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Abstract
In amarketwhere a stochastic interest rate component characterizes asset dynamics,we
propose a flexible lattice framework to evaluate andmanage options on equities paying
discrete dividends and variable annuities presenting some provisions, like a guaranteed
minimum withdrawal benefit. The framework is flexible in that it allows to combine
financial and demographic risk, to embed in the contract early exercise features, and
to choose the dynamics for interest rates and traded assets. A computational problem
arises when each dividend (when valuing an option) or withdrawal (when valuing
a variable annuity) is paid, because the lattice lacks its recombining structure. The
proposed model overcomes this problem associating with each node of the lattice
a set of representative values of the underlying asset (when valuing an option) or
of the personal subaccount (when valuing a variable annuity) chosen among all the
possible ones realized at that node. Extensive numerical experiments confirm the
model accuracy and efficiency.
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1 Introduction

In this paper, we propose a flexible lattice framework that allows us to obtain accurate
evaluation and management of the risk affecting both long-term options written on
assets paying discrete dividends, and variable annuities (VAs hereafter) embedding
someprovisions, like a guaranteedminimumwithdrawal benefit (GMWBhereafter). In
order to consider a realistic context that permits to achieve consistent risk estimates, the
model has been developed in amarket where the traded asset dynamics is characterized
by stochastic interest rates since, as evidenced by Aas et al. (2018), the choice of an
adequate interest rate model represents an additional key component in life insurance
and financial evaluations. Under this perspective, the model allows to choose the most
appropriate dynamics, among the ones widely used in finance and insurance, for both
the interest rate and the underlying asset, by combining financial and demographic
risk and embedding in the contract early exercise features.

Pricing options when the underlying asset pays discrete dividends is a nontrivial
problem that, in the financial literature, has been faced applying different techniques.
Attempts working on European options have been provided by Merton (1973) and
Beneder and Vorst (2001). An approximation for American options with a single
dividend has been proposed, among others, by Black (1975) and, separately, by
Roll (1977), Geske (1979) and Whaley (1981) (the well known Roll–Geske–Whaley
method). Unfortunately, in some cases, both the Black and the Roll–Geske–Whaley
methods underestimate the call option price. An alternative approach widely used
to price both European and American-type options written on assets paying discrete
dividends is represented by lattice-based methods. They can be easily applied to take
into account single or multiple discrete dividends, even if computational problems
arise due to the jumps at the dividend payment dates that cause the lack of the lattice
recombining structure. To overcome this problem, Vellekoop and Nieuwenhuis (2006)
present a modified Cox et al. (1979) tree (CRR hereafter) based on suitable integration
techniques that are introduced at the dividend payment dates. Later, in Vellekoop and
Nieuwenhuis (2011), the same authors derived an integral formula to deal, among
others, with discrete dividends in a free-boundary problem framework. Dai (2009)
introduces a new recombining tree structure, the stair tree, which uses extra nodes
only when it needs to simulate the price jumps due to the dividend payments. Indeed,
the stair tree follows the CRR tree structure between dividend dates while, for nodes at
the dividend dates, trinomial branching schemes are devised to connect the two adja-
cent CRR tree structures. Finally, it is worth citing the recent work of Costabile et al.
(2018), who propose a suitable construction of a tree with a reconnecting property.

A computational problem, similar to the one encountered when evaluating financial
options written on assets paying discrete dividends, may be faced in the procedures
that use lattice-based methodologies to estimate the premiums of VA embedding a
GMWB rider. In its classical form, such a rider returns to the policyholder the entire
initial invested premium through periodical withdrawals during the policy lifetime
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regardless of the subaccount performance, plus the remaining subaccount value bal-
ance, if any, at maturity. As a consequence, the effect of the periodical withdrawals
on the lattice structure used to discretize the subaccount value is similar to the effect
of the paid dividends on the lattice discretizing the underlying asset, i.e., the lattice
loses its recombining structure when the withdrawals are paid. Evaluation models
for VA with GMWB have been proposed by many stems of the actuarial literature.
For instance, when the policyholder receives a constant withdrawn amount at each
withdrawal epoch, contributions have been developed both under the assumption of
a constant interest rate by Milevsky and Posner (2001), and stochastic interest rate
by Lin and Tan (2003), and Peng et al. (2012). On the other hand, when considering
the more involved and challenging pricing problem that embeds a surrender option in
the policy contract or, alternatively, gives the policyholder the possibility to optimally
decide the amount to withdraw at each anniversary in order to maximize the current
policy value, various contributions have been proposed by Milevsky and Salisbury
(2006), Bauer et al. (2008), Dai et al. (2008), Chen and Forsyth (2008), Yang and Dai
(2013), Luo and Shevchenko (2014), Hyndman and Wenger (2014), Bacinello et al.
(2016), and Costabile et al. (2020).

The main contribution of this paper is to provide a lattice-based evaluation method
suitable to evaluate both European or American options written on assets paying dis-
crete dividends during the option lifetime, and VAs characterized by GMWB riders
even when the policy embeds a surrender option. The choice of a lattice methodol-
ogy has been driven by its flexibility and ease of implementation that makes it very
useful for practitioners. The proposed framework is quite general because it may
accommodate a wide range of diffusions used in finance and insurance, both for the
stochastic interest rate and for the underlying asset, by simply modifying the process
parameters. The considered continuous time processes are approximated by means of
recombining lattices, which work directly on the original processes. Indeed, the gener-
ated lattice values discretize only the diffusion part of the processes, while branching
probabilities are computed to assure that the first and the second order local moments
of the discrete distribution match the corresponding continuous-time ones, at least
within the limit. The main feature of the proposed approach is relative to the fact that
it does not make use of any preliminary transformation of the original processes to
obtain the approximating recombining lattices. For instance, to support this assertion,
we evidence that the straightforward application of the Cox and Rubinstein (1985)
model to discretize the spot rate process, which is generally heteroskedastic, leads
to a non-recombining bushy tree that makes the evaluation problem computationally
unmanageable. As a consequence, to construct approximating recombining lattices,
preliminary transformations of the original heteroskedastic processes have been pro-
posed to obtain homoskedastic processes, as it happens in Nelson and Ramaswamy
(1990). To sum up, our model is based on the construction of reconnecting lattices
for the original processes bypassing such transformations. After discretizing the spot
rate process, the algorithm works to discretize the dividend-paying underlying asset
process in the case we want to evaluate an option, or the subaccount value in the case
we want to evaluate a VA with GMWB. The discretization is still based on a recom-
bining binomial lattice that is similar to the one used to approximate the interest rate
dynamics but, in addition, presents a vector of representative values in correspondence
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with each node, generated by taking into account the payments of the dividends or
withdrawals up to that node. Indeed, the main problem to face is relative to the fact that
the jumps due to the payments of the dividends or withdrawals cause the loss of the
recombining shape of the tree. Consequently, the number of trajectories connecting
the root of the tree to a generic node grows up quickly when increasing the number of
time steps. Since considering all the paths connecting the root to a generic node is com-
putationally infeasible, we propose to select a pre-specified number of representative
trajectories along which we compute the underlying asset or the subaccount values.
The resulting two lattices are combined in order to establish a bivariate tree presenting
four branches for each node. Joint probabilities are computed for the possible jumps
in order to take into account the correlation between the two processes. As the model
works on representative values, a linear interpolation technique is used when solving
backward through the lattice to compute the option price or the VA present value in
terms of the discounted payoffs over the bivariate lattice branches.

The remaining of the paper is organized as follows. In Sect. 2, after presenting the
continuous-timemodel, we establish the discretizing lattice for the interest rate and the
underlying asset (when valuing an option) or the personal subaccount (when valuing
a variable annuity), then introducing the resulting bivariate lattice. Section 3 concerns
the application of the algorithm presented in Sect. 2 for the pricing of options written
on assets paying discrete dividends and the valuation of VAs with GMWB riders.
Section 4 presents some numerical results confirming the accuracy of the proposed
model and provides some comparisons with the existing methods. Finally, Sect. 5
concludes the paper.

2 The evaluationmodel

2.1 The continuous-time framework

To present contemporaneously the framework used to evaluate options written on
dividend paying stocks and VAs embedding GMWB riders, we consider a market
where, under the risk-neutral probabilitymeasure, interest rates fluctuate stochastically
according to the following differential equation

dr(t) = μ(r(t))dt + σr (r(t))dWr (t), (1)

and affect the values assumed by an underlying asset that pays at times th, h =
1, . . . ,m fixed amounts, Dth , being t0 = 0 the contract inception and T ≥ tm the
contract maturity measured on annual basis. Hence, the asset value jumps down by an
amount equal to the paid amount and its dynamics may be described by the following
stochastic differential equation

dS(t) = (r(t) − α)S(t)dt + σS S(t)dWS(t), (2)

where th−1 < t ≤ th and S(th) = S(t−h ) − Dth , with S(t−0 ) = S(t0); furthermore, σS

is a positive constant and α is about to be specified below, while WS(t) and Wr (t) are
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standard Brownian motions with constant correlation ρ. Depending on the definition
of the drift term μ(r(t)) and the diffusion term σr (r(t)), the stochastic differential
equation (1) may describe several processes like:

• a Cox et al. (1985) process when μ(r(t)) = γ (θ − r(t)) and σr (r(t)) = σr
√
r(t),

with the reversion speed γ , the long-term revision target θ , and the risk-free rate
volatility σr being positive constants. The condition 2γ θ > σ 2

r ensures that r(t)
is never negative;

• a Vasicek (1977) process when μ(r(t)) = γ (θ − r(t)) and σr (r(t)) = σr ;
• a Hull and White (1994) process when μ(r(t)) = γ (β(t)− r(t)), with β(t) being
a deterministic function of time, and σr (r(t)) = σr .

