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Abstract

Optimal control and Reinforcement Learning deal both with sequential decision-
making problems, although they use different tools. In this thesis, we have in-
vestigated the connection between these two research areas. In particular, our
contributions are twofold.

In the first part of the thesis, we present and study an optimal control problem
with uncertain dynamics. As a modeling assumption, we will suppose that the
knowledge that an agent has on the current system is represented by a probability
distribution π on the space of possible dynamics functions. The goal is to minimize
an average cost functional, where the average is computed with respect to the
probability distribution π. This framework describes well the behavior of a class of
model-based RL algorithms, which build a probabilistic model (here represented by
π) of the dynamics, and then compute the control by minimizing the expectation of
the cost functional with respect to π. In this context, we establish some convergence
results for the value function and the optimal control. These results constitute an
important step in the convergence analysis of this class of RL algorithms.

In the second part, we propose a new online algorithm for dealing with LQR
problems where the state matrix Â is unknown. Our algorithm provides an approx-
imation of the dynamics and finds a suitable control at the same time, during a
single simulation. It is based on an integration between RL and optimal control
techniques. A probabilistic model is updated at each iteration using Bayesian linear
regression formulas, and the control is obtained in feedback form by solving a Riccati
differential equation. Numerical tests show how the algorithm can efficiently bring
the system to the origin, despite not having full knowledge of the system at the
beginning of the simulation.
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Chapter 1

Introduction

1.1 Context and motivations

Reinforcement Learning (RL) [136, 22] is one of the three basic Machine Learning
paradigms, together with Supervised Learning and Unsupervised Learning [24]. In
RL, an agent interacts with a dynamic, stochastic, and possibly unknown environ-
ment, intending to find an action-selection strategy, or policy, to optimize a certain
long-term performance. The term reinforcement comes from behavioral psychology,
where it indicates the mechanism by which a human or animal tends to repeat a
certain behavior if it is followed by a reward. Other names for RL are approximate
dynamic programming [113, 18] and “neuro-dynamic programming”, which is also
the title of one of the main references for RL [22]. Dynamic programming is a class of
methods which we will discuss later. The term neuro here stands for neural networks
or, more generally, for any function approximator; in the methods presented in the
book, function approximators are used to solve large-scale problems. In the intro
of that book, we find the following definition of RL: “The methods of this book
allow systems to learn how to make good decisions by observing their own behavior
(simulation), and use built-in mechanisms for improving their actions through a
reinforcement mechanism” [22].

One can consider two main RL philosophies: the first one, called model-based
[77, 144, 32, 71], usually concerns the reconstruction of a model from the data
trying to mimic the unknown environment. That model is then used to plan
and to compute a suboptimal policy. The second RL philosophy, called model-
free, employs a direct approximation of the value function and/or a policy based
on a dynamic-programming-like algorithm, without using a model to simulate the
unknown environment. Model-free methods include the famous Monte Carlo methods
[136], Temporal-Difference Learning [134, 125] and Q-Learning [146] and more recent
ones [95, 126, 89, 62]. An excellent overview of the two approaches can be found in
[136].

The general framework of this thesis is the application of control theory to the
RL problem. Let us recall some classical approaches to optimal control problems.
Optimal Control (OC) [50, 11, 143] dates back to the 1950s, thanks to the work
of Richard Bellman [15, 16]. The optimal control problem consists in governing a
dynamic system through the influence of a control or input. The main goal is to
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find the “best” or optimal control which minimizes a certain cost functional. This
research area has been of great importance since the Cold War and the Space Race
between the United States and the Soviet Union [110]. During those years, the
American and Russian mathematical schools have developed two distinct methods
of solving the same problem in parallel. American scholars, including Richard E.
Bellman (1920–1984) and Rufus P. Isaacs (1914–1981), developed the theory of
Dynamic Programming. At the same time, on the other side of the world, Lev
S. Pontryagin (1908–1988), Vladimir G. Boltyanskii (1925-2019) and the Russian
school proposed some necessary conditions for the optimal control problem, known
as the Maximum Principle [112].

Dynamic Programming (DP) [15, 16, 21] considers a family of optimal control
problems with different initial times and states and looks at the relationship between
these problems. The main ingredient is the value function V (t, x), defined as the
minimum of the cost functional. It solves a functional equation, called the Bellman
equation. In the continuous-time problem, the Bellman equation is a nonlinear
partial differential equation of Hamilton-Jacobi type. Once the value function has
been obtained, it provides optimal feedback control, i.e. a state-dependent optimal
control; this is a valuable property as it makes the control system stable with
respect to random disturbances. For this reason, it was possible to apply dynamic
programming also to the stochastic variants of the problem [117] and to differential
games [69]. Pontryagin’s Maximum Principle [112, 50] translates into some necessary
conditions that the optimal control, the optimal trajectory and a costate variable
must satisfy. In the continuous-time case, they consist of a boundary value problem
for a system of ordinary differential equations, which, once solved, provides an
optimal open-loop control, that is, dependent only on time. Controls of this type
cannot adapt to changes in the system or in the presence of small disturbances, and
this makes them unstable.

Although the Dynamic Programming approach is preferable from a theoretical
point of view as it provides sufficient conditions and a synthesis of optimal feedback
control, it has always been very difficult to apply it to realistic problems, since
it is very expensive from a computational point of view. It suffers from the so-
called “curse of dimensionality” (an expression coined by Bellman himself [16]),
which means that the computational cost necessary to solve the Bellman equation
grows exponentially with respect to the system dimension. In contrast, Pontryagin’s
method requires solving merely a boundary value problem of linear size in terms of
dimensions, which is not a difficult task (see e.g. [5]). This led to the development
of suboptimal solution methods to the Bellman equation, known as approximate
dynamic programming [113, 18], that could overcome the curse of dimensionality.
Later, we started calling these methods as Reinforcement Learning [136, 20].

Optimal control and RL are strongly connected [137, 20], as they deal with
similar problems; in fact, both can be regarded as sequential decision problems,
in which one has to make decisions in sequence, trying to optimize not only the
immediate rewards but also the future, delayed ones [12]. Recently, Powell proposed
a unified framework for all the family of sequential decision problems, including
OC and RL [114, 115]. More precisely, RL deals with control problems in which
the dynamics of the system is uncertain. Over the years, various techniques have
been proposed for working with uncertain models, including adaptive control [7, 82],
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dual control [48, 148, 49], robust control [151, 2] and average cost control [122, 23].
In 1992, Sutton and coauthors identified RL with direct adaptive optimal control
[137]. In recent years, many researchers have tried to link these two research areas,
so that each could benefit from the other. For example, Bertsekas compares the
two approaches starting from the common aspect of dynamic programming and
focusing on discrete-time control systems, which are the natural setting in RL [20].
Recht, on the other hand, offers a tour of Reinforcement Learning from the point
of view of continuous-time control [120], following up on some interesting works on
continuous-time RL [97, 40, 85, 87]. Finally, Harrison, in his recent lecture notes,
presents “a unified treatment of OC and RL, with an emphasis on model-based RL”
[65]. This thesis aims to take this connection a step further.

About ten years ago, PILCO was introduced [37, 36], an innovative and disruptive
model-based method, from which many subsequent model-based RL methods have
been inspired. Rather than exploiting the data to construct a dynamics approxi-
mating the partially known environment, PILCO makes use of them to construct a
probability distribution (more precisely, a Gaussian Process) on a class of dynamical
systems. At each iteration, this distribution is updated to fit the data set. After
the model update, PILCO takes the policy improvement step which boils down to
solving an averaged optimal control problem, where the averaging distribution is the
one extrapolated from the data at the previous experiments. That approach has the
advantage of considerably reducing the model bias, i.e. the fact that an inaccurate
model can produce suboptimal controls, which is one of the main shortcomings
of model-based RL [8]. A general, rigorous framework capturing PILCO as well
as other Bayesian model-based RL approaches (see, e.g. [31, 56, 73, 32, 71, 144])
has been developed in [98, 99]. In particular, it is important to mention that the
framework developed in [98] is closely related to the averaging control framework
and Riemann-Stijlties optimal control [92, 23, 105, 122, 153]. Starting from the
framework proposed in [98, 99], in this thesis we propose and study an average cost
optimal control problem, proving interesting convergence results. Then, we propose
a new practical algorithm.

1.2 Contributions

The contribution of the thesis is twofold. In the first part, consisting of Chapters 3
and 4, we analyze from the theoretical point of view an average cost optimal
control problem, which is identified with some probabilistic model-based RL (MBRL)
methods. The aim is to establish a stronger link between this class of RL methods
and the framework introduced in [98]. The model bias issue says that if the model
is not accurate, the algorithm will produce a suboptimal policy. Our work instead
wants to show that if the model is accurate, but not exact, the found policy is
almost optimal, and estimate how far it is from the optimal one. In the second,
more numerical part, consisting of Chapter 5, we propose a new algorithm for a
Linear-Quadratic Regulator (LQR) problem with partially unknown dynamics. The
algorithm borrows the structure of a typical model-based RL method and also
makes use of Bayesian linear regression, a tool widely used in machine learning. So,
while in the first part of the dissertation we use control theory to demonstrate the
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convergence of some RL methods, in the second part we use RL tools to solve an
optimal control problem.

First part: average cost optimal control problems

In Chapter 3, we consider a finite-horizon optimal control problem of a physical
system, namely

minimize
{∫ T

t0
`(x(t), u(t))dt+ h(x(T ))

}
over u : [t0, T ]→ U ⊂ Rm measurable such that
ẋ(t) = f̂(x(t), u(t)), t ∈ [t0, T ]
x(t0) = x0

(1.1)

where ` and h are given, known cost functions and x0 ∈ Rn is a given vector.
However, in this context, we will assume that the system dynamics f̂ is unknown and
the knowledge we have about f̂ is merely represented by a probability distribution
π constructed over a space of functions X (with f̂ ∈ X) by using the data available
from the physical system. This situation is in accordance with the PILCO [37]
setting, which is “not focusing on a single dynamics model”, but makes use of “a
probabilistic dynamics model, a distribution over all plausible dynamics models that
could have generated the observed experience” ([36], pg. 34). Such a modelling
setting allows us to define the averaged optimal control problem

minimize
{∫

X

[∫ T
t0
`(xg(t), u(t)) dt+ h(x(T ))

]
dπ(g)

}
over u : [t0, T ]→ U ⊂ Rm measurable such that
ẋg(t) = g(xg(t), u(t)), g ∈ X, t ∈ [t0, T ],
xg(t0) = x0

. (1.2)

If indeed the real physical system is driven by the equation

ẋ(t) = f̂(x(t), u(t)), t ∈ [t0, T ],

for a certain function f̂ , then, it is reasonable to expect that an increase of the
experience will produce a more accurate distribution π over X. This fact can be
translated into the assumption that the probability distribution is “close” (in a
precise sense that will be specified in the sequel) to the Dirac delta δ

f̂
concentrated

at the true dynamics f̂ when enough experience of the environment (here represented
by f̂) is gained.

We would like to stress that our goal, in this first part of the dissertation, is not
to propose a new algorithm to find an optimal policy but rather to consider a class
of existing algorithms and motivate their good performances. In particular, we aim
to provide insight into the convergence of Bayesian-like RL algorithms in which a
recursive construction of probability measures is carried on (further considerations
on the connection with RL are given in Section 3.2). Here, by “convergence”, we
mean the convergence of the optimal policy obtained by estimating the underlying
dynamics using data from the real system (the one constructed in the so-called policy
improvement step) towards the optimal policy obtained by solving problem (1.1).
More precisely, the questions we will tackle are:
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1) Is the value function related to the optimal control problem (1.2) close to the
value function associated to problem (1.1) when π is close to δ

f̂
w.r.t. the

Wasserstein distance (see equation (3.6) for the formal definition)?

2) Under the same assumptions over π, is the optimal control of (1.2) close to
the optimal control of (1.1)?

In Chapter 3 we will provide a positive answer to question 1) for a general, nonlinear
control system. In Chapter 4 we will deal with a specific problem, the LQR problem,
for which we can prove also the convergence of the optimal control.

Second part: a new online algorithm for the LQR problem with partially
unknown dynamics

In Chapter 5 we change perspective and attack a numerical problem. We consider
an LQR problem where the state matrix Â is unknown. Our goal is to control the
system by bringing the state towards the origin, and at the same time to reconstruct
matrix Â based on the observed data. The existing algorithms for this type of
problem are based on offline learning: first, the system is observed through one
or more simulations, and this allows to reconstruct the dynamics, and only then
is the actual control applied. We propose a new algorithm to solve the problem
which works online, meaning that it reconstructs the dynamics and controls the
system in a single run. Our algorithm takes contributions from both OC and RL.
In particular, it can be considered a Bayesian RL method, but at the same time, it
uses the LQR solution based on the Riccati equation, a standard tool from control
theory. Although we still don’t have proof of the convergence for this method, it
seems to work well on some numerical tests.

1.3 Organization

We now summarize the contents of the main chapters of the dissertation:

Chapter 2: From optimal control to Reinforcement Learning. We give
an overview of Optimal Control and Reinforcement Learning, touching on various
related topics. To begin with, we present the optimal control problem in various
settings, that include continuous and discrete-time problems, the LQR problem,
and Markov Decision Processes. We continue talking about dynamic programming,
which is first discussed in general and then applied to various problems. Further on,
we review some approaches to control problems with uncertain dynamics, such as
adaptive control and robust control. Finally, we present Reinforcement Learning,
discuss the main similarities and differences with optimal control, and introduce a
class of MBRL algorithms that will be analyzed in subsequent chapters.

Chapter 3: An average cost optimal control problem for modeling model-
based RL. We present the framework we have worked on, that is an average cost
optimal control problem. In particular, in this chapter, we consider a generic
nonlinear control system, where the dynamics is uncertain and the belief about the
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dynamics is represented by a probability distribution. After having explained in
detail how this problem can be identified with some probabilistic model-based RL
methods, we prove the convergence of the value function and verify the validity of
the result on some numerical tests.

An abridged version of this chapter will appear in the conference proceeding

[109] A. Pesare, M. Palladino, and M. Falcone, Convergence of the value
function in optimal control problems with unknown dynamics, in 2021 European
Control Conference (ECC), IEEE, to appear

Chapter 4: Convergence results for an average cost LQR problem. We
consider the framework of Chapter 3 in the specific case of the linear-quadratic
problem. For this type of problem, we manage to prove not only the convergence
of the value function but also the convergence of the optimal control, using some
necessary conditions of the Pontryagin style valid for the average cost problems.
When the number of possible dynamics is finite, then, we also prove the convergence
of feedback control, through the convergence of the Riccati matrix of an augmented
system.

This chapter is based on the results presented in

[108] A. Pesare, M. Palladino, and M. Falcone, Convergence results for an
averaged LQR problem with applications to Reinforcement Learning, Mathematics of
Control, Signals, and Systems, 33 (2021), p. 379–411

Chapter 5: A new online algorithm for an LQR problem with partially
unknown dynamics. We present a new online algorithm to solve an LQR problem
where the state matrix is unknown. After presenting the problem, we describe the
algorithm by discussing some implementation details. Finally, we test it on several
numerical tests.

The main contents of this chapter will appear in the conference proceeding

[104] A. Pacifico, A. Pesare, and M. Falcone, A new algorithm for the LQR
problem with partially unknown dynamics, in 2021 Large-Scale Scientific Computing
(LSSC), Springer International Publishing, to appear
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Chapter 2

From optimal control to
Reinforcement Learning

We begin our dissertation by retracing a historical path that starts from the 1950s
with the birth of optimal control and dynamic programming and reaches today, with
the development of advanced Reinforcement Learning methods. This chapter is not
intended to be exhaustive, but aims to insert the thesis in a broader research context
and provide some basic knowledge that will be useful in the following chapters. The
structure of the chapter is inspired by [65].

In Section 2.1 we introduce the fundamental concepts of optimal control, both
in continuous and in discrete time. In Section 2.2 the main ideas of dynamic
programming will be illustrated for several variants of the problem, providing
examples of DP algorithms. In Section 2.3 we will discuss some previous attempts
to solve optimal control problems in uncertain systems. In the end, in Section 2.4
we will introduce Reinforcement Learning and compare it to optimal control.

2.1 The optimal control problem

2.1.1 Continuous-time optimal control

We will first introduce the deterministic, continuous-time optimal control problem
[50, 11], which will be our main focus throughout the thesis. Afterwards, we will
discuss other typical problem formulations, including the discrete-time and the
stochastic variant.

We consider the following control system. The state of the system at time t is
denoted by x(t) and lies in Rn. The control variable is u(t) and must be chosen in
a closed subset U ⊆ Rm. In the finite-horizon formulation, we study the evolution
of the system up to a final time T < ∞, while 0 ≤ t0 < T will denote the initial
time. Generally, the state is driven by a system of controlled ordinary differential
equations {

ẋ(t) = f(x(t), u(t)) t ∈ [t0, T ]
x(t0) = x0.

(2.1)

We refer to equation (2.1) as the state equation, whereas function f is called the
dynamics of the system. We will make the following assumptions on the dynamics:
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(A1) f : Rn × U → Rn is continuous and bounded on B(0, R)× U for all R > 0;

(A2) f is Lipschitz continuous with respect to x: ∃Lf > 0 such that

|f(x, u)− f(y, u)| ≤ Lf |x− y| , ∀x, y ∈ Rn, ∀u ∈ U ;

These conditions guarantee that the Cauchy problem (2.1) is well-posed. More
precisely, the Carathéodory theorem (see e.g. [121]) implies that for every measurable
control function u : [t0, T ]→ U and initial condition x(t0) = x0 ∈ Rn, there exists a
unique solution of (2.1), which we will call the trajectory associated to u(·).

The goal of the problem is to minimize the cost functional

Jt0,x0 [u] :=
∫ T

t0
e−λ(t−t0)`(x(t), u(t))dt+ e−λ(T−t0)h(x(T )) , (2.2)

over the class of the admissible controls

Ut0 = {u : [t0, T ]→ U, Lebesgue measurable}, (2.3)

where ` and h are respectively the running cost and the terminal cost. The term
e−λ(t−t0) in (2.2) has an economic interpretation of actualizing a future cost. It
translates into mathematical terms the fact that having a gain now is preferable
to having the same gain in a future instant. The coefficient λ ≥ 0 is called the
discount factor. When λ > 0, Jt0,x0 [·] is called discounted cost functional, whereas the
undiscounted case is recovered when λ = 0. We will make the following assumptions
on the cost functions:

(A3) ` : Rn × U → R is continuous and bounded.

(A4) ` is Lipschitz continuous with respect to x: ∃L` > 0 such that

|`(x, u)− `(y, u)| ≤ L` |x− y| , ∀x, y ∈ Rn, ∀u ∈ U ;

(A5) h is Lipschitz continuous: ∃Lh such that

|h(x)− h(y)| ≤ Lh |x− y| , ∀x, y ∈ Rn.

A control u∗(·) ∈ Ut0 is said optimal if

Jt0,x0 [u∗] ≤ Jt0,x0 [u] ∀u ∈ Ut0 . (2.4)

The trajectory x∗(·) associated to an optimal control u∗(·) is called an optimal
trajectory for the problem. The existence and the uniqueness of an optimal control
(and the relative optimal trajectory) are non-trivial questions; in general, these
properties are not guaranteed for a control system. These topics have been studied
in depth, and we refer to the sources [50, 143] for a more complete discussion.

