A CONSEQUENCE OF DJAIRO'S LECTURES ON THE EKELAND VARIATIONAL PRINCIPLE

LUCIO BOCCARDO, LUIGI ORSINA

(dedicated to Djairo for his 40th birthday, twice)

1. INTRODUCTION AND STATEMENT OF THE RESULT

In [2] we considered some properties of the minimizing sequences for integral functionals J. Thanks to the Ekeland Lemma, the subject of the lectures given by Djairo in Bangalore (see [3]), we proved the existence of a minimizing sequence compact in $L^{s}(\Omega)$ or in $C^{0,\alpha}$ for functionals which do not need to have a minimum, without using the integral representation of the relaxed functional J^* .

In this paper, we improve the study done in the paper [2], under the assumption that the functional J has a minimum belonging to $L^{\infty}(\Omega)$. Using again Ekeland's ε -variational principle, we to prove that there exists a minimizing sequence u_n for J which uniformly converges to a minimum u.

Let us now make the precise assumptions on the functional J. Let Ω be an open, bounded subset of \mathbb{R}^N , $N \ge 2$, and let p be a real number, with $2 \le p < N$. We will denote by p^* the Sobolev exponent of p, i.e., $p^* = \frac{Np}{N-p}$.

Let $j : \Omega \times \mathbb{R}^N \to \mathbb{R}$ be a Carathéodory function (i.e., measurable with respect to x for every $\xi \in \mathbb{R}^N$, and continuous with respect to ξ for almost every $x \in \Omega$) convex with respect to ξ , and such that

(1)
$$\alpha \,|\xi|^p \le j(x,\xi) \le \beta \,|\xi|^p\,,$$

for almost every $x \in \Omega$, for every $\xi \in \mathbb{R}^N$, where α, β are positive real numbers.

Let f in $L^m(\Omega)$, with $m \ge (p^*)'$, and let $J: W_0^{1,p}(\Omega) \to \mathbb{R}$ be defined by

$$J(v) = \int_{\Omega} j(x, \nabla v) \, dx - \int_{\Omega} f(x) \, v \, dx, \qquad v \in W_0^{1, p}(\Omega) \, .$$

Under the assumptions on f and p, J is well defined on $W_0^{1,p}(\Omega)$.

We will further assume that there exists $a(x,\xi) = j_{\xi}(x,\xi)$ which satisfies the classical Leray-Lions assumptions (see [8]) and the standard strong monotonicity assumption

(2)
$$[a(x,\xi) - a(x,\eta)][\xi - \eta] \ge \alpha \, |\xi - \eta|^p \qquad \forall \xi \,, \eta \in \mathbb{R}^N \,.$$

Dipartimento di Matematica, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy. E-mail: boccardo@mat.uniroma1.it, orsina@mat.uniroma1.it.

Examples of functions j such that (2) holds true are $j(x,\xi) = a(x) |\xi|^p$, with a measurable function such that $\alpha \leq a(x) \leq \beta$. Since the strong monotonicity condition is simpler to handle if $p \ge 2$ (the above assumption (2)), and is a little bit more involved if 1 , we confine ourselves to the former case.

Since J is both weakly lower semicontinuous and coercive on $W_0^{1,p}(\Omega)$, there exists a minimum u of J; we have the following results on the summability of such minima.

THEOREM 1.1. Let u be a minimum of J on $W_0^{1,p}(\Omega)$. Then

- (i) if $1 < m < \frac{N}{p}$, then u belongs to $L^{\sigma}(\Omega)$, $\sigma = \frac{(pm)^*}{p'}$ (see [1]); (ii) If $m > \frac{N}{p}$, then u belongs to $L^{\infty}(\Omega)$ (see [9], [7]).

Let us now recall Ekeland's ε -variational principle (see [4], [5]).

LEMMA 1.2. Let (V, d) be a complete metric space, and let $\mathcal{F} : V \to (-\infty, +\infty]$ be a lower semicontinuous function such that $\inf_V \mathcal{F}$ is finite. Let $\varepsilon > 0$ and $u \in V$ be such that

$$\mathcal{F}(u) \leq \inf_{v \in V} \mathcal{F}(v) + \varepsilon$$
.

Then there exists $v \in V$ such that

- (i) $d(u,v) \leq \sqrt{\varepsilon};$
- (ii) $\mathcal{F}(v) \leq \mathcal{F}(u);$
- (iii) v minimizes the functional $\mathcal{G}(w) = \mathcal{F}(w) + \sqrt{\varepsilon} d(v, w)$.

Our main result is the following.