If we consider the evaluation problem of an option, equation (2) will represent the
dynamics of the underlying asset paying a discrete dividend Dth at time th and the
quantity α = 0.1 Indeed, the latter identifies the insurance fee for the GMWB when-
ever we want to evaluate a VA (see, among others, Milevsky and Salisbury 2006; Dai
et al. 2015; Costabile et al. 2020 for further details). In this case, equation (2) will
describe the dynamics of the personal subaccount of a single premium VA embedding
a GMWB with withdrawals Dth allowed, as usual in actuarial practice, at each con-
tract anniversary th = h, h = 1, . . . , T . It is worth evidencing that a VA contract is
characterized by the presence of two accounts for the policyholder: a personal subac-
count invested in a well diversified reference fund, for which we have supposed the
dynamics showed in equation (2); a guarantee account having value At at time t , with
At−h

denoting its value at time th before the payment of the withdrawal and Ath being
the value at the same time after the withdrawal has been paid. The initial investment
S(0) forms the initial balance of both the accounts, while S(t) remains trapped in
zero once it has reached zero. To simplify matters, we detail how both the accounts
work by considering a static approach according to which the policyholder withdraws
a fixed amount D = S(0)

T , i.e., Dth = D with th = h and h = 1, . . . , T , at each policy
anniversary. At the first epoch t1 = 1, an instant before the withdrawal payment, the
subaccount has value S(t−1 ) generated by (2) starting from S(0), while the guarantee
account has value At−1

= S(0). After the withdrawal, both the accounts decrease by

D assuming value S(t1) = max(S(t−1 ) − D, 0),2 and At1 = At−1
− D, and so on in

the next payment anniversaries. In general, the guarantee account in such an approach
decreases by D at each policy anniversary, that is Ath = S(0) − hD, h = 1, . . . , T ,
and when the VA contract expires it assumes value AT = AT− − D = 0. Finally, it
worth mentioning that the mixed approach is similar to the static one but it adds the
possibility for the policyholder to surrender the contract early.3

1 We remark that, in the case of an option valuation, it may occur that S(t−h ) < Dth with strictly positive
probability. Anyway, the dividends may be set in such a way that the probability associated with negative
asset values is completely negligible. We also evidence that this problem does not arise in the discretized
model where there is a minimum level of the asset value at each dividend payout date and, hence, the
dividends can be set in such a way that this value never becomes negative.
2 To define S(t1)we have tomake use of themaximumbecause the S-process follows a stochastic dynamics
that may show a negative performance registering values smaller than D.
3 For a comprehensive description of more complex withdrawal strategies, the reader may refer for instance
to Costabile et al. (2020).
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Fig. 1 The binomial lattice discretizing the r -process

2.2 The risk-free rate process discretization

The first step of the proposed model is to discretize the stochastic interest rate process
(1) on the entire interval [0, T ] by a recombining binomial lattice. Following the
Costabile andMassabo’ (2010) algorithm that allows to force a heteroskedastic process
to be homoskedastic, we obtain a recombinant and computationally simple lattice in
which the number of nodes grows up linearly with the number of time steps.

As usual in lattice methods, we start by dividing the interval [0, T ] into n subinter-
vals of equal length �t = T /n, and choose n as a multiple of T in order to assure that
each contract anniversary coincides with a layer of lattice nodes. In this way, we avoid
the biases that may occur whenever, for instance, the VA withdrawal epochs do not
coincidewith discrete observation times in the lattice approximation. For i = 0, . . . , n,
we denote the lowest node at time i�t by (i, 0), the second lowest one by (i, 1), and
so on. Hence, we denote by r(i, k), k = 0, . . . , i , the value of the interest rate discrete
approximating process at node (i, k). Rooting the tree at r(0, 0) = r(0), at the generic
i-th time interval, with i = 1, . . . , n, we have the values:

• on the upper edge, r(i, i) = r(i − 1, i − 1) + σr (r(i − 1, i − 1))
√

�t ;
• on the lower edge, r(i, 0) = max(r(i − 1, 0) − σr (r(i − 1, 0))

√
�t, 0); and

• on the inner nodes (i, k), where i = 2, . . . , n, and k = 1, . . . , i − 1, r(i, k) =
r(i − 2, k − 1), i.e., the value at node (i, k) is set equal to the value associated
with node (i − 2, k − 1).

In other words, as depicted in Fig. 1, once the interest rate values on the lattice edges
have been computed, the values for the inner nodes are simply determined by gener-
ating horizontal layers of nodes starting from the ones located on the two edges.

At this point, we are left to compute transition probabilities. Starting from a generic
value r(i, k), upward, pr (i, k), and downward, qr (i, k) = 1 − pr (i, k), transition
probabilities are computed by imposing that the two successor points for the state
variable, r(i + 1, k + 1) and r(i + 1, k), bracket the expected value of the interest rate

123



A flexible lattice framework for options and variable…
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r(3, 1)

r(4, 2)

r(4, 3)

r(4, 1)

•r(3, 0) + µ(r(3, 0))Δt

Fig. 2 An example of multiple jumps in the r -process

in the next time interval, that is

pr (i, k) = r(i, k) + μ(r(i, k))�t − r(i + 1, k)

r(i + 1, k + 1) − r(i + 1, k)
.

Whenever r(i, k)+μ(r(i, k))�t does not lie between r(i + 1, k + 1) and r(i + 1, k),
pr (i, k) is not a legitimate probability, i.e., a number between 0 and 1, so that multiple
upward or downward jumps are required. An example, starting from node (3, 0), is
given in Fig. 2.

In general, a multiple jump for the process located at node (i, k) is achieved by
defining km as

km =

⎧
⎪⎪⎨

⎪⎪⎩

0 if r(i, k) + μ(r(i, k))�t < r(i + 1, 0),
i if r(i, k) + μ(r(i, k))�t > r(i + 1, k + 1),
the largest integer k′ ∈ [0, i] : r(i, k) + μ(r(i, k))�t ≥ r(i + 1, k′)
otherwise,

so that the successors of r(i, k) are r(i + 1, km + 1) and r(i + 1, km) with transition
probabilities

pr (i, k) =
⎧
⎨

⎩

0 if r(i, k) + μ(r(i, k))�t < r(i + 1, 0),
1 if r(i, k) + μ(r(i, k))�t > r(i + 1, i + 1),
r(i,k)+μ(r(i,k))�t−r(i+1,km )

r(i+1,km+1)−r(i+1,km )
otherwise,

and qr (i, k) = 1 − pr (i, k), respectively.
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2.3 The underlying asset process discretization

The second step of the algorithm is to establish a recombining lattice discretizing
the underlying asset dynamics (2). We start from its initial value S(0, 0) = S(0)
and compute at each node (i, j), i = 0, . . . , n, j = 0, . . . , i , the quantity S(i, j) =
S(0, 0)u jdi− j , with u = eσS

√
�t and d = 1

u . To define the transition probability
assigned to each lattice node (i, j), again we impose that the successor points for
S(i, j), S(i + 1, j + 1) and S(i + 1, j), bracket the expected value of the process in
the next time interval. Observing the drift term in (2), we have to take into account
all the possible values assumed by the risk-free rate at nodes (i, k) lain at each i-th
time step. This is done by defining a triplet (i, j, k) in correspondence of which the
risk-free rate assumes value at node (i, k) and the asset assumes value at node (i, j).
In this way, upward transition probability pS(i, j, k) associated with node (i, j, k) is
computed by

pS(i, j, k) = S(i, j)e(r(i,k)−α)�t − S(i + 1, j)

S(i + 1, j + 1) − S(i + 1, j)
. (3)

The corresponding probability of a downward jump is qS(i, j, k) = 1 − pS(i, j, k).
If pS(i, j, k) does not belong to the interval [0, 1], we define

jm =

⎧
⎪⎪⎨

⎪⎪⎩

0 if S(i, j)e(r(i,k)−α)�t < S(i + 1, 0),
i if S(i, j)e(r(i,k)−α)�t > S(i + 1, i + 1),
the largest integer j ′ ∈ [0, i] : S(i, j)e(r(i,k)−α)�t ≥ S(i + 1, j ′)
otherwise,

so that the successors of S(i, j) are S(i + 1, jm + 1) and S(i + 1, jm) with transition
probabilities

pS(i, j, k) =

⎧
⎪⎨

⎪⎩

0 if S(i, j)e(r(i,k)−α)�t < S(i + 1, 0),
1 if S(i, j)e(r(i,k)−α)�t > S(i + 1, i + 1),
S(i, j)e(r(i,k)−α)�t−S(i+1, jm )
S(i+1, jm+1)−S(i+1, jm )

otherwise,
(4)

and qS(i, j, k) = 1 − pS(i, j, k).