There are two general forms for an optimal control. An open-loop optimal
control is expressed as a function of time only, t 7→ u∗(t), but it also depends on
the initial state x0. A feedback optimal control or closed-loop optimal control is
instead expressed as a function of the current state and time, u∗(t) = µ(x(t), t).
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The function µ : Rn × R+ → Rm is called a policy. A policy is said optimal if the
corresponding feedback control is optimal for each initial state x0 ∈ Rn. In case
of external disturbances or model errors, there is no way to correct an open-loop
control. On the other hand, a feedback control can adjust itself in order to deal
with disturbances. This makes it more stable and preferable for stochastic control
systems. The Maximum Principle approach provides an open-loop optimal control,
whereas dynamic programming finds an optimal control in feedback form.

Remark 2.1. There are more general formulations of the problem than this. For
instance, one can consider non-autonomous systems, in which the dynamics f and
the running cost ` depend explicitly on time:

f = f(t, x, u), ` = `(t, x, u).

State constraints could also be considered, e.g. requiring that the state x(t) always
remains in a closed set X of Rn. For the sake of simplicity, we have chosen to
consider only the autonomous and unconstrained case.

Remark 2.2. Since each control u(·) ∈ Ut0 corresponds to a single trajectory x(·),
sometimes the optimal control problem is formulated in the following compact form,
as an optimization problem in the pair (x, u)(·):

minimize Jt0,x0 [u]
over (x, u)(·) such that u ∈ Ut0 and
ẋ(t) = f(x(t), u(t)), t ∈ [t0, T ],
x(t0) = x0.

(2.5)

When the time horizon is infinite, i.e. T =∞, we speak of an infinite-horizon
optimal control problem. The system dynamics reads{

ẋ(t) = f(x(t), u(t)) t ≥ 0
x(0) = x0.

(2.6)

and the discounted cost functional to be minimized is

Jx0 [u] :=
∫ ∞

0
e−λt`(x(t), u(t))dt . (2.7)

If the discount factor is positive, i.e. λ > 0, the integral in (2.7) converges, so the
functional is well-defined. Notice that since the state equation (2.6) and the running
cost ` in (2.7) are time-independent, we can easily compare the costs starting at
different times rescaling the costs at time 0:∫ ∞

t0
e−λt`(x(t), u(t))dt = e−λs

∫ ∞
0

e−λτ `(x(s+ τ), u(s+ τ))dτ.

This is why we consider the cost functional (2.7) dependent on the initial state only
and not also on the initial time as in the finite-horizon case.

Moreover, we can also consider a time-independent policy or stationary policy
µ : Rn → Rm. Given a stationary policy µ, one can construct a feedback control
u(t) = µ(x(t)). In Section 2.2.4 we will see how dynamic programming methods can
provide an optimal policy µ∗ for the problem.
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2.1.2 The Linear-Quadratic Regulator

The Linear-Quadratic (LQ) optimal control problem [81, 4, 50] is a classical problem
in control theory, in which the system dynamics is described by a system of linear
differential equations and the cost is a quadratic function. Thanks to the simplicity
of the model, it is possible to express optimal control in closed form. The solution is
provided by a feedback controller, the Linear-Quadratic Regulator (LQR), which
we will discuss shortly. Sometimes the problem and the solution are identified, so it
is not uncommon for the LQ problem to be called the LQR problem. This model
is also of great interest in nonlinear systems, where it is applied locally, through a
linearization of the dynamics [107, 116].

In the finite-horizon, continuous-time case, the state of the system x(t) ∈ Rn
evolves according to the following controlled dynamics{

ẋ(t) = Ax(t) +Bu(t), t ∈ [t0, T ]
x(t0) = x0,

(2.8)

where A ∈ Rn×n and B ∈ Rn×m. The control function u(t) ∈ Rm must be chosen
among the admissible controls Ut0 := {u : [t0, T ] → Rm, Lebesgue measurable} to
minimize the quadratic cost functional

Jt0,x0 [u] := 1
2

∫ T

t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt+ 1

2x(T )TQfx(T ). (2.9)

Some typical assumptions on the cost matrices are the following:

• Q,Qf ∈ Rn×n are symmetric and positive semi-definite;

• R ∈ Rm×m is symmetric and positive definite.

Under these assumptions, the LQR provides the optimal control in feedback form
[4] as

u∗(t) = −R−1BTP (t)x(t) ∀ t ∈ [t0, T ], (2.10)

where P (t) is the unique symmetric solution of a Riccati matrix differential equation{
−Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q, t ∈ [t0, T ]
P (T ) = Qf .

(2.11)

2.1.3 Discrete-time optimal control

Another common formulation of the optimal control problem is made in discrete time.
Although continuous-time systems and differential equations are more appropriate
to describe physical phenomena, discrete-time dynamical systems are widely used in
several fields of application, such as computer science and economics. Furthermore,
a discrete-time system is more suitable for numerical simulations. In reality, the two
models are very closely related to each other, and it is easy to obtain a discrete-time
system starting from a continuous model through a discretization process; we will
provide an example in Section 2.2.4. Conversely, many discrete-time models can
be seen as the discretization of a continuous-time system. A good reference for
discrete-time optimal control is the monograph by Bertsekas [21].
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In a discrete-time system, variables are measured at fixed instants of time
tk = t0 + k∆t, where k is the time index. We denote the value of the state at time tk
with the subscript k, so that xk = x(tk). Analogously, the control or input at time k
is uk = u(tk). The evolution of the dynamical system is described by a difference
equation [75]. In finite-horizon problems, the system evolves over a finite number N
of time steps: {

xk+1 = f(xk, uk) k = 0, 1, . . . , N − 1
x0 given ,

(2.12)

where xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rm and f : X ×U → X. Depending on the problem,
the state space X can be either continuous, e.g. all Rn or a subset of Rn, or discrete,
e.g. a set with a finite number of elements. If the system is a discretization of a
continuous-time system, the state space will naturally be continuous. Instead, a
problem where the state space is a finite set can be thought of as a deterministic
version of a Markov chain (see Section 2.1.4).

The integral in the cost functional (2.2) is now a summation over the time
index k

J0,x0 [u] =
N−1∑
k=0

γk`(xk, uk) + γNh(xN ), (2.13)

where 0 < γ ≤ 1 is a discrete discount factor that replaces the term e−λt of the
continuous-time case. The undiscounted case is recovered by choosing γ = 1. The
cost functional (2.13) depends on the control sequence u = {u0, . . . , uN−1} ∈ UN .
Note that for a given initial state x0 and a control sequence u, the discrete trajectory
{x1, . . . , xN} is uniquely determined by (2.12), so the cost (2.13) is well-defined.

The goal of the problem is to minimize the cost functional (2.13) over all possible
control sequences {u0, . . . , uN−1} ∈ UN . A control sequence u∗ is called optimal if

J0,x0 [u∗] ≤ J0,x0 [u] ∀u ∈ UN . (2.14)

Remark 2.3. More general formulations include the non-autonomous case, taking
time-dependent dynamics and running cost,

fk(x, u) = f(tk, x, u) and `k(x, u) = `(tk, x, u), for x ∈ X, u ∈ U.

As in the continuous-time case, we can define an infinite-horizon problem, where
there is no time horizon. The discounted cost functional will be

Jx0 [u] =
∞∑
k=0

γk `(xk, uk), (2.15)

where 0 < γ < 1 and u = {uk}k≥0 is an infinite control sequence. We look for an
infinite control sequence that minimizes (2.15), this would be an open-loop optimal
control. Alternatively, we look for a stationary policy µ : X → U such that the
corresponding feedback control uk = µ(xk) is optimal for each x0 ∈ Rn.
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2.1.4 Markov Decision Processes

Markov Decision Processes (MDPs) [117, 136] are discrete-time stochastic control
processes. Another name for them is controlled Markov Chains [80]. They were
introduced in the 1950s by Bellman, who studied them as the stochastic version
of discrete-time control systems [17, 16]. MDPs are still very popular nowadays in
Reinforcement Learning, for which they constitute one of the most used frameworks.

The state variable of an MDP is driven by a probabilistic dynamics model.
Following the same notation of the deterministic state equation (2.12), in the
autonomous case we can write it as{

xk+1 = f(xk, uk, ωk) k = 0, 1, . . . , N − 1
x0 given ,

(2.16)

where ωk is the random disturbance at time tk. We assume that the disturbance
process {ωk}k is a sequence of independent random vectors in R, which incorporates
all the stochasticity of the system.

When the state space X is a finite set, the system dynamics is conveniently
specified in terms of the transition probabilities between the states. We can think,
indeed, that the effect of ωk in f describes the conditional distribution of the next
state xk+1, given the current state xk and the control uk and that there exists a
function p : X ×X × U → [0, 1] such that

P
(
xk+1 = x′|xk = x, uk = u

)
= p(x′|x, u), for x, x′ ∈ X, u ∈ U. (2.17)

In this formulation the state process is Markovian, that is, its evolution does not
depend on the whole history of the process, but only on the current state. We denote
by

hk := (x0, u0, x1, u1, . . . , xk, uk) (2.18)

the history of the process up to time k. In mathematical terms, the Markov property
says that

p(xk+1|hk) = p(xk+1|xk, uk), (2.19)

where p(xk+1|hk) indicates the conditional distribution of xk+1 given the whole
process history up to time k. More details on the relationship between the two
notations (2.16) and (2.17) can be found in [21, p. 6].

In the stochastic formulation, the cost functional is defined as the expected
value of an additive random cost. When u is a deterministic control sequence
{u0, . . . , uN−1}, we can write it as

J0,x0 [u] = E
[
N−1∑
k=0

γk`(xk, uk, ωk) + γNh(xN )
]
. (2.20)

Here the expectation E[·] is formally with respect to the disturbances ω0, . . . ωN , but
notice that also the state xk is random, since it depends on previous disturbances.

In Section 2.1.1 we discussed the two kinds of control: open-loop control and
closed-loop control. In the stochastic case, it is convenient to find optimal closed-
loop policies, since they can deal better with stochasticity. We can consider both
deterministic and stochastic policies.
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Definition 2.4. A deterministic policy is a function µ : X × R+ → U . Given a
policy µ, we can build a feedback control uk = µ(xk, tk). We will denote the space of
(time-dependent) deterministic policies by Πt.

A stochastic policy, instead, is a function ν : X ×R+ → P(U) which takes values
in the set P(U) of all probability distributions on U . When the controller follows a
stochastic policy ν, the control at time uk is random and its conditional distribution
is given by

uk|xk, tk ∼ ν(xk, tk).

For the moment, let us consider only deterministic policies. In fact, it can be
shown that if there is a stochastic optimal policy, there is also a deterministic optimal
policy. When the control is chosen according to a policy µ ∈ Πt, we will obtain a
certain cost given by

J0,x0 [µ] = E
[
N−1∑
k=0

γk`(xk, µ(xk, tk), ωk) + γNh(xN )
]
. (2.21)

We call (2.21) the cost of policy µ when starting from x0. A policy µ∗ ∈ Πt is
said optimal, if it minimizes the cost functional (2.21) for each possible initial state
x0 ∈ X:

J0,x0 [µ∗] ≤ J0,x0 [µ], for each policy µ ∈ Πt. (2.22)

In the infinite-horizon problem, the system is generally autonomous, as in the
deterministic case. This allows to look for stationary policies µ : X → U , such that
the control depends only on the current state, uk = µ(xk). We will denote the
space of stationary deterministic policies by Π. The discounted cost functional for a
stationary policy µ ∈ Π takes the following form

Jx0 [µ] = E
[ ∞∑
k=0

γk `(xk, µ(xk), ωk)
]
. (2.23)

2.2 Dynamic Programming

Dynamic programming (DP) [16, 21] is one of the two main approaches to solve opti-
mal control problems, together with Pontryagin’s approach based on the Maximum
Principle [112, 50, 143]. DP was introduced by Bellman in the early 1950s [15, 16].
The basic idea of this method is to consider a whole family of optimal control
problems with different initial times and states and look at the relationship between
these problems. Bellman formalized this relationship in the so-called principle of
optimality, which in the original version reads as follows: “An optimal policy has
the property that whatever the initial state and initial decisions are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from
the first decisions.” [15].

DP is a general method and can be applied and adapted to different problems.
However, there are some standard steps, which constitute the structure and main
idea of the method. We list these steps below:
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1. Define the value function of the problem as a function of the initial time and
the initial state, in the finite-horizon case, or of the initial state only, in the
infinite-horizon case.

2. State precisely the principle of optimality and derive the Bellman equation, a
functional equation of which the value function is a solution.

3. Solve the Bellman equation and prove that the solution found is the value
function.

4. Build an optimal feedback control from the value function.

DP has a major advantage over Pontryagin’s approach, that it provides optimal
feedback control. At the same time, this method requires a great deal of compu-
tational effort, and it is often impossible to solve the Bellman equation exactly.
Bellman was aware of this and coined the expression “curse of dimensionality” [16],
that is, the computational effort grows exponentially with the dimension of the
problem. Numerical methods that solve the Bellman equation in an approximate way
are called approximate dynamic programming [113, 18] or Reinforcement Learning
[136, 20].

In this section, we will present the DP approach applied to different types
of optimal control problems and discuss some algorithms that solve the Bellman
equation exactly, when the state space and the control space are finite. In this case,
we speak of exact dynamic programming. In particular, we will discuss the two main
DP algorithms, value iteration and policy iteration, in different settings. We will
begin by dealing with the discrete-time deterministic problem, the one that Bellman
studied first [16]. Next, we will move on to the stochastic version, considering
finite MDPs. Finally, we will discuss the generalization of these algorithms to the
continuous-time problem.

2.2.1 Dynamic programming in discrete time: finite horizon

Let us consider the deterministic discrete-time problem, according to the formulation
of Section 2.1.3. To keep things simple, we will assume that the state space X and
the control space U have a finite number of elements. Also, from a numerical point
of view, this allows to store all the computed values in lookup tables. When the
state space is continuous, the principle of dynamic programming and the Bellman
equation still hold, but the space must be discretized to solve them [21, 18]. We
will see an example of space discretization in Section 2.2.4. It should be noted that
the study of these algorithms for arbitrary state and control spaces is still an active
research field [19]. In the following, we will analyze the finite-horizon case and the
infinite-horizon case separately. A comprehensive reference for DP in discrete time
is the monograph by Bertsekas [21].

We consider a family of problems with different initial times and states. Given
an initial time 0 ≤ n ≤ N − 1 and an initial state xn ∈ X, we rewrite the dynamics
(2.12) as {

xk+1 = f(xk, uk) k = n, . . . , N − 1
xn given ,

(2.24)
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and the cost functional (2.13) as

Jn,xn [u] =
N−1∑
k=n

γk−n`(xk, uk) + γN−nh(xN ), (2.25)

where u is a generic control sequence {un, . . . , uN−1} ∈ UN−n.
We define the value function in (n, xn) as the optimal cost starting from xn at

time n:

V (n, xn) = min
u∈UN−n

Jn,xn [u], ∀n = 0, . . . , N − 1, ∀xn ∈ X. (2.26)

Furthermore, we set the value function at time N equal to the final cost h:

V (N, xN ) = h(xN ), ∀xN ∈ X. (2.27)

Remark 2.5. The term “value” refers to the fact that in equivalent formulations of
the problem the goal is to maximize a payoff functional P = −J ; in that context,
the value of a state x represents how much I can earn at most starting from x. In
our formulation, it would be more appropriate to call V the cost function or optimal
cost function, but we choose to use the term that is more common in the literature.

The principle of optimality and the Bellman equation

As we will see below, the value function can provide optimal control in feedback
form. Let us see how the value function can be computed. The optimization problem
defined above satisfies the principle of optimality, which says essentially that the
tail of an optimal trajectory is still optimal. We state the principle formally in the
following theorem:

Theorem 2.6 (Principle of optimality, [20]). Let u∗ = {u∗0, . . . , u∗N−1} ∈ UN−n be an
optimal control sequence, which together with x0 determines the corresponding optimal
trajectory {x∗1, . . . , x∗N} via the system equation (2.12). Consider the subproblem
whereby we start at x∗n at time n and wish to minimize the cost functional Jn,x∗n
in (2.25) from time n to time N , over {un, . . . , uN−1}. Then the truncated optimal
control sequence u∗n, . . . , u∗N−1 is optimal for this subproblem. In mathematical terms,
the value function V satisfies the following equation

V (0, x0) = min
u0,...,uk−1

{
n−1∑
k=0

γk`(xk, uk) + γnV (n, xn)
}
, (2.28)

for every x0 ∈ X and n = 1, . . . , N − 1.

Proof. We prove equation (2.28) for arbitrary x0 ∈ X and n = 1, . . . , N−1. Let u∗ =
{u∗0, . . . , u∗N−1} be an optimal control sequence and {x∗0, . . . , x∗N} the corresponding
optimal trajectory, where we defined x∗0 := x0. From the optimality of u∗, it holds

J0,x0 [u∗] = min
u∈UN

J0,x0 [u] = V (0, x0). (2.29)
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Substituting the definition (2.25) of J0,x0 [u∗] in (2.29), we get the formula

V (0, x0) =
N−1∑
k=0

γk`(x∗k, u∗k) + γNh(x∗N ). (2.30)

Now, since the control subsequence u∗|n:N−1 := {u∗n, . . . , u∗N−1} ∈ UN−n is an
admissible strategy starting from x∗n at time n and thus competes for the minimization
in the definition of the value function

V (n, x∗n) = min
un,...,uN−1

`(x∗n, un) +
N−1∑
k=n+1

γk−n`(xk, uk) + γN−nh(xN )

 , (2.31)

we can write, from (2.30),

V (0, x0) =
n−1∑
k=0

γk`(x∗k, u∗k) +
N−1∑
k=n

γk`(x∗k, u∗k) + γNh(x∗N )

=
n−1∑
k=0

γk`(x∗k, u∗k) + Jn,x∗n

[
u∗|n:N−1

]

≥
n−1∑
k=0

γk`(x∗k, u∗k) + γnV (n, x∗n)

≥ min
u0,...,uk−1

{
n−1∑
k=0

γk`(xk, uk) + γnV (n, xn)
}
.

(2.32)

This gives the first inequality of (2.28).
To prove the inverse inequality (the one with “≤”), we assume that the opposite

statement, that is

V (0, x0) > min
u0,...,uk−1

{
n−1∑
k=0

γk`(xk, uk) + γnV (n, xn)
}
, (2.33)

is true, and derive a contradiction. Let {ũ0, . . . , ũn−1} be the minimizing control
subsequence in the right-hand side of (2.33) and {x̃0, . . . , x̃n} be the corresponding
trajectory up to time n (with x̃0 := x0), so that

n−1∑
k=0

γk`(x̃k, ũk) + γnV (n, x̃n) = min
u0,...,uk−1

{
n−1∑
k=0

γk`(xk, uk) + γnV (n, xn)
}

(2.34)

holds true. Besides, let {ũn, . . . , ũN−1} be the optimal control sequence in the time
interval [n,N ], starting from x̃n, and let {x̃n+1, . . . , x̃N} be the optimal trajectory.
This means that

V (n, x̃n) =
N−1∑
k=n

`(x̃k, ũk) + h(x̃N ). (2.35)



2.2 Dynamic Programming 17

Then, from (2.33), (2.34) and (2.35) we get

V (0, x0) >
n−1∑
k=0

γk`(x̃k, ũk) + γnV (n, x̃n)

=
n−1∑
k=0

γk`(x̃k, ũk) +
N−1∑
k=n

γk`(x̃k, ũk) + h(x̃N )

=
N−1∑
k=0

γk`(x̃k, ũk) + h(x̃N ) = J0,x0 [ũ],

(2.36)

and this creates a contradiction, since the control sequence ũ := {ũ0, . . . , ũN−1}
obtained concatenating the two subsequences would have a lower cost than the
optimal one, which is impossible by definition of optimal control sequence.

