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Abstract. In this paper we prove existence of solutions for an elliptic system related to the sta-
tionary thermistor problem with bounded sources, and thermal and electrical condictivities growing
as powers of the temperature.
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1. Introduction and statement of the results. A thermistor is a device in
which the electrical resistance is dependent on the temperature. If \Omega is a bounded,
open subset of \BbbR N , N \geq 2, representing the body of the device, u is the temperature
of the body, and \psi is its electrical potential, following [2] we have that if A(u) is
the thermal conductivity, and B(u) is the electrical conductivity, then u and \psi are
solutions of the elliptic-parabolic system

 - div(B(u)\nabla \psi ) = 0 , d c ut  - div(A(u)\nabla u) = B(u) | \nabla \psi | 2 .

If one considers the stationary problem, then ut = 0, so that u and \psi are solutions of
the system of elliptic equations

(1.1)

\Biggl\{ 
 - div(A(u)\nabla u) = B(u) | \nabla \psi | 2 in \Omega ,

 - div(B(u)\nabla \psi ) = 0 in \Omega .

Adding suitable boundary conditions, for example, assigning both u and \psi on some
subsets of \partial \Omega , it is possible to prove existence and uniqueness of solutions, under some
assumptions on A(u) and B(u); see, for example, the papers [9, 10] and the references
therein.

In this paper, we will study an elliptic system related to the stationary thermistor
problem (1.1), under a more general setting with respect to previous works, since we
will allow the functions A(x, t) and B(x, t), which will be matrix valued, to depend
not only on the unknown u but also on x in \Omega , therefore allowing for anisotropic media
as well as different properties of the materials. Also, we will consider a positive and
bounded source term g for the equation involving the unknown \psi and will suppose that
both u and \psi are zero on the boundary of \Omega (that is, we will consider homogeneous
Dirichlet problems). Thus, we will study existence of solutions for the system

(1.2)

\left\{       
 - div(A(x, u)\nabla u) + u = B(x, u)\nabla \psi \cdot \nabla \psi in \Omega ,

 - div(B(x, u)\nabla \psi ) + \psi = g in \Omega ,

u = 0 = \psi on \partial \Omega .
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6911

Note, with respect to (1.1), the presence of the lower order terms ``+u"" and ``+\psi "" in
the two equations, which could be used to approximate (using a semigroup theory ap-
proach) the corresponding parabolic equations related to the nonstationary thermistor
problem. Furthermore, since we will consider possibly degenerate elliptic operators
(as u tends to infinity), these terms will allow us to recover some coerciveness on the
two equations, yielding a priori estimates; see section 5 below.

We now define the various terms of system (1.2). Let p and q be two real numbers
such that

(1.3) p > q  - 1 ,

and define
\rho (t) = (1 + | t| )p , \sigma (t) = (1 + | t| )q .

We will suppose that A : \Omega \times \BbbR \rightarrow \BbbR N\times N and B : \Omega \times \BbbR \rightarrow \BbbR N\times N are two
Carath\'eodory matrix-valued functions (that is, measurable for x in \Omega and contin-
uous for t in \BbbR ) such that

(1.4)
A(x, t) \xi \cdot \xi \geq \alpha \rho (t) | \xi | 2 , | A(x, t)| \leq \beta \rho (t) ,

B(x, t) \xi \cdot \xi \geq \alpha \sigma (t) | \xi | 2 , | B(x, t)| \leq \beta \sigma (t)

for almost every x in \Omega , for every t in \BbbR , and for every \xi in \BbbR N , where 0 < \alpha \leq \beta are
two real numbers.

Note that we do not assume sign conditions on p or q: they may be positive
or negative (in this latter case the differential operators degenerate as u becomes
unbounded). We will also define

(1.5) H(t) =

\int t

0

\rho (s)

\sigma (s)
ds =

\int t

0

(1 + | s| )p - q ds =
(1 + | t| )p - q+1  - 1

p - q + 1
sgn(t) .

Note that from assumption (1.3) it follows that H(t) behaves as a positive power of
t as t tends to infinity. On the function g we will assume that it is positive, and that
it belongs to L\infty (\Omega ).

Our main result is the following.

Theorem 1.1. Let A(x, t) and B(x, t) be such that (1.4) holds, with p and q such
that (1.3) holds. Let g \geq 0 be a function in L\infty (\Omega ). Then there exist solutions u and
\psi of system (1.2), such that

\bullet u \geq 0 belongs to W 1,2
0 (\Omega ), and, if H(t) is as in (1.5), then there exists

\gamma = \gamma (g) > 0 such that

e\gamma H(u) belongs to L1(\Omega );

\bullet \psi \geq 0 belongs to W 1,2
0 (\Omega ) \cap L\infty (\Omega );

\bullet the vector fields A(x, u)\nabla u and B(x, u)\nabla \psi belong to (L2(\Omega ))N ;
\bullet the function B(x, u)\nabla \psi \cdot \nabla \psi belongs to L1(\Omega ).

Furthermore, u and \psi are such that\int 
\Omega 

A(x, u)\nabla u \cdot \nabla v +
\int 
\Omega 

u v =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi v

for every v in W 1,2
0 (\Omega ) \cap L\infty (\Omega ) and\int 

\Omega 

B(x, u)\nabla \psi \cdot \nabla \varphi +

\int 
\Omega 

\psi \varphi =

\int 
\Omega 

g \varphi 
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6912 LUCIO BOCCARDO AND LUIGI ORSINA

for every \varphi in W 1,2
0 (\Omega ).

Remark 1.2. We explicitly remark that the solution u of the first equation of (1.2)
belongs toW 1,2

0 (\Omega ) even if the right-hand side B(x, u)\nabla \psi \cdot \nabla \psi only belongs to L1(\Omega );
thus, the coupling of the two equations in the system yields a regularizing effect on
the solutions.

Remark 1.3. Assumption (1.4) has been done in order to fix the ideas; for the
existence proof to work, it is enough that H(t), defined in (1.5), behaves as a positive
power of t as t tends to infinity, and that for every \gamma > 0 the function e\gamma H(t) ``domi-
nates"" both \rho and \sigma as t tends to infinity (see Lemma 2.2, below). Note that if both
A(x, t) and B(x, t) are bounded functions, or if A(x, t) = B(x, t), then assumption
(1.3) holds since p = q > q  - 1, and H(t) \approx t as t tends to infinity.

Remark 1.4. We point out that the approach and the results of the present work
are related to those of [14] and [4]. In the paper [14] existence results for system
(1.2) are proved in dimension N \leq 4, under the assumption p > q  - 1, and q \geq 0,
with both A(x, t) and B(x, t) independent on x, working in the context of weighted
Sobolev spaces. In the paper [4], existence results are proved in the case p \geq q \geq 0,
but under weaker assumptions on the datum g.

Remark 1.5. There are several results in the literature concerning the thermistor
problem, which was introduced in 1899 in the paper [17] (see also [13]). Starting with
the paper by Cimatti and Prodi [12], the stationary and the evolution thermistor
problem was studied by Cimatti in [9, 10, 11]. The study was then continued by
Chipot and Cimatti [8], Antontsev and Chipot [2], and Howison, Rodrigues, and
Shillor [16], among others; see also the references in these papers. More recently,
the problem has been studied in the evolutionary case in [15], and, in the case of
p-Laplacian or p(x)-Laplacian differential operators, in [18] and [7].

