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1. Introduction and statement of the result

In [2] we considered some properties of the minimizing sequences for integral func-
tionals J . Thanks to the Ekeland Lemma, the subject of the lectures given by Djairo
in Bangalore (see [3]), we proved the existence of a minimizing sequence compact in
Ls(Ω) or in C0,α for functionals which do not need to have a minimum, without using
the integral representation of the relaxed functional J∗.

In this paper, we improve the study done in the paper [2], under the assumption that
the functional J has a minimum belonging to L∞(Ω). Using again Ekeland’s ε-variational
principle, we to prove that there exists a minimizing sequence un for J which uniformly
converges to a minimum u.

Let us now make the precise assumptions on the functional J . Let Ω be an open,
bounded subset of RN , N ≥ 2, and let p be a real number, with 2 ≤ p < N . We will
denote by p∗ the Sobolev exponent of p, i.e., p∗ = Np

N−p .

Let j : Ω × RN → R be a Carathéodory function (i.e., measurable with respect to x
for every ξ ∈ RN , and continuous with respect to ξ for almost every x ∈ Ω) convex with
respect to ξ, and such that

(1) α |ξ|p ≤ j(x, ξ) ≤ β |ξ|p ,
for almost every x ∈ Ω, for every ξ ∈ RN , where α, β are positive real numbers.

Let f in Lm(Ω), with m ≥ (p∗)′, and let J : W 1,p
0 (Ω)→ R be defined by

J(v) =

∫
Ω

j(x,∇v) dx−
∫

Ω

f(x) v dx, v ∈ W 1,p
0 (Ω) .

Under the assumptions on f and p, J is well defined on W 1,p
0 (Ω).

We will further assume that there exists a(x, ξ) = jξ(x, ξ) which satisfies the classical
Leray-Lions assumptions (see [8]) and the standard strong monotonicity assumption

(2) [a(x, ξ)− a(x, η)][ξ − η] ≥ α |ξ − η|p ∀ξ , η ∈ RN .
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Examples of functions j such that (2) holds true are j(x, ξ) = a(x) |ξ|p, with a a mea-
surable function such that α ≤ a(x) ≤ β. Since the strong monotonicity condition is
simpler to handle if p ≥ 2 (the above assumption (2)), and is a little bit more involved
if 1 < p < 2, we confine ourselves to the former case.

Since J is both weakly lower semicontinuous and coercive on W 1,p
0 (Ω), there exists a

minimum u of J ; we have the following results on the summability of such minima.

Theorem 1.1. Let u be a minimum of J on W 1,p
0 (Ω). Then

(i) if 1 < m < N
p

, then u belongs to Lσ(Ω), σ = (pm)∗

p′
(see [1]);

(ii) If m > N
p

, then u belongs to L∞(Ω) (see [9], [7]).

Let us now recall Ekeland’s ε-variational principle (see [4], [5]).

Lemma 1.2. Let (V, d) be a complete metric space, and let F : V → (−∞,+∞] be a
lower semicontinuous function such that infV F is finite. Let ε > 0 and u ∈ V be such
that

F(u) ≤ inf
v∈V
F(v) + ε .

Then there exists v ∈ V such that

(i) d(u, v) ≤
√
ε;

(ii) F(v) ≤ F(u);
(iii) v minimizes the functional G(w) = F(w) +

√
ε d(v, w).

Our main result is the following.

Theorem 1.3. Let J be defined as above, with j satisfying (1). Let

(3) f ∈ Lm(Ω) m >
N

p
,

and let q be such that q∗ = m′; we also suppose that J ′ satisfies (2). Let u be a minimum
of J on W 1,p

0 (Ω), and let {ūn} be any minimizing sequence for J . Then the minimizing
sequence {un} built after {ūn} using the ε-variational principle satisfies

(4) lim
n→+∞

‖un − ūn‖W 1,q
0 (Ω)

= 0 ,

(5) lim
n→∞

‖un − u‖W 1,p
0 (Ω)

= 0 ,

and

(6) lim
n→∞

‖un − u‖L∞(Ω)
= 0 .