In conclusion, the formula (2.28) is verified.

Applying the principle of optimality in the interval [k, k + 1], it follows that
the value function V solves a functional equation, called the Bellman equation or
dynamic programming equation. A proof of the following theorem can be found in
[21].

Theorem 2.7. The value function V is the unique solution of the Bellman equation V (k, xk) = min
uk∈U

{`(xk, uk) + γV (k + 1, f(xk, uk))} , ∀ k = 0, . . . , N − 1

V (N, xN ) = h(xN )
(2.37)

The DP algorithm

We call DP algorithms those methods that use the principle of optimality and the
resulting Bellman equation to solve optimal control problems. When the state space
X is finite (and relatively small), the Bellman equation can be solved exactly and
the value function can be computed for each x ∈ X and for each n = 0, . . . , N . In
this case, we speak of exact dynamic programming. In many practical situations,
however, the state space is continuous or the number of possible states is very large.
For this reason, some approximate methods have been developed to work for general
systems.

In the finite state space setting, the DP algorithm for the finite-horizon problem
(2.24)-(2.25) sets the value function at time N equal to the final cost in each state
xN ∈ X; then proceeds backward in time using the Bellman equation (2.37). Notice
that the value function must be computed for each possible state xk ∈ X at time
k, before proceeding with the previous time step k − 1. This is why the finiteness
hypothesis is crucial in exact dynamic programming.

Once the value functions have been computed for all times and states, we can
compute an optimal control sequence {u∗0, . . . , u∗N−1} and the corresponding optimal
trajectory {x∗1, . . . , x∗N} starting from an initial state x0. For each time step tk, the
optimal control is chosen by minimizing the right-hand side in (2.37):

u∗k ∈ arg min
uk∈U

{`(x∗k, uk) + γV (k + 1, f(x∗k, uk))} . (2.38)
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If the values uk ∈ U where the minimum is attained are more than one, u∗k can take
any of these values. Hence, there may be more than one optimal control sequence.

Notice that the computation of the value function proceeds backward in time,
while the second part of the algorithm starts from time 0 and proceeds forward in
time. The whole method is summarized in Algorithm 1.

Algorithm 1 DP algorithm for the finite-horizon problem
Require: model (2.24)-(2.25), initial point x0 ∈ X

Compute the value function solving the iterative Bellman equation (2.37):
1: Initialize V (N, xN )← h(xN ) for each xN ∈ X
2: for k from N-1 to 0 do
3: for all xk ∈ X do
4: V (k, xk)← minuk∈U {`(xk, uk) + γV (k + 1, f(xk, uk))}
5: end
6: end

Construct the optimal control and trajectory from x0:
7: for k from 0 to N-1 do
8: u∗k ← arg minuk∈U {`(x

∗
k, uk) + γV (k + 1, f(x∗k, uk))}

9: x∗k+1 = f(x∗k, u∗k)
10: end

2.2.2 Dynamic programming in discrete time: infinite horizon

In the infinite-horizon problem (cf. Section 2.1.3) the system evolves for infinite
time. The state dynamics is{

xk+1 = f(xk, uk) k ≥ 0
x0 given ,

(2.39)

and the cost functional for an infinite control sequence u = {uk}k≥0 is

Jx0 [u] =
∞∑
k=0

γk `(xk, uk), (2.40)

with 0 < γ < 1. The big difference with the previous case is that the solution for
the infinite-horizon problem is time-independent: the optimal strategy starting from
x0 at time t0 is the same as the one starting from x0 at time t1. For this reason, we
can look for a stationary policy µ : X → U . The corresponding feedback control will
be uk = µ(xk). We can thus write the cost (2.40) as a function of µ:

Jx0 [µ] =
∞∑
k=0

γk `(xk, µ(xk)). (2.41)

Let Π be the set of all stationary policies, i.e. the set of all functions µ : X → U .
We can formulate the optimal control problem as a minimization task on Π.

We define the value function at x0 ∈ X as the minimum cost starting from x0,
over all possible policies µ ∈ Π:

V (x0) = min
µ∈Π

Jx0 [µ]. (2.42)
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Notice that the value function in (2.42) depends only on the state and not on the
time index, as it was in the finite-horizon case.

The principle of optimality and the Bellman equation

Also in this case the principle of optimality applies and one can derive a Bellman
equation (2.44), which is satisfied by the value function V . Unfortunately, the
Bellman equation (2.44) has multiple solutions, but we can still characterize V as
the unique bounded solution of the equation. We summarize the results for the
infinite-horizon case in the following theorem.

Theorem 2.8 ([21, vol. II]). For each time index n ≥ 1 and for each initial state
x0 ∈ X, the following principle of optimality holds:

V (x0) = min
u0,...,un−1

{
n−1∑
k=0

γk`(xk, uk) + γnV (xn)
}
. (2.43)

Furthermore, if the running cost ` is bounded, the value function V defined in (2.42)
is the unique bounded solution of the Bellman equation

V (x) = min
u∈U
{`(x, u) + γV (f(x, u))} ∀x ∈ X. (2.44)

From Theorem 2.8 we can build the two main DP algorithms for the infinite-
horizon problem: value iteration and policy iteration.

Value iteration

The value iteration algorithm [21, vol. II] is essentially the adaptation of the DP
Algorithm 1 to the infinite-horizon case. It computes an approximate solution of
the Bellman equation 2.44 through a fixed-point method (see Algorithm 2). The
algorithm generates a sequence V k of successive approximations of the value function
V . Under rather general hypotheses (e.g. if the running cost ` is bounded), the
operator on the right-hand side of (2.44), known as the Bellman operator, is a
contraction and thus the sequence converges to the true value function [21, vol. II].
The speed of convergence depends on the coefficient γ.

Once the value function has been approximated, an optimal policy can be
constructed by minimizing the Bellman operator:

µ∗(x) = arg min
u

{`(x, u) + γV (f(x, u))} ∀x ∈ X. (2.45)

As in the finite-horizon problem, when there is more than one minimizer, µ∗(x) can
take any of these values. As a result, there may be several optimal policies.

Policy iteration

The policy iteration algorithm was introduced by Howard in 1960 [68]. The idea is
to build a sequence of policies µk ∈ Π, each with reduced cost over the preceding
one. The sequence is proven to converge to an optimal policy µ∗. The algorithm is
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Algorithm 2 Value iteration for the infinite-horizon problem
Require: model (2.39)-(2.40), initial guess V 0, tolerance ε

Approximate the value function solving (2.44):
1: while ||V k − V k−1|| ≥ ε do
2: for all x ∈ X do
3: V k+1(x)← minu∈U

{
`(x, u) + γV k(f(x, u))

}
4: end
5: k ← k + 1
6: end

Construct an optimal policy:
7: for all x ∈ X do
8: µ∗(x)← arg minu∈U

{
`(x, u) + γV k(f(x, u))

}
9: end

based on two building blocks: policy evaluation and policy improvement. These two
steps are alternated, until convergence is reached.

In the policy evaluation algorithm, we freeze a policy µ and compute the cost of
the policy Jx0 [µ] defined in (2.41) starting from all possible x0 ∈ X. The cost of the
policy is sometimes called the value of the policy µ (cf. Remark 2.5) and is denoted
by Vµ(x) := Jx[µ]. Since we have set a policy, the minimum operator in the Bellman
equation (2.44) disappears, so the value Vµ satisfies a linear version of (2.44)

Vµ(x) = `(x, µ(x)) + γVµ(f(x, µ(x))), ∀x ∈ X, (2.46)

known as the Bellman equation for the value Vµ [136]. In the finite state space case,
equation (2.46) is a linear system and can be solved either with direct or iterative
methods. The algorithm known as policy evaluation uses an iterative method and
approximates Vµ through a sequence of functions V k

µ . The resulting method, outlined
in Algorithm 3, turns out to be similar to value iteration (Algorithm 2), but without
the minimization procedure.

Algorithm 3 Policy evaluation for the infinite-horizon problem
Require: model (2.39)-(2.40), policy µ, initial guess V 0

µ , tolerance ε
1: while ||V k

µ − V k−1
µ || ≥ ε do

2: for all x ∈ X do
3: V k+1

µ (x)← `(x, µ(x)) + γV k
µ (f(x, µ(x)))

4: end
5: k ← k + 1
6: end

The policy improvement step is based on next Theorem 2.9. In particular, one
applies formula (2.47) to obtain a better policy than the current one. We refer to
[21, vol. II] for a proof of the theorem.

Theorem 2.9 (Policy improvement theorem). Let µ ∈ Π be a stationary policy and



2.2 Dynamic Programming 21

Vµ its value. We define the improved policy µ′ as

µ′(x) = arg min
u∈U

{`(x, µ(x)) + γVµ(f(x, µ(x)))} , ∀x ∈ X. (2.47)

Then, the policy µ′ is an equal or better policy than µ, that is

Vµ′(x) ≤ Vµ(x), ∀x ∈ X. (2.48)

Furthermore, the value of the policies Vµ and Vµ′ are equal if and only if the two
policies are both optimal, and

Vµ(x) ≡ Vµ′(x) ≡ V (x), ∀x ∈ X. (2.49)

The policy iteration algorithm starts with an arbitrary policy µ0, computes Vµ0

using policy evaluation and then applies policy improvement, which yields a better
policy µ1 (see Theorem 2.9). The evaluation and improvement steps are repeated
alternately, generating a sequence of policies. The following explanatory scheme is
taken from Sutton and Barto’s book [136]:

µ0
E−→ Vµ0

I−→ µ1
E−→ Vµ1

I−→ µ2
E−→ · · · I−→ µ∗

E−→ v∗

Theorem 2.9 guarantees that each policy is an improvement of the previous one.
Furthermore, it gives a stopping criterion: when the values of two subsequent policies
Vµk and Vµk+1 are equal, it means that the value function V has been reached, and
the last policy found is optimal. The overall policy iteration algorithm is described
in Algorithm 4. In Algorithm 4, we denoted by V k ≡ Vµk the (approximated) value
of policy µk. In the policy evaluation step, we denoted by {V k,m}m≥0 the sequence
which is converging to V k. Notice that, in the policy evaluation step, the value
of the new policy is initialized to the previous one. This speeds up convergence,
because the values of two successive policies are usually close to each other.

2.2.3 Dynamic programming for finite MDPs

Optimal control problems for MDPs can be solved by dynamic programming, when
a complete description of the system behavior is available. In particular, classical
dynamic programming methods require to know the dynamics f and the running
cost ` or, equivalently, the transition probabilities of the Markov process and the
distribution of costs or rewards.

It must be said that MDPs are also very popular in Reinforcement Learning
(RL), where they constitute one of the most used frameworks. The reason is that
they provide a mathematical framework able to capture all features of a sequential
decision-making problem, while remaining simple. As we will explain better in
Section 2.4, a large portion of RL algorithms is devoted to “optimal control of
incompletely-known Markov decision processes” (cf. [136, p. 2]), that is, RL methods
do not necessarily require knowledge of the system.

In this section, we will consider finite MDPs, where both the state space X and
the control space U have a finite number of elements. For this class of problems, we
will define the notions of value function, state the principle of optimality and present
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Algorithm 4 Policy iteration for the infinite-horizon problem
Require: model (2.39)-(2.40), initial guess µ0, initial guess V 0,0, tolerance ε

1: while ||V k − V k−1|| ≥ ε do
Policy evaluation:

2: while ||V k,m − V k,m−1|| ≥ ε do
3: for all x ∈ X do
4: V k,m+1(x)← `(x, µk(x)) + γV k,m(f(x, µk(x)))
5: end
6: m← m+ 1
7: end
8: V k ← V k,m

Policy improvement:
9: for all x ∈ X do

10: µk+1(x)← arg minu∈U
{
`(x, u) + γV k(f(x, u))

}
11: end
12: V k+1,0 ← V k

13: k ← k + 1
14: end

the two main algorithms, which are again value iteration and policy iteration, as
in the deterministic case. For MDP with continuous state space or control space,
function approximators are used [22, 136].

We will consider only the infinite-horizon case, as it is time-independent and the
notations are simpler. A comprehensive treatment of the subject can be found in
Puterman’s monograph [117]. Other references for the subject are [21] and [136].

The Bellman equation for a finite MDP

Recall the stochastic dynamics of an MDP (cf. Section 2.1.4){
xk+1 = f(xk, uk, ωk) k ≥ 0
x0 ∈ X given .

(2.50)

We assume that the MDP is finite, which means that the state space X and the
control space U are both finite. Given a stationary policy µ : X → U , the cost
functional is defined as

Jx0 [µ] = E
[ ∞∑
k=0

γk `(xk, µ(xk), ωk)
]
, (2.51)

with 0 < γ < 1.
Given a policy µ ∈ Π, the value of the policy in x0 ∈ X is the cost of the policy

starting from x0,
Vµ(x0) := Jx0 [µ].

The value function or optimal value function of the MDP is defined as the optimal
cost over all possible policies,

V (x0) := min
µ∈Π

Jx0 [µ] = min
µ∈Π

Vµ(x0), x0 ∈ X. (2.52)
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A policy µ∗ is said optimal, if Vµ∗ ≡ V .
The following theorem guarantees that there exists at least one optimal policy

and gives the Bellman equation for a finite MDP. We omit the proof, which can be
found in [117].

Theorem 2.10. The following results hold for a finite MDP:

1. There exists at least one optimal policy µ∗. If there are more optimal policies,
all share the same value Vµ∗ ≡ V .

2. The value function V is the unique solution of the following Bellman equation,
which is independent of µ∗:

V (x) = min
u∈U

E [`(x, u, ω) + γV (f(x, u, ω))] (2.53)

The two techniques that we have illustrated in the deterministic case, value
iteration and policy iteration, can also be used to solve finite MDPs, by modifying the
formula of the Bellman equation. The adapted versions are reported in Algorithm 5
and Algorithm 6. Similarly, the DP algorithm for the finite-horizon, Algorithm 1,
may be readily tweaked and utilized for a finite-horizon MDP.

Algorithm 5 Value iteration for a finite MDP
Require: model (2.50)-(2.51), initial guess V 0, tolerance ε

Approximate the value function solving (2.53):
1: while ||V k − V k−1|| ≥ ε do
2: for all x ∈ X do
3: V k+1(x)← minu∈U E

[
`(x, u, ω) + γV k(f(x, u, ω))

]
4: end
5: k ← k + 1
6: end

Construct an optimal policy:
7: for all x ∈ X do
8: µ∗(x)← arg minu∈U E

[
`(x, u, ω) + V k(f(x, u, ω))

]
9: end

2.2.4 Dynamic programming in continuous time and the Hamilton-
Jacobi-Bellman equation

We conclude the presentation of dynamic programming dealing with the continuous-
time problem. To begin with, we will state the optimality principle and write the
resulting Hamilton-Jacobi-Bellman (HJB) equation, a first-order, nonlinear partial
differential equation, which is satisfied by the value function. Afterwards, we will
recall the definition of viscosity solution and give the characterization of the value
function as the unique viscosity solution of the HJB equation. Finally, we will
present two numerical methods for continuous-time optimal control problems, based
on dynamic programming. In particular, the first method will use a semi-lagrangian
scheme to solve the Bellman equation, and can be seen as a value iteration algorithm.
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Algorithm 6 Policy iteration for a finite MDP
Require: model (2.50)-(2.51), initial guess µ0, initial guess V 0,0, tolerance ε

1: while ||V k − V k−1|| ≥ ε do
Policy evaluation:

2: while ||V k,m − V k,m−1|| ≥ ε do
3: for all x ∈ X do
4: V k,m+1(x)← E

[
`(x, µk(x), ω) + γV k,m(f(x, µk(x), ω))

]
5: end
6: m← m+ 1
7: end
8: V k ← V k,m

Policy improvement:
9: for all x ∈ X do

10: µk+1(x)← arg minu∈U E
[
`(x, u, ω) + γV k(f(x, u, ω))

]
11: end
12: V k+1,0 ← V k

13: k ← k + 1
14: end

The second one will be an adaptation of the policy iteration algorithm in continuous
time.

We will limit ourselves again to the infinite-horizon case, but similar steps can
be made for the finite-horizon problem. For a comprehensive discussion of the
finite-horizon case, we refer to the books [11, 50, 149].

The problem setting has been described in Section 2.1.1. Recall the state equation{
ẋ(t) = f(x(t), u(t)), t ≥ 0
x(0) = x0.

(2.54)

and the cost functional corresponding to the infinite-horizon problem,

Jx0 [u] :=
∫ ∞

0
e−λt`(x(t), u(t))dt , (2.55)

for u ∈ U = {u : [0,∞)→ U, measurable}.
For each x0 ∈ Rn, we define the value function as the infimum of the cost

functional
V (x0) := inf

u∈U
Jx0 [u]. (2.56)

If a minimizer u∗ exists such that

Jx0 [u∗] ≤ Jx0 [u] ∀u ∈ U , (2.57)

we say that u∗ is an optimal control associated to the optimal control problem
(2.54)-(2.55).
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The Hamilton-Jacobi-Bellman equation

Bellman’s principle of optimality (see Theorem 2.6) also applies in continuous time,
in the form of the so-called Dynamic Programming Principle (DPP):

Theorem 2.11 (Dynamic Programming Principle [11, Prop. III.2.5]). Assume
hypotheses (A1) − (A4). Then for all x0 ∈ Rn and τ > 0, the value function V
satisfies the following equation:

V (x0) = inf
u∈U

{∫ τ

0
e−λt`(x(t), u(t))dt+ e−λτV (x(τ))

}
, (2.58)

where x(t) is the trajectory starting from x0 and corresponding to an arbitrary control
u ∈ U .

From the DPP, it is possible to derive the Bellman equation, which in the
continuous-time case is known as the Hamilton-Jacobi-Bellman (HJB) equation. We
define the Hamiltonian H : Rn × Rn → R as

H(x, p) := sup
u∈U
{−f(x, u) · p− `(x, u)}. (2.59)

The HJB equation for the infinite-horizon problem is

λV +H(x,∇V ) = 0 in Rn. (2.60)

Equation (2.60) is a first-order, nonlinear partial differential equation; as such, it
does not always admit regular solutions, and therefore weak solutions are usually
sought. Of particular interest is the so-called viscosity solution, according to the
definition given by Crandall and Lions in 1983 [34]. Before stating the main result
of the section, we recall the definition of a continuous viscosity solution for a general
first-order Hamilton-Jacobi equation

F (x, u(x),∇u(x)) = 0 x ∈ Ω, (2.61)

where Ω is an open domain of Rn and F : Ω×R×Rn → R is a continuous function.