THEOREM 1.3. Let J be defined as above, with j satisfying (1). Let

(3)
$$f \in L^m(\Omega) \quad m > \frac{N}{p},$$

and let q be such that $q^* = m'$; we also suppose that J' satisfies (2). Let u be a minimum of J on $W_0^{1,p}(\Omega)$, and let $\{\bar{u}_n\}$ be any minimizing sequence for J. Then the minimizing sequence $\{u_n\}$ built after $\{\bar{u}_n\}$ using the ε -variational principle satisfies

(4)
$$\lim_{n \to +\infty} \|u_n - \bar{u}_n\|_{W_0^{1,q}(\Omega)} = 0$$

(5)
$$\lim_{n \to \infty} \|u_n - u\|_{W_0^{1,p}(\Omega)} = 0,$$

and

(6)
$$\lim_{n \to \infty} \left\| u_n - u \right\|_{L^{\infty}(\Omega)} = 0.$$

The plan of the paper is as follows: we will prove Theorem 1.3 in Section 2, and in Section 3 we will show that adding a lower order term to J will allow us to prove the same result under the assumption that f belongs to $L^2(\Omega)$, and not to the possibly larger space $L^m(\Omega), m > \frac{N}{n}$.

2. Proof of the main result

For k > 0 let us define

 $T_k(s) = \max(-k, \min(k, s)), \qquad G_k(s) = s - T_k(s).$

Before proving Theorem 1.3, let us note that since we know (see Theorem 1.1) that any minimum u belongs to $L^{\infty}(\Omega)$, there exists M such that $|u| \leq M$. Since the sequence $\{u_n\}$, with $u_n = T_M(\bar{u}_n)$, satisfies

$$\int_{\Omega} j(x, \nabla T_M(\bar{u}_n)) \, dx - \int_{\Omega} f(x) \, T_M(\bar{u}_n) \, dx \leq \inf_{v \in W_0^{1,p}(\Omega)} J(v) + \varepsilon_n + \int_{\Omega} f(x) \, G_M(\bar{u}_n) \, dx \, ,$$

and since

$$\lim_{n \to +\infty} \int_{\Omega} f(x) G_M(\bar{u}_n) dx = \int_{\Omega} f(x) G_M(u) dx = 0,$$

we have that

$$\int_{\Omega} j(x, \nabla u_n) \, dx - \int_{\Omega} f(x) \, u_n \, dx \le \inf_{v \in W_0^{1, p}(\Omega)} J(v) + \bar{\varepsilon}_n$$

That is, the sequence $\{u_n\}$ is a minimizing sequence for J, and it is bounded in $L^{\infty}(\Omega)$.

Theorem 1.3 says more than that: thanks to the ε -variational principle, it is possible to build a minimizing sequence not only bounded in $L^{\infty}(\Omega)$ but also strongly convergent to u in the same space.

PROOF OF THEOREM 1.3. Note that if q is as in the statement, the assumption $m > \frac{N}{p}$ implies that

$$(7) 1 < q < \frac{N}{N - p + 1} < p$$

Let ε_n be a sequence of positive real numbers, converging to zero, and let \bar{u}_n be such that, for every $n \in \mathbb{N}$,

$$J(\bar{u}_n) \leq \inf_{v \in W_0^{1,p}(\Omega)} J(v) + \varepsilon_n$$
.

Let us now consider the complete metric space $W_0^{1,q}(\Omega)$, endowed with the distance

$$d_n(w,v) = \frac{1}{\sqrt{\varepsilon_n}} \left[\int_{\Omega} |\nabla w - \nabla v|^q \, dx \right]^{\frac{1}{q}}$$

Thanks to Fatou Lemma, to the fact that $j(x,\xi) \ge 0$, and to the fact that f belongs to $W^{-1,q'}(\Omega)$ being $q^* = m'$, we have that J is strongly lower semicontinuous on $W_0^{1,q}(\Omega)$.

Thus, in view of Lemma 1.2, there exists a sequence $\{u_n\}$ in $W_0^{1,q}(\Omega)$ such that

$$\left[\int_{\Omega} |\nabla u_n - \nabla \bar{u}_n|^q \, dx\right]^{\frac{1}{q}} \le \sqrt{\varepsilon_n} \, ,$$

which proves (4), and

(8)
$$J(u_n) \le J(\bar{u}_n) \le \inf_{v \in W_0^{1,p}(\Omega)} J(v) + \varepsilon_n ,$$

(9)
$$J(u_n) \le J(w) + \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla u_n - \nabla w|^q \, dx \right]^{\frac{1}{q}}, \qquad \forall w \in W_0^{1,q}(\Omega).$$

Using the growth properties of J we have that u_n is bounded in $W_0^{1,p}(\Omega)$; indeed, by (1), we have

$$\alpha \int_{\Omega} |\nabla u_n|^p \, dx \le \int_{\Omega} j(x, \nabla u_n) \, dx \le \int_{\Omega} f(x) \, u_n \, dx + \inf_{v \in W_0^{1, p}(\Omega)} J(v) + \varepsilon_n$$

which implies that the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$ since f belongs to $W^{-1,p'}(\Omega)$. Thus, up to subsequences, still denoted by $\{u_n\}$, there exists a function u in $W_0^{1,p}(\Omega)$ such that

(10)
$$u_n \to u$$
 weakly in $W_0^{1,p}(\Omega)$ and almost everywhere in Ω .