The plan of the paper is as follows: we will prove Theorem 1.3 in Section 2, and in
Section 3 we will show that adding a lower order term to J will allow us to prove the
same result under the assumption that f belongs to L2(Ω), and not to the possibly larger
space Lm(Ω), m > N

p
.
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2. Proof of the main result

For k > 0 let us define

Tk(s) = max(−k,min(k, s)) , Gk(s) = s− Tk(s) .
Before proving Theorem 1.3, let us note that since we know (see Theorem 1.1) that any
minimum u belongs to L∞(Ω), there exists M such that |u| ≤ M . Since the sequence
{un}, with un = TM(ūn), satisfies∫

Ω

j(x,∇TM(ūn)) dx−
∫

Ω

f(x)TM(ūn) dx ≤ inf
v∈W 1,p

0 (Ω)
J(v) + εn +

∫
Ω

f(x)GM(ūn) dx ,

and since

lim
n→+∞

∫
Ω

f(x)GM(ūn) dx =

∫
Ω

f(x)GM(u) dx = 0 ,

we have that ∫
Ω

j(x,∇un) dx−
∫

Ω

f(x)un dx ≤ inf
v∈W 1,p

0 (Ω)
J(v) + ε̄n .

That is, the sequence {un} is a minimizing sequence for J , and it is bounded in L∞(Ω).

Theorem 1.3 says more than that: thanks to the ε-variational principle, it is possible
to build a minimizing sequence not only bounded in L∞(Ω) but also strongly convergent
to u in the same space.

Proof of Theorem 1.3. Note that if q is as in the statement, the assumption m > N
p

implies that

(7) 1 < q <
N

N − p+ 1
< p .

Let εn be a sequence of positive real numbers, converging to zero, and let ūn be such
that, for every n ∈ N,

J(ūn) ≤ inf
v∈W 1,p

0 (Ω)
J(v) + εn .

Let us now consider the complete metric space W 1,q
0 (Ω), endowed with the distance

dn(w, v) =
1
√
εn

[ ∫
Ω

|∇w −∇v|q dx
] 1

q

.

Thanks to Fatou Lemma, to the fact that j(x, ξ) ≥ 0, and to the fact that f belongs to
W−1,q′(Ω) being q∗ = m′, we have that J is strongly lower semicontinuous on W 1,q

0 (Ω).

Thus, in view of Lemma 1.2, there exists a sequence {un} in W 1,q
0 (Ω) such that[ ∫

Ω

|∇un −∇ūn|q dx
] 1

q

≤
√
εn ,
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which proves (4), and

(8) J(un) ≤ J(ūn) ≤ inf
v∈W 1,p

0 (Ω)
J(v) + εn ,

(9) J(un) ≤ J(w) +
√
εn

[ ∫
Ω

|∇un −∇w|q dx
] 1

q

, ∀w ∈ W 1,q
0 (Ω) .

Using the growth properties of J we have that un is bounded in W 1,p
0 (Ω); indeed, by (1),

we have

α

∫
Ω

|∇un|p dx ≤
∫

Ω

j(x,∇un) dx ≤
∫

Ω

f(x)un dx+ inf
v∈W 1,p

0 (Ω)
J(v) + εn ,

which implies that the sequence {un} is bounded in W 1,p
0 (Ω) since f belongs to W−1,p′(Ω).

Thus, up to subsequences, still denoted by {un}, there exists a function u in W 1,p
0 (Ω)

such that

(10) un → u weakly in W 1,p
0 (Ω) and almost everywhere in Ω.

By the weak lower semicontinuity of J on W 1,p
0 (Ω), and by (8), u is a minimum of J on

this space.

Moreover, choosing w = un − t ψ in (9), where t is a positive real number and ψ is a
function in W 1,p

0 (Ω), we obtain

J(un − t ψ)− J(un) +
√
εn t

[ ∫
Ω

|∇ψ|q dx
] 1

q

≥ 0 .

Dividing by t, and letting t tend to zero, we get, since J is differentiable,

−〈J ′(un), ψ〉+
√
εn

[ ∫
Ω

|∇ψ|q dx
] 1

q

≥ 0 ,

so that

(11) 〈J ′(un), ψ〉 ≤
√
εn

[ ∫
Ω

|∇ψ|q dx
] 1

q

.

Recalling that J ′(u) = 0 since u is a minimum, we have

〈J ′(un)− J ′(u), ψ〉 ≤
√
εn

[ ∫
Ω

|∇ψ|q dx
] 1

q

,

for every ψ in W 1,p
0 (Ω). Observe that

(12) 〈J ′(un), ψ〉 =

∫
Ω

a(x,∇un)∇ψ dx−
∫

Ω

f(x)ψ dx.
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Choosing ψ = un − u, it is easy to prove (5) using (2). In order to prove (6), let k > 0,
define Ak,n = {|un − u| ≥ k}, and choose ψ = Gk(un − u); we obtain, by (2), and by
Hölder inequality,

α

∫
Ω

|∇Gk(un − u)|p dx ≤
√
εn

[ ∫
Ω

|∇Gk(un − u)|q dx
] 1

q

≤
√
εn

[(∫
Ω

|∇Gk(un − u)|p dx
) q

p

meas (Ak,n)1− q
p

] 1
q

=
√
εn

[ ∫
Ω

|∇Gk(un − u)|p dx
] 1

p

meas (Ak,n)
1
q
− 1

p ,

which in turn yields

α

(∫
Ω

|∇Gk(un − u)|p dx
) 1

p′

≤
√
εn meas (Ak,n)

1
q
− 1

p .