The plan of the paper is as follows: In the next section we will use Schauder's
fixed point theorem to prove an existence result for a system which ``approximates""
system (1.2), as well as a technical result concerning the function H(t) defined above.
In section 3 we will prove Theorem 1.1, using the results of section 2, while in section 4
we will suppose that both A(x, t) and B(x, t) do not depend on x, proving the existence
of a bounded solution u for the first equation under the weaker assumption p \geq q - 1.
Finally, section 5 contains some remarks on the case p < q - 1, which seems not easy
to deal with and---at least in one case---cannot be solved without the lower order term
+u in the first equation of system (1.2).

2. Some preliminary results. In this section, we will prove existence of solu-
tions for a system which will be used to approximate (1.2). More precisely, we will
consider the following system:

(2.1)

\left\{       
 - div(R(x, u)\nabla u) + u = S(x, u)T (x,\nabla \psi ) \cdot T (x,\nabla \psi ) in \Omega ,

 - div(S(x, u)\nabla \psi ) + \psi = g in \Omega ,

u = 0 = \psi on \partial \Omega .

Here we will assume the following: R : \Omega \times \BbbR \rightarrow \BbbR N\times N and S : \Omega \times \BbbR \rightarrow \BbbR N\times N

will be two Carath\'eodory matrix-valued functions (that is, measurable for x in \Omega and
continuous for t in \BbbR ) such that

(2.2)
R(x, t) \xi \cdot \xi \geq \scrA R | \xi | 2 , | R(x, t)| \leq \scrB R ,

S(x, t) \xi \cdot \xi \geq \scrA R | \xi | 2 , | S(x, t)| \leq \scrB S
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6913

for some 0 < \scrA R \leq \scrB R and 0 < \scrA S \leq \scrB S , for almost every x in \Omega , for every t in
\BbbR , and for every \xi in \BbbR N ; T : \Omega \times \BbbR N \rightarrow \BbbR N will be a Carath\'eodory vector-valued
function (that is, measurable for x in \Omega and continuous for \xi in \BbbR N ) such that

(2.3) | T (x, \xi )| \leq \scrT 

for some \scrT > 0, for almost every x in \Omega , and for every \xi in \BbbR N . We will furthermore
assume that g \geq 0 is an L\infty (\Omega ) function. Our result is the following.

Theorem 2.1. Let g \geq 0 be a function in L\infty (\Omega ), and let R, S, and T satisfy
(2.2) and (2.3). Then there exist weak solutions u and \psi to system (2.1), with u \geq 0
in W 1,2

0 (\Omega ) \cap L\infty (\Omega ), and \psi \geq 0 in W 1,2
0 (\Omega ) \cap L\infty (\Omega ).

Proof. We are going to prove existence of solutions using Schauder's theorem.
Toward this goal, let v be a function in L2(\Omega ), and let \varphi be the unique weak solution
in W 1,2

0 (\Omega ) of
 - div(S(x, v)\nabla \varphi ) + \varphi = g .

Note that \varphi \geq 0 since g \geq 0. Following the ideas of [6], we choose (\varphi  - k)+ as test
function, with k = \| g\| 

L\infty (\Omega )
, to have (after a few straightforward passages)

0 \leq 
\int 
\Omega 

(\varphi  - k) (\varphi  - k)+ \leq 0 .

From this inequality we obtain that (\varphi  - k)+ = 0, so that, recalling the definition of
k,

(2.4) \| \varphi \| 
L\infty (\Omega )

\leq \| g\| 
L\infty (\Omega )

.

Given v and \varphi as above, let w be the unique weak solution inW 1,2
0 (\Omega ) of the equation

 - div(R(x, v)\nabla w) + w = S(x, v)T (x,\nabla \varphi ) \cdot T (x,\nabla \varphi ) .

Note that w \geq 0 since S(x, v)T (x,\nabla \varphi ) \cdot T (x,\nabla \varphi ) \geq 0 by (2.2); furthermore, choosing
as test function (w  - k)+, with k = \scrB S \scrT 2, and reasoning as above, we have that

(2.5) \| w\| 
L\infty (\Omega )

\leq \scrB S \scrT 2 =M .

Thanks to the above estimate, one also has that

\| w\| 
L2(\Omega )

\leq M
\sqrt{} 
meas(\Omega ) = \scrM .

Thus, if \scrS is the operator from L2(\Omega ) to L2(\Omega ) defined by \scrS (v) = u, one has that
the ball B\scrM of L2(\Omega ) is invariant for \scrS . We are going to prove that \scrS satisfies the
assumptions of Schauder's theorem: that it is continuous from L2(\Omega ) into itself, and
that \scrS (L2(\Omega )) is precompact in L2(\Omega ).

Let \{ vn\} be a sequence of functions in L2(\Omega ) which strongly converge to v in
L2(\Omega ), and let \{ \varphi n\} be the sequence of solutions of

 - div(S(x, vn)\nabla \varphi n) + \varphi n = g .

Choosing \varphi n as test function, and using (2.2), one has that the sequence \{ \varphi n\} is
bounded in W 1,2

0 (\Omega ); thus, up to subsequences, it converges to some function \varphi ,
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6914 LUCIO BOCCARDO AND LUIGI ORSINA

weakly in W 1,2
0 (\Omega ), and strongly in L2(\Omega ). Using the continuity and the boundedness

of S(x, \cdot ), one has that \varphi is the weak solution of the equation

 - div(S(x, v)\nabla \varphi ) + \varphi = g ,

so that, by uniqueness, the whole sequence \{ \varphi n\} converges to \varphi . Choosing \varphi n  - \varphi 
as test function, one easily obtains that the sequence \{ \varphi n\} strongly converges to \varphi in
W 1,2

0 (\Omega ).
Now let \{ wn\} be the sequence of solutions of

 - div(R(x, vn))\nabla wn) + wn = S(x, vn)T (x,\nabla \varphi n) \cdot T (x,\nabla \varphi n) ,

and choose wn as test function. Using (2.2) one obtains that the sequence \{ wn\} is
bounded in W 1,2

0 (\Omega ). Thus, up to subsequences, it converges to some function w
weakly in W 1,2

0 (\Omega ) and strongly in L2(\Omega ); using the continuity and the boundedness
of R(x, t), S(x, t), T (x, \xi ) and the strong convergence of \{ \nabla \varphi n\} in (L2(\Omega ))N , it is
easy to see that w is the weak solution of

 - div(R(x, v)\nabla w) + w = S(x, v)T (x,\nabla \varphi ) \cdot T (x,\nabla \varphi ) .

Thanks to uniqueness, the whole sequence \{ wn = \scrS (vn)\} strongly converges to
w = \scrS (v) in L2(\Omega ), and this implies that \scrS is continuous. As far as compactness
is concerned, if \{ vn\} is bounded in L2(\Omega ), the same calculations performed above
imply that the sequence \{ wn = \scrS (vn)\} is bounded in W 1,2

0 (\Omega ), so that it strongly
converges in L2(\Omega ) up to subsequences by Rellich's theorem.

Since \scrS satisfies the assumptions of Schauder's theorem, there exists u in L2(\Omega )
such that u = \scrS (u) (so that u actually belong to W 1,2

0 (\Omega )). Thus, if \psi is the solution
of

 - div(S(x, u)\nabla \psi ) + \psi = g ,

then u is the solution of

 - div(R(x, u)\nabla u) + u = S(x, u)T (x,\nabla \psi ) \cdot T (x,\nabla \psi ) .

Hence, we have proved the existence of weak solutions u \geq 0 and \psi \geq 0 to the
equations of (2.1), with both u and \psi belonging to W 1,2

0 (\Omega ) \cap L\infty (\Omega ).