By the weak lower semicontinuity of J on $W_0^{1,p}(\Omega)$, and by (8), u is a minimum of J on this space.

Moreover, choosing $w = u_n - t \psi$ in (9), where t is a positive real number and ψ is a function in $W_0^{1,p}(\Omega)$, we obtain

$$J(u_n - t\psi) - J(u_n) + \sqrt{\varepsilon_n} t \left[\int_{\Omega} |\nabla \psi|^q \, dx \right]^{\frac{1}{q}} \ge 0 \, .$$

Dividing by t, and letting t tend to zero, we get, since J is differentiable,

$$-\langle J'(u_n),\psi\rangle + \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla\psi|^q \, dx\right]^{\frac{1}{q}} \ge 0\,,$$

so that

(11)
$$\langle J'(u_n), \psi \rangle \leq \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla \psi|^q \, dx \right]^{\frac{1}{q}}.$$

Recalling that J'(u) = 0 since u is a minimum, we have

$$\langle J'(u_n) - J'(u), \psi \rangle \le \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla \psi|^q \, dx \right]^{\frac{1}{q}},$$

for every ψ in $W_0^{1,p}(\Omega)$. Observe that

(12)
$$\langle J'(u_n), \psi \rangle = \int_{\Omega} a(x, \nabla u_n) \nabla \psi \, dx - \int_{\Omega} f(x) \psi \, dx.$$

Choosing $\psi = u_n - u$, it is easy to prove (5) using (2). In order to prove (6), let k > 0, define $A_{k,n} = \{|u_n - u| \ge k\}$, and choose $\psi = G_k(u_n - u)$; we obtain, by (2), and by Hölder inequality,

$$\alpha \int_{\Omega} |\nabla G_k(u_n - u)|^p \, dx \le \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla G_k(u_n - u)|^q \, dx \right]^{\frac{1}{q}}$$
$$\le \sqrt{\varepsilon_n} \left[\left(\int_{\Omega} |\nabla G_k(u_n - u)|^p \, dx \right)^{\frac{q}{p}} \operatorname{meas} (A_{k,n})^{1 - \frac{q}{p}} \right]^{\frac{1}{q}}$$
$$= \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla G_k(u_n - u)|^p \, dx \right]^{\frac{1}{p}} \operatorname{meas} (A_{k,n})^{\frac{1}{q} - \frac{1}{p}},$$

which in turn yields

$$\alpha \left(\int_{\Omega} |\nabla G_k(u_n - u)|^p \, dx \right)^{\frac{1}{p'}} \le \sqrt{\varepsilon_n} \operatorname{meas} \left(A_{k,n} \right)^{\frac{1}{q} - \frac{1}{p}}.$$

Using Sobolev inequality, and choosing h > k we arrive after straightforward passages, to

$$(h-k)^p \max(A_{h,n})^{\frac{p}{p^*}} \le C_1 \varepsilon_n^{\frac{p'}{2}} \max(A_{k,n})^{(\frac{1}{q}-\frac{1}{p})p'}$$

which implies

meas
$$(A_{h,n}) \leq C_2 \frac{\varepsilon_n^{\frac{p^*}{p}} \frac{p'}{2}}{(h-k)^{p^*}}$$
meas $(A_{k,n})^{\frac{p^*}{p}} (\frac{1}{q} - \frac{1}{p})p'.$

Note that (7) implies that

$$\frac{p^*}{p}\left(\frac{1}{q} - \frac{1}{p}\right)p' > 1\,,$$

so that, by Lemme 4.1 of [9],

$$\left\|u_n - u\right\|_{L^{\infty}(\Omega)} \le C_3 \,\varepsilon_n^A \,,$$

for some positive constant A depending only on p and N. Recalling that ε_n converges to zero, we have the result.

REMARK 2.1. Assumption (3) was used only to ensure that the functional J is lower semicontinuos on $W_0^{1,q}(\Omega)$. Since the terms with f "cancel out" when calculating $J'(u_n) - J'(u)$, the summability of f is not necessary to prove that $u_n - u$ belongs to $L^{\infty}(\Omega)$.