2.4 The algorithm tomanage dividends or withdrawals

At this point we have to take into account the effect on the lattice of the periodical
dividends if we want to evaluate an option, or withdrawals if we want to evaluate a VA
with a GMWB. Indeed, the lattice loses its recombining structure as shown in Fig. 3
where a six time-step asset evolution is depicted and it is supposed, for simplicity, that
the time horizon between two consecutive payments is constant.

The tree originates at time t = 0 and ends at time t = 6�t , while at time t1 = 2�t
the asset pays the first dividend/withdrawal Dt1 and at time t2 = 4�t the asset pays
the second dividend/withdrawal Dt2 . Figure 3 shows clearly how the presence of the
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Fig. 3 The effect on the lattice structure when two discrete dividends/withdrawals equal to Dt1 and Dt2
are paid at time t1 = 2�t and t2 = 4�t , respectively

dividend/withdrawal payments causes a huge increment in the number of possible
asset values since the number of nodes grows deeply when the number of time steps
increases. It is easy to understand that, proceeding forward along the tree in this way,
the problem becomes computationally difficult to manage and this is a key point to
look at when developing a reliable and efficient lattice-based evaluation method.

In order to overcome this obstacle, we propose an algorithm that saves the lattice
recombinant shape even in the case of dividend or withdrawal payments. The idea
is to build a tree for which, at each node (i, j), we do not consider a single asset
value but a set of possible values capturing the asset evolution along each trajectory
connecting the root of the tree with the considered node, taking properly into account
all the dividends/withdrawals paid up to time i�t .

To present the procedure, as usual in financial practice when managing options
written on dividend paying stocks, we suppose that the first dividend may be paid
at a generic date t1 after the contract inception, while the subsequent dividends at
time th, h = 2, . . . ,m, are yearly paid starting from t1. To capture this aspect, we
denote by 	 = n

T the number of tree steps falling in an entire contract year, and
with λ1 = 	t1 the number of time steps falling between the contact inception and
the first payment date t1. The original choice of n as a multiple of T assures that
	 is an integer but, to avoid biases, we have to choose n in a away that also λ1
is an integer. Satisfying both such condition, we assure that all the dividend pay-
ing dates coincide with one of the lattice layers of nodes. Indeed, the first dividend
payment date coincides with the λ1-th step, the generic h-th dividend payment date
th, h = 2, . . . ,m, coincideswith step λ1+(h−1)	 (because the subsequent dividends
at time th, h = 2, . . . ,m, are yearly paid starting from t1) and, finally, the contract
maturity T coincides with the n-th step of the lattice. When evaluating a VA with a
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GMWB, the notation simplifies a bit because, generally, withdrawals are paid in corre-
spondence with the policy anniversaries so that th = h, h = 1, . . . , T , and obviously
also λ1 = 	. To capture the effects of the dividends/withdrawals on the underlying
asset value, their amounts are represented in terms of the number of asset shares trans-
ferred to the beneficiary multiplied by the asset value at the payment date. To detail
how the dividends/withdrawals are managed, let us consider a generic path starting
from inception and reaching node (i, j) characterized by the asset values S(l, jl) and
denoted by τ(i, j) = {(l, jl), l = 0, . . . , i; ji = j}. Following the considered trajec-
tory, at time t1, i.e., after λ1 time steps, with the first dividend/withdrawal payment the
asset value decreases by Dt1 = nS(λ1, jλ1)S(λ1, jλ1), where nS(λ1, jλ1) represents
the number of shares deducted from the underlying assetwith the aimof paying the div-
idend/withdrawal Dt1 . Similarly, at time t2, i.e., after λ1+	 time steps, wemay define
the second dividend/withdrawal payment Dt2 = nS(λ1+	, jλ1+	)S(λ1+	, jλ1+	).
In general, at time th, h = 1, . . . ,m, with th ≤ i�t , i.e., after λ1 + (h − 1)	
time steps, with the h-th dividend/withdrawal payment the asset value decrements
by Dth = nS(λ1 + (h − 1)	, jλ1+(h−1)	)S(λ1 + (h − 1)	, jλ1+(h−1)	). Hence, if
the asset value follows the trajectory τ(i, j) to reach node (i, j), the total number of
shares deducted to pay the dividends/withdrawals up to the i-th step is given by

∑

h∈Hτ (i, j)

nS(λ1 + (h − 1)	, jλ1+(h−1)	) =
∑

h∈Hτ (i, j)

Dth

S(λ1 + (h − 1)	, jλ1+(h−1)	)
,

(5)

where Hτ(i, j) = {
h : (λ1 + (h − 1)	, jλ1+(h−1)	) ∈ τ(i, j), h = 1, . . . ,m

}
, so that

the underlying asset value arising following trajectory τ(i, j) is computed by

S(i, j) −
∑

h∈Hτ (i, j)

Dth

S(λ1 + (h − 1)	, jλ1+(h−1)	)
S(i, j). (6)

It is worth noting that the computed number of shares in equation (5) represents a map
that does not change its value between two consecutive payment dates, but its value
is strictly dependent upon τ(i, j). It means that, generally, different paths reaching
node (i, j) lead to different values for the total number of shares deducted to pay
the dividends/withdrawals but, clearly, considering all the

(i
j

)
possible paths reaching

node (i, j) is computational infeasible. To reduce the computational complexity of
the evaluation problem, we propose to select among all the possible paths reaching
node (i, j) a set made up of η(i, j) representative ones used to compute the resulting
asset values, where η(i, j) is given by the explicit formula reported in the following
proposition.

Proposition 1 In a binomial lattice characterized by n time steps, the number of rep-
resentative underlying asset values, η(i, j), associated with a generic node (i, j),
i = 0, . . . , n, j = 0, . . . , i , is given by:

• if i < λ1, η(i, j) = 1;
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• if i ≥ λ1 and λ1 ≤ min( j, i − j),

η(i, j) = 1 + λ1

⌈
min( j, i − j) − λ1

	

⌉

+

+ 1

2
	

(⌈
min( j, i − j) − λ1

	

⌉

− 1

)⌈
min( j, i − j) − λ1

	

⌉

+

+ 1

2
	

(⌈
min( j, i − j)

	

⌉

− 1

)⌈
min( j, i − j)

	

⌉

+

+min( j, i − j)

(⌈
i − λ1

	

⌉

−
⌈
min( j, i − j)

	

⌉

−
⌈
min( j, i − j) − λ1

	

⌉
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⌊
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⌋
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⌊
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⌋
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;

• if i ≥ λ1 and λ1 > min( j, i − j),

η(i, j) = 1 + min( j, i − j)

(⌈
i − λ1

	

⌉

−
⌈
min( j, i − j)

	

⌉

+ 1

)

+

−
{

min

(

	

(⌊
max( j, i − j) − λ1

	

⌋

+ 1

)

+ λ1 − max( j, i − j),

⌈
i − λ1

	

⌉

	 + λ1 − i

)

×

× min

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 1, 1

)

+

−
(⌈

i − λ1

	

⌉

	 + λ1 − i

)

× max

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 2, 0

)}

.

Proof See the Appendix. ��
To give an idea of the computational advantages that arise when using the propo-

sition, consider for instance node (25, 7) in a lattice used to discretize an asset
paying the first dividend/withdrawal at time t1 = 2�t so that λ1 = 2, the second
dividend/withdrawal at time t2 = 6�t so that 	 = 4, and the general h-th divi-
dend/withdrawals at time th = (λ1 + (h − 1)	)�t . We should detect

(25
7

) = 480700
different trajectories, but we compute only η(25, 7) = 33 representative values for the
underlying asset. To detail how we compute the different η(i, j) representative values
for node (i, j), we present the following iterative procedure:
Step a) start from the lowest trajectory τmin(i, j) reaching node (i, j) made up by
i − j down steps followed by j up steps. An example of such trajectory is depicted in
Fig. 4 for (i, j) = (4, 1). The first representative asset value, RS(i, j; 1), is obtained
by applying formula (6) upon trajectory τmin(i, j), that is

RS(i, j; 1) = S(i, j) −
∑

h∈Hτmin(i, j)

Dth

S(λ1 + (h − 1)	, jλ1+(h−1)	)
S(i, j); (7)
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Fig. 4 Trajectory τmin(4, 1)

(4, 1)

τmin(4, 1)

Step b) the remaining subset elements RS(i, j; l), l = 2, . . . , η(i, j), are generated
iteratively starting from τmin(i, j). Consider all the quantities

nS(λ1 + (h − 1)	, jλ1+(h−1)	) = Dth

S(λ1 + (h − 1)	, jλ1+(h−1)	)
, h ∈ Hτmin(i, j),

generated by the smallest value of S(λ1 + (h − 1)	, jλ1+(h−1)	), Smin(λ1 + (h −
1)	, jλ1+(h−1)	), and choose the one that corresponds to the maximum value
assumed by h, namely hmax, at node (λ1 + (hmax − 1)	, jλ1+(hmax−1)	) such that
the new path τnew(i, j) generated by substituting in τmin(i, j) node (λ1 + (hmax −
1)	, jλ1+(hmax−1)	) with node (λ1 + (hmax − 1)	, jλ1+(hmax−1)	 + 1) still reaches
node (i, j). If such a hmax does not exist, τmin(i, j) is the only representative trajec-
tory and there is only one representative asset value (computed by (7)) associated with
node (i, j); otherwise, the second representative asset value RS(i, j; 2) is computed
as in (7) by substituting τmin(i, j) with τnew(i, j). Repeating this procedure, starting
from τnew(i, j) until such a hmax does not exist, allows us to obtain exactly η(i, j)
representative asset values associated with node (i, j).