Definition 2.12 (Viscosity solution [11]). A function u ∈ C(Ω) is a viscosity
subsolution of (2.61) if, for any ϕ ∈ C1(Ω),

F (x0, u(x0),∇ϕ(x0)) ≤ 0

at any local maximum point x0 ∈ Ω of u − ϕ. Similarly, u ∈ C(Ω) is a viscosity
supersolution of (2.61) if, for any ϕ ∈ C1(Ω),

F (x1, u(x1),∇ϕ(x1)) ≥ 0

at any local minimum point x1 ∈ Ω of u − ϕ. Finally, u is a viscosity solution of
(2.61) if it is simultaneously a viscosity sub- and supersolution.

The following result characterizes the value function among the set BUC(Rn) of
bounded and uniformly continuous functions.
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Theorem 2.13 ([11]). Assume (A1)−(A4). Then the value function V is the unique
viscosiy solution of (2.60) in BUC(Rn).

Remark 2.14 (Evolutive HJB equation for the finite-horizon problem). For complete-
ness, we also provide the finite-horizon version of the HJB equation. In this case,
the value function is time-dependent and is defined as

V (t0, x0) := inf
u∈Ut0

Jt0,x0 [u], (2.62)

where Jt0,x0 and Ut0 have been defined respectively in (2.2) and (2.3).
The value function (2.62) satisfies the evolutive HJB equation{

Vt(t, x) +H(x,∇V ) = 0, t ∈ [0, T ], x ∈ Rn,
V (T, x) = h(x), x ∈ Rn.

(2.63)

For more details, we refer to [11, 50].

Remark 2.15 (DP for the LQ problem). For the LQ problem (see Section 2.1.2),
the Riccati equation (2.11) can be derived from the HJB equation (2.63) and the
two equations are indeed equivalent. The LQR solution (2.10), therefore, is nothing
other than the one provided by dynamic programming, when applied to the LQ
problem.

Furthermore, one can express the value function and its gradient via the Riccati
matrix P (t) (see, e.g. [81], Theorem 3.4)

V (t, x) = xTP (t)x and ∇xV (t, x) = 2P (t)x, (2.64)

for all t ∈ [t0, T ] and x ∈ Rn.

We will now present two numerical methods for solving the continuous-time
optimal control problem.

Value iteration via a semi-Lagrangian scheme

Taking a cue from what happens in the discrete-time case with the value iteration
algorithm (see Algorithm 2), we would like to solve the HJB equation (2.60) with an
iterative method. A big difference with the discrete-time case is that here the HJB
equation can have infinitely many (weak) solutions. As a result, a valid numerical
method is required to converge to the unique viscosity solution of the equation.

Several approximation schemes on a fixed grid have been proposed for solving
(2.60). Here we will present a value iteration type algorithm based on a semi-
Lagrangian approximation, proposed by Falcone in 1987 [44, 45]. For an extensive
discussion of semi-Lagrangian schemes, we recommend the monograph by Falcone
and Ferretti [46]. The basic idea is to start the construction of the algorithm by a
semi-discretization of the problem, to obtain a discrete-time optimal control problem.
Fix a timestep ∆t > 0. The discrete-time dynamics is{

xk+1 = xk + ∆t f(xk, uk) k ≥ 0
x0 given ,

(2.65)
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and the cost functional is approximated by

Jhx0 [u] =
∞∑
k=0

(1− λ∆t)k ∆t `(xk, uk) ≈
∫ ∞

0
`(x(t), u(t)) e−λtdt. (2.66)

The time step 0 < ∆t < 1/λ is an arbitrary small number and γ has been chosen
equal to 1− λ∆t, which is the first-order Taylor expansion for e−λ∆t. The Bellman
equation (2.44) for the discretized problem (2.65)-(2.66) reads

v∆t(x) = inf
u∈U
{∆t `(x, a) + (1− λ∆t)v∆t(x+ ∆t f(x, a))} , x ∈ Rn. (2.67)

The value function v∆t of the discretized problem has the property to converge,
for ∆t→ 0+, to the value function V of the continuous problem.

Theorem 2.16 ([11, Theorem VI.1.1]). Let the control space U ⊂ Rm be a compact
set. Then for every compact set K ⊂ Rn,

sup
x∈K
|v∆t(x)− V (x)| → 0 as ∆t→ 0+.

The second step in building the algorithm consists in a space discretization with
a spatial step ∆x > 0, to obtain a finite-dimensional problem that can be finally
solved by a computer. More precisely, in the simpler case we assume that all the
discrete controlled trajectories stay in a bounded domain Ω ⊂ Rn and construct
a regular triangulation G = {xi : i ∈ J } of Ω with diameter ∆x. The numerical
method consists in a fixed point method that approximates the solution of (2.67) on
the grid nodes xi, i ∈ J . The resulting method (see Algorithm 7) is a version of
value iteration in continuous time. Here V k

i represents the values of the numerical
value function at a node xi at the k-th iteration. The point yi := xi + ∆t f(xi, u)
may not be a grid node, so we use an interpolation operator I acting on the values
of the grid to reconstruct the value of V k at yi. The minimization is performed over
a discretization Ũ of the control space U .

When the value function has been approximated at the grid nodes, we can
reconstruct an optimal feedback control and the resulting optimal trajectory starting
from an initial state x0 ∈ Ω, up to a finite time step N ∈ N. The optimal feedback
control can be approximated at each point of the domain Ω and not only on the
grid nodes; in fact, we can use again the interpolation operator I. The procedure is
described in the second part of Algorithm 7.

Policy iteration in continuous time

The other algorithm we present here is a policy iteration in continuous time [30].
The original policy iteration algorithm was proposed by Howard [68] and has been
discussed in 2.2.2 (see Algorithm 4). In order to apply it to the continuous-time
problem, we first discretize in time to obtain the discrete-time Bellman equation
(2.67). Then, we solve the discretized problem using a variant of Algorithm 4 on a
discrete grid G = {xi : i ∈ J }.

In the policy evaluation step, we fix a policy µk. As a result, no search for the
minimum in the control space is needed in equation (2.67). The equation becomes
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Algorithm 7 Value iteration with a SL scheme for the continuous-time problem
Require: model (2.54)-(2.55), mesh G, ∆t, initial guess V 0, tolerance ε

Approximate the value function solving (2.67):
1: while ||V k − V k−1|| ≥ ε do
2: for all xi ∈ G do
3: V k+1

i ← min
u∈Ũ

{
∆t `(xi, u) + (1− λ∆t) I[V k](xi + ∆t f(xi, u))

}
4: end
5: k ← k + 1
6: end
7: V ← V k

Construct the optimal control and trajectory from x0:
8: for k from 0 to N-1 do
9: u∗k ← arg min

uk∈Ũ
{∆t `(x∗k, uk) + (1− λ∆t) I[V ](x∗k + ∆t f(x∗k, uk))}

10: x∗k+1 = x∗k + ∆t f(x∗k, u∗k)
11: end

linear and can be solved as an advection equation. As in the value iteration algorithm,
we use an interpolation operator I to reconstruct the value of V k outside the grid
nodes. In the policy improvement step, a new policy is computed, choosing for each
state the best control among a finite number of values Ũ .

The constructed sequence of value functions V k turns out to be monotone
decreasing at every node of the grid [3]. The convergence of the method is guaranteed
locally. The algorithm is outlined in Algorithm 8.

Finally, let us observe that the DP approach is very flexible and can be applied
to other types of problems. For instance, a similar characterization of the value
function can be obtained for stochastic optimal control problems, in which case the
HJB equation will be of the second order [51]. Another example is that of differential
games [69, 53]. The corresponding equation, known as the Hamilton-Jacobi-Isaacs
equation, is still of first order, but the convexity with respect to ∇V in H is lost [69].

2.3 Optimal control of uncertain systems
Classical optimal control methods, such as those presented in the previous section,
assume that the system behavior is described by a well known function f , according
to the ODE system

ẋ(t) = f(x(t), u(t)). (2.68)

Unfortunately, there are several applications and practical situations where a precise
mathematical description of the system is not available or there is only limited
information about it. Or, the system is subject to random disturbances, which
make its behavior stochastic. More generally, we can think that the dynamics of the
system is described by the following expression

ẋ(t) = f(x(t), u(t)) + ε(t), (2.69)

where ε(t) is a random variable that represents the uncertainty of the system.
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Algorithm 8 Policy iteration for the continuous-time problem
Require: model (2.54)-(2.55), mesh G, ∆t, initial guesses µ0 and V 0,0, tolerance ε

1: while ||V k − V k−1|| ≥ ε do
Policy evaluation:

2: while ||V k,m − V k,m−1|| ≥ ε do
3: for all xi ∈ G do
4: V k,m+1

i ← ∆t `(xi, µk(xi)) + (1− λ∆t) I[V k,m](xi + ∆t f(xi, µk(xi)))
5: end
6: m← m+ 1
7: end
8: V k ← V k,m

Policy improvement:
9: for all xi ∈ G do

10: µk+1(xi)← arg min
u∈Ũ

{
∆t `(xi, u) + (1− λ∆t) I[V k](xi + ∆t f(xi, u))

}
11: end
12: V k+1,0 ← V k

13: k ← k + 1
14: end

In the context of uncertainty quantification, we speak of two types of uncertainty
[39]:

• Aleatory uncertainty, also known as statistical uncertainty, is essentially ran-
domness. It is generated by aleatory events, where the values of certain
variables differ each time we run the same experiment. This is the case of ran-
dom phenomena described by stochastic dynamical systems, such as Brownian
Motion. It also includes measurement noise on data. This kind of uncertainty
is generally inherent in the system and cannot be eliminated.

• Epistemic uncertainty is also called systematic uncertainty and is essentially
ignorance. It is due to a lack of knowledge of the considered system. It arises
when the model neglects certain effects of the phenomenon or when there are
few data available. It can be reduced by new experiments and new observations.
The concept of epistemic uncertainty is close to the subjective view of Bayesian
statistics, where the concept of probability is interpreted as a rational measure
of the belief that the agent has on the system [111].

Over time, various techniques have been proposed to deal with model uncertainty.
In this section, we will report some of the most relevant ones. Let us mention that
each of the methods presented below is more suited to one or the other type of
uncertainty, but we avoid further details and from now on we will consider a generic
system uncertainty.

2.3.1 System identification

A research area related to uncertain systems and often linked to control is that of
system identification. Given a dynamical system, system identification [6, 90, 74]
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studies how to approximate the system behavior with a mathematical model like
in (2.68) from observed time series and prior knowledge of the system. We stress
that a mathematical model is always an approximation of the real system, which is
usually very complex and includes disturbances. Therefore, a differential equation
as in (2.68) describes the physical phenomenon only in an approximate way, and
can be considered correct only up to a certain level of accuracy. A representation
like the one in equation (2.69) is more realistic.

The system identification procedure

System identification is a complex procedure which includes several steps: experiment
design, modeling, parameter estimation and model validation.

• The experiment design is a fundamental step. It consists in generating data
through direct interactions with the system. An optimal design of experiments
is necessary for efficiently generating informative data able to capture the
system behavior.

• In the modeling step, we use the observed data and prior knowledge of the
system to build a model structure, a family of models which may still contain
some unknown coefficients, the model parameters. We say that the model
structure is parametric when the number of parameters is finite; otherwise, the
model structure will be called non-parametric.

• The model structure is then fitted in the parameter estimation step. In other
words, we use the observed data to find some numerical values for the model
parameters. It usually includes an optimization problem in the parameter
space.

• Finally, in the model validation step, the model is tested to check if it truly
reproduces the system behavior.

We would like to stress that the procedure is strongly influenced by the ultimate
goal. System identification and control are often carried out together (see e.g.
[79, 140, 47] and Section 2.3.3 on Adaptive Control). However, control is only one
of the many applications of system identification. For instance, such a model can
be used to obtain insight in physical phenomena and investigate some properties of
the system like stability. Other primary applications are simulation and forecasting.
In machine learning, the concepts of supervised learning, model learning, function
approximation and regression are close to system identification. Furthermore, much
theory of system identification has been revived by machine learning, identifying old
models like NARX (nonlinear autoregressive exogenous) with new ones like neural
networks [91].

Parametric and non-parametric models

Among the possible model structures, i.e. families of models, we distinguish between
parametric and non-parametric models. Parametric approaches specify a set of
models completely characterized by a finite number of parameters. Among them,
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we recall the vast class of transfer function models [70, 2], which include the finite
impulse response (FIR) model, the output-error model, the autoregressive exogenous
(ARX) model, the autoregressive moving-average exogenous (ARMAX) model and
the Box-Jenkins (BJ) structure. In machine learning, popular choices are linear
models, e.g. linear and nonlinear regression [42], as well as deep neural networks
themselves [84, 59]. During the parameter estimation step, the parameters are chosen
as to minimize a certain error or loss function, for instance the least-squares error.
Other classical parameter estimation methods are the Prediction Error Methods
(PEM) [90].

On the other hand, in non-parametric methods the family of models is rather
general, for instance the set of functions Cn whose first n derivatives are continuous.
Among this broad class of functions, a model is built based on the observed data.
The complexity of the model and, in some sense, the number of “parameters”,
grow with increasing observations. For more details on classical non-parametric
methods, we refer to [90, Chap. 6]. Popular models in machine learning are Radial
Basis Functions (RBF, although there is a parametric variant) [28], Support Vector
Regression Machines (SVRM) [43] and decision trees [27]. Some probabilistic non-
parametric models based on the Bayesian approach managed to quantify the model
uncertainty. These include Bayesian linear regression [26, 123] and Gaussian process
regression [119]. Recently, a probabilistic approach to neural networks and deep
learning has been proposed through the so-called Bayesian neural networks (BNN)
[100, 55]. They have proved to be very efficient, especially with the joint use of
network ensembles [64, 10].

2.3.2 Bayesian Linear Regression

Before going on to describe optimal control methods for uncertain systems, in this
section we present Bayesian linear regression (BLR), a probabilistic method for
solving the classical linear regression (LR) problem, which is very popular in machine
learning. BLR uses Bayesian formulas to update the parameters estimate at each
iteration. For more details on the method, we refer to the many available references
[26, 102, 57, 123].

In a regression problem, we consider two variables x ∈ Rn and y ∈ R, that we
know, suspect or assume to be somehow related by a functional dependency, that is

y = f(x) + ε, (2.70)

where ε is a random noise. The available data are observations of the variables,
gathered as couples D = {(xi, yi)}i=1,...,N .

Linear regression

The linear regression model estimate the relation between x and y using linear
functions

fθ(x) = θTx,

depending on a parameter vector θ ∈ Rn. We look for a parameter θ ∈ Rn that “best
fits” the data D, such that

yi ≈ θTxi ∀ i = 1, . . . , N.



32 2. From optimal control to Reinforcement Learning

For instance, when x is a 1-dimensional variable, this corresponds to estimate the
points (xi, yi) through a line on the R2 plane.

Depending on what is meant by the expression “best fits”, the parameter θ can
be chosen following different criteria. To give examples, the least squares method
[83], Lasso regression [138] and Ridge regression [66] are all different ways to solve
the linear regression problems. We will limit ourselves to recalling the least squares
method, which is currently the most used and the oldest among them. In fact, its
invention dates back to the early 1800s and is credited to Legendre [86] and Gauss
[132].

The (ordinary) least squares (LS) approach chooses the parameter vector θ by
minimizing the sum of squared residuals

E(θ) =
N∑
i=1

∣∣∣yi − θTxi∣∣∣2 . (2.71)

The minimization is equivalent to solving the (rectangular) linear system

Y = XT θ (2.72)

in the least squares sense, where we collected all the observed inputs in a matrix
X ∈ Rn×N and all the observed outputs in a vector Y ∈ RN :

X =

 x1 x2 · · · xN

 Y =


y1

y2
...
yN

 . (2.73)

The LS solution of (2.72) is given by

θLS = (XXT )−1XY. (2.74)

We point out that the LS approach is rather general and can be applied to any
parametric model y ≈ fθ(x) [83].

Remark 2.17. There are some immediate generalizations of the model. For instance,
one can add a constant intercept to the model simply adding a component to the
variable x and set it constantly equal to 1 for all observations. Moreover, the model
must be linear in the parameters, but can be nonlinear in the single components of x.
For example, if n = 2 and we write xi = (xi1, xi2)T , we could consider x2

i1 and x2
i2 as

further variables, generating an augmented input variable x̃i = (1, xi1, xi2, x2
i1, x

2
i2)T .

In this case, the model would still be linear with respect to the 5 parameters

fθ(x̃i) = θ0 + θ1xi1 + θ2xi2 + θ3x
2
i1 + θ4x

2
i2, (2.75)

and we could apply the same formula (2.74) as before.
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Bayesian linear regression

Bayesian linear regression (BLR) uses a probabilistic model to explain the relation
in (2.70), also taking into account the uncertainty and randomness due to noise.
The tool it uses to do this is Bayesian inference.

The available data are again observations D = {(xi, yi)}i=1,...,N . In BLR, we
assume that the deviation of the data from the linear model can be described by a
Gaussian noise εi ∼ N (0, σ2):

yi = θTxi + εi, (2.76)

where θ is an unknown parameter which must be determined. We will assume that
the value of σ is known, though more general formulations apply Bayesian inference
on σ as well. The noises εi are assumed to be independent and identically distributed,
for i = 1, . . . , N . Equation (2.76) corresponds to fix a conditional distribution of the
random variable y given the value of x and θ,

p(y|x, θ) ∼ N (θTx, σ2). (2.77)

This is what in Bayesian inference is called the likelihood function. If we assume that
the N observations are independent, the global likelihood function can be written as

p(Y |X, θ) =
N∏
i=1

p(yi|xi, θ) ∼ N (XT θ, σ2IN ), (2.78)

where X and Y have been defined in (2.73), and IN denotes the N -dimensional
identity matrix.

The available information on the parameter θ is included in the model through
the definition of a prior distribution, which we assume to be Gaussian with initial
mean m0 ∈ Rn and covariance matrix Σ0 ∈ Rn×n:

θ ∼ N (m0,Σ0). (2.79)

Bayesian formulas allow to compute the posterior distribution of the parameter
θ, which is again a Gaussian distribution [123, 26]

p(θ|Y,X) = p(θ)p(Y |X, θ)∫
Rn p(θ′)p(Y |X, θ′)dθ′

∼ N (m,Σ), (2.80)

where
Σ−1 = 1

σ2XX
T + Σ−1

0 and m = Σ
( 1
σ2XY + Σ−1

0 m0

)
. (2.81)

From the posterior distribution one can extract a point estimate of the parameter θ,
that is the posterior mean

θ̄BLR = Σ
( 1
σ2XY + Σ−1

0 m0

)
=
( 1
σ2XX

T + Σ−1
0

)−1 ( 1
σ2XY + Σ−1

0 m0

)
.

(2.82)
However, the advantage of BLR is that it provides a quantification of the uncertainty
of this estimate. Finally, we remark that the estimate θ̄BLR in (2.82) converges
to the LS solution θLS in (2.74), when the noise variance σ goes to 0. In an ideal
situation, where there were no noise in the data, BLR would give a result equivalent
to the LS method.
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2.3.3 Adaptive and dual control

In the following subsections, we will deal with optimal control methods for uncertain
systems. Adaptive control [7, 82] is the study of controllers which must adapt, or
adjust themselves, to handle unknown model uncertainties. In the typical setting, the
system dynamics depends on parameters that are initially unknown or time-varying.
The first adaptive control problems date back to the early 1950s, when they wanted
to design an autonomous aircraft. The dynamical behavior of an aircraft depends
on some parameters with strong variations that can occur during a flight. Similarly,
rockets undergo significant mass change because a large portion of their mass is
made up of fuel, which is ejected during flight to provide propulsive power. Another
example is given by robot manipulators, that must deal with large objects with
unknown inertial parameters.