We conclude this section with a technical result concerning the function H(t)
defined in (1.5).

Lemma 2.2. Suppose that p and q are such that (1.3) holds, and let H be as in
(1.5). Then for every \gamma > 0 and for every r in \BbbR there exists a constant C = C\gamma ,r,p,q >
0 such that

(2.6) (1 + t)r \leq C e\gamma H(t) \forall t \geq 0 .

Furthermore, for every \gamma > 0 and every r in \BbbR there exists C = C(\gamma , r, p, q) > 0 such
that

(2.7) (1 + t)r e\gamma H(t) \geq C \forall t \geq 0 .

Proof. If r \leq 0, it is enough to choose C = 1 to have that (2.6) holds true, so
that it remains to prove that (2.6) holds if r > 0; since H(t) \approx tp - q+1 as t tends to
infinity, one clearly has, for every \gamma > 0,

lim
t\rightarrow +\infty 

(1 + t)r e - \gamma H(t) = 0 .
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6915

This means that the function y(t) = (1+t)r e - \gamma H(t), which is positive, has a maximum
C = C\gamma ,r,p,q on [0,+\infty ); that is, one has y(t) \leq C for every t \geq 0, and this inequality
is exactly (2.6). As far as (2.7) is concerned, it is clearly true if r \geq 0 (it is enough to
choose C = 1); if r < 0, the existence of a constant C > 0 as in the statement follows
from the fact that, since H(t) \approx tp - q+1 as t tends to infinity, one has

lim
t\rightarrow +\infty 

(1 + t)r e\gamma H(t) = +\infty ,

so that y(t) = (1 + t)r e\gamma H(t) has a (strictly positive) minimum C = C\gamma ,r,p,q on
[0,+\infty ).

3. Proof of the main result. As stated in the introduction, we are going to
prove Theorem 1.1. During the proof, we will make use of the following result, whose
proof can be found in [5].

Lemma 3.1. Let \{ \Gamma n(x)\} be a sequence of uniformly elliptic, bounded matrices,
almost everywhere convergent to some uniformly elliptic matrix \Gamma (x), and let \{ \Theta n\} 
be a sequence of functions which is weakly convergent in (L2(\Omega ))N to some function
\Theta . If the sequence \{ \Gamma n(x)\Theta n \cdot \Theta n\} is bounded in L1(\Omega ), then \Gamma (x)\Theta \cdot \Theta belongs to
L1(\Omega ) and

(3.1)

\int 
\Omega 

\Gamma (x)\Theta \cdot \Theta \leq lim inf
n\rightarrow +\infty 

\int 
\Omega 

\Gamma n(x)\Theta n \cdot \Theta n .

During the proof we will also make use of the following functions of one real
variable, defined for k > 0 and t \geq 0:

Tk(t) = min(t, k) , Gk(t) = t - Tk(t) = (t - k)+ .

In what follows, C will denote a quantity which may depend on \alpha , \beta , Q, p, q, \Omega ,
and N , while C(g) will denote a quantity that depends on (some or all of) the above
parameters and on the norm of g in L\infty (\Omega ); in this case, the dependence of C(g) on the
norm will be bounded. Note that C and C(g) will never depend on the ``approximating
parameter"" n in \BbbN .

Proof. The proof will be divided into several steps.

Step 1: Approximation.

For n in \BbbN , there exist weak solutions un \geq 0 and \psi n \geq 0, with both un and \psi n

belonging to W 1,2
0 (\Omega ) \cap L\infty (\Omega ), of the system

(3.2)

\left\{         
 - div(A(x, Tn(un))\nabla un) + un =

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 in \Omega ,

 - div(B(x, Tn(un))\nabla \psi n) + \psi n = g in \Omega ,

un = 0 = \psi n on \partial \Omega .

The existence of such solutions follows from Theorem 2.1, choosing

R(x, t) = A(x, Tn(t)) , S(x, t) = B(x, Tn(t)) , T (x, \xi ) =
\xi 

1 + 1
n | \xi | 

,

which satisfy (2.2) with

\scrA R = \alpha min(1, (1 + n)p) , \scrB R = \beta max(1, (1 + n)p) ,
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6916 LUCIO BOCCARDO AND LUIGI ORSINA

\scrA S = \alpha min(1, (1 + n)q) , \scrB S = \beta max(1, (1 + n)q) ,

and

\scrT = n .

Step 2: The sequence \{ \psi n\} is bounded in L\infty (\Omega ).

This is a straightforward consequence of (2.4), which implies that

(3.3) \| \psi n\| 
L\infty (\Omega )

\leq \| g\| 
L\infty (\Omega )

.

Step 3. A priori estimates on the sequence \{ Tn(un)\} .

Let H(t) be as in (1.5), let \gamma > 0, and choose v = e\gamma H(Tn(un)) - 1 as test function
in the first equation of system (3.2). We obtain, using (1.4),

\gamma 

\int 
\Omega 

A(x, Tn(un))\nabla un \cdot \nabla Tn(un) e\gamma H(Tn(un))H \prime (Tn(un)) +

\int 
\Omega 

un (e
\gamma H(Tn(un))  - 1)

=

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 (e\gamma H(Tn(un))  - 1)

\leq \beta 

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un)) .

Recalling (1.4) and the definition of H(t), from the above inequality we deduce that

(3.4)

\alpha \gamma 

\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) +

\int 
\Omega 

un (e
\gamma H(Tn(un))  - 1)

\leq \beta 

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un)) .

Now choose \varphi = \psi n e
\gamma H(Tn(un)) as test function in the second equation of system

(3.2). We obtain
(3.5)\int 

\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n e
\gamma H(Tn(un)) +

\int 
\Omega 

\psi 2
n e

\gamma H(Tn(un))

=

\int 
\Omega 

g \psi n e
\gamma H(Tn(un))

 - \gamma 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla Tn(un) e\gamma H(Tn(un))H \prime (Tn(un))\psi n .

Recalling (1.4), we have

(3.6) \alpha 

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un)) \leq 
\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n e
\gamma H(Tn(un)) .
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On the other hand, again by (1.4) and by Young's inequality, we have\bigm| \bigm| \bigm| \bigm| \gamma \int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla Tn(un) e\gamma H(Tn(un))H \prime (Tn(un))\psi n

\bigm| \bigm| \bigm| \bigm| 
\leq \gamma \beta 

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| | \nabla Tn(un)| e\gamma H(Tn(un))H \prime (Tn(un))\psi n

\leq \alpha 

2

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un))

+ C \gamma 2
\int 
\Omega 

\sigma (Tn(un)) | \nabla Tn(un)| 2 e\gamma H(Tn(un)) [H \prime (Tn(un))]
2 \psi 2

n .

Recalling the definition of H and estimate (3.3), we thus have

(3.7)

\gamma 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla Tn(un) e\gamma H(Tn(un))H \prime (Tn(un))\psi n

\leq \alpha 

2

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un))

+ C \gamma 2 \| g\| 2
L\infty (\Omega )

\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) .

Using (3.6) and (3.7) in (3.5) we obtain, dropping a positive term,

\alpha 

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un)) \leq 
\int 
\Omega 

g \psi n e
\gamma H(Tn(un))

+
\alpha 

2

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un))

+ C \gamma 2 \| g\| 2
L\infty (\Omega )

\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) .

Simplifying equal terms, we have thus proved that

(3.8)

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un)) \leq C

\int 
\Omega 

g \psi n e
\gamma H(Tn(un))

+ C(g) \gamma 2
\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) .