2.5 The resulting bivariate lattice

Now, we are in the position to establish a bivariate approximating lattice that takes into
account the joint evolution of the underlying asset and the stochastic interest rate. At
each time step, we consider all the values RS(i, j; l) and r(i, k), where i = 0, . . . , n,
j = 0, . . . , i , k = 0, . . . , i , and l = 1, . . . , η(i, j). The index i represents the time
step, j and k the positions at the i-th time step of the asset value and the risk-free
rate, respectively, and l is the position index in the subset of the representative values
associated with node (i, j) of the asset lattice.

Consequently, denoting by (i, j, k; l) each possible state of nature, the joint process
presents four possible scenarios because each discrete process can show an upward
movement, denoted by “u," or a downward movement, denoted by “d." Each scenario
is labeled with an ordered pair where the first element indicates the S-movement and
the second element refers to the r -movement: the first scenario is associated to the
case of an upward movement both in S and r discrete processes with probability
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puu ; the second one is associated with the case of an upward movement in S and
a downward movement in r with probability pud ; the third one is associated with a
downward movement in S and an upward movement in r with probability pdu ; the
latter one is associated with a downward movement both in S and r with probability
pdd . The probability of reaching each scenario is computed by adjusting the product of
the marginal probabilities associated with the corresponding movements in the lattice
approximating r(t) and S(t) to take into account their correlation, and are computed
by solving the linear system induced by the following equations:

1. the probabilities sum to 1,

puu + pud + pdu + pdd = 1; (8)

2. the constraint upon the marginal probability of the S-process is set up as

puu + pud = pS(i, j, k); (9)

3. the constraint upon the marginal probability of the r -process is set up as

puu + pdu = pr (i, k); (10)

4. the covariance between the discretized r -process and S-process must equal the
covariance between the continuous time ones,4 that is

puu − pud − pdu + pdd = ρ + pS(i, j, k)pr (i, k) − pS(i, j, k)qr (i, k) +
−qS(i, j, k)pr (i, k) + qS(i, j, k)qr (i, k). (11)

Solving simultaneously equations (8)-(11) leads to the following solutions:

puu = pS(i, j, k)pr (i, k) + ρ

4
; pud = pS(i, j, k)qr (i, k) − ρ

4
;

4 Equation (11) can be obtained as follows. Starting form a generic state (i, j, k), the discrete S-process
deviates from its mean by ±σS S(i, j)

√
�t (“+" in case of an upward movement and “-" in case of a

downward movement), while the r -process deviates from its mean by ±σr (r(i, k))
√

�t . The covariance
of the joint discrete bivariate distribution is computed by the difference between the expected value of the
product of the two variables, that is

puuσS S(i, j)
√

�tσr (r(i, k))
√

�t + pudσS S(i, j)
√

�t
(
−σr (r(i, k))

√
�t

)
+

+pdu
(
−σS S(i, j)

√
�t

)
σr (r(i, k))

√
�t + pdd

(
−σS S(i, j)

√
�t

) (
−σr (r(i, k))

√
�t

)
,

and the product between the expected value of each variable, that is

[
pS(i, j, k)σS S(i, j)

√
�t + qS(i, j, k)

(
−σS S(i, j)

√
�t

)]
×

×
[
pr (i, k)σr (r(i, k))

√
�t + qr (i, k)

(
−σr (r(i, k))

√
�t

)]
.

Hence, the obtained quantity must replicate the covariance of the corresponding continuous time distribu-
tions, that is ρσS S(i, j)

√
�tσr (r(i, k))

√
�t .
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pdu = qS(i, j, k)pr (i, k) − ρ

4
; pdd = qS(i, j, k)qr (i, k) + ρ

4
.

3 Method applications

In this section, we detail how the proposed method may be easily applied to evaluate
both European and American-type options written on dividend paying stocks and VAs
embedding GMWB riders and surrender options. Starting from the constructed lattice
structure, we report the procedures needed to proceed backward in order to obtain at
inception the option prices, the single premiums of VA policies or, alternatively, the
value for the provision α continuously paid for the GMWB riders.

3.1 Options on dividend paying stocks

The first application of the presented discretization regards to European call option
contracts written on underlying assets paying discrete dividends. We denote by
V (i, j, k; l) the option value in state of nature (i, j, k; l), with i = 0, . . . , n,
j = 0, . . . , i , k = 0, . . . , i , and l = 1, . . . , η(i, j). To price such a derivative at
the contract inception, we proceed backward starting from the n-th step of the bivari-
ate tree coinciding with the option maturity T . Here, the option payoff is computed
by V (n, j, k; l) = max (S(n, j; l) − K , 0), with K being the option strike price.
Proceeding backward, the generic continuation value at node (i, j, k; l) is given by

V (i, j, k; l) = e−r(i,k)�t (puuV (i + 1, jm + 1, km + 1; luu)+
+pudV (i + 1, jm + 1, km; lud) +
+pduV (i + 1, jm, km + 1; ldu) + pddV (i + 1, jm, km; ldd)

)
,

(12)

where

• V (i + 1, jm + 1, km + 1; luu) is the option value in correspondence of the asset
value [RS(i, j; l) − Dth I{i�t=th ,h=1,...,m}] S(i+1, jm+1)

S(i, j) arising when the r -process
shows an upward movement from r(i, k) to r(i + 1, km + 1) and the asset value
moves upward from S(i, j) to S(i + 1, jm + 1);

• V (i + 1, jm + 1, km; lud) is the option value in correspondence of the asset value
[RS(i, j; l)− Dth I{i�t=th ,h=1,...,m}] S(i+1, jm+1)

S(i, j) arising when the r -process shows
a downward movement from r(i, k) to r(i + 1, km) and the asset value moves
upward from S(i, j) to S(i + 1, jm + 1);

• V (i + 1, jm, km + 1; ldu) is the option value in correspondence of the asset value
[RS(i, j; l) − Dth I{th ,h=1,...,m}] S(i+1, jm )

S(i, j) arising when the r -process shows an
upward movement from r(i, k) to r(i + 1, km + 1) and the asset value moves
downward from S(i, j) to S(i + 1, jm);

• V (i + 1, jm, km; ldd) is the option value in correspondence of the account value
[RS(i, j; l) − Dth I{i�t=th ,h=1,...,m}] S(i+1, jm)

S(i, j) arising when the r -process shows a
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downward movement from r(i, k) to r(i + 1, km) and the account value moves
downward from S(i, j) to S(i + 1, jm).

For instance, if [RS(i, j; l) − Dth I{i�t=th ,h=1,...,m}] S(i+1, jm+1)
S(i, j) belongs to the set of

the representative asset values associated with node (i + 1, jm + 1), V (i + 1, jm +
1, km+1; luu) is already available; otherwise, V (i+1, jm+1, km+1; luu) is computed
by linear interpolation as in De Angelis et al. (2016). The same happens for all the
other quantities involved in equation (12).Whenever we want to evaluate an American
option, as usual in financial practice, we have to consider in the backward formula
(12) the early exercise value of the option contract, that is

V (i, j, k; l) = max
{
e−r(i,k)�t (puuV (i + 1, jm + 1, km + 1; luu)+

+pudV (i + 1, jm + 1, km; lud) +
+pduV (i + 1, jm, km + 1; ldu) +
+pddV (i + 1, jm, km; ldd)

)
, RS(i, j; l) − Dth I{i�t=th ,h=1,...,m} − K

}
.

Clearly, the pricing procedure may be easily adapted to price European or American
put options written on assets paying discrete dividends.