The main goal is thus to keep the system performing consistently in the face
of uncertainty or unknown variation in its parameters. To achieve its purpose, an
adaptive controller integrates optimal control methods with parameter estimation
techniques. The plant’s or the controller’s parameters are updated in real-time
so that the control adapts to the changing system. Adaptive control methods are
usually divided into two classes: direct and indirect methods. In the former class,
the adjustment rules tell directly how the controller parameters should be updated.
Indirect methods, instead, use parameter estimation techniques on the plant and
then update the controller according to the new plant model. Hybrid methods are
somewhere between direct and indirect methods.

Remark 2.18 (Warning on the terms “direct” and “indirect”). In optimal control
a distinction is made between direct and indirect methods, but in that context we
refer to different notions. In fact, direct methods are those optimal control methods
in which the problem is fully discretized, thus becoming a nonlinear programming
problem; on the other hand, indirect methods consider the necessary conditions
provided by Pontryagin’s maximum principle and solve these equations using a
numerical method [118].

In the following, we will briefly discuss the main adaptive control methods.

MRAC: Model-Reference Adaptive Controllers

The Model-Reference Adaptive Controller (MRAC), also referred to as Model-
Reference Adaptive System (MRAS), was designed to solve a problem where a
reference model is available [7]. The model tells how the process output should
respond to the command signal and the goal is to track this reference trajectory as
well as possible. The performance of the controller is in fact measured in terms of the
reference trajectory. The MRAC method updates directly the controller parameters
and is thus considered a direct method.

If we denote by y the output of the controlled system and by ym the reference
output, the controller will try to minimize the model error e = y − ym. The MIT
rule, which takes its name from the institution where it was first developed in 1960,
the Massachusetts Institute of Technology (MIT), tells how to update the controller
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parameter θ to reduce the model error:

dθ

dt
= −γe∂e

∂θ
.

The quantity ∂e
∂θ is the sensitivity derivative of the error with respect to parameter θ

and γ is an adaptation rate. The MIT rule can be regarded as a gradient descent
or steepest descent algorithm to minimize the squared error e2, with step length γ
[101].

MIAC: Model Identification Adaptive Controllers

The Model Identification Adaptive Controller (MIAC), in some contexts known as
Self-Tuning Regulator (STR), is a type of indirect adaptive controller [7]. In fact, in
the MIAC the process parameters are estimated in real-time by linear regression
or other parameter estimation methods. Then the controller is designed using the
estimated model. When the model parameters are known and the state is fully
observed, one can use dynamic programming or other methods to obtain the optimal
controller, yet in MIAC only an estimate of the system parameters are available.

Many algorithms don’t consider the uncertainties of the estimates and use the
estimated parameters as if they were equal to the true parameters. This is called
the certainty equivalence (CE) principle [129, 9, 94]. CE adaptive control schemes
have been studied by many authors, achieving asymptotic convergence results [60].
However, it was soon realized that the CE principle does not always provide enough
information to properly estimate the parameters and the computed parameters
can converge to incorrect values with positive probability [14]. As a result, the
performance might be suboptimal.

Other algorithms take into account also the accuracy of the model predictions
to design the controller. These kinds of controllers are called adaptive cautious
controllers since they usually generate lower magnitude inputs [147].

Dual control

Dual control or adaptive dual control [48, 148, 49] is an important class of adaptive
algorithms, to the point that a common classification divides adaptive controllers
into dual controllers and non-dual controllers [148]. It was introduced by Feldbaum
in 1960 [48]. A drawback of the previous existing schemes, including MRAC and
CE approaches, was that they may not probe the system sufficiently to obtain a
good estimate of the parameters. Feldbaum affirmed that an optimal controller
should have dual goals. First, it should cautiously control the process as well as
possible. Second, it should excite the plant sufficiently for accelerating the parameter
estimation process. More excitation leads to better estimation, but also to worse
control performance in most systems. Hence, the need to find a compromise between
the two features. This conflict somehow anticipated what in Reinforcement Learning
is known as the exploration/exploitation trade-off (see Section 2.4).

In practice, Feldbaum [48] proposed dual controllers where the parameter uncer-
tainty was one of the system variables in an augmented state. The formal solution
to the optimal dual control problem can be obtained through the use of dynamic
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programming, but the equations can neither be solved analytically nor numerically,
due to the growing dimension of the underlying space, except with very simple
problems (see e.g. [131]). These difficulties in finding the optimal solution led to the
formulation of approximate dual controllers, which achieved suboptimal performance,
but at least maintained the main dual features. Currently, dual adaptive methods
are divided into optimal dual methods and suboptimal dual methods [147].

2.3.4 Robust control

Robust control [151, 2] is another control approach to deal with system uncertainty.
While adaptive controllers adjust themselves when new information is gained on
the system behavior, in robust control one assumes to have a priori estimates on
the model uncertainty. In particular, robust controllers are designed to achieve
good performance and stability across a wide range of models, to handle bounded
modeling errors. These errors may be due to the system dynamics being unknown or
to some random perturbations in the system. Naturally, the demand for robustness
penalizes performance.

The modern robust control theory began in the 1970s, although Horowitz had
previously worked in this direction, without using the word “robust” [67]. Many
ways to construct a robust controller have been proposed since then. One of the
most important techniques is H∞ control [150, 41, 13], which handles the worst-case
scenario among the possible models. The name H∞ stands for the Hardy space of all
complex-valued functions of a complex variable, which are analytic and bounded in
the open right-half complex plane. In H∞ methods, the control is chosen by solving
a complex optimization problem indeed in the Hardy space. For a comprehensive
discussion on H∞, we recommend the monograph by Zhou [151].

Among H∞ methods, we recall the so-called minimax approach [142, 130, 13],
which is based on dynamic game theory. The first player corresponds to the controller,
while the second player plays the role of a random perturbation. Not knowing the
opponent’s future moves, the minimax control considers all possible scenarios and
acts by assuming that the opponent will make his best move, which corresponds,
from the point of view of the first player, to the worst-case scenario. This formulation
has been widely studied both using a dynamic programming approach [130, 13] and
using the Pontryagin maximum principle approach [25, 145, 105].

2.3.5 Average cost control

Another problem that has been gaining increasing interest in recent years is the
average cost optimal control problem [122, 23, 98]. In this framework, the system
uncertainty is described by a probability distribution on the set of possible models.
The cost functional is defined as an average over all possible trajectories.

In designing a robust control (see Section 2.3.4) one aims for a good performance
whatever the model is and this comes at the expense of performance. Here, instead,
the goal is to perform well “on average”, giving less importance to the unlikely
scenarios. Using the same logic, Zuazua [153] studied the controllability of a system
in an average way instead of a simultaneous controllability. Bettiol and Khalil [23]
established some necessary conditions for the optimal control. Interestingly, this
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formulation is not far from the concept of cautious control [147].
Recently, Palladino and Murray [98, 99] used an average cost control framework

to describe some probabilistic Reinforcement Learning algorithms. In the wake of
their work, we provided some rigorous theory to the framework, strengthening the
connection between optimal control and Reinforcement Learning [109, 108].

We will describe the average cost problem in detail in Chapter 3 and some related
results for the linear-quadratic case in Chapter 4.

2.4 Reinforcement Learning

In the following, we will introduce Reinforcement Learning (Section 2.4.1) and
compare it with optimal control theory, stressing the main similarities and differences
(Section 2.4.2). Finally, in Section 2.4.3 we will describe a special class of probabilistic
model-based RL methods. In Chapter 3 and Chapter 4 we will provide a rigorous
mathematical framework able to describe this class of methods.

2.4.1 An introduction to Reinforcement Learning

Reinforcement Learning (RL) [136, 22] is an important branch of Machine Learning
aiming to provide satisfactory policies that an agent can easily implement in an
uncertain environment [136]. The agent acquires knowledge (learns) on the environ-
ment from its past experience, which is usually represented by a series of statistical
data, but can also learn while interacting with the system.

Markov Decision Processes (MDPs), which have already been introduced in
Section 2.1.4, are the ideal framework for RL algorithms, as demonstrated by the
fact that most RL methods are set in MDPs. The reason is that they are a simple
mathematical formalization of a sequential decision-making problem, easy to work
with, but at the same time able to describe many practical control problems. The
monographs by Sutton and Barto [136] and by Bertsekas and Tsitsiklis [22], which
constitute the two main references for RL, focus on methods for MDPs.

DP methods are a powerful tool and are suitable for a large variety of problems.
However, they suffer from the “curse of dimensionality” [16] and they are computa-
tionally intractable when the state space is large. For this reason, some approximate
dynamic programming algorithms have been developed, that can solve the Bellman
equation in an approximate way, with a lower computation cost. Furthermore, DP
methods require to fully know the transition probabilities of the MDP, and this is
not always the case. The RL methods were therefore designed to be able to solve an
MDP even without knowing precisely the behavior of the environment. In summary,
we can say that the methods of RL come to the aid of DP in three cases:

• when a complete model of the system is available, but the state space S is too
large;

• when a complete model of the system is not available, but a simulator of the
system exists;

• when neither a complete model of the system nor a simulator is available.
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RL algorithms are generally classified in two categories: model-based methods,
which build a predictive model of the environment and use it to construct a controller,
and model-free methods, which directly learn a policy or a value function by interact-
ing with the environment. Model-free RL includes standard approximate dynamic
programming methods such as Monte Carlo methods [136], Temporal-Difference (TD)
Learning [134, 125] and Q-Learning [146]. More recent model-free RL algorithms
have shown great performances [95, 126, 89, 62], although they are generally quite
expensive to train, especially in terms of sample complexity; this often limits their
applications to simulated environments. On the contrary, model-based techniques
show a higher sample efficiency [37, 144], which results in faster learning. Further-
more, recent algorithms have managed to limit the model-bias phenomenon by using
probabilistic models, which capture the uncertainty of the learned model [37, 56, 73].
In Bayesian Reinforcement Learning (BRL), the dynamics model is updated when
new data are available [58]. Finally, the recently used probabilistic model ensembles
[32, 71] allowed model-based methods to achieve the same asymptotic performance as
state-of-the-art model-free methods, with higher sample efficiency. Thanks to these
features, model-based methods seem to be the most suitable for solving complex
real-world problems.

A crucial point in reinforcement learning algorithms is the trade-off between
exploration and exploitation [61]. Exploitation consists in acting in an optimal way
with respect to the data collected up to that moment. This type of action is safer
because it avoids bad decisions, but at the same time it does not allow discovering
potential better actions. Exploration, on the other hand, consists in choosing actions
that have never been performed or about which there is little information. These
actions typically generate lower returns, but may also discover better strategies
than the current one. Both exploration and exploitation are important for achieving
optimal policy. A good algorithm must therefore balance exploratory and exploitation
actions. This trade-off was already present in dual control (see Section 2.3.3).

When the state space is large or even continuous, classical DP methods cannot
be used, due to the curse of dimensionality. RL algorithms such as Monte Carlo
[136], TD-Learning [134, 125] or Q-Learning [146] also suffer from large dimensions.
To solve this issue, we resort to function approximators, i.e. approximate parametric
representations of the value function. This way we can describe the value function
with relatively few numbers. This idea, known as “approximation in value space” or
simply “value function approximation”, goes back to Shannon’s work on computer
chess [127]. Some popular choices of function approximators are neural networks
[95, 89], decision trees [152], coarse coding [135], Fourier/wavelet bases [78, 139],
radial basis functions [136]. Once a parametric representation has been chosen,
Monte Carlo, TD-Learning or Q-Learning methods can be applied directly to the
low-dimensional parameter. For more details we refer to the books by Bertsekas and
Tsitsiklis [22] and by Sutton and Barto [136].

2.4.2 Comparison with optimal control

Optimal control and RL solve almost the same problem, but using different techniques.
The primary goal is to control a system to achieve a certain purpose. In this section
we will discuss the main overlaps and differences between the two approaches.
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First of all, both OC and RL consider a great variety of problems, including
continuous-time or discrete-time problems, deterministic or stochastic systems.
However, while optimal control has dealt in depth with each of these cases over the
years, RL has focused mainly on the MDP framework. As an example, the study
of stochastic optimal control resulted in an advanced theory on controlled Markov
diffusion processes [51], which, on the other hand, have not been studied much in
reinforcement learning.

A strong link between the two approaches is the use of dynamic programming.
In fact, we have seen how DP is one of the main methods for solving optimal control
problems. The techniques of RL, on the other hand, are strongly rooted in DP, to
the point that another name for RL is approximate dynamic programming [113, 18].

One of the main differences between the two fields of study is that optimal control
generally assumes complete knowledge of the system or environment, whereas RL
methods do not require it. Sutton and Barto wrote about 20 years ago: “We formalize
the problem of reinforcement learning using ideas from dynamical systems theory,
specifically, as the optimal control of incompletely-known Markov decision processes”
[136]. The concept of RL has now expanded, but the fact that knowing the model
is not necessary remains one of the main advantages. OC methods generally start
from the model to construct an optimization problem. This problem is then solved
to produce the optimal control. RL, on the contrary, is data-driven and is based
on experience, that is, direct interaction with the system. The strength of RL is
that, even in the presence of a known model, it can be more efficient than the classic
optimal control methods. For example, think of Alpha Go, an RL architecture that
defeated the world champion of GO [128], a very complex game, whose number of
possible board position is of the order of 10172.

An important step in comparing optimal control and RL was taken in 1992 by
Sutton, Barto and Williams, who wrote a paper entitled “Reinforcement Learning
is Direct Adaptive Optimal Control” [137]. In the paper, the authors explain how
adaptive control (including MRAC and MIAC algorithms, see Section 2.3.3) generally
deals with tracking a reference trajectory, while adaptive methods for optimal control
problems had received little attention. Furthermore, almost all adaptive optimal
control methods at that moment were indirect adaptive methods (see Section 2.3.3
for the definition of direct/indirect adaptive control methods and Remark 2.18 for
the difference with optimal control terminology). Reinforcement learning methods,
then, could be identified as the direct version of adaptive optimal control methods.
Today we can still identify, with a certain margin of error, model-free RL with direct
adaptive optimal control methods and model-based RL with the indirect methods.
It should be noted that over the years, RL has been applied to tracking adaptive
problems too [63]. Among RL algorithms, we can also find references to dual control
(see Section 2.3.3). For example, Klenske and Hennig compared the Bayesian RL to
dual control [76].

In Chapters 3 and 4 we will strengthen this link between OC and RL, showing
that some probabilistic model-based RL methods can be described by an optimal
control problem with average cost. For a more in-depth comparison of the two fields,
we refer to works [20] and [120].
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Terminology

If it is true that optimal control and reinforcement learning solve almost the same
problem, it must also be said that they use very different notations and terminology.
This has caused RL scientists to “re-discover” some optimal control algorithms years
after their discovery. For this reason, different names are still used today to indicate
the same thing. A non-exhaustive list of examples is given in Table 2.1 (cf. [20,
§1.4]).

Table 2.1. Comparison of reinforcement learning and optimal control terminology.

Reinforcement Learning Optimal Control
Agent Controller or decision maker

Environment Controlled system or plant
State State
Action Control
Reward (opposite of) Cost

Maximizing the return Minimizing the cost functional
Model learning System identification

Prediction Policy evaluation

Planning Solving a DP problem with a
known mathematical model

Reinforcement Learning Approximate DP

Deep reinforcement learning
Approximate DP using value
and/or policy approximation
with deep neural networks

Model-free method Direct adaptive optimal control
Model-based method Indirect adaptive optimal control

2.4.3 Probabilistic model-based RL methods

We have already outlined the distinction between model-free methods, which solve
the control problem directly interacting with the environment, and model-based
methods, which use experience to estimate a model and then use the model to build
an optimal control.

A model-based method generally consists of two steps:

1. Model learning: learn, estimate a model from experience;

2. Planning or control: compute the optimal value function and/or build an
optimal policy from the approximate model.

One of the major flaws of model-based methods is the fact that even a small error
in the model can result in suboptimal controls. This phenomenon is known as model
bias and is the reason why for a long time model-free methods have been preferred
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to model-based ones [8, 1]. This problem has been reduced with the introduction of
probabilistic models to estimate the dynamics, which we can describe as probability
distributions on spaces of functions. The use of a probabilistic model made it possible
to incorporate model uncertainty into long-term planning, thus reducing model bias,
but at the same time achieving outstanding sample efficiency. These features have
caused the class of probabilistic model-based RL (probabilistic MBRL) methods to
become increasingly popular over the past 10 years [77, 144]. Many of them fall
within Bayesian Reinforcement Learning (BRL), as probabilistic models are updated
over time, using Bayesian statistic formulas. Recently, Moerland et al. provided an
exhaustive survey on the topic [96].

Now we will briefly describe some of the most famous methods of this type; for
more details, we refer to the original papers. Notice how a method is determined by
the choice of an algorithm for each of the two steps, model learning and planning. For
the model learning part, this is equivalent to choosing a class of probabilistic model,
e.g. Gaussian Processes [37, 73] or deep Bayesian Neural Networks [56, 32, 71]. For
the planning procedure, on the other hand, a standard method is to consider a
family of policies described by a parameter and apply an optimization method in
the policy space, this is known as policy search [37, 56, 71]. An alternative is to use
Model Predictive Control (MPC) [29, 73, 32].

PILCO (2011)

In 2011 Deisenroth and Rasmussen proposed PILCO, a “data-efficient model-based
policy search method” [38, 37]. The novelty of PILCO compared to previous MBRL
algorithms was the possibility to quantify the uncertainty of the model (dealing
mainly with deterministic physical systems, we are talking about an epistemic
uncertainty, that is due to lack of enough data, cf. Section 2.3) and to incorporate
it in the planning process. This allowed to reduce the model bias, one of the main
problems of MBRL. Furthermore, PILCO showed incredible data-efficiency, meaning
that it could learn a task in less time and with less experience than other algorithms.