Using this inequality with (3.4), we have that

\alpha \gamma 

\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) +

\int 
\Omega 

un (e
\gamma H(Tn(un))  - 1)

\leq C

\int 
\Omega 

g \psi n e
\gamma H(Tn(un)) + C(g) \gamma 2

\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) .

We now choose \gamma small enough to have

C(g) \gamma =
\alpha 

2
,

which implies that \gamma \approx \| g\|  - 2

L\infty (\Omega )
; from the previous inequality it thus follows that

(3.9)

\alpha \gamma 

2

\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) +

\int 
\Omega 

un (e
\gamma H(Tn(un))  - 1)

\leq 
\int 
\Omega 

g \psi n e
\gamma H(Tn(un)) .
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6918 LUCIO BOCCARDO AND LUIGI ORSINA

Since the first term of (3.9) is positive, we have\int 
\Omega 

un (e
\gamma H(Tn(un))  - 1) \leq C

\int 
\Omega 

g \psi n e
\gamma H(Tn(un)) \leq C(g)

\int 
\Omega 

e\gamma H(Tn(un)) ,

where in the last passage we have used (3.3). This inequality can be rewritten (adding
and subtracting the term C(g) meas(\Omega )) as\int 

\Omega 

(un  - C(g)) (e\gamma H(Tn(un))  - 1) \leq C(g) meas(\Omega ) = C(g) .

Splitting the integral on the set where un \geq 2C(g) and un < 2C(g), we have

C(g)

\int 
\{ un\geq 2C(g)\} 

(e\gamma H(Tn(un))  - 1) \leq 
\int 
\{ un\geq 2C(g)\} 

(un  - C(g)) (e\gamma H(Tn(un))  - 1)

\leq 
\int 
\{ un<2C(g)\} 

| un  - C(g)| | e\gamma H(Tn(un))  - 1| + C(g)

\leq C(g) e\gamma H(C(g)) meas(\Omega ) + C(g) = C(g) ,

which implies, recalling that \gamma depends on g, that

(3.10)

\int 
\Omega 

e\gamma H(Tn(un)) \leq C(g) .

This inequality, together with (3.9), yields that

(3.11)

\int 
\Omega 

\rho 2(Tn(un))

\sigma (Tn(un))
| \nabla Tn(un)| 2 e\gamma H(Tn(un)) \leq C(g) .

Now we apply (2.7) of Lemma 2.2 with r = 2p  - q, and with \gamma as above to obtain
that there exists C > 0 such that

\rho 2(t)

\sigma (t)
e\gamma H(t) = (1 + t)2p - q e\gamma H(t) \geq C \forall t \geq 0 .

Thus, from (3.11) (and the fact that un \geq 0) it follows that

C

\int 
\Omega 

| \nabla Tn(un)| 2 \leq 
\int 
\Omega 

g \psi n e
\gamma H(Tn(un)) \leq \| g\| 2

L\infty (\Omega )

\int 
\Omega 

e\gamma H(Tn(un)) \leq C(g) ,

so that we have proved that

(3.12) the sequence \{ Tn(un)\} is bounded in W 1,2
0 (\Omega ).

Furthermore, applying (2.6) of Lemma 2.2 with r =  - q and \gamma as above, we have
that

(1 + t) - q e\gamma H(t) \geq C \forall t \geq 0 ,

so that (3.11) and the fact that un \geq 0 imply that

C

\int 
\Omega 

\rho 2(Tn(un)) | \nabla Tn(un)| 2 \leq C(g) .

From this inequality and the assumptions on A(x, t) it follows that

(3.13) the sequence \{ A(x, Tn(un))\nabla Tn(un)\} is bounded in (L2(\Omega ))N .
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6919

Step 4. A priori estimates on the sequence \{ \psi n\} .

Starting from (3.8) and using (3.10) and (3.11), as well as the boundedness of the
sequence \{ g \psi n\} in L\infty (\Omega ), one has that

(3.14)

\int 
\Omega 

\sigma (Tn(un)) | \nabla \psi n| 2 e\gamma H(Tn(un)) \leq C(g) .

Using (2.7) of Lemma 2.2 with r = q and \gamma as above, one has that there exists C > 0
such that

\sigma (t) e\gamma H(t) = (1 + t)q e\gamma H(t) \geq C \forall t \geq 0 .

Using this inequality in (3.14) (together with the fact that un \geq 0), one has that\int 
\Omega 

| \nabla \psi n| 2 \leq C(g) ,

which implies that

(3.15) the sequence \{ \psi n\} is bounded in W 1,2
0 (\Omega ).

Furthermore, using again (2.7) of Lemma 2.2 with r =  - q and \gamma as above, one has
that there exists C > 0 such that

e\gamma H(t)

\sigma (t)
= (1 + t) - q e\gamma H(t) \geq C \forall t \geq 0 ,

which implies that
e\gamma H(t) \geq C \sigma (t) \forall t \geq 0 .

Using this inequality in (3.14) (and using the fact that un \geq 0), we thus have that\int 
\Omega 

\sigma 2(Tn(un)) | \nabla \psi n| 2 \leq C(g) ,

which implies, recalling the assumptions on B(x, t), that

(3.16) the sequence \{ B(x, Tn(un))\nabla \psi n\} is bounded in (L2(\Omega ))N .

Step 5. Convergences of un and \psi n.

Thanks to the results of Step 3, we have that the sequence \{ Tn(un)\} is bounded
in W 1,2

0 (\Omega ); thus it converges, up to subsequences, to a function u in W 1,2
0 (\Omega ), weakly

in W 1,2
0 (\Omega ), strongly in L2(\Omega ), and almost everywhere.
Now let x in \Omega be such that u(x) =M < +\infty and such that Tn(un(x)) converges

to u(x); almost every x in \Omega is such that this happens. If n is large enough, one has
that Tn(un(x)) \leq M+1 (thanks to the convergence of Tn(un(x)) to u(x) < M); if n is
also larger thanM+1, from Tn(un(x)) \leq M+1 < n it follows that Tn(un(x)) = un(x);
thus, the convergence of Tn(un(x)) to u(x) implies that un(x) converges to u(x). In
other words, we have proved that

the sequence \{ un\} converges to u(x) almost everywhere in \Omega .

Now we recall (3.10): \int 
\Omega 

e\gamma H(Tn(un)) \leq C(g) .
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6920 LUCIO BOCCARDO AND LUIGI ORSINA

Using the almost everywhere convergence of un to u, and Fatou's lemma, we deduce
from the previous inequality that\int 

\Omega 

e\gamma H(u) \leq C(g) ,

so that u has exponential summability, as desired. Recalling (3.9) and using estimate
(3.10), one has that \int 

\Omega 

un (e
\gamma H(Tn(un))  - 1) \leq C(g) ,

which implies that

(e\gamma H(n)  - 1)

\int 
\{ un\geq n\} 

un \leq 
\int 
\{ un\geq n\} 

un (e
\gamma H(Tn(un))  - 1) \leq C(g) ,

so that

0 \leq lim
n\rightarrow +\infty 

\int 
\{ un\geq n\} 

un \leq lim
n\rightarrow +\infty 

C(g)

e\gamma H(n)  - 1
= 0 ,

which implies that

(3.17) lim
n\rightarrow +\infty 

\int 
\{ un\geq n\} 

un = 0 .