3.2 VAs embedding GMWB riders

The second application of the proposed methodology regards to the evaluation of VA
policies embedding GMWB riders, which allow withdrawals Dth at each contract
anniversary th = h, h = 1, . . . , T , as usual in the actuarial practice. As a conse-
quence, we have λ1 = 	 in the binomial discretization. The personal subaccount
value dynamics follows equation (2) and has initial value S(0), exactly as the initial
guarantee account, i.e., A0 = S(0). In our framework, we can easily manage both the
static and the mixed approach in which the policyholder withdraws a fixed amount
Dth = D = S(0)

T , at each policy anniversary.
The policy evaluation procedure starts again from the policy maturity T where, in

correspondence of each state of nature (n, j, k; l), the policy value is computed as

V (n, j, k; l) = max (S(n, j; l), AT−) ,

where we recall that AT− = D. Proceeding backward, the generic contract value at
node (i, j, k; l) if early redemption is not allowed, i.e., in the static approach, is given
by

V (i, j, k; l) = e−r(i,k)�t
(
puuV (i + 1, jm + 1, km + 1; luu) + pudV (i + 1, jm + 1, km; lud ) +

+ pduV (i + 1, jm , km + 1; ldu) + pddV (i + 1, jm , km; ldd )
)
, (13)

where the quantities V (i + 1, jm + 1, km + 1; luu), V (i + 1, jm + 1, km; lud), V (i +
1, jm, km + 1; ldu), and V (i + 1, jm, km; ldd) are computed following the procedure
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detailed in Sect. 3.1. Whenever the VA contract includes a surrender option allowing
the policyholder to redeem the contract early an instant before each withdrawal date,
we fall in the mixed approach where we define the surrender value coherently with
the actuarial literature,5 as

SV (i, j; l) = D + (1 − φ)RS(i, j; l), (14)

where φ is the contractually fixed penalty paid by the policyholder for the policy
early redemption. Greater is φ, more discouraged is the policyholder to surrender
the contract. As a consequence, when considering the mixed approach, equation (13)
modifies as

V (i, j, k; l) = max
(
e−r(i,k)�t

(
puuV (i + 1, jm + 1, km + 1; luu) +

+pudV (i + 1, jm + 1, km; lud) +
+pduV (i + 1, jm, km + 1; ldu) +
+pddV (i + 1, jm, km; ldd)

)
, SV (i, j; l)

)
. (15)

At this point, we are left to detail the procedure for computing the insurance fee α

paid for the GMWB rider that appears in the subaccount stochastic dynamics (2).
Such a fee is generally assumed to be continuously payable as a constant fraction
of the subaccount value. The backward procedure described above represents the
tool used to evaluate α because it is included in all the computations reported in
equations (13) and (15). Indeed, the quantity α appears in the formula for computing
the probabilities of the S-movements, as reported in equations (3) and (4), so that it is
embedded in equations (13) and (15) through the probabilities puu , pud , pdu , and pdd .
As a consequence, the policy value at the contract inception results as a function of
the provision α, i.e., V (0, 0, 0; 1) = V (α), so that to compute the fair value α paid at
the contract inception for the GMWB rider we have to solve numerically the nonlinear
equation V (α) − S(0) = 0.

The evaluation procedure detailed above does not take into account the effect of
mortality risk that, on the contrary, represents a crucial aspect to look at when valuing
insurance policies. However, the method may be easily extended to include the mor-
tality effect as detailed hereafter. Suppose to consider an insured aged z in calendar
time t , i.e., at the contract inception, and denote by ptz = e−μz(t) the one-year survival
probability, whereμz(t) is the real world mortality rate assumed to be constant in year
t , so that the w-year survival probability is given by w ptz = ∏w−1

l=0 e−μz+l (t+l). The
following Wang (2000) method is used to convert the real world mortality rates into
risk-neutral ones:

• the real world probability for an individual of age z who dies before age z + w is
given by wqtz = 1 − ∏w−1

l=0 e−μz+l (t+l);
• the corresponding risk-neutralworld distribution function iswqtz = �(�−1(wqtz)−

π), where � is the distribution function of the standard normal distribution, and
π is the market price of risk;

5 See, for instance, Dai et al. (2015) and Costabile et al. (2020).
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• the risk-neutral mortality rate for an individual of age z+w in calendar year t +w

is computed recursively byμz+w(t +w) = − ln(1−w+1qtz)−
∑w−1

l=0 μz+l(t + l).

The obtained risk-neutral mortality rates are included in the backward induction
scheme as follows. The policy value in equation (13) represents the amount received
by the policyholder if he remains alive during the time interval [(i − 1)�t, i�t).
Since the mortality rate is constant in each calendar year, we have to consider that
at time (i − 1)�t the age of the individual is z + 	(i − 1)�t
, and the calen-
dar year is t + 	(i − 1)�t
. As a consequence, the survival probability is given
by e−�tμz+	(i−1)�t
(t+	(i−1)�t
). On the contrary, if the policyholder dies during the
same interval, with probability 1 − e−�tμz+	(i−1)�t
(t+	(i−1)�t
), the subaccount value
is immediately returned to the beneficiary and the GMWB is cancelled. For illustrative
purposes, we assume that the real worldmortality rate follows theGAR-94 table where
the effect of mortality improvement is captured as follows: the mortality rate for an
individual aged z in year 1994+w can be estimated as q1994+w

z = q1994z (1− AAz)
w,

where AAz is the annual improvement factor in the mortality rate for age z. Both q1994z
and AAz are provided by Society of Actuaries Group (1995). To sum up, the contract
value is computed backward by summing up two components:

• the quantity paid in case of death in state of nature (i, j, k; l) multiplied by the
death probability in the interval [(i − 1)�t, i�t), defined as

V D(i, j, k; l) =
(
1 − e−�tμz+	(i−1)�t
(t+	(i−1)�t
)) ×

×
(
puu RS(i + 1, jm + 1; luu) +

+pud RS(i + 1, jm + 1; lud) + pdu RS(i + 1, jm; ldu) +
+pdd RS(i + 1, jm; ldd)

)
,

where the subaccount values RS(i + 1, jm + 1; luu), RS(i + 1, jm + 1; lud),
RS(i + 1, jm; ldu), and RS(i + 1, jm; ldd) are already available in the proposed
discretization;

• the quantity characterizing the policy value in the same state of naturewhenever the
insured remains alive during the considered periodmultiplied by the corresponding
survival probability, defined as

V L(i, j, k; l) = e−�tμz+	(i−1)�t
(t+	(i−1)�t
) ×
×

(
puuV (i + 1, jm + 1, km + 1; luu) +

+pudV (i+1, jm+1, km; lud)+ pduV (i+1, jm, km + 1; ldu)+
+pddV (i + 1, jm, km; ldd)

)
,

where the quantities V (i + 1, jm + 1, km + 1; luu), V (i + 1, jm + 1, km; lud),
V (i+1, jm, km +1; ldu), and V (i+1, jm, km; ldd) are again computed following
the procedure detailed in Sect. 3.1.
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The entire contract value in each state of nature (i, j, k; l) is finally given by

V (i, j, k; l) = e−r(i,k)�t
(
V L(i, j, k; l) + V D(i, j, k; l)

)
,

in the static approach, or by

V (i, j, k; l) = max
(
e−r(i,k)�t

(
V L(i, j, k; l) + V D(i, j, k; l)

)
, SV (i, j; l)

)
,

in the mixed approach. Finally, we remark that the procedure to compute the provision
α when mortality risk is included in the VA policy contract is the same as illustrated
above.

4 Numerical results

In this section, we present some numerical investigations to assess the accuracy of
the proposed algorithm. We analyze both the cases of European and American-style
optionswritten on assets paying discrete dividends, andVA embeddingGMWB riders.
In addition,we provide comparisonwith the existing evaluationmodels in financial and
actuarial literature or with benchmark values created “ad hoc" whenever the existing
literature does not provide useful results.

4.1 Options on dividend paying stocks

The first numerical experiments are relative to optionswritten on assets paying discrete
dividends. We start by assessing the model performance providing a comparison with
the existing pricing models. Unfortunately, such models do not allow to embed a
stochastic dynamics for the interest rate so that we simplify matters by considering a
constant interest rate in place of the described stochastic dynamics. Then, we introduce
a stochastic dynamics for the interest rate and provide a comparison between the
proposed algorithm and a Monte Carlo method chosen as the benchmark.

In detail, in Table 1, we start by considering the simple case of an American call
option with time to maturity T = 1 year written on an underlying asset paying a
single dividend of amount Dt1 = 7.0 at time t1, with t1 being equal to 0.1, 0.5, and
0.9, respectively. The other parameter values are: the initial asset value S(0) = 100;
the asset volatility σS = 0.30; the strike price K may assume value 70, 100, and 130,
respectively. In addition, in order to provide comparisons of our results (denoted by
the acronym DDMR followed by the number of the considered time steps, n = 500
and n = 1000) with the ones reported in Vellekoop and Nieuwenhuis (2006) (VN)
and in Dai (2009) (Dai), we degenerate the interest rate process in (1) in a constant
value r = 0.05. It is worth observing that, in all the analyzed cases the considered
models provide very close results that allow us to assess the accuracy of the proposed
model.