From a practical point of view, PILCO learns the dynamics using Gaussian
Processes (GP) as function approximators. As the agent acquires new data through
experience, the model is updated with closed Bayesian formulas. For more details
on GP regression we refer to the monograph by Rasmussen and Williams [119]. The
planning task is solved through an optimization in the policy space. As a policy
space, PILCO considers a parameterized family of policies. Two examples are a
family of linear policies or a nonlinear network of Radial Basis Functions (RBF)
[103]. Taking up the typical structure of a policy iteration, planning is divided into
two steps: policy evaluation and policy improvement (cf. Section 2.2.2). In the
policy evaluation step, the cost of the policy is calculated taking into account the
uncertainty of the model. In particular, the expectation of the cost with respect to
the probabilistic model is considered. The policy improvement step, on the other
hand, consists of a steepest descent step in the policy parameter space, with a classic
gradient descent method. The algorithm is explained in detail in Deisenroth’s PhD
Thesis [36]. We outline the procedure in Algorithm 9.
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Algorithm 9 PILCO [36]
Require: parametrized family of policies

1: Set policy parameters to random . policy initialization
2: repeat
3: Execute system with policy . interaction
4: Record collected experience
5: Learn probabilistic (GP) dynamics model . model learning
6: repeat . planning
7: Simulate system with policy
8: Compute expected cost of the policy . policy evaluation
9: Improve policy . policy improvement

10: until policy parameters converge
11: until task learned

DeepPILCO (2016)

PILCO worked well with simple and low-dimensional problems, but relied on GPs,
whose update requires a great computational cost. This prohibited its application
to problems that require a large number of trials to be solved. Some years after its
introduction, Gal et al. [56] proposed an improvement of the algorithm, called Deep
PILCO, by replacing Gaussian processes with Bayesian neural networks (BNNs)
[93], the probabilistic equivalent of neural networks (NNs). We point out that one
of the authors, Rasmussen, was also an author of PILCO. Deep PILCO required
lower time complexity and obtained lower computational costs than PILCO on some
standard benchmarks.

GP-MPC (2018)

Subsequently, Kamthe and Deisenroth [73] (again, one of them was among the
authors of PILCO) proposed a new algorithm, called GP-MPC, that coupled the use
of Gaussian Processes with Model Predictive Control (MPC) [29], a popular method
for solving optimal control problems. Their algorithm therefore still uses GPs for
model learning, whereas it adopts a probabilistic version of MPC for the planning
task. GP-MPC was able to deal with state and control constraints and turned out
to be extremely data-efficient.

PETS (2018)

A limitation of the algorithms presented so far was that, despite being very efficient
in terms of data, they did not achieve the same asymptotic performance of the
state-of-the-art model-free RL algorithms. In 2018 Chua et al. [32] proposed a new
MBRL algorithm called probabilistic ensembles with trajectory sampling (PETS),
which narrowed this performance gap. It achieved indeed results that are comparable
with those of state-of-the-art model-free methods in terms of asymptotic performance,
while requiring significantly fewer trials.

To learn the dynamics model, PETS use not a single BNN, but rather an ensemble
of BNNs. The authors explain in the paper that the use of a “probabilistic network”
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can capture aleatoric uncertainty, whereas the use of “ensembles” captures epistemic
uncertainty. The planning task is performed using MPC together with a special
trajectory sampling propagation technique.

Table 2.2. Comparison of probabilistic MBRL metods.

Algorithm Model Learning Planning
PILCO [38] GP policy search

Deep PILCO [56] BNN policy search
GP-MPC [73] GP MPC
PETS [32] ensemble of BNNs MPC
MBPO [71] ensemble of BNNs SAC [62]

MBPO (2019)

Finally, in 2019 Janner et al. [71] proposed model-based policy optimization (MBPO),
a new efficient MBRL algorithm. They use an ensemble of BNNs as probabilistic
model, as in PETS. To find the control, they perform an optimization in the policy
space using soft-actor critic (SAC) [62], a popular model-free method. MBPO
matches the asymptotic performance of the best model-free algorithms, surpassing
the sample efficiency of prior model-based methods.

In Table 2.2 we summarize the tools used respectively for model learning and for
planning by the methods presented. It should be noted that PETS [32] and MBPO
[71] are currently the state of the art among model-based RL methods. In the next
chapters, we will try to capture the behavior of these methods through a rigorous
mathematical description. This will allow us to make general considerations on the
convergence of the methods (cf. Section 3.2).
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Chapter 3

An average cost optimal control
problem for modeling
model-based Reinforcement
Learning

In Section 2.4.3 we have introduced a class of model-based RL algorithms which use
experience to build a probabilistic model of the environment and then use the model
to construct a control. In this chapter, we present a mathematical framework that
allows us to better describe what these algorithms do and, consequently, to study
their properties. We consider a nonlinear control system in which the dynamics is
only partially known, and we assume that the belief on the dynamics that an agent
has is represented by a probability distribution π on a space of functions. The task is
thus written as an optimal control problem with averaged cost. The cost functional
to be minimized is indeed calculated averaging the costs of the trajectories generated
by all the possible dynamics.

Average cost control (cf. Section 2.3.5), together with averaged controllability
[153], is a problem that has been studied by several researchers in recent years
[92, 23, 98]. Palladino and Murray [98, 99] were the first to link this framework to a
class of RL algorithms. We have followed their work by establishing strong results,
that will be presented in this and the next chapter. A major difference with respect
to their works is that they considered a time-dependent distribution π(t), which
corresponds to an online model learning, whereas we are working with a stationary
π, meaning that the learning is offline. However, we allow the policy to be updated
after each episode and this generates a sequence of policies {πN}N .

A characterizing aspect of our framework, compared for example to stochastic
systems, is that the true dynamic is only one and is deterministic, but it is unknown
to the agent. The probability distribution describes the agent’s belief in the dynamics,
following a Bayesian approach to probability [35]. In other words, the uncertainty
that the agent has on the system is epistemic rather than aleatory (cf. Section 1.3).
This aspect had already been highlighted in a work by Zuazua [153].

The main result of this chapter concerns a convergence result of the value function
Vπ of an averaged (with respect to a probability measure π) optimal control problem
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to the “true value function” V . Here, by true value function we mean the one
defined by the optimal control governed by the true, underlying dynamics. Roughly
speaking, the main result can be stated as follows: the value function Vπ is close to
V as soon as π provides an accurate representation of the true, underlying dynamics.
Here we will focus our attention on a general, nonlinear optimal control problem
over a finite horizon, under globally Lipschitz assumptions on the costs and the
controlled dynamics. Stronger results will be discussed in next chapters under further
assumptions. The results presented here have been published in [109].

In Section 3.1, we will introduce the average cost control framework, whereas in
Section 3.2 we will explain in detail the connection with model-based RL. Later, in
Section 3.3 we will state and prove the main result. Finally, Section 3.4 is devoted
to some numerical tests.

3.1 Problem formulation
In this section, we will recall the optimal control problem in the continuous-time
setting and introduce an optimal control problem with an average cost.

3.1.1 Problem A: a classical optimal control problem

Let us consider a classical finite horizon optimal control problem (cf. Section 2.1.1
and Section 2.2.4), which we will call Problem A. For 0 ≤ t0 < T , let us consider the
controlled dynamics {

ẋ(t) = f̂(x(t), u(t)) t ∈ [t0, T ]
x(t0) = x0,

(3.1)

where the nonlinear dynamics f̂ : Rn × Rm → Rn is continuous in the pair (x, u)
and Lipschitz continuous with respect to x, uniformly with respect to u. Those
conditions guarantee that the Cauchy problem (3.1) is well-posed, in the sense that
for every measurable control u and initial condition x(t0) = x0 ∈ Rn, there exists a
unique solution of (3.1).

The goal is to minimize the cost functional

Jt0,x0 [u] :=
∫ t

t0
`(x(t), u(t))dt+ h(x(T )) , (3.2)

over the class of the admissible controls Ut0 = {u : [t0, T ]→ U, Lebesgue measurable},
where U is a closed subset of Rm and ` and h are respectively the running cost and
the terminal cost, which we require to be Lipschitz continuous with respect to x.
Notice that we are considering the non-discounted case, i.e. the discount factor λ
in (2.2) is equal to 0. This choice makes sense for the finite horizon case if T is not
very large, since the effect of the discount factor is not relevant in that case and
the integral converges anyway. For each (t0, x0) ∈ [0, T ] × Rn, the value function
and the corresponding optimal control associated to the optimal control problem
(3.1)-(3.2) are respectively defined as

V (t0, x0) := inf
u∈Ut0

Jt0,x0 [u] and u∗(t0, x0) := arg min
u∈Ut0

Jt0,x0 [u] .
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3.1.2 Problem B: an optimal control problem with uncertain dy-
namics

Let us now introduce another control problem in which the real dynamics f̂ is
unknown, meaning that one has merely a partial knowledge on f̂ . Such a model
uncertainty is captured by a probability distribution on a space of functions X (which
f̂ belongs to). More precisely, X is a compact subset of C(Rn × U ;Rn) with respect
to the || · ||∞ norm (the Arzelà-Ascoli Theorem provides necessary and sufficient
conditions for the set X being compact [124]). For 0 ≤ t0 < T and every g ∈ X , let
us define the dynamical system{

ẋg(t) = g(xg(t), u(t)) t ∈ [t0, T ]
xg(t0) = x0.

(3.3)

Given a probability distribution π ∈ P(X ) over X , one can define a cost functional
for Problem B:

Jπ,t0,x0 [u] :=Eπ

[∫ T

t0
`(xg(t), u(t))dt+ h(x(T ))

]
(3.4)

=
∫
X

[∫ T

t0
`(xg(t), u(t)) dt+ h(x(T ))

]
dπ(g).

Note that, even if there is a different trajectory xg(t) for each g ∈ X , the task
concerns to look for a single control u to be applied to every system dynamics g ∈ X .
The notions of value function and optimal control are analogous to those given for
Problem A:

Vπ(t0, x0) := inf
u∈Ut0

Jπ,t0,x0 [u] and u∗π(t0, x0) := arg min
u∈Ut0

Jπ,t0,x0 [u] . (3.5)

3.2 Connection to model-based RL
There are several model-based RL (MBRL) methods that rely on the design of a
probabilistic model of the environment. We introduced this class of methods in
Section 2.4.3.

In the following, we focus on a generic algorithm of this kind, which consists of
two steps:

Step 1. Model learning: learn, estimate a probabilistic model from experience;

Step 2. Planning or control: compute a control which is optimal with respect to
the approximate model.

These two steps are generally repeated until the method produces a control with
satisfactory performance (cf. Section 2.4.3). The goodness of the method is then
measured merely on the basis of the obtained results and on heuristic reasoning,
not on the basis of proven theoretical properties of convergence. For this reason, we
tried to analyze the method from the point of view of optimal control theory, in
order to have a solid foundation on which to build a theory of convergence.
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In Step 1, we can identify a probabilistic model of the environment with a
probability distribution on the space of possible dynamics. For instance, PILCO
algorithm [37] builds the model as a Gaussian Process, which is a probability
distribution on the space of continuous functions C(Rn × U ;Rn) (cf. [36, p. 34]).
Thus, in our framework, the probability distribution π ∈ P(X ) represents the
dynamics model that the agent builds upon the data collected while exploring
the partially unknown environment, where X is a general functional space. This
distribution is updated as new experience is gained, and this generally happens
after each episode. In our analysis, the probability distribution πN ∈ P(X ) will
indicate the one updated after the N -th episode. It is reasonable to expect that an
increase of the experience of the environment (here represented by f̂) will produce a
more accurate distribution over the space of possible dynamics. This fact can be
translated into the assumption that the probability distribution πN get “closer” (in
a precise sense that will be specified in the sequel) to the Dirac delta δ

f̂
∈ P(X ) as

N increases.

Remark 3.1. It is worth pointing out that the theory developed here works both
for non-parametric models (e.g. Gaussian processes [37, 73]) and for parametric
models (e.g. deep neural networks ([56, 32, 71])). In the latter case, we are assuming
that the support of π is a family of functions {fλ}λ∈Rd described by a parameter
λ ∈ Rd, with the dimension d arbitrarily large. π can thus be seen as a probability
distribution on the parameter space Rd and is then easier to work with (see, for
instance, the numerical tests in Section 3.4).

In Step 2 the algorithm solves a control problem with respect to the approximate
model. An important feature in probabilistic MBRL is that “model uncertainty
needs to be incorporated into planning and policy evaluation” [37]. This translates
into the fact that the algorithm does not solve a classical Problem A, but a problem
in which the cost functional is averaged over all the possible dynamics, i.e. a problem
of type B (see Section 3.1). The policy evaluation step (cf. Section 2.2) of PILCO,
as an example, computes an averaged cost functional as in (3.4).

We would like to stress that our goal is not to propose a new algorithm to
find an optimal policy, but rather to consider a class of existing algorithms and
motivate their good performances. In particular, we aim to provide an insight into
the convergence of Bayesian-like RL algorithms in which a recursive construction of
probability measures is carried out. Here, by “convergence”, we mean convergence
of the optimal policy obtained by estimating the underlying dynamics using data
from the real system, i.e. the optimal control for Problem B u∗π, towards the optimal
policy u∗ obtained by solving problem A.

In our analysis, we make two assumptions on the algorithm:

(i) We assume that the probability distribution πN converges to δ
f̂
as N goes to

infinity.

(ii) We assume that in Step 2 the algorithm in question is able to find the optimal
control, meaning here that the control is optimal with respect to the averaged
cost functional, i.e. it can find u∗π(t0, x0) in (3.5).
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Clearly, as the accuracy of π increases, one should expect that the value function
of Problem B is close (in a sense that will be made precise) to the value function of
Problem A. In particular, we will investigate the following questions:

(A) Is the value function of Problem B Vπ close to the value function of Problem
A V , when π is close to δ

f̂
w.r.t. the Wasserstein distance (see (3.6) for the

formal definition)?

(B) If πN → δ
f̂
, then is it true that VπN → V ?

(C) If πN → δ
f̂
, then is it true that u∗

πN
→ u∗?

In this chapter, we will consider a general, nonlinear control system and provide
positive answers to question (A) and (B). In the next chapters we will deal with
more specific settings, in which we are able to prove also the convergence of the
optimal control, i.e. question (C).

3.3 Convergence of the value function
In this section, we will state and prove a convergence result that is valid for a general
family of probability distributions. First, we recall the definition of the Wasserstein
distance (cf. [141]):

Definition 3.2. Let π, π′ ∈ P(X) be two probability distributions on a compact
metric space (X, d). The 1-Wasserstein distance between them is defined as

W1(π, π′) := inf
γ∈Γ(π,π′)

∫
X×X

d(x, y) dγ(x, y) , (3.6)

where Γ(π, π′) is the collection of all probability measures on X ×X having π and
π′ as marginals, x and y are generic elements in X and the symbol dγ indicates that
the integral is with respect to the measure γ.

Now we can state the result:

Theorem 3.3 (Lipschitz estimate for the value function w.r.t. π). Let us consider
two Problems of type B as described in Section 3.1.2, one with distribution πN ∈ P(X )
and the other with distribution π∞ ∈ P(X ). We make the further assumptions:

(H1) There exists a constant Lf > 0 such that

|f(x, u)− f(y, u)| ≤ Lf |x− y|

for each f ∈ supp(π∞), x, y ∈ Rn, u ∈ U ;

(H2) The two cost functions ` and h are Lipschitz continuous in the first argument
with constants respectively L` and Lh.

Then, the following estimate holds:

||VπN − Vπ∞ ||∞ ≤ C(Lf , L`, Lh, T )W1(πN , π∞) , (3.7)

where C(Lf , L`, Lh, T ) is a constant depending only on the Lipschitz constants and
on T , and W1(πN , π∞) is the 1-Wasserstein distance (3.6) constructed on the space
(X , ‖·‖∞).
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Proof. We divide the proof in three steps.
STEP 1: Distance between two single trajectories.
Fix two dynamics g ∈ X and f ∈ supp(π∞), an initial condition x(t0) = x0 with
s ∈ [0, T ] and x0 ∈ Rn and a control u ∈ Ut0 . We estimate how far is xg(t) from
xf (t), using Gronwall’s Lemma, for each t ∈ [t0, T ].
Recall that xf (t) and xg(t) are solutions of the dynamical systems (3.3):

xf (t) = x0 +
∫ t

t0
f(xf (τ), u(τ)) dτ

xg(t) = x0 +
∫ t

t0
g(xg(τ), u(τ)) dτ

We have the following estimate:

|xg(t)− xf (t)| ≤
∫ t

t0
|g(xg(τ), u(τ))− f(xf (τ), u(τ))| dτ

≤
∫ t

t0
|g(xg(τ), u(τ))− f(xg(τ), u(τ))| dτ

+
∫ t

t0
|f(xg(τ), u(τ))− f(xf (τ), u(τ))| dτ

≤ (t− s) ‖f − g‖∞ + Lf

∫ t

t0
|xg(τ)− xf (τ)| dτ .

By Gronwall’s Lemma,

|xg(t)− xf (t)| ≤ (t− s) ‖f − g‖∞ eLf (t−s) ≤ t ‖f − g‖∞ eLf t. (3.8)

STEP 2: Cost difference between two probability distributions.
Fix an initial condition x(t0) = x0 with s ∈ [0, T ] and x0 ∈ Rn and a control u ∈ Ut0 .
We estimate how far is JπN ,t0,x0 [u] from Jπ∞,t0,x0 [u]. To simplify the notation, we
will write

JπN [u] = JπN ,t0,x0 [u] and Jπ∞ [u] = Jπ∞,t0,x0 [u].

For each g ∈ X and f ∈ supp(π∞) it holds

|`(xg(t), u(t))− `(xf (t), u(t))| ≤ L` |xg(t)− xf (t)|
≤ L` t ‖f − g‖∞ eLf t

(3.9)

and
|h(xg(T ))− h(x(T ))| ≤ Lh T ‖f − g‖∞ eLfT . (3.10)

As a property of the Wasserstein distance W1, there exists (see Theorem 4.1 on
[141]) a distribution γ∗ on X ×X with marginal distributions πN and π∞ such that

W1(πN , π∞) =
∫
X×X

‖g − f‖∞ dγ∗(g, f). (3.11)

Let (g(x), f(x))x∈Rn be a continuous process which has γ∗ as distribution. For each
event ω ∈ Ω, we consider the realization of the process (gω, fω).
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Let us sum up over the g ∈ supp(πN ) and the f ∈ supp(π∞):

JπN [u]− Jπ∞ [u] =
∫
X

[∫ t

t0
`(xg(t), u(t)) dt+ h(xg(T ))

]
dπN (g)

−
∫
X

[∫ t

t0
`(xf (t), u(t))dt+ h(xf (T ))

]
dπ∞(f)

=
∫
X×X

[∫ t

t0

(
`(xg(t), u(t))− `(xf (t), u(t))

)
dt

+
(
h(xg(T ))− h(xf (T ))

)]
dγ∗(g, f).

Passing to the absolute value and using the bounds in (3.9) and (3.10), the expression
of W1 (3.11) comes up:∣∣∣JπN [u]− Jπ∞ [u]

∣∣∣ ≤ [L` ∫ T

0
t eLf tdt+ Lh e

LfT

] ∫
X×X

‖g − f‖∞ dγ(g, f)

=
(
L`

eLfT (LfT − 1) + 1
Lf

2 + Lhe
LfT

)
W1(πN , π∞)

= C(Lf , L`, Lh, T )W1(πN , π∞).

(3.12)

Note that this estimate does not depend on x0 or u.
STEP 3: Lipschitz estimate for the value function.
We now prove the estimate (3.7) using (3.12). Fix an initial condition x(t0) = x0
and some ε > 0. By the definition of Vπ∞ , there exists a control u ∈ Ut0 such that

Jπ∞ [uε] ≤ Vπ∞(t0, x0) + ε .

So we have
VπN (t0, x0)− Vπ∞(t0, x0) = inf

u∈Ut0
JπN [u]− inf

u∈Ut0
Jπ∞ [u]

< inf
u∈Ut0

JπN [u]− Jπ∞ [uε] + ε

≤ JπN [uε]− Jπ∞ [uε] + ε

≤ sup
u∈Ut0

|JπN − Jπ∞ |+ ε.