On the other hand, since \{ e\gamma H(Tn(un))\} is bounded in L1(\Omega ) by (3.10), the sequence
\{ Tn(un)\} is bounded in Ls(\Omega ) for every s < +\infty , so that it strongly converges to u
in every Ls(\Omega ). In particular, it converges to u in L1(\Omega ). Thus, since\int 

\Omega 

un =

\int 
\{ un<n\} 

un +

\int 
\{ un\geq n\} 

un =

\int 
\{ un<n\} 

Tn(un) +

\int 
\{ un\geq n\} 

un ,

using (3.17) and the strong convergence of Tn(un) to u one has that

lim
n\rightarrow +\infty 

\int 
\Omega 

un = lim
n\rightarrow +\infty 

\biggl[ \int 
\{ un<n\} 

Tn(un) +

\int 
\{ un\geq n\} 

un

\biggr] 
=

\int 
\Omega 

u .

This limit, together with the fact that un almost everywhere converges to u, and that
un \geq 0, implies that

(3.18) the sequence \{ un\} strongly converges to u in L1(\Omega ).

Using again that Tn(un) converges to u strongly in Ls(\Omega ), for every s < \infty , and
assumption (1.4), we have that the sequences \{ A(x, Tn(un))\} and \{ B(x, Tn(un))\} 
converge, respectively, to A(x, u) and B(x, u) strongly in (Ls(\Omega ))N\times N for every s <
+\infty .

The strong convergence of A(x, Tn(un)) to A(x, u) in every (Ls(\Omega ))N\times N and the
weak convergence of \nabla Tn(un) to \nabla u in (L2(\Omega ))N imply that \{ A(x, Tn(un))\nabla Tn(un)\} 
converges to A(x, u)\nabla u weakly in (Lr(\Omega ))N for every r < 2; on the other hand, by
(3.13) the same sequence weakly converges to some vector function G in (L2(\Omega ))N .
The uniqueness of the weak limit then implies that G = A(x, u)\nabla u, so that the
sequence

(3.19) \{ A(x, Tn(un))\nabla Tn(un)\} weakly converges to A(x, u)\nabla u in (L2(\Omega ))N .
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6921

Since the sequence \{ \psi n\} is bounded in W 1,2
0 (\Omega ), there exists \psi in W 1,2

0 (\Omega ) such
that, up to subsequences, \psi n converges to \psi weakly in W 1,2

0 (\Omega ), strongly in L2(\Omega ),
and almost everywhere in \Omega .

The strong convergence of B(x, Tn(un)) to B(x, u) in every (Ls(\Omega ))N\times N , together
with the weak convergence of\nabla \psi n to\nabla \psi in (L2(\Omega ))N , implies that \{ B(x, Tn(un))\nabla \psi n\} 
weakly converges toB(x, u)\nabla \psi in (Lr(\Omega ))N for every r < 2; on the other hand, thanks
to the results of Step 4, the sequence \{ B(x, Tn(un))\nabla \psi n\} is bounded in (L2(\Omega ))N , so
that it weakly converges in (L2(\Omega ))N to some vector function E; by the uniqueness
of the limit, we have that E = B(x, u)\nabla \psi , so that the sequence

\{ B(x, Tn(un))\nabla \psi n\} weakly converges to B(x, u)\nabla \psi in (L2(\Omega ))N .

Step 6. Passage to the limit in the second equation.

Now let \varphi be a function in W 1,2
0 (\Omega ), and choose it as test function in the second

equation of (3.2) to obtain\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \varphi +

\int 
\Omega 

\psi n \varphi =

\int 
\Omega 

g \varphi .

Thanks to the weak convergence of \{ B(x, Tn(un))\nabla \psi n\} in (L2(\Omega ))N , and the strong
convergence of \{ \psi n\} in L2(\Omega ), we can pass to the limit in the three terms, to obtain
that

(3.20)

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \varphi +

\int 
\Omega 

\psi \varphi =

\int 
\Omega 

g \varphi \forall \varphi \in W 1,2
0 (\Omega ) .

Step 7. Passage to the limit in the first equation.

Recalling that \psi belongs to L\infty (\Omega ), and choosing \varphi = \psi \eta , with \eta in W 1,2
0 (\Omega ) \cap 

L\infty (\Omega ) in (3.20), one has that

(3.21)

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi \eta +
\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \eta \psi +

\int 
\Omega 

\psi 2 \eta =

\int 
\Omega 

g \psi \eta .

On the other hand, choosing \varphi = \psi n \eta as test function in the second equation of
system (3.2), one has\int 

\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n \eta +

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \eta \psi n +

\int 
\Omega 

\psi 2
n \eta =

\int 
\Omega 

g \psi n \eta ,

which can be rewritten as\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n \eta =

\int 
\Omega 

g \psi n \eta  - 
\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \eta \psi n  - 
\int 
\Omega 

\psi 2
n \eta .

Since all three terms on the right-hand side are convergent (recall that the sequence
\{ B(x, Tn(un))\nabla \psi n\} is weakly convergent in (L2(\Omega ))N , and that \{ \psi n\} is bounded in
L\infty (\Omega )) we have

lim
n\rightarrow +\infty 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n \eta =

\int 
\Omega 

g \psi \eta  - 
\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \eta \psi  - 
\int 
\Omega 

\psi 2 \eta .
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6922 LUCIO BOCCARDO AND LUIGI ORSINA

Recalling (3.21) we thus have proved that

(3.22) lim
n\rightarrow +\infty 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n \eta =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi \eta 

for every \eta in W 1,2
0 (\Omega ) \cap L\infty (\Omega ). Thus, if \eta \geq 0 is a function in W 1,2

0 (\Omega ) \cap L\infty (\Omega ),
one has

lim sup
n\rightarrow +\infty 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 \eta \leq lim sup

n\rightarrow +\infty 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n \eta 

=

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi \eta .

Recall now that the sequence \{ \psi n\} is bounded in W 1,2
0 (\Omega ) by the results of Step 4;

therefore

lim
n\rightarrow +\infty 

1

n
| \nabla \psi n| = 0 , strongly in L2(\Omega ).

Thus, one has that

lim
n\rightarrow +\infty 

1\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 = 1 , almost everywhere in \Omega .

This fact allows us to apply Lemma 3.1 with

\Gamma n(x) =
\eta (x)B(x, Tn(un))\bigl( 

1 + 1
n | \nabla \psi n| 

\bigr) 2 ,

which almost everywhere converges to

\Gamma (x) = \eta (x)B(x, u) ,

and
\Theta n = \nabla \psi n ,

which is bounded in L2(\Omega ) since \{ \psi n\} is bounded in W 1,2
0 (\Omega ), and weakly converges

to \nabla \psi ; we thus have that

lim inf
n\rightarrow +\infty 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 \eta \geq 

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi \eta ,

so that we have proved that

(3.23) lim
n\rightarrow +\infty 

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 \eta =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi \eta 

for every \eta \geq 0, \eta in W 1,2
0 (\Omega ) \cap L\infty (\Omega ).

Now let v \geq 0 be a function in W 1,2
0 (\Omega ) \cap L\infty (\Omega ), and choose it as test function

in the first equation of the system (3.2). We have\int 
\Omega 

A(x, Tn(un))\nabla un \cdot \nabla v +
\int 
\Omega 

un v =

\int 
\Omega 

B(x, Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 v .
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Recalling the weak convergence of \{ A(x, Tn(un))\nabla Tn(un)\} in (L2(\Omega ))N , and the
strong convergence of \{ un\} to u in L1(\Omega ) (see (3.18) and (3.19)) as well as (3.23)
(written with \eta = v), we can pass to the limit as n tends to infinity to obtain that\int 

\Omega 

A(x, u)\nabla u \cdot \nabla v +
\int 
\Omega 

u v =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi v

for every v \geq 0 in W 1,2
0 (\Omega ) \cap L\infty (\Omega ). If v changes sign, splitting v = v+  - v - yields

that \int 
\Omega 

A(x, u)\nabla u \cdot \nabla v +
\int 
\Omega 

u v =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi v

for every v in W 1,2
0 (\Omega ) \cap L\infty (\Omega ), as desired.