To further show the model accuracy, in Table 2, we consider the case of a European
call option written on a multiple dividend paying stock. The option has maturity
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Table 1 American call option on a single dividend paying stock

t1 K DDMR 500 DDMR 1000 VN 500 VN 1000 Dai 500 Dai 1000

0.1 70 30.38 30.38 30.37 30.38 30.38 30.38

100 10.29 10.29 10.29 10.29 10.29 10.29

130 3.00 3.00 3.00 3.00 3.00 3.00

0.5 70 32.13 32.13 32.11 32.12 32.13 32.13

100 11.33 11.33 11.31 11.32 11.32 11.33

130 3.28 3.28 3.28 3.28 3.28 3.28

0.9 70 33.91 33.92 33.90 33.91 33.91 33.92

100 13.49 13.49 13.47 13.48 13.49 13.49

130 4.16 4.16 4.15 4.16 4.16 4.16

Table 2 European call option on a multiple dividend paying stock

t1 K VNRE DDMR VN 1000 VN 500 VN 250 HHL BGS BvdM BV

0.1 70 24.90 24.89 24.92 24.98 25.24 25.05 24.71 24.74 23.43

100 17.43 17.43 17.46 17.51 17.74 17.50 17.42 17.08 16.41

130 12.40 12.39 12.43 12.47 12.69 12.40 12.50 11.94 11.83

0.5 70 26.08 26.08 26.10 26.10 26.14 26.20 25.87 25.94 24.58

100 18.48 18.47 18.50 18.51 18.56 18.51 18.45 18.15 17.51

130 13.29 13.27 13.31 13.33 13.40 13.24 13.38 12.84 12.83

0.9 70 27.21 27.21 27.23 27.23 27.28 27.30 26.99 27.10 25.67

100 19.48 19.47 19.50 19.52 19.55 19.48 19.43 19.19 18,54

130 14.13 14.12 14.16 14.17 14.25 14.06 14.21 13.73 13.77

T = 7 years, while the underlying asset pays seven different discrete dividends equal
to Dt1 = 6.0, Dt2 = 6.5, Dt3 = 7.0, Dt4 = 7.5, Dt5 = 8.0, Dt6 = 8.0 and Dt7 = 8.0.
The epoch of the first dividend payment t1 is reported in the first column of Table
2, while the remaining dividend epochs are given by th+1 = t1 + h, h = 1, . . . , 6.
The other parameters are fixed to S(0) = 100 and σS = 0.25, while we still consider
a constant value for the interest rate r = 0.06 in order to provide comparison with
the existing models. In detail, the table exhibits the comparison of the option price
obtained by means of the proposed algorithm (DDMR) when n = 210, with the
values reported in Vellekoop and Nieuwenhuis (2006) (VN) where n assumes value
250, 500, and 1000, inHaug et al. (2003) (HHL), in Bos et al. (2003) (BGS), in Bos and
Vandermark (2002) (BvdM), and in Beneder and Vorst (2001) (BV). The benchmark
value is assumed to be the price computed byVellekoop andNieuwenhuis (2006) (VN)
when applying a Richard extrapolation technique (VNRE). As it is shown in Table
2, our results are the closest to the benchmark with respect to the other considered
models, despite we compute the option prices with only n = 210 time steps. For
instance, the VN model requires a greater and greater number of time steps to be
consistent with the benchmark.
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Table 3 American call prices when the interest rate is stochastic

σr r0 t1 T σS m ρ D DDMR MC CI

0.08 0.02 0.1 1 0.10 1 −0.25 1 4.4007 4.4012 (4.3973, 4.4052)

0.08 0.04 0.6 4 0.15 3 0.00 3 14.4419 14.4257 (14.3952, 14.4962)

0.08 0.06 0.5 5 0.20 4 0.25 4 22.1067 22.0894 (22.0399, 22.1390)

0.08 0.10 0.9 10 0.30 9 0.50 6 41.7682 41.7638 (41.7043, 41.8232)

0.16 0.02 0.1 1 0.10 1 −0.25 3 3.3457 3.3439 (3.3404, 3.3474)

0.16 0.06 0.6 4 0.15 3 0.25 4 17.3500 17.3214 (17.2882, 17.3546)

0.16 0.04 0.3 5 0.20 4 0.50 5 16.9055 16.8931 (16.8727, 16.9134)

0.16 0.10 0.9 10 0.30 9 0.50 6 42.9054 42.8853 (42.8242, 42.9464)

In order to apply the evaluation model when the interest rate is stochastic, in Table
3, we consider the case of an American call option when the underlying asset pays a
single or multiple discrete dividends and the interest rate process is described by a Cox
et al. (1985) dynamics. We impose S(0) = K = 100, γ = 0.5, θ = r0, while the other
parameter values are reported in the table, being m the number of dividend payments.
We compute option prices by the proposed methodology (DDMR) with n = 500 and
compute also least-squares Monte Carlo (MC) estimates using 10 million trials with
the corresponding 95% confidence interval (CI). As it may be observed, our results
lay in the corresponding Monte Carlo confidence interval thus evidencing the model
accuracy also when a stochastic dynamics for the interest rate is considered.

4.2 VAwith a GMWB rider

The second algorithm application is relative toVAswithGMWB riders. As usual in the
actuarial practice, we suppose that the withdrawals are paid at each policy anniversary
measured on yearly basis, i.e., denoting by T the policy maturity the withdrawal
epochs are th = h, h = 1, . . . , T . We present numerical experiments both with or
without considering mortality risk and with or without embedding a surrender option.
In absence of such an option, we fall in the static approach where the policyholder
withdraws a fixed amount Dth = D = S(0)/T at each anniversary while, whenever
the surrender option is embedded in the contract, we fall in the mixed approach and
suppose that the early redemption is allowed only an instant before each withdrawal
epoch. Furthermore, when it occurs, a penalty φ = 0.1 is charged to the part of the
withdrawn amount exceeding D as specified in equation (14).

At first, to assess the goodness of the proposed model, we provide comparisons
with the existing evaluation methods so that we degenerate the stochastic interest
rate process being constant at fixed levels. We start by presenting Table 4, where
we consider VA policies with GMWBs in absence of surrender options and without
considering mortality risk, when the constant interest rate assumes value r = 0.0325,
the initial investment in the subaccount is S(0) = 100, while the other parameter
values are reported in the table. We exhibit the policy single premiums evaluated by
means of the proposed algorithm (DDMR) in comparison with the ones computed by
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Table 4 VAs embedding GMWB riders with T = 25 and T = 20

σS = 0.20 σS = 0.30 σS = 0.40

n YD DDMR YD DDMR YD DDMR

T = 25, D = 4

100 106.243 106.247 113.222 113.243 120.127 120.155

500 106.243 106.245 113.220 113.229 120.125 120.139

1000 106.243 106.245 113.220 113.226 120.125 120.134

MC 106.019 113.212 120.110

SE 0.296 0.733 1.812

T = 20, D = 5

100 106.723 106.730 113.676 113.700 120.557 120.592

500 106.723 106.726 113.675 113.685 120.555 120.571

1000 106.723 106.725 113.675 113.682 120.555 120.566

MC 106.751 113.650 120.141

SE 0.239 0.545 1.223

Yang and Dai (2013) (YD) and theMonte Carlo estimates (MC) with relative standard
errors (SE) reported in Yang and Dai (2013). The DDMR single premiums, coherently
with the ones obtained by YD, increase when σS increases and converge smoothly to
the MC benchmark values.

InTable 5,we evaluate the insurance feeα solving, bymeans of theBrent’smethod,6

the following nonlinear equation

V (α) − S(0) = 0,

where we recall that V (α) = V (0, 0, 0; 1), i.e., the policy value computed at the
contract inception following the proposed method. For different values of σS and time
tomaturity T equal to 20 and 25 years, we evaluate the provisionα for theGMWBrider
by considering different cases characterized by the presence or absence of the surrender
option and mortality risk. In this last case, an individual of age z = 65 is considered
and the Wang transform is applied with the market price of risk set to π = 0.565, as it
has been already estimated in Costabile et al. (2021). The other parameters are set to
S(0) = 100 and, in order to provide comparison with the existing models, we again
degenerate the interest rate being it constant at level r = 0.0325. The values computed
with the proposed algorithm (DDMR) have been obtained by considering n = 300
while the comparison is donewith the values reported in Costabile et al. (2020) (CMR)
and Yang and Dai (2013) (YD) when their algorithm is based on n = 1000 time steps.
All the results are coherent with the ones obtained with CMR and YD algorithms
despite they have been computed with the DDMR algorithm based on only n = 300
steps with respect to n = 1000 steps used in CMR and YD.

6 The Brent’s method is a root-finding algorithm combining the bisection method, the secant method and
inverse quadratic interpolation.
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Table 5 Values of the provision α for the GMWB rider

T = 25 T = 20

Model σ = 0.20 σ = 0.30 σ = 0.40 σ = 0.20 σ = 0.30 σ = 0.40

No surrender option, no mortality risk

CMR 0.004599 0.010182 0.015675 0.006607 0.014147 0.021599

YD 0.0046 0.0102 0.0157 0.0066 0.0142 0.0216

DDMR 0.0046 0.10191 0.015698 0.006607 0.014172 0.021638

Surrender option with φ = 0.1, no mortality risk

CMR 0.004599 0.015796 0.039517 0.006607 0.022359 0.052297

YD 0.0046 0.0158 0.0395 0.0066 0.0224 0.0523

DDMR 0.0046 0.015825 0.0396 0.006629 0.022440 0.052486

No surrender option, mortality risk with z = 65

CMR 0.003316 0.007818 0.012541 0.005387 0.011864 0.018484

YD 0.033 0.0078 0.0126 0.0054 0.0119 0.0185

DDMR 0.003305 0.007812 0.012532 0.005324 0.01156 0.018447

Surrender option with φ = 0.1, mortality risk with z = 65

CMR 0.003316 0.008080 0.020839 0.005387 0.014194 0.034994

YD 0.033 0.0081 0.0208 0.0054 0.0143 0.0351

DDMR 0.003308 0.008056 0.020824 0.005353 0.014154 0.034924

In Table 6, we introduce a stochastic dynamics for the interest rate and report
a comparison of the VA single premiums evaluated by the proposed bivariate tree
with the ones obtained by means of the three-dimensional algorithm provided by Dai
et al. (2015) (DYL). The risk-free rate dynamics is described by the Hull and White
(1994) model. To provide benchmark values, we develop a crude Monte Carlo (MC)
method with 10 million samples and the table reports both the MC estimates and the
corresponding 95% confidence interval (CI). No surrender option and mortality risk is
here considered and the parameters are set as: S0 = 100, r(0) = 0.0325, σr = 0.01,
γ = 0.1, β(t) = 0.0325, and ρ = −0.25. The other parameter values are reported in
the table, which evidences how the results generated by the proposed method are very
close to the benchmark values and lay in the corresponding confidence interval, while
this circumstance is not satisfied by the results provided by Dai et al. (2015).