In the same way, we get

Vπ∞(t0, x0)− VπN (t0, x0) < sup
u∈Ut0

|JπN − Jπ∞ |+ ε ,

and since ε is arbitrary, we conclude

|VπN (t0, x0)− Vπ∞(t0, x0)| ≤ sup
u∈U
|JπN − Jπ∞ | .

Finally, noting that the estimate is independent of x0, we get our result:

||VπN − Vπ∞ ||∞ ≤ sup
u∈U
|JπN − Jπ∞ | ≤ C(Lf , L`, Lh, T )W1(πN , π∞).
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In the particular case where π∞ ≡ δ
f̂
, f̂ being the true underlying dynamics,

then one can express Theorem 3.3 in a more expressive way as follows:

Corollary 3.4 (Convergence of the value functions). Suppose that f̂ : Rn×U → Rn
is a Lipschitz continuous function and the assumption (H2) on ` and h is satisfied. Let
{πN}N∈N ⊂ P(X ) be a sequence of probability distributions on X ⊂ C(Rn × U ;Rn)
compact set, with πN W1−−→ δ

f̂
. Then the value function VπN of Problem B converges

uniformly on [0, T ]× Rn to the value function V of Problem A.

The previous Corollary provides a positive answer to the questions (A)-(B) posed
in the introduction. More precisely, it tells us that, whenever it is possible to construct
a sufficiently close (with respect to the Wasserstein distance) probability distribution
π to the real dynamics f , then the value function Vπ is a good approximation of the
value function V . Note that Theorem 3.3 is useful even when the distribution πN
does not exactly reach δ

f̂
, in that it provides an error estimate for the algorithm.

3.3.1 On finite support measures converging to δ
f̂

Let us consider the special case in which the distribution πN ∈ P(X ) is a linear
combination of a finite number of Dirac deltas defined on a family of equi-bounded
and equi-Lipschitz continuous functions X := {f1, . . . , fM}:

πN :=
M∑
i=1

αNi δfi , (3.13)

where αNi ≥ 0,
∑M
i=1 α

N
i = 1 for every i = 1, . . . ,M and N ∈ N. In this case, the

cost functional (3.4) can be written as

JπN ,s,x0[u] :=
M∑
i=1

αNi

[∫ t

t0
`(xfi(t), u(t)) dt+ h(xfi(T ))

]
.

Without loss of generality, let us also assume that f ≡ f1 is the real underlying
dynamics. From Theorem 3.3 we obtain:

Corollary 3.5. Let us consider a sequence of probability distributions {πN}N∈N ⊂
P(X ) defined as in (3.13). Assume that f1 : Rn × U → Rn is Lipschitz continuous
and assume the assumption (H2) on the functions ` and h. Then

1. ||VπN −V ||∞ ≤ C(Lf , L`, Lh, T ) EπN [‖f − g‖∞] ∀N ∈ N, where V is the value
function of Problem A relative to the true dynamics f1.

2. If {πN}N∈N ⊂ P(X ) is a sequence of probability distributions with the same
support {f1, . . . , fM} and πN is converging to δf1, then VπN converges to V .

Proof. The thesis follows directly from Theorem 3.3, noting that the quantity

EπN [‖f − g‖∞]
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coincides with the 1-Wasserstein Distance between πN and δ
f̂
:

W1(πN , δ
f̂
) := inf

γ∈Γ(πN ,δ
f̂

)

∫
X×X

‖g1 − g2‖∞ dγ(g1, g2) ,

where Γ(πN , δ
f̂
) denotes the set of all joint probability distributions on X × X ,

having πN and δ
f̂
as marginals. In this case, indeed, the set Γ(πN , δ

f̂
) consists of a

single element

Γ(πN , δ
f̂
) =

{
M∑
i=1

αi δ(fi,f)

}
,

and we get

W1(πN , δ
f̂
) =

M∑
i=1

αi d∞(fi, f) = EπN [‖f − g‖∞].

3.4 Numerical tests
In this section, we will present three numerical tests. They all deal with extremely
simplified situations: a parametric model, where the parameter can take only a
finite number of values (cf. Section 3.3.1). We remark that these tests are intended
for illustrative purposes only and their main goal is to verify that Theorem 3.3 and
Corollary 3.4 hold in a particular case. Indeed, the theory developed here includes
far more general cases than this, including parametric models with a large number of
parameters and infinite possible values for each parameter (e.g. deep neural networks
[56, 32, 71]) or even non-parametric models (e.g. Gaussian processes [37, 73]).

3.4.1 Test 1

We consider a dynamical system governed by the differential equation{
ẋ(t) = λx(t) + sin(x(t)) + u(t) t ∈ [t0, T ]
x(t0) = x0,

with u(t) ∈ U = [−1, 1] for t ∈ [t0, T ]. The agent, who doesn’t know the parameter
λ, has a probability distribution on a set of 5 possible values for λ:

Λ = {λ1 = 0, λ2 = 1, λ3 = −1, λ4 = 0.5, λ5 = −0.5} .

For each N ∈ N the probability distribution πN ∈ P(Λ) can be written, similarly to
(3.13), as

πN =
5∑
i=1

αNi δλi .

Note that a probability distribution on a set of parameters is equivalent to a
probability distribution on a family of functions X = {fi}i (see also Remark 3.1),
where

fi(x, u) = λix+ sin(x) + u.
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We set s ≡ 0. The agent wants to minimize an averaged cost

JπN ,0,x0 [u] =
5∑
i=1

αNi

[∫ T

0
u(t)2dt− xi(T )

]

=
∫ T

0
u(t)2dt+

5∑
i=1

αNi [−xi(T )]
(3.14)

over the set of measurable controls U0. Problem B associated to a fixed πN can
thus be seen as an optimal control problem in dimension 5, where the state variable
include the five trajectories x1, . . . , x5.

We solved this problem numerically when the probabilities αNi were defined
according to the following rule:

αN1 = 1− 1
2N , αNi = 1

4
1

2N for i = 2, . . . , 5 .

It is clear that the sequence is converging to δλ1 , which we assume to be the parameter
λ of the true dynamics, following the setting of subsection 3.3.1. An example of
optimal (multi-)trajectory of Problem B relative to π1 is plotted in Fig. 3.1. In order
to minimize the cost functional (3.14), the agent tries to steer all the trajectories
towards the positive values of the real axis, using a control close to +1; at the same
time, the optimal control cannot be constantly +1, since the cost functional penalizes
larger values of the control (Fig. 3.2).

Figure 3.1. Test 1: Optimal (multi-)trajectory starting from x0 = 1.
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Figure 3.2. Test 1: Optimal control starting from x0 = 1.

For each N = 1, . . . , 8 we computed the value function of Problem B solving
the equations given by the Pontryagin Maximum Principle (see e.g. [50]), for a
grid of initial points x0 ∈ [−1, 1]. Then, we compared them to the value function
of Problem A relative to the true dynamics f1, computing the sup norm of the
difference VπN − V over the interval [−1, 1]; the results are reported in Table 3.1.
Note that at each iteration the Wasserstein distance W1 between πN and δf1 is
halved and so is the error; this means that the numerical convergence order is 1,
which agrees to the estimate given by Corollary 3.5.

3.4.2 Test 2

We consider a perturbed logistic model. The true dynamics follows a classical logistic
differential equation:

ẋ1(t) = u(t)x1(t)(1− x1(t)),

while the other dynamics have an additional goniometric term:

fi(x, u) = (u+ gi(x))x(1− x), for i = 2, . . . , 5,
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Table 3.1. Test 1: Errors for value functions related to πN for N = 1, . . . , 8 with respect
to the true value function of Problem A.

N αN1 ||VπN − V ||∞,[−1,1] order

1 0.5 1.57e-1 -
2 0.75 7.87e-2 1.00
3 0.875 3.94e-2 1.00
4 0.9375 1.97e-2 1.00
5 0.9687 9.84e-3 1.00
6 0.9844 4.92e-3 1.00
7 0.9922 2.46e-3 1.00
8 0.9961 1.23e-3 1.00

where g2(x) = sin(x), g3(x) = −sin(x), g4(x) = cos(x), g5(x) = sin(x). Thus, there
are 5 possible dynamics:

ẋ1(t) = u(t)x1(t) (1− x1(t))
ẋ2(t) = (u(t) + sin(x(t)) x2(t) (1− x2(t))
ẋ3(t) = (u(t)− sin(x(t)) x3(t) (1− x3(t))
ẋ4(t) = (u(t) + cos(x(t)) x4(t) (1− x4(t))
ẋ5(t) = (u(t)− cos(x(t)) x5(t) (1− x5(t))
xi(0) = x0 i = 1, . . . , 5 .

(3.15)

The agent doesn’t know which of the previous ones is the true dynamics, he only
knows a probability distribution on the space of functions X = {f1, . . . , f5}. We use
the same notation of the previous example:

πN =
5∑
i=1

αNi δfi ,

with αN1 = 1− 1
2N and αNi = 1

4
1

2N for i = 2, . . . , 5.
The cost functional to be minimized is

J [u] =
∫ T

0
u(t)2dt+

5∑
i=1

αi |1− xi(T )| (3.16)

Fig. 3.3 and Fig. 3.4 show respectively an example of optimal (multi-)trajectory
and of an optimal control for Problem B with π1. In Table 3.2 we reported the error
of the value functions of Problem B with respect to that of Problem A, with the
relative estimated convergence order. Note that the order of convergence is still
1, even if in this case the dynamics is quadratic and thus not globally Lipschitz
continuous. This make us think that maybe the hypothesis of Theorem 3.5 could be
relaxed, asking only a local Lipschitz continuity.
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Figure 3.3. Test 2: Optimal (multi-)trajectory for π1 starting from x0 = 0.5.

Figure 3.4. Test 2: Optimal control for π1 starting from x0 = 0.5.
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Table 3.2. Test 2: Errors for value functions related to πN with N = 1, . . . , 8 with respect
to the true value function of Problem A.

N αN1 ||VπN − V ||∞,[−1,1] order

1 0.5 1.43e-1 -
2 0.75 7.14e-2 0.99
3 0.875 3.57e-2 1.00
4 0.9375 1.78e-2 1.00
5 0.9687 8.91e-3 1.00
6 0.9844 4.46e-3 1.00
7 0.9922 2.23e-3 1.00
8 0.9961 1.11e-3 1.00

3.4.3 Test 3

The convergence results presented in this chapter hold under the assumption that
the cost functions ` and h are both globally Lipschitz continuous. With the following
numerical test, we show that there are other examples of practical interest, where
we can observe similar convergent behavior in the error ‖VπN − V ‖∞, even when
this hypothesis is not verified.

In this third example, the state of the system is 2-dimensional, x = (x1, x2)T .
The three possible dynamics are all linear in the space variable and they differ only
by the system matrix Ai ∈ R2×2:ẋ1

i

ẋ2
i

 = Ai

x1
i

x2
i

+

cos(u)
sin(u)

 ,
where u is a 1-dimensional control which lies in [0, 2π]. The three possible matrices
are

A1 =

1 0
0 1

 , A2 =

0.5 0
0 2

 and A3 =

0.5 −0.5
0.5 0.5

 .
Without loss of generality, we assume that the true dynamics corresponds to the
first matrix. The agent only knows a probability distribution πN on the set of the
three matrices, defined as in the previous example:

πN =
3∑
i=1

αNi δAi ,

where the weights are defined according to the rule

αN1 = 1− 1
2N , αNi = 1

2N+1 for i = 2, 3.

We set again s ≡ 0. The cost functional to be minimized is

JπN ,0,x0 [u] = 1
2

3∑
i=1

αNi

[∫ T

0
‖xi(t)‖2 dt+ ‖xi(T )‖2

]
, (3.17)
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Figure 3.5. Test 3: Optimal (multi-)trajectory for π =
{ 1

3 ,
1
3 ,

1
3
}

starting from
x0 = (−0.4, 0.3).

where ‖·‖ indicates the euclidean norm in R2. In Fig. 3.5 we can see an example
of optimal (multi-)trajectory for this problem, when the distribution π has been
chosen to be

{
1
3 ,

1
3 ,

1
3

}
. In this case, the agent has to minimize the average squared

distance of the trajectories from the origin, thus he looks for a single control to steer
all three trajectories towards the origin at the same time. We can observe that none
of the trajectories reaches exactly the origin, since a control which is optimal for
one of the three dynamics may not be optimal for the other two. In Table 3.3 we

Table 3.3. Test 3: Errors for value functions related to πN with N = 1, . . . , 6 with respect
to the true value function of Problem A.

N αN1 ||VπN − V ||∞,[−1,1]2 order

1 0.5 2.52e-0 -
2 0.75 1.32e-0 0.94
3 0.875 6.81e-1 0.95
4 0.9375 3.47e-1 0.97
5 0.9687 1.75e-1 0.98
6 0.9844 8.81e-2 0.99

report the distance between the value function of Problem B and the true value
function of Problem A, for different distributions πN . Even in this case, although
the hypothesis of Corollary 3.5 are not satisfied, we can see a clear convergence with
order 1.
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Chapter 4

Convergence results for an
average cost LQR problem

In this chapter, we deal with a LQR problem (see Section 2.1.2) where the dynamics
is partially unknown. Recall that the underlying system dynamics is linear:

ẋ(t) = Âx(t) +Bu(t).

We assume that the true state matrix Â is unknown, whereas the control matrix B
is known. Our knowledge of the matrix Â is described by a probability distribution
on a compact space of matrices A to which Â belongs. In a higher perspective, we
can identify A with a class of linear dynamical systems, namely

A ↪→ {(x, u) 7→ Ax+Bu | A ∈ A} =: Ã,

and see π as a probability distribution on a space of functions Ã as well. Thus, the
problem considered here can be seen as a special case of the framework presented
in Chapter 3. In this setting, we were able to prove the convergence of the value
function and of the optimal control. The results of this chapter have been published
in a recent work [108].

The chapter is organized as follows. In Section 4.1, we state the problem
formulation and study the basic properties of the average cost LQR problem. Then,
in Section 4.2 we also derive a Pontryagin’s Maximum Principle for the problem,
refining some results in [23]. In Section 4.3 we state and prove the main convergence
results. In Section 4.4, we strengthen the results presented in Section 5 4.3 in the
case in which one is dealing with a discrete probability measure π. That result is
further stressed in Section 4.5, where we present and analyze a numerical example.

4.1 Problem Statements and Preliminary Results

We begin our discussion considering two Linear Quadratic Regulator (LQR) optimal
control problems. We will see in the sequel how the two problems are connected.
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Problem A: the LQR problem. Let us recall the finite-horizon LQR problem
presented in Section 2.1.2, which we will refer to as Problem A:

minimize Jt0,x0 [u]
over (x, u)(·) such that u ∈ Ut0 and
ẋ(t) = Âx(t) +Bu(t), t ∈ [t0, T ],
x(t0) = x0

(4.1)

where 0 ≤ t0 < T , x0 ∈ Rn, Ut0 := {u : [t0, T ]→ Rm, Lebesgue measurable} and

Jt0,x0 [u] := 1
2

∫ T

t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt+ 1

2x(T )TQfx(T ) . (4.2)

Throughout the whole chapter, the following Standing Hypothesis will be imposed
both for Problem A and for Problem B:

(SH): Q,Qf ∈ Rn×n are symmetric and semipositive definite and R ∈ Rm×m is
symmetric and positive definite.

The pair (x, u)(·) such that u ∈ Ut0 and x(·) is the solution of the Cauchy problem{
ẋ(t) = Âx(t) +Bu(t) t ∈ [t0, T ]
x(t0) = x0 .

(4.3)

is called admissible process for Problem A.
Let us define the value function V : [0, T ]× Rn → R for Problem A as

V (t0, x0) := inf
u∈Ut0

Jt0,x0 [u] . (4.4)

We shall say that (x̄, ū)(·) is an optimal process for Problem A if

Jt0,x0 [ū] ≤ Jt0,x0 [u] (4.5)

for any other admissible process (x, u)(·) of Problem A. In this case, ū will be denoted
as optimal control for Problem A.

Problem B: an LQR problem with unknown dynamics. Let us now intro-
duce an optimal control that does not require the exact knowledge of the matrix
Â, but merely a probability distribution defined on a compact space of matrices A
containing Â. For each 0 ≤ t0 < T , x0 ∈ Rn and π ∈ P(A), consider the following
optimal control problem, which we will refer to as Problem B:

minimize Jπ,t0,x0 [u]
over {(xA, u)(·) : A ∈ A} such that u ∈ Ut0 and
ẋA(t) = AxA(t) +Bu(t), A ∈ A, t ∈ [t0, T ],
xA(t0) = x0, A ∈ A,

(4.6)
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where Ut0 := {u : [t0, T ]→ Rm Lebesgue measurable} and

Jπ,t0,x0 [u] := Eπ

[
1
2

∫ T

t0

(
xA(t)TQxA(t) + u(t)TRu(t)

)
dt+ 1

2xA(T )TQfxA(T )
]

=
∫
A

[
1
2

∫ T

t0

(
xA(t)TQxA(t) + u(t)TRu(t)

)
dt+ 1

2xA(T )TQfxA(T )
]
dπ(A) .

(4.7)

Remark 4.1. Sometimes we will denote this problem as Problem Bπ, to stress its
dependency on the probability distribution π.

The definition of the value function Vπ : [0, T ]× Rn → R for Problem B is

Vπ(t0, x0) := inf
u∈Ut0

Jπ,t0,x0 [u] . (4.8)

The collection {(xA, u)(·) : A ∈ A} such that u ∈ Ut0 and, for each A ∈ A, xA(·) is
the solution of the Cauchy problem{

ẋA(t) = AxA(t) +Bu(t) t ∈ [t0, T ]
xA(t0) = x0

(4.9)

is called admissible process for Problem B. Note that the initial condition is the same
for every A. The admissible process {(x̄A, ū)(·) : A ∈ A} is optimal for Problem B if

Jπ,t0,x0 [ū] ≤ Jπ,t0,x0 [u] (4.10)

for any other admissible process {(xA, u)(·) : A ∈ A} of Problem B. In this case, ū
will be denoted as optimal control for Problem B.

Remark 4.2. As we will show in Lemma 4.5, Problem B admits a unique optimal
process when the assumption (SH) holds true. Furthermore, it is interesting to
observe that Problem A can be regarded as a particular case of Problem B when
one chooses π = δ

Â
, namely when π is a Dirac delta concentrated at Â:

Problem Bδ
Â
↪→ Problem A

Remark 4.3. In our framework, we consider a probability distribution merely on
the matrix A of the dynamics and not on the matrix B. It is not hard to check
that the arguments proposed and the results achieved in the next sections hold as
well in an extended framework where the matrix B is possibly unknown. However,
we preferred to consider a simpler case to keep the overall presentation as clear as
possible. Moreover, it seems reasonable to assume that the agent doesn’t know how
the environment works (matrix A), whereas being aware of how the control affects
the system (matrix B).

4.1.1 Preliminary results for Problem B

Let us start showing a series of basic results on the existence and the regularity of
trajectories and optimal controls for the system we are considering.
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In this section we assume that π is a probability distribution on a compact set
of matrices A ⊂ Rn×n. Since A is bounded, there exists a constant CA such that
‖A‖2 ≤ CA, ∀A ∈ A.
For a given matrix A ∈ A and an admissible control u ∈ Ut0 , the notation xA(t;u)
will denote the solution of (4.9) relative to A and u. However, when it is not
ambiguous, we will omit the dependency on the control u and write simply xA(t).