Remark 3.2. We remark that even though the right-hand side B(x, u)\nabla \psi \cdot \nabla \psi 
only belongs to L1(\Omega ), one can choose test functions in W 1,2

0 (\Omega ) in the first equation
of system (1.2), and not only in W 1,2

0 (\Omega ) \cap L\infty (\Omega ). Indeed, if v \geq 0 is a function in
W 1,2

0 (\Omega ), and k > 0, one can choose Tk(v) as test function in the first equation of
system (1.2) to have that\int 

\Omega 

A(x, u)\nabla u \cdot \nabla Tk(v) +
\int 
\Omega 

uTk(v) =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi Tk(v) .

Since the term B(x, u)\nabla \psi \cdot \nabla \psi is positive, and the functions A(x, u)\nabla u and u belong,
respectively, to (L2(\Omega ))N and L2(\Omega ), we can pass to the limit on k in all terms (using
the Lebesgue theorem on the left, and the Beppo Levi theorem on the right) to get
that \int 

\Omega 

A(x, u)\nabla u \cdot \nabla v +
\int 
\Omega 

u v =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi v

for every v \geq 0 in W 1,2
0 (\Omega ); if v changes sign, splitting v = v+  - v - yields that\int 

\Omega 

A(x, u)\nabla u \cdot \nabla v +
\int 
\Omega 

u v =

\int 
\Omega 

B(x, u)\nabla \psi \cdot \nabla \psi v

for every v in W 1,2
0 (\Omega ).

4. Cases \bfitA and \bfitB independent on \bfitx , and \bfitp \geq \bfitq  - 1. As a consequence of
Theorem 1.1 we have that the solution u of the first equation of system (1.2) belongs
to Ls(\Omega ) for every s < +\infty , so that one may wonder whether u belongs to L\infty (\Omega )
or not. In our general case, with A(x, t) and B(x, t) depending also on x, we are not
able to do so.

However, if we assume that both A(x, t) and B(x, t) do not depend on x, then u
belongs to L\infty (\Omega ). In this case, we follow the ideas of [9] (see also [10, 11, 13, 17]),
which will also allow us to deal with the case p = q  - 1.

Lemma 4.1. Let A(t) and B(t) be two continuous matrix-valued functions such
that

(4.1)
A(t) \xi \cdot \xi \geq \alpha \rho (t) | \xi | 2 , | A(t)| \leq \beta \rho (t) ,

B(t) \xi \cdot \xi \geq \alpha \sigma (t) | \xi | 2 , | B(t)| \leq \beta \sigma (t) ,
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6924 LUCIO BOCCARDO AND LUIGI ORSINA

with p and q such that p \geq q - 1. Let g \geq 0 be a function in L\infty (\Omega ), and let \{ un\} and
\{ \psi n\} be the sequence of solutions of

(4.2)

\left\{         
 - div(A(Tn(un))\nabla un) + un =

B(Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 in \Omega ,

 - div(B(Tn(un))\nabla \psi n) + \psi n = g in \Omega ,

un = 0 = \psi n on \partial \Omega ,

whose existence is guaranteed by Theorem 2.1. Then there exists a constant C(g) such
that

(4.3) \| un\| 
L\infty (\Omega )

+ \| \psi n\| 
L\infty (\Omega )

\leq C(g) .

Proof. Define

Hn(t) =

\int t

0

A(Tn(s))

B(Tn(s))
ds , H(t) =

\int t

0

A(s)

B(s)
ds,

and

wn = Hn(un) +
\psi 2
n

2
,

so that

\nabla wn =
A(Tn(un))

B(Tn(un))
\nabla un + \psi n \nabla \psi n .

Let k > 0, and choose v = Gk(wn) = (wn  - k)+ as test function in the first equation
of system (4.2). We obtain\int 

\Omega 

A(Tn(un))\nabla un \cdot \nabla Gk(wn) +

\int 
\Omega 

unGk(wn) =

\int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 Gk(wn) .

Defining Ak = \{ wn \geq k\} , we can rewrite the above identity as
(4.4)\int 

Ak

B(Tn(un))
A(Tn(un))

B(Tn(un))
\nabla un \cdot 

\Bigl( A(Tn(un))
B(Tn(un))

\nabla un + \psi n \nabla \psi n

\Bigr) 
+

\int 
\Omega 

unGk(wn)

=

\int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 Gk(wn) \leq 

\int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla \psi nGk(wn) .

Now choose Gk(wn)\psi n as test function in the second equation of (4.2) to obtain that\int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla \psi nGk(wn) +

\int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla Gk(wn)\psi n

+

\int 
\Omega 

\psi 2
nGk(wn) =

\int 
\Omega 

g \psi nGk(wn) ,

which can be rewritten as\int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla \psi nGk(wn) =

\int 
\Omega 

g \psi nGk(wn)

 - 
\int 
\Omega 

\psi 2
nGk(wn) - 

\int 
Ak

B(Tn(un))\psi n \nabla \psi n \cdot 
\Bigl( A(Tn(un))
B(Tn(un))

\nabla un + \psi n \nabla \psi n

\Bigr) 
.
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6925

Using this identity in (4.4) we obtain, after grouping similar terms,\int 
Ak

B(Tn(un))
\Bigl( A(Tn(un))
B(Tn(un))

\nabla un + \psi n \nabla \psi n

\Bigr) 
\cdot 
\Bigl( A(Tn(un))
B(Tn(un))

\nabla un + \psi n \nabla \psi n

\Bigr) 
+

\int 
\Omega 

(un + \psi 2
n)Gk(wn) \leq 

\int 
\Omega 

g \psi nGk(wn) .

Recalling once again the expression for \nabla wn, the previous inequality implies that\int 
Ak

B(Tn(un))\nabla wn \cdot \nabla wn +

\int 
\Omega 

(un + \psi 2
n)Gk(wn) \leq 

\int 
\Omega 

g \psi nGk(wn) ,

so that, dropping a positive term, we have\int 
\Omega 

(un + \psi 2
n)Gk(wn) \leq 

\int 
Ak

g \psi nGk(wn) ,

which implies, recalling that g belongs to L\infty (\Omega ), that

(4.5)

\int 
\Omega 

(un + \psi 2
n  - \| g\| 

L\infty (\Omega )
\psi n)Gk(wn) \leq 0 .

We now recall that from (2.4) it follows that

(4.6) \| \psi n\| 
L\infty (\Omega )

\leq \| g\| 
L\infty (\Omega )

,

which gives the desired estimate on the sequence \{ \psi n\} in L\infty (\Omega ); from (2.4) one has
that

 - 
\| g\| 2

L\infty (\Omega )

4
\leq \psi 2

n  - \| g\| 
L\infty (\Omega )

\psi n \leq 0 ;

define M = 1
4 \| g\| 

2

L\infty (\Omega )
, so that (4.5) implies, recalling the definition of Gk(wn), that

(4.7)

\int 
\Omega 

(un  - M) (wn  - k)+ \leq 0 .

We are now going to prove that if n \geq M , there exists k > 0 large enough such that

(4.8) (wn  - k)+ = 0 on \{ 0 \leq un \leq M\} .