To introduce the effect of the mortality risk on the VA valuations when the interest
rate is stochastic, we conduct some experiments varying the insured age z and report
the computedVAsingle premium inTable 7 and 8.We considerVApolicies embedding
GMWB riders with or without considering the surrender option, while the stochastic
dynamics for the interest rate is described by means of the Cox et al. (1985) (CIR)
model. In detail, in Table 7 we considers a policyholder with age z = 65 at the
contract inception, while in Table 8 we impose z = 40 and compute the policy single
premiums for different values of the number time steps n, maturity T , and personal
subaccount volatility σS . The other parameters are set as follow: r0 = 0.0325, ρ =
0.25, γ = 0.5, θ = r0, σr = 0.10, and π = 0.565. For each case, we report the policy
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Table 6 VAs embedding GMWBs under the Hull-White model with T = 25 and T = 20

σS = 0.20 σS = 0.30 σS = 0.40

n DYL DDMR DYL DDMR DYL DDMR

T = 25, D = 4

100 105.864 106.235 112.619 113.242 119.361 120.257

200 105.858 106.249 112.628 113.247 119.438 120.262

MC 106.2730 113.3233 120.2052

CI (106.2174,106.3286) (113.1861,113.4604) (119.8602,120.5503)

T = 20, D = 5

100 106.339 106.620 113.097 113.576 119.803 120.534

200 106.331 106.626 113.124 113.574 119.924 120.528

MC 106.6295 113.5756 120.4949

CI (106.5842,106.6748) (113.4756,113.6756) (120.2640,120.7258)

single premium without considering the surrender option and, in round brackets, the
corresponding premium when embedding the surrender option in order to show the
increment in the policy premium impressed by the presence of the surrender option.
To validate the reported results, we have also developed a Monte Carlo approach in
absence of the surrender option assumed to be the benchmark. The VA premiums are
obtained with the Monte Carlo (MC) approach by considering 1 million trials, and we
report the corresponding 95% confidence interval (CI). In all the considered cases, the
experiments show that, fixing the age, when σS increases the VA premiums increase,
andwhen thematurity decreases theVApremiums increase, as expected. Furthermore,
when the insured age decreases the VA premiums increase. It is also worth noting that
the results (without considering the surrender option) lay in the corresponding Monte
Carlo confidence interval in all the cases, thus assessing the model accuracy.

Table 9 shows the provision values α for the GMWB riders, reported in basis points
(b.p.), for all the test cases reported in Tables 7 and 8. They are computed as specified
in Sect. 4.1 by fixing the number of time steps at n = 200. Coherently with the results
reported in Tables 7 and 8, Table 9 exhibits that the inclusion of a surrender option
in the contract causes the increment of α. The same occurs, for instance, when the
insured age at the contract inception or the policy maturity decreases.

To conclude the numerical experiments, in Fig. 5 we show the behavior of the
provision α for different values of σr and σS when it is computed by the proposed
algorithmwith n = 100 and considering a CIR dynamics for the risk-free interest rate.
More in detail, 0 ≤ σr ≤ 0.5 and 0.2 ≤ σS ≤ 0.5. The remaining parameters are set
to: S(0) = 100, r(0) = 0.0325, γ = 0.5, θ = 0.05, ρ = 0.25, T = 20, D = 5, and
φ = 0.1. The figure confirms, as expected, that when σr or σS increases, α moves in
the same direction.
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Table 7 VAs embedding GMWB riders when insured age at the inception is z = 65

n σS = 0.20 σS = 0.30 σS = 0.40

T = 25

100 104.6603 (104.7362) 109.9550 (110.0088) 115.4369 (115.4698)

200 104.6924 (104.7693) 110.0096 (110.0604) 115.5079 (115.5414)

300 104.7029 (104.7798) 110.0260 (110.0770) 115.5307 (115.5643)

400 104.7080 (104.7851) 110.0342 (110.0851) 115.5414 (115.5749)

MC 104.6281 109.9487 115.5012

CI (104.5205,104.7357) (109.6173,110.0801) (114.7421,116.2604)

T = 20

100 105.8528 (106.0548) 111.7162 (111.8484) 117.6455 (117.7342)

200 105.8741 (106.0773) 111.7464 (111.8794) 117.6854 (117.7732)

300 105.8807 (106.0842) 111.7559 (111.8883) 117.7120 (117.7859)

400 105.8827 (106.0863) 111.7589 (111.8819) 117.7114 (117.7898)

MC 105.7636 111.7746 117.9049

CI (105.6318, 105.8953) (111.4966, 112.0527) (117.2171, 118.5927)

Table 8 VAs embedding GMWB riders when insured age at the inception is z = 40

n σS = 0.20 σS = 0.30 σS = 0.40

T = 25

100 106.9065 (107.0431) 113.8753 (113.9664) 120.7088 (120.7678)

200 106.9128 (107.0501) 113.8778 (113.9676) 120.7094 (120.7699)

300 106.9146 (107.0518) 113.8770 (113.9675) 120.6942 (120.7695)

400 106.9154 (107.0525) 113.8767 (113.9672) 120.7093 (120.7685)

MC 106.8495 113.8602 119.9907

CI (106.6738,107.0252) (113.4107,114.3098) (119.0935,120.8879)

T = 20

100 107.3968 (107.6718) 114.3525 (114.5316) 121.1872 (121.3067)

200 107.4005 (107,6755) 114.3507 (114.5301) 121.1832 (121.3030)

300 107.4005 (107.6754) 114.3481 (114.5268) 121.1789 (121.2975)

400 107.4003 (107.6753) 114.3469 (114.5260) 121.1770 (121.2959)

MC 107.3496 114.2969 120.8488

CI (107.2063,107.4929) (113.9671, 114.6263) (120.2053,121.4924)

5 Conclusions

In a framework characterized by a stochastic interest rate, we have proposed a model
useful for computing both the price of European and American-style options written
on assets paying discrete dividends, and the fair single premiums of VAs embedding
GMWB riders and surrender options. The presence of multiple discrete dividends, in
the option case, or withdrawals, in the VA case, makes the lattice not recombining and,
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Table 9 Values of the provision α for the GMWB rider in presence of mortality risk

T 25 20

σS 0.20 0.30 0.40 0.20 0.30 0.40

z = 65

No surrender option 38 b.p. 83 b.p. 131 b.p. 60 b,.p. 126 b.p. 192 b.p.

Surrender option 39 b.p. 110 b.p. 281 b.p. 63 b.p. 222 b.p. 474 b.p.

z = 40

No surrender option 51 b.p. 108 b.p. 163 b.p. 74 b.p. 150 b.p. 224 b.p.

Surrender option 53 b.p. 230 b.p. 500 b.p. 92 b.p. 342 b.p. 683 b.p.

Fig. 5 The behavior of the
provision α varying σr or σS
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consequently, the pricing problem computationally infeasible. We have proposed to
overcome this obstacle by choosing sets of representative values of the underlying asset
selected among the true ones generated on the lattice and associated with each node.
To assess the model efficiency and accuracy, we have reported extensive numerical
experiments in order to consider different types of option or policy contracts and
provided comparisons with the existing evaluation methods. Future works would be
focused on the consideration of different withdrawal strategies in VAs embedding
GMWB riders. Indeed, the withdrawal strategy followed by the policyholder plays a
crucial role because it has a tremendous impact on the value of the rider. The idea is to
investigate if the proposed method may be adapted, for instance, when considering a
dynamic approachwhen the policyholder optimally decides the amount to withdraw in
order to maximize the current policy value. Under this perspective, the computational
cost of the proposed algorithm may increase and several further analyses are required
to develop an efficient evaluation method.
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Appendix

Proof of the Proposition Before starting with the proof, we remark that the number of
trajectories reaching node (i, j), detected in order to define the representative asset
values at that node, is in a one-to-one correspondence with the number of nodes that, at
each dividend/withdrawal payment date, lain between the lowest and the highest node
of the lattice belonging to the “quadrilateral" with two opposite sides of length j and
the other two of length i − j , respectively, including the highest nodes and excluding
the lowest ones. Looking at Fig. 6, the “quadrilateral" to be considered for node
(i, j) = (7, 4) is depicted by thick lines and has vertices ABCD with side AD and
BC of length j = 4, and side AB and DC of length i− j = 3. The nodes belonging to
ABCD at each payment date (i.e., those ones that are in a one-to-one correspondence
with the number of representative trajectories obtained with the iterative procedure
presented in Sect. 2.4) are evidenced by big black circles. The following procedure is
useful to count the nodes:

Step 1 the quadrilateral ABCD is extended up to the dividend/withdrawal epoch

immediately after node (i, j) that coincides with the
(⌈

i−λ1
	

⌉
	 + λ1

)
-th step of the

lattice,7 as detailed hereafter:

1. starting from node (0, 0), we consider the sides AB and AD. Between them, we
fix the smallest one having length min( j, i − j) that in Fig. 6 is AB;

2. we extend the other side, AD by a number of steps equal to
⌈
i−λ1

	

⌉
	 + λ1 − i to

obtain side AM .