Using Sobolev inequality, and choosing h > k we arrive after straightforward passages,
to

(h− k)p meas (Ah,n)
p
p∗ ≤ C1 ε

p′
2
n meas (Ak,n)( 1

q
− 1

p
)p′ ,

which implies

meas (Ah,n) ≤ C2
ε

p∗
p

p′
2

n

(h− k)p∗
meas (Ak,n)

p∗
p

( 1
q
− 1

p
)p′ .

Note that (7) implies that
p∗

p

(
1

q
− 1

p

)
p′ > 1 ,

so that, by Lemme 4.1 of [9],

‖un − u‖L∞(Ω)
≤ C3 ε

A
n ,

for some positive constant A depending only on p and N . Recalling that εn converges
to zero, we have the result. �

Remark 2.1. Assumption (3) was used only to ensure that the functional J is lower
semicontinuos on W 1,q

0 (Ω). Since the terms with f “cancel out” when calculating J ′(un)−
J ′(u), the summability of f is not necessary to prove that un − u belongs to L∞(Ω).

Remark 2.2. We remark that from (11), choosing ψ and −ψ it follows that un satisfies

(13) −
√
εn

[ ∫
Ω

|∇ψ|q dx
] 1

q

≤ 〈J ′(un), ψ〉 ≤
√
εn

[ ∫
Ω

|∇ψ|q dx
] 1

q

.

Thus,

〈J ′(un)− J ′(um), ψ〉 ≤
√
εn

[ ∫
Ω

|∇ψ|q dx
] 1

q

+
√
εm

[ ∫
Ω

|∇ψ|q dx
] 1

q
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The choice of ψ = Gk(un − um), and the same steps in the proof of Theorem 1.3, yield

(14) ‖un − um‖L∞(Ω)
≤ c (εn + εm)A .

Note that we cannot say that {un} is a Cauchy sequence in L∞(Ω), since the functions
un may not belong to L∞(Ω), even if the difference of two of them is bounded. However,
passing to the limit in (14) as m tends to infinity, the almost everywhere convergence
(10) implies that

(15) ‖un − u‖L∞(Ω)
≤ c εAn ,

which implies that the functions un belong to L∞(Ω), since u ∈ L∞(Ω), and that the
sequence {un} uniformly converges to u. In other words, Theorem 1.3 can also be proved
starting from (14).

3. The impact of a lower order term

Let the integral functional J be defined now by

(16) J(v) =

∫
Ω

j(x,∇v) dx+
1

2

∫
Ω

[f(x)− v]2 dx, v ∈ W 1,p
0 (Ω) ∩ L2(Ω) ,

where

(17) f ∈ L2(Ω).

Note that W 1,p
0 (Ω) ∩ L2(Ω) = W 1,p

0 (Ω) if p ≥ 2N
N+2

. Since both j(x,∇v) and [f(x) − v]2

are positive, J is lower semicontinuous on W 1,q
0 (Ω), for every q ≥ 1.

Note that any minimum u of J does not belong to L∞(Ω), if 2 < N
p

, i.e., if p < N
2

.

Then the minimizing sequence {un} built after {ūn} using the ε-variational principle
satisfies (11) with q = 1:

〈J ′(un), ψ〉 ≤
√
εn

∫
Ω

|∇ψ| dx, ∀ w ∈ W 1,1
0 (Ω) .

Observe that now

(18) 〈J ′(un), ψ〉 =

∫
Ω

a(x,∇un)∇ψ dx+

∫
Ω

un(x)ψ dx−
∫

Ω

f(x)ψ dx.

We can follow the same steps as in Remark 2.2 in order to prove inequalities (14) and
(15), but now the assumption on f does not imply that u ∈ L∞(Ω). Therefore, in (15)
the function un and its limit u may not belong to L∞(Ω); nevertheless their difference
belongs to L∞(Ω) and tends to zero in that space.
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cients discontinus; Ann. Inst. Fourier (Grenoble), 15 (1965), 189–258.