Indeed, recalling the definition of wn, if 0 \leq un \leq M and n \geq M , and using the
definition of M as well as (4.6) and the fact that Hn(t) is increasing, one has

wn = Hn(un) +
\psi 2
n

2
\leq Hn(M) + 2M =

\int M

0

A(s)

B(s)
ds+ 2M = H(M) + 2M .

Thus, choosing k > H(M) + 2M = C(g) we have (4.8). We now write (4.7) as\int 
\Omega 

(un - M) (wn - k)+ =

\int 
\{ un>M\} 

(un - M) (wn - k)+ +

\int 
\{ 0\leq un\leq M\} 

(un - M) (wn  - k)+

=

\int 
\{ un>M\} 

(un  - M) (wn  - k)+ ,
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6926 LUCIO BOCCARDO AND LUIGI ORSINA

where we have used (4.8) in the last passage. Thus, we have that

0 \leq 
\int 
\{ un>M\} 

(un  - M) (wn  - k)+ \leq 0 ,

which implies that (un  - M) (wn  - k)+ = 0 almost everywhere on the set \{ un > M\} .
We now have two possibilities: either n \geq M is such that the set \{ un > M\} has zero
measure, or it is such that the function (wn  - k)+ = 0 almost everywhere on the set
\{ un > M\} . In the first case, we have 0 \leq un \leq M in \Omega almost everywhere in \Omega , so
that

(4.9) \| un\| 
L\infty (\Omega )

\leq M \forall n \geq M such that meas(\{ un > M\} ) = 0.

In the second case, from (4.8) it follows that (wn  - k)+ = 0 almost everywhere in \Omega 
for every k > C(g) = H(M) + 2M . Therefore,

0 \leq wn = Hn(un) +
\psi 2
n

2
\leq C(g) \forall n \geq M ,

which implies that

(4.10) 0 \leq Hn(un) \leq C(g) \forall n \geq M such that (wn  - k)+ = 0.

Recalling (4.1), we have that

Hn(t) =

\int t

0

A(Tn(s))

B(Tn(s))
ds \geq 

\int Tn(t)

0

A(Tn(s))

B(Tn(s))
ds =

\int Tn(t)

0

A(s)

B(s)
ds \geq \alpha 

\beta 

\int Tn(t)

0

\rho (s)

\sigma (s)
ds ,

so that

Hn(t) \geq 

\left\{     
\alpha 

\beta 

(1 + Tn(t))
p - q+1  - 1

p - q + 1
if p > q  - 1,

\alpha 

\beta 
ln(1 + Tn(t)) if p = q  - 1.

Thus, from (4.10) we have that either

\alpha 

\beta 

(1 + Tn(un))
p - q+1  - 1

p - q + 1
\leq C(g)

if p > q  - 1 or
\alpha 

\beta 
ln(1 + Tn(un)) \leq C(g)

if p = q  - 1. In both cases, there exists a constant C(g), independent of n, such that

0 \leq Tn(un) \leq C(g) .

Choosing n \geq C(g), the above inequality implies that

0 \leq un \leq C(g) ,

so that

(4.11) \| un\| 
L\infty (\Omega )

\leq C(g) \forall n \geq M such that (wn  - k)+ = 0.

Putting together (4.9) and (4.11), we have that for every n \geq M the norm of un
in L\infty (\Omega ) is bounded by a constant independent of n, so that the sequence \{ un\} is
bounded in L\infty (\Omega ), as desired.
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6927

Remark 4.2. Note that we used the assumption p \geq q  - 1 only at the end of the
proof, when dealing with the consequences of the fact that (wn  - k)+ = 0 on the set
\{ un > M\} .

As a consequence of Lemma 4.1 and of the proof of Theorem 1.1, we have that if
p > q - 1, the solution u of system (1.2) belongs to L\infty (\Omega ) if both A(x, t) and B(x, t)
do not depend on x and satisfy (4.1). If p = q  - 1, Lemma 4.1 allows us to prove an
existence result for system (1.2).

Theorem 4.3. Let A(t) and B(t) be such that (4.1) holds, with p = q  - 1. Let
g \geq 0 be a function in L\infty (\Omega ). Then there exist solutions u and \psi of system (1.2),
such that

\bullet u \geq 0 belongs to W 1,2
0 (\Omega ) \cap L\infty (\Omega );

\bullet \psi \geq 0 belongs to W 1,2
0 (\Omega ) \cap L\infty (\Omega ).

Furthermore, u and \psi are such that\int 
\Omega 

A(u)\nabla u \cdot \nabla v +
\int 
\Omega 

u v =

\int 
\Omega 

B(u)\nabla \psi \cdot \nabla \psi v

for every v in W 1,2
0 (\Omega ) \cap L\infty (\Omega ) and\int 

\Omega 

B(u)\nabla \psi \cdot \nabla \varphi +

\int 
\Omega 

\psi \varphi =

\int 
\Omega 

g \varphi 

for every \varphi in W 1,2
0 (\Omega ).

Proof. Let \{ un\} and \{ \psi n\} be the sequences of solutions of system (4.2); by
Lemma 4.1, both sequences are bounded in L\infty (\Omega ). Choosing un as test function
in the first equation and \psi n as test function in the second equation, we have that\int 

\Omega 

A(Tn(un))\nabla un \cdot \nabla un +

\int 
\Omega 

u2n =

\int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 un

and \int 
\Omega 

B(Tn(un))\nabla \psi n \cdot \nabla \psi n +

\int 
\Omega 

\psi 2
n =

\int 
\Omega 

g \psi n .

Since by (4.1) and by the boundedness of \{ un\} in L\infty (\Omega ) there exist constants \scrA > 0
and \scrB such that

\scrA | \nabla un| 2 \leq A(Tn(un))\nabla un \cdot \nabla un \leq \scrB | \nabla un| 2

and
\scrA | \nabla \psi n| 2 \leq B(Tn(un))\nabla \psi n \cdot \nabla \psi n \leq \scrB | \nabla \psi n| 2 ,

from the above identities we have that

\scrA 
\int 
\Omega 

| \nabla \psi n| 2 \leq 
\int 
\Omega 

g \psi n \leq C(g) ,

and then that

\scrA 
\int 
\Omega 

| \nabla un| 2 \leq \scrB C(g)
\int 
\Omega 

| \nabla \psi n| 2 = C(g) .

Hence, the sequences \{ un\} and \{ \psi n\} are bounded in W 1,2
0 (\Omega ), so that there exist u

and \psi in W 1,2
0 (\Omega ) \cap L\infty (\Omega ) such that the sequence \{ un\} converges to u (weakly in
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6928 LUCIO BOCCARDO AND LUIGI ORSINA

W 1,2
0 (\Omega ) and strongly in Ls(\Omega ) for every s \geq 1), and the sequence \{ \psi n\} converges to

\psi (weakly inW 1,2
0 (\Omega ) and strongly in Ls(\Omega ) for every s \geq 1). Choosing \psi n - \psi as test

function in the second equation, one easily obtains that the sequence \{ \psi n\} strongly
converges to \psi in W 1,2

0 (\Omega ), so that (recalling that the sequence \{ un\} is bounded in
L\infty (\Omega )), the Lebesgue theorem implies that

lim
n\rightarrow +\infty 

B(Tn(un))\nabla \psi n \cdot \nabla \psi n\bigl( 
1 + 1

n | \nabla \psi n| 
\bigr) 2 = B(u)\nabla \psi \cdot \nabla \psi , strongly in L1(\Omega ).