Consider now the resulting quadrilateral ABLM having sides of length min( j, i − j)

and
⌈
i−λ1

	

⌉
	 + λ1 − min( j, i − j), respectively;

Step 2 in ABLM , we count the nodes in correspondence with each payment date
including the ones lying on sides AM and ML and excluding the ones lying on AB
and BL;8

Step 3 in the quadrilateral DCLM , we count the nodes in correspondence with each
payment epoch including the nodes lying on DM and ML and excluding the ones
lying on DC and CL;9

7 If there are no more contribution dates after the node (i, j), we extend the quadrilateral up to maturity.
8 The nodes corresponding to the vertex A and L are considered belonging to AB and BL , respectively.
9 The nodes corresponding to the vertex D and L are considered belonging to DC and CL , respectively.
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Fig. 6 The number of representative asset values for node (i, j)

Step 4 the number of nodes considered in ABCD is computed by subtracting the
number of nodes detected in DCLM from the number of nodes counted in ABLM .

In what follows, we give the details of “Step 2," “Step 3," and ““Step 4," as “Step
1" is easy to understand.
Step 2
To count the nodes in ABLM , it is divided into three parts: a triangle AEF , and two
polygon of vertices EBGHF and GLMH . In the triangle AEF , in correspondence
of each payment epoch, we count the nodes enclosed between AE and FA, including
the nodes lain on FA and excluding those ones lain on AE . To this end, we have to
know the number of payment dates falling before the min( j, i − j)-th epoch starting
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from the root of the tree. If min( j, i − j) ≥ λ1, this number is given by

⌈
min( j, i − j) − λ1

	

⌉

,

and at the first payment date exactly λ1 nodes are counted, at the second date λ1 + 	

nodes, and so on. Consequently, the total number of nodes belonging to triangle AEF
is given by

λ1 +

⌈
min( j,i− j)−λ1

	

⌉

∑

k=2

[(k − 1)	 + λ1] = λ1 +

⌈
min( j,i− j)−λ1

	

⌉
−1

∑

k=1

[k	 + λ1] =

= λ1 +
(⌈

min( j, i − j) − λ1

	

⌉

− 1

)

λ1 + 	

⌈
min( j,i− j)−λ1

	

⌉
−1

∑

k=1

k =

= λ1

⌈
min( j, i − j) − λ1

	

⌉

+ 1

2
	

⌈
min( j, i − j) − λ1

	

⌉

×

×
(⌈

min( j, i − j) − λ1

	

⌉

− 1

)

. (A.1)

To count the nodes at each payment date belonging to the polygon EBGHF , we
observe that the number of payment dates belonging to such a polygon is given by

⌈
i − λ1

	

⌉

−
(⌈

min( j, i − j)

	

⌉

− 1

)

−
⌈
min( j, i − j) − λ1

	

⌉

,

and the number of nodes at each dividend payment date between the group of sides
EB-BG and side HF , including the nodes lying on HF and excluding the ones lying
on EB-BG is exactly min( j, i − j). Consequently, the number of nodes considered
in the polygon EBGHF is given by

min( j, i − j)

(⌈
i − λ1

	

⌉

−
(⌈

min( j, i − j)

	

⌉

− 1

)

−
⌈
min( j, i − j) − λ1

	

⌉)

.

(A.2)

We remark that the nodes on the left border FE of the polygon EBGHF are not
considered because they have been already counted in the triangle AEF . The number
of nodes belonging to the polygonGLMH can be computed similarly as already done
for the triangle AEF and it is given by

⌈
min( j,i− j)

	

⌉
−1

∑

k=1

k	 = 1

2
	

(⌈
min( j, i − j)

	

⌉

− 1

) (⌈
min( j, i − j)

	

⌉)

. (A.3)
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Again, the nodes on the left border HG of the polygon GLMH are excluded because
already counted in the polygon EBGHF .

As a consequence, the total number of nodes considered in the quadrilateral ABLM
is obtained by summing up the quantities appearing in formula (A.1), (A.2), and (A.3).
Whenever min( j, i − j) < λ1, the number of nodes considered in ABLM is given
by

min( j, i − j)

(⌈
i − λ1

	

⌉

−
(⌈

min( j, i − j)

	

⌉

− 1

))

.

Step 3
At this point, we need to compute the number of nodes belonging to the quadrilat-
eral DCLM . We start from node D coinciding with the max( j, i − j)-th time step
starting from inception. The first payment epoch immediately after this node is the(⌊

max( j,i− j)−λ1
	

⌋
+ 2

)
-th. To count the number of nodes belonging to DCLM at this

epoch, we have to consider two cases:

• the first epoch after node D falls before the highest vertices of the quadrilateral,
M . In this case the number of nodes considered at that date coincides with the
number of time steps needed to reach the first payment epoch starting from node
D, that is

	

(⌊
max( j, i − j) − λ1

	

⌋

+ 1

)

+ λ1 − max( j, i − j);

• such an epoch falls after the highest vertex of the quadrilateral, M . In this case the
number of nodes is given by

⌈
i − λ1

	

⌉

	 + λ1 − i, (A.4)

which represents also the number of steps to reach the next payment date starting
from the i-th step of the lattice (in Fig. 6, it is the length of the sides CL and MD).

To sum up, the number of nodes belonging to the quadrilateral DCLM at the first
possible payment date is computed as

min

(

	

(⌊
max( j, i − j) − λ1

	

⌋

+ 1

)

+ λ1+

−max( j, i − j),

⌈
i − λ1

	

⌉

	 + λ1 − i

)

×

×min

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 1, 1

)

, (A.5)

where the second factor contemplates the possibility that the
(⌊

max( j,i− j)−λ1
	

⌋
+ 2

)
-

th epoch coincides with the � i−λ1
	

�-th one, implying that the quadrilateral DCLM has
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no node to be considered. Now, starting from the
(⌊

max( j,i− j)−λ1
	

⌋
+ 2

)
-th epoch,

the number of payment dates remaining up to the � i−λ1
	

�-th epoch is

max

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 2, 0

)

,

but, to take into account the possibility that the
(⌊

max( j,i− j)−λ1
	

⌋
+ 2

)
-th epoch coin-

cides with the
⌈
i−λ1

	

⌉
-th epoch and no node belongs to the quadrilateral DCLM , we

have to consider

max

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 2, 0

)

. (A.6)

Consequently, the total number of nodes belonging to DCLM is obtained by summing
up the quantity in (A.5) to the product between (A.4) and (A.6), that is

min

(

	

(⌊
max( j, i − j)− λ1

	

⌋

+ 1

)

+ λ1 − max( j, i − j),

⌈
i − λ1

	

⌉

	+ λ1 − i

)

×

×min

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 1, 1

)

+
(⌈

i − λ1

	

⌉

	 + λ1 − i

)

×

×
(

max

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 2, 0

))

.

In the case illustrated in Fig. 6, there are two nodes considered in DCLM and they
are indicated by white circles.
Step 4
Finally, summing up the opportune quantities reported in the previous steps, we obtain
that the number of representative underlying asset values, η(i, j), associated with a
generic node (i, j), i = 0, . . . , n, j = 0, . . . , i , is given by:

• if i < λ1, η(i, j) = 1;
• if i ≥ λ1 and λ1 ≤ min( j, i − j),

η(i, j) = 1 + λ1

⌈
min( j, i − j) − λ1

	

⌉

+

+1

2
	

(⌈
min( j, i − j) − λ1

	

⌉

− 1

) ⌈
min( j, i − j) − λ1

	

⌉

+

+1

2
	

(⌈
min( j, i − j)

	

⌉

− 1

) ⌈
min( j, i − j)

	

⌉

+

+min( j, i − j)

(⌈
i − λ1

	

⌉

−
⌈
min( j, i − j)

	

⌉

−
⌈
min( j, i − j) − λ1

	

⌉

+ 1

)

+

−
{

min

(

	

(⌊
max( j, i − j) − λ1

	

⌋

+ 1

)

+ λ1 − max( j, i − j),

⌈
i − λ1

	

⌉

	 + λ1 − i

)

×

× min

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 1, 1

)

+
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−
(⌈

i − λ1

	

⌉

	 + λ1 − i

)

× max

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 2, 0

)}

;

• if i ≥ λ1 and λ1 > min( j, i − j),

η(i, j) = 1 + min( j, i − j)

(⌈
i − λ1

	

⌉

−
⌈
min( j, i − j)

	

⌉

+ 1

)

+

−
{

min

(

	

(⌊
max( j, i − j) − λ1

	

⌋

+ 1

)

+ λ1 − max( j, i − j),

⌈
i − λ1

	

⌉

	 + λ1 − i

)

×

× min

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 1, 1

)

+

−
(⌈

i − λ1

	

⌉

	 + λ1 − i

)

× max

(⌈
i − λ1

	

⌉

−
⌊
max( j, i − j) − λ1

	

⌋

− 2, 0

)}

.
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