REMARK 2.2. We remark that from (11), choosing ψ and $-\psi$ it follows that u_n satisfies

(13)
$$-\sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla \psi|^q \, dx \right]^{\frac{1}{q}} \le \langle J'(u_n), \psi \rangle \le \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla \psi|^q \, dx \right]^{\frac{1}{q}}.$$

Thus,

$$\langle J'(u_n) - J'(u_m), \psi \rangle \le \sqrt{\varepsilon_n} \left[\int_{\Omega} |\nabla \psi|^q \, dx \right]^{\frac{1}{q}} + \sqrt{\varepsilon_m} \left[\int_{\Omega} |\nabla \psi|^q \, dx \right]^{\frac{1}{q}}$$

L. BOCCARDO, L. ORSINA

The choice of $\psi = G_k(u_n - u_m)$, and the same steps in the proof of Theorem 1.3, yield

(14)
$$\|u_n - u_m\|_{L^{\infty}(\Omega)} \leq c \, (\varepsilon_n + \varepsilon_m)^A \, .$$

Note that we cannot say that $\{u_n\}$ is a Cauchy sequence in $L^{\infty}(\Omega)$, since the functions u_n may not belong to $L^{\infty}(\Omega)$, even if the difference of two of them is bounded. However, passing to the limit in (14) as m tends to infinity, the almost everywhere convergence (10) implies that

(15)
$$\|u_n - u\|_{L^{\infty}(\Omega)} \le c \varepsilon_n^A,$$

which implies that the functions u_n belong to $L^{\infty}(\Omega)$, since $u \in L^{\infty}(\Omega)$, and that the sequence $\{u_n\}$ uniformly converges to u. In other words, Theorem 1.3 can also be proved starting from (14).

3. The impact of a lower order term

Let the integral functional J be defined now by

(16)
$$J(v) = \int_{\Omega} j(x, \nabla v) \, dx + \frac{1}{2} \int_{\Omega} [f(x) - v]^2 \, dx, \quad v \in W_0^{1, p}(\Omega) \cap L^2(\Omega) \, ,$$

where

(17)
$$f \in L^2(\Omega)$$

Note that $W_0^{1,p}(\Omega) \cap L^2(\Omega) = W_0^{1,p}(\Omega)$ if $p \ge \frac{2N}{N+2}$. Since both $j(x, \nabla v)$ and $[f(x) - v]^2$ are positive, J is lower semicontinuous on $W_0^{1,q}(\Omega)$, for every $q \ge 1$.

Note that any minimum u of J does not belong to $L^{\infty}(\Omega)$, if $2 < \frac{N}{p}$, i.e., if $p < \frac{N}{2}$.

Then the minimizing sequence $\{u_n\}$ built after $\{\bar{u}_n\}$ using the ε -variational principle satisfies (11) with q = 1:

$$\langle J'(u_n),\psi\rangle \leq \sqrt{\varepsilon_n} \int_{\Omega} |\nabla\psi| \, dx, \qquad \forall \, w \in W_0^{1,1}(\Omega) \, .$$

Observe that now

(18)
$$\langle J'(u_n),\psi\rangle = \int_{\Omega} a(x,\nabla u_n)\nabla\psi\,dx + \int_{\Omega} u_n(x)\psi\,dx - \int_{\Omega} f(x)\psi\,dx.$$

We can follow the same steps as in Remark 2.2 in order to prove inequalities (14) and (15), but now the assumption on f does not imply that $u \in L^{\infty}(\Omega)$. Therefore, in (15) the function u_n and its limit u may not belong to $L^{\infty}(\Omega)$; nevertheless their difference belongs to $L^{\infty}(\Omega)$ and tends to zero in that space.

A CONSEQUENCE OF DJAIRO'S LECTURES

References

- L. Boccardo, D. Giachetti: A nonlinear interpolation result with application to the summability of minima of some integral functionals; Discrete and Continuous Dynamical Systems, Series B, 11 (2009), 31–42.
- [2] L. Boccardo, V. Ferone, N. Fusco, L. Orsina: Regularity of minimizing sequences for functionals of the calculus of variations via the Ekeland principle; Differential Integral Equations 12 (1999), 119–135.
- [3] D.G. de Figueiredo: Lectures on the Ekeland variational principle with applications and detours; Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 81, Springer-Verlag, Berlin, 1989.
- [4] I. Ekeland: Nonconvex minimization problems; Bull. Am. Math. Soc., 1 (1979), 443–474.
- [5] I. Ekeland: On the variational principle; J. Math. Anal. Appl, 47 (1974) 324–353.
- [6] I. Ekeland, R. Temam: Analyse convexe et problèmes variationnels, Dunod & Gauthier-Villars, Paris, 1974.
- [7] O.A. Ladyzenskaya, N.N. Uralceva: Equations aux dérivées partielles de type elliptique; Dunod, Paris, 1968.
- [8] J. Leray, J. L. Lions: Quelques résultats de Visik sur les problèmes aux limites non linéaires, Dunod & Gauthier-Villars, Paris, 1969.
- [9] G. Stampacchia: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus; Ann. Inst. Fourier (Grenoble), 15 (1965), 189–258.