Using these convergences, one can pass to the limit in the equations satisfied by un and
\psi n to prove that u and \psi are weak solutions (in the sense specified in the statement)
of the equations of (1.2).

5. Some comments on the case \bfitp < \bfitq  - 1. In this section we are going to
explain why the case p < q  - 1 is very different from the case p \geq q  - 1 in terms
of a priori estimates and of existence of solutions for system (1.2). We will confine
ourselves to the model cases:

A(x, t) = (1 + | t| )p I , B(x, t) = (1 + | t| )q I , p < q  - 1 ,

where I is the N \times N identity matrix.
As a first remark, we observe that also in this case one can perform the same

arguments as in the proof of Theorem 1.1 to obtain that (3.10) and (3.11) hold true;
however, if p < q  - 1, then

H(t) =
1 - (1 + | t| )p - q+1

q  - p - 1
sgn(t)

is a bounded function; thus, the fact that the sequence \{ e\gamma H(Tn(un))\} is bounded in
L1(\Omega ) is trivially true, and from (3.11) one can only obtain that\int 

\Omega 

(1 + Tn(un))
2p - q| \nabla Tn(un)| 2 \leq C(g) .

This inequality, if p and q are such that 2p  - q < 0, does not yield any estimate on
\{ Tn(un)\} in W 1,2

0 (\Omega ), so that any solution of the first equation (if it exists) does not
have finite energy. Furthermore, and worse, from (3.14) one only has that\int 

\Omega 

(1 + Tn(un))
q | \nabla \psi n| 2 \leq C(g) ,

which, even though it gives an estimate on \{ \psi n\} in W 1,2
0 (\Omega ) under the assumption

q > 0, does not allow us to prove that the sequence \{ (1 + Tn(un))
q \nabla \psi n\} is bounded

in (L2(\Omega ))N , a key fact in order to pass to the limit in the approximate equations
(see Step 7 of the proof of Theorem 1.1). A possible alternative approach would be to
prove that the sequence \{ (1 + Tn(un))

q \nabla \psi n \cdot \nabla \psi n\} is strongly convergent in L1(\Omega )
but, once again, the a priori estimates are too weak to prove this using any of the
known techniques.

Another possible approach is to prove that the sequence \{ un\} of solutions is
bounded in L\infty (\Omega ), so that existence of solutions for system (1.2) will easily follow as
in the proof of Theorem 4.3. Thus, one may think to apply to the case p < q  - 1 the
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A SYSTEM RELATED TO THE STATIONARY THERMISTOR 6929

same ideas as in the proof of Lemma 4.1. And indeed, the proof works, but the final
result is that the sequence \{ Hn(un)\} is bounded in L\infty (\Omega ). In our case, we have that

Hn(t) =

\left\{       
1 - (1 + Tn(t))

p - q+1

q  - p - 1
if 0 \leq t \leq n,

1 - (1 + n)p - q+1

q  - p - 1
+

t - n

(1 + n)p - q
if t > n,

which is an unbounded function. However, from the inequality 0 \leq Hn(un) \leq C(g)
one can only obtain that

0 \leq un \leq n+ (1 + n)q - p

\biggl[ 
C(g) - 1 - (1 + n)p - q+1

q  - p - 1

\biggr] 
\approx C(g)nq - p ,

and q  - p > 1 by the assumption p < q  - 1. In other words, this method does not
yield an a priori estimate on the sequence \{ un\} in L\infty (\Omega ).

There is a further problem which arises in the case p < q  - 1, and that mathe-
matically justifies the presence of the lower order terms ``+u"" and ``+\psi "" in the two
equations of the system. Indeed, under the assumption p < q  - 1, among the pos-
sible values there are q = 0 and p <  - 1; in this case the matrix-valued functions
A(t) = (1 + | t| )p I and B(t) = I, where I is the N \times N identity matrix, satisfy
assumption (1.4). Therefore, setting \gamma =  - p > 1, system (1.2) becomes\left\{         

 - div
\Bigl( \nabla u
(1 + | u| )\gamma 

\Bigr) 
+ u = | \nabla \psi | 2 in \Omega ,

 - \Delta \psi + \psi = g in \Omega ,

u = 0 = \psi on \partial \Omega ,

with the two equations ``uncoupled."" Since clearly the second equation has a solution
in W 1,2

0 (\Omega ) \cap L\infty (\Omega ), the question becomes whether the first one has a solution,
taking into account that the datum is an L1(\Omega ) function. In this case, there is a
sharp difference between the case where a lower order term ``+u"" is considered or not.
We quote here some results contained in [1] (for the ``nonexistence"" part) and [3] (for
the ``existence"" part).

(A) If the norm of g in L\infty (\Omega ) is large enough, there is no solution w \geq 0 of the
equation

(5.1)  - div
\Bigl( \nabla w
(1 + w)\gamma 

\Bigr) 
= | \nabla \psi | 2 .

Indeed, suppose that g and \Omega are smooth enough so that \psi belongs to W 1,\infty 
0 (\Omega ),

and let M be the norm of | \nabla \psi | in L\infty (\Omega ). Let z be the weak solution in W 1,2
0 (\Omega ) of

(5.2)  - \Delta z = | \nabla \psi | 2 ,

and suppose that M is large enough in order to have \| z\| 
L\infty (\Omega )

> 1
\gamma  - 1 . Since M

depends linearly on g, this can be done by choosing the norm of g large enough.
Suppose now that there exists a solution w \geq 0 of (5.1), and set

z =
1 - (1 + w)1 - \gamma 

\gamma  - 1
.
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6930 LUCIO BOCCARDO AND LUIGI ORSINA

Since

\nabla z = \nabla w
(1 + w)\gamma 

,

one has that z solves (5.2). However, this is not possible, since by definition 0 \leq 
z \leq 1

\gamma  - 1 , while the choice of g is such that \| z\| 
L\infty (\Omega )

> 1
\gamma  - 1 . Therefore, w does not

exist (actually, one can prove as in [1] that if one approximates (5.1), one obtains a
function which is infinite on a subset of positive measure).

(B) For every g in L\infty (\Omega ) there exists a solution u \geq 0 of the equation

(5.3)  - div
\Bigl( \nabla u
(1 + u)\gamma 

\Bigr) 
+ u = | \nabla \psi | 2 .

Indeed, reasoning as above and setting

v =
1 - (1 + u)1 - \gamma 

\gamma  - 1
,

finding a solution of (5.3) is equivalent to finding a solution of equation

(5.4)  - \Delta v +
1

[1 - (\gamma  - 1) v]
1

\gamma  - 1

= | \nabla \psi | 2 ,

which has a lower order term G(v) = 1

[1 - (\gamma  - 1) v]
1

\gamma  - 1
such that

lim
t\rightarrow ( 1

\gamma  - 1 )
 - 
G(t) = +\infty .

This is exactly the case studied in [3], where it is proved that these equations have a
solution v, such that 0 \leq v < 1

\gamma  - 1 almost everywhere in \Omega for every datum in L1(\Omega ).

Thus, since | \nabla \psi | 2 belongs to L1(\Omega ) for every possible datum g (since \psi belongs to
W 1,2

0 (\Omega )), it turns out that (5.3), and so system (1.2) in this ``uncoupled"" case, has a
solution for every datum g.

In other words, in the case p < q - 1 one can have that the differential operator of
the first equation is a very noncoercive one (noncoercive in general, and with respect
to the differential operator of the second equation). For this reason, the term ``+u,""
which guarantees that at least one has some estimates in L1(\Omega ), is necessary, from a
mathematical point of view, in order to prove existence of solutions for system (1.2).
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