the two key elements of our scheme, namely
the helical topology of the DNA molecule and a TF–DNA
interaction potential with a well localized minimum and a short
tail. This extensive model validation suggests its viability in
investigating more complex aspects of FD such as the influence
of molecular crowding and DNA flexibility.
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Appendix

Since detailed models of TF–DNA interaction normally
include electrostatics through a Debye–Hückel potential (DH),
in this appendix we will show that the Lennard-Jones potential
(LJ) is flexible enough to account for relevant aspects of
screened electrostatic interactions. As is customary, in order
to include the excluded-volume effect and automatically
remove possible singularities, the original DH potential is
complemented with a short-range repulsive form (see e.g. [16])

Vel(r) = 5ε

[(
σ

r

)12

+ B
e−λr

r

]
, (A.1)

where λ is the inverse of the screening length. To achieve a
mapping with the LJ potential, λ and B are parameters to be
adjusted such that Vel presents the same position x = σ and
depth Vmin = −ε as the LJ minimum. It is convenient to rescale
the distance x = r/σ , so that the minimum of the VLJ potential
lies at x = 1. The parameters λ and B are obtained by solving
the system

∂Vel

∂x

∣∣∣∣
x=1

= 0 (A.2)

Vel(x = 1) = −ε. (A.3)

Simple algebraic manipulations yield λσ = 9 and B =
6σ exp(λσ )/5, so the interaction potential reads

Vel(r) = 5ε

[(
σ

r

)12

− 6

5

e−9(r/σ−1)

r/σ

]
. (A.4)

Since λ is known to be proportional to the inverse of the square
root of the salt concentration Cs, it follows that σ ∝ √

Cs.
This simple argument shows that given a Vel potential, it is

always possible to determine an approximating (equivalent) LJ
potential characterized by a minimum with the same position
and depth. A useful by-product of the employment of the LJ
form consists in the possibility of readily locating the putative
equilibrium position.
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