Lemma 4.4 (Boundedness and continuity of trajectories). Let us consider the
dynamical system in (4.9). The following results hold:

(i) For each u ∈ L1([t0, T ];Rm), the trajectory xA(·;u) is uniformly bounded for
all A ∈ A:

|xA(t;u)| ≤ Cux ∀ t ∈ [t0, T ], ∀A ∈ A ,

where Cux is a constant which depends on u and on x0.

(ii) For each u ∈ L1([t0, T ];Rm), the map A 7→ xA(·;u) is continuous;

(iii) For each A ∈ A, the map u 7→ xA(·;u) is continuous for u ∈ L1([t0, T ];Rm).

Proof. (i) Recall that xA(t) satisfies the relation

xA(t) = x0 +
∫ t

t0
AxA(τ) +Bu(τ) dτ, ∀ t ∈ [t0, T ].

for each A ∈ A. Then

|xA(t)| ≤ |x0|+
∫ t

t0
‖A‖2 |xA(τ)| dτ + ‖B‖2

∫ t

t0
|u(τ)| dτ ∀ t ∈ [t0, T ],

so by the Grönwall Lemma (see e.g. Lemma 2.4.4 on [143]) we get

|xA(t)| ≤
(
|x0|+ ‖B‖2

∫ t

t0
|u(τ)| dτ

)
e‖A‖2(t−t0)

≤
(
|x0|+ ‖B‖2

∫ t

t0
|u(τ)| dτ

)
eCAT =: Cux

(4.11)

for every A ∈ A and t ∈ [t0, T ]. This shows condition (i).

(ii) Fix a control u ∈ L1([t0, T ];Rm) and consider the trajectories solutions of (4.9)
relative to two different matrices A and A′. If we define

z(t) := xA(t)− xA′(t) ,

then z solves the following differential system:{
ż(t) = AxA(t)−A′xA′(t) t ∈ [t0, T ]
z(t0) = 0 .

Notice that we can rewrite the right hand side as

AxA(t)−A′xA′(t) = Az(t) + (A−A′)xA′(t) ,
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and thus we can give the estimate

|ż(t)| ≤ CA|z(t)|+
∥∥A−A′∥∥2C

u
x .

Applying again the Grönwall Lemma on z, we get

|z(t)| ≤
∥∥A−A′∥∥2C

u
x

∫ t

t0
e
∫ t
τ
CAdσdτ ≤ TCuxeCAT

∥∥A−A′∥∥2 ∀ t ∈ [t0, T ] ,

which implies the continuity of the map A 7→ xA(·).

(iii) Fix a matrix A ∈ A and consider the trajectories relative to two different
controls u, u′ ∈ Ut0 . In a similar way as in (ii) we define

z(t) := xA(t;u)− xA(t;u′) ,

which solves the ODE system{
ż(t) = Az(t) +B

(
u(t)− u′(t)

)
t ∈ [t0, T ]

z(t0) = 0 ,

and, by Grönwall’s Lemma, we get

|z(t)| ≤ ‖B‖2
∫ t

t0
e
∫ t
τ
CAdσ|u(τ)− u′(τ)|dτ ≤ eCAT ‖B‖2

∥∥u− u′∥∥1

for all t ∈ [t0, T ]. The last inequality gives the continuity with respect to
u ∈ L1([t0, T ];Rm).

The following result guarantees that the minimization problem (4.6) is well
posed.

Lemma 4.5 (Existence, uniqueness and upper bounds of the optimal control). Let
the assumption (SH) hold true. Given π ∈ P(A), Problem B (4.6) admits a unique
minimizer {(x̄A, ū)(·) : A ∈ A}, satisfying the following upper bound:(∫ T

t0
|ū(t)|2 dt

)1/2

≤ Cu , (4.12)

where Cu does not depend on π and is defined as

Cu :=
√

1
r1

(
T ‖Q‖2 + ‖Qf‖2

)
|x0|2e2CAT ,

where r1 is the smallest eigenvalue of the matrix R.

Proof. Consider a minimizing sequence uk ∈ Ut0 of the cost functional Jπ,t0,x0 defined
in (4.7), satisfying Jπ,t0,x0 [uk]→ infu∈Ut0 Jπ,t0,x0 [u], infu∈Ut0 Jπ,t0,x0 [u] ≤ Jπ,t0,x0 [uk],
and the related minimizing process {(xkA, uk)(·) : A ∈ A}. Set

εk := Jπ,t0,x0 [uk]− inf
u∈Ut0

Jπ,t0,x0 [u] ≥ 0.
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It is not restrictive to assume that εk < 1 for all k ∈ N.
Let us consider the system (4.9) when the control is u0 ≡ 0. The process

{(x0
A, u

0)(·) : A ∈ A}) is solution of{
ẋ0
A(t) = Ax0

A(t) t ∈ [t0, T ]
x0
A(t0) = x0

for every A ∈ A. Hence

|x0
A(t)| = |eAt x0| ≤ |x0|e‖A‖2T ∀ t ∈ [0, T ], ∀A ∈ A .

The cost achieved by the control u0 can be estimated as follows:

Jπ,t0,x0 [u0] = Eπ

[
1
2

∫ T

t0
x0
A(t)TQx0

A(t) dt+ 1
2x

0
A(T )TQfx0

A(T )
]

≤ Eπ
[1

2T ‖Q‖2 |x0|2e2‖A‖2T + 1
2 ‖Qf‖2 |x0|2e2‖A‖2T

]
≤ 1

2
(
T ‖Q‖2 + ‖Qf‖2

)
|x0|2e2CAT .

From the construction of the minimizing sequence we get

Jπ,t0,x0 [uk] ≤ Jπ,t0,x0 [u0] + εk ≤
1
2
(
T ‖Q‖2 + ‖Qf‖2

)
|x0|2e2CAT + εk .

Since the matrix R > 0, one has

Jπ,t0,x0 [uk] = Eπ

[
1
2

∫ T

t0
xkA(t)TQxkA(t) + uk(t)TRuk(t) dt+ 1

2x
k
A(T )TQfxkA(T )

]

≥ 1
2

∫ T

t0
uk(t)TRuk(t) dt ≥ 1

2

∫ T

t0
r1|uk(t)|2 dt ,

where r1 is the smallest eigenvalue of the matrix R.
Hence one obtains the bound on the minimizing sequence∫ T

t0
|uk(t)|2 dt ≤ 1

r1

(
T ‖Q‖2 + ‖Qf‖2

)
|x0|2e2CAT + 2εk

r1
, (4.13)

which results in a uniformly bounded norm:

∥∥∥uk∥∥∥
2
≤
√

1
r1

(
T ‖Q‖2 + ‖Qf‖2

)
|x0|2e2CAT + 2

r1
=: Cu ∀k ∈ N . (4.14)

In view of the previous relation, it follows from standard compactness arguments
that uk ⇀ ū weakly in L2([t0, T ];Rm). Since uk is uniformly bounded in L2, then
using in turn the relation (4.11), the Hölder inequality and the relation (4.14), one
obtains that there exists a constant Cx > 0 such that

|xkA(t)| ≤ Cukx ≤
(
|x0|+

√
T ‖B‖2Cu

)
eCAT =: Cx (4.15)
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holds for every k ∈ N, A ∈ A and t ∈ [t0, T ]. Furthermore, for each k ∈ N, A ∈ A
and t ∈ [t0, T ], one has∫ t

t0

∣∣∣ẋkA(τ)
∣∣∣ dτ ≤ ∫ t

t0
‖A‖2 |x

k
A(τ)|dτ +

∫ t

t0
‖B‖2 |u

k(τ)|dτ

≤ TCACx +
√
T ‖B‖2Cu ,

which implies that, for each A ∈ A, ẋkA ⇀ ˙̄xA weakly in L1([t0, T ];Rm), xkA → x̄A
uniformly in [t0, T ] and, in view of the linearity of the control system, the process
{(x̄A, ū)(·) : A ∈ A} is the solution of the linear system{ ˙̄xA(t) = Ax̄A(t) +Bū(t), t ∈ [t0, T ],

x̄A(t0) = x0,

for each A ∈ A. So the process {(x̄A, ū)(·) : A ∈ A} is a minimizer for Problem B
and, in view of (4.13), ū satisfies the bound (4.12) with the stricter constant

Cu :=
√

1
r1

(
T ‖Q‖2 + ‖Qf‖2

)
|x0|2e2CAT .

Since the functional u 7→ Jπ,t0,x0 [u] is strictly convex, the uniqueness of the
minimizer follows by standard arguments. This completes the proof.

Remark 4.6. In view of the previous results, if {(x̄A, ū)(·) : A ∈ A} is an optimal
process for problem B, then the constant

Cx :=
(
|x0|+

√
T ‖B‖2Cu

)
eCAT

is such that
|x̄A(t)| ≤ Cx, ∀A ∈ A, ∀t ∈ [t0, T ]

and does not depend on π.

4.2 Optimality conditions
Let us consider the optimal control problem

minimize Jπ,t0,x0 [u]
over u : [t0, T ]→ Rm measurable such that
u(t) ∈ U(t) a.e. t ∈ [t0, T ],
ẋA(t) = AxA(t) +Bu(t), A ∈ A, t ∈ [t0, T ]
xA(t0) = x0,

(4.16)

where U : [t0, T ]  Rm is a L × BRm-measurable multifunction taking values
compact sets and Jπ,t0,x0 is the cost functional defined in (4.7) for a given, fixed
π ∈ P(A). For a given reference process {(x̄A, ū)(·) : A ∈ A}, we assume that the
following condition holds true:
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(TH): There exist δ > 0 and a function c ∈ L2([t0, T ];R) such that

|Ax+Bu| ≤ c(t),

for all x ∈ Bn(x̄A(t), δ), u ∈ U(t), A ∈ A, a.e. t ∈ [t0, T ].

It follows from standard ODE theory that, when condition (TH) holds, for every
admissible process {(x̄A, ū)(·) : A ∈ A} one has that x̄A(·) is in W 1,1([t0, T ];Rn) for
all A ∈ A.

Definition 4.7. For a given δ > 0, a process {(x̄A, ū)(·) : A ∈ A} is said to be a
W 1,1-local minimizer for problem (4.16) if

Jπ,t0,x0 [ū] ≤ Jπ,t0,x0 [u]

for every process {(xA, u)(·) : A ∈ A} such that

sup
A∈A
‖x̄A(·)− xA(·)‖W 1,1 ≤ δ.

We recall the following result due to Bettiol and Khalil, that is a special case of
Theorem 3.3 in [23].

Theorem 4.8 (Bettiol-Khalil, 2019). Let {(x̄A, ū)(·) : A ∈ A} be a W 1,1-local min-
imizer for the optimal control problem (4.16). Let the assumption (TH) be satisfied.
Then, there exists a L×BA measurable function p : [t0, T ]×A → Rn, p(t, A) ≡ pA(t),
such that

(i) pA(·) ∈W 1,1([t0, T ];Rn) ∀A ∈ supp(π) ;

∫
A
pA(t)Bū(t) dπ(A)− 1

2 ū(t)TRū(t)(ii)

= max
u∈U(t)

{∫
A
pA(t)Budπ(A)− 1

2u
TRu

}
a.e. t ∈ [t0, T ]

(iii) − ṗA(t) = AT pA(t)−Qx̄A(t) a.e. t ∈ [t0, T ], ∀A ∈ supp(π) ;

(iv) − pA(T ) = Qf x̄A(T ) ∀A ∈ supp(π) .

Remark 4.9. Let us notice that Theorem 3.3 in [23] is derived under the stronger
assumption:

(TH’): there exist δ > 0 and c > 0 such that

|Ax+Bu| ≤ c ,

for all x ∈ B(x̄A(t), δ), u ∈ U(t), A ∈ A, a.e. t ∈ [t0, T ].
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However, a scrutiny of the proof given there reveals that the result still holds true
under the relaxed condition (TH). Furthermore, Theorem 3.3 in [23] is derived for a
Mayer optimal control problem, i.e. with only a final cost, but an analogous theorem
for Bolza optimal control problems can be easily obtained by using a standard state
augmentation argument.

We are now ready to prove the necessary optimality conditions for Problem B:

Theorem 4.10. Let (SH) hold true. Then the following optimality condition is
satisfied by the minimizer {(x̄A, ū)(·) : A ∈ A} for Problem B (4.6). There exists a
L ×BA measurable function p : [t0, T ]×A → Rn, p(t, A) ≡ pA(t), such that

(i) pA(·) ∈W 1,1([t0, T ];Rn) ∀A ∈ supp(π) ;

(ii) ū(t) = +R−1BT
∫
A
pA(t) dπ(A) t ∈ [t0, T ] ;

(iii) − ṗA(t) = AT pA(t)−Qx̄A(t) a.e. t ∈ [t0, T ], ∀A ∈ supp(π) ;

(iv) − pA(T ) = Qf x̄A(T ) ∀A ∈ supp(π) .

Proof. Let us first observe that the optimal process {(x̄A, ū)(·) : A ∈ A} exists and
is unique, due to Lemma 4.5. Consider now the optimal control problem

minimize Jπ,t0,x0 [u]
over u : [t0, T ]→ Rm measurable such that
u(t) ∈ Bm(ū(t), 1) a.e. t ∈ [t0, T ],
ẋA(t) = AxA(t) +Bu(t), A ∈ A, t ∈ [t0, T ]
xA(t0) = x0 .

(4.17)

Such an optimal control problem is a special case of (4.16) with the choice of
U(t) = Bm(ū(t), 1). Clearly, since {(x̄A, ū)(·) : A ∈ A} is a minimizer for Problem
B, then it is also a minimizer for problem (4.17). Furthermore, since any element
of u ∈ U(t) can be written as u = ū(t) + v, for some v ∈ Bm(0, 1) and in view of
Remark 4.6, then one can easily find δ > 0 and a function c ∈ L2([t0, T ],R) such
that the hypothesis (TH) is satisfied. Indeed,

|Ax+Bu| = |Ax+B(ū(t) + v)| ≤ ‖A‖2 (Cx+δ)+‖B‖2 (|ū(t)|+ 1) =: c(t) (4.18)

for all x ∈ Bn(x̄A(t), δ), ∀A ∈ A, for all u ∈ Bm(ū(t), 1), a.e. t ∈ [t0, T ], where Cx
is the constant appearing in Remark 4.6. So the process {(x̄A, ū)(·) : A ∈ A} is a
W 1,1-minimizer (see Definition 4.7) for the optimal control problem (4.17) and the
hypothesis (SH) are satisfied. Then one can invoke Theorem 4.8, which provides
conditions (i)-(iii)-(iv) of the statement. In order to obtain condition (ii), it is
enough to observe that

ū(t) = arg max
u∈U(t)

{∫
A
pA(t)Budπ(A)− 1

2u
TRu

}
, a.e. t ∈ [t0, T ]

and that ū(t) is clearly an interior point of U(t) for a.e. t ∈ [t0, T ]. Hence, ū(t) has
to satisfy also condition (ii) of Theorem 4.10. This completes the proof.
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Remark 4.11. Theorem 4.10 provides the existence of a multiplier pA(·) for all
A ∈ supp(π). In general, we can extend its definition to all A ∈ A, considering pA(·)
as the unique solution of{

−ṗA(t) = AT pA(t)−Qx̄A(t) t ∈ [t0, T ]
−pA(T ) = Qf x̄A(T ) ,

(4.19)

where {(x̄A, ū)(·) : A ∈ A} is the unique minimizer of Problem B.

The following result guarantees that this extension defined in Remark 4.11 is
continuous with respect to A:

Lemma 4.12 (Boundedness and continuity of multipliers). Let us consider the
multipliers defined in (4.19) for each A ∈ A. They have the following properties:

(i) There exists a positive constant Cp, independent from π, which bounds uni-
formly all multipliers, i.e.

|pA(t)| ≤ Cp ∀ t ∈ [t0, T ], ∀A ∈ A ,

(ii) The map A 7→ pA(·) is continuous.

Proof. The proof is similar to that of Lemma 4.4, with the only difference that here
we need to apply the Grönwall Lemma backward instead of forward. Notice that
the final condition

−pA(T ) = Qf x̄A(T )

will not be the same for all A ∈ A whereas the initial condition was the same in
Lemma 4.4. However, it is still continuous with respect to A by Lemma 4.4, so the
same arguments can be applied to prove (ii).

4.3 Main convergence results

In this section we will present our main results, regarding respectively the Conver-
gence of the value function (Corollary 4.14) and the Convergence of the optimal
control (Theorem 4.15). Given a sequence of probability distributions {πN} ⊂ P(A),
for each N ∈ N we consider Problem BπN , namely problem (4.6) relative to the
distribution πN . Recalling the definition of the value function in (4.8), we define

V N (t0, x0) := VπN (t0, x0) = inf
u∈Ut0

JπN ,t0,x0 [u] . (4.20)

If {πN} ⊂ P(A) is such that W1(πN , π∞) → 0 for N → ∞, where W1 is the 1-
Wasserstein distance defined in (3.6), what can be said about the convergence of the
value functions V N to V∞ and of the optimal controls uN to u∞ for N →∞? In
this section we give an answer to those questions.
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4.3.1 Convergence of the value function

To begin with, we show that the value function Vπ is Lipschitz continuous with
respect to the probability distribution π. As an application, we will have the
convergence of the value functions V N to V∞ when W1(πN , π∞)→ 0.

Theorem 4.13 (Lipschitz estimate for the value function w.r.t. π). Let the assump-
tion (SH) be satisfied. Given π, π′ ∈ P(A) and (t0, x0) ∈ [0, T ]×K with K ⊂ Rn
compact set, let us consider the two value functions Vπ and Vπ′ as defined in (4.8).
Then the distance between V and V ′ can be bounded uniformly for (t0, x0) ∈ [0, T ]×K,
that is:

‖Vπ − Vπ′‖∞,[0,T ]×K ≤ CKW1(π, π′) , (4.21)

where CK = CK(T,CA, ‖Q‖2 , ‖Qf‖2 , r1,K) is a constant which does not depend on
the distributions π and π′, but merely on the compact set A.

Proof. The proof is similar to that of Theorem 3.3. We divide it into three steps.
STEP 1: Cost difference between two single trajectories.
Fix two matrices A,A′ ∈ A, any point (t0, x0) ∈ [0, T ]× Rn and a control u ∈ Ut0 .
Using Grönwall’s Lemma as we did for point (ii) of Lemma 4.4, we get the following
estimate:

|xA(t)− xA′(t)| ≤Cux (t− t0) e‖A‖2(t−t0) ∥∥A−A′∥∥2

≤Cux t e‖A‖2t
∥∥A−A′∥∥2 ∀ t ∈ [t0, T ] ,

with Cux given by Lemma 4.4.
Let us denote by ` the running cost and by h the final cost:

`(x, u) := 1
2
(
xTQx+ uTRu

)
and h(x) := 1

2x
TQfx ,

so we can write

Jπ,t0,x0 [u] =
∫
A

[∫ T

t0
`(xA(t), u(t)) dt+ h(xA(T ))

]
dπ(A) .

Since both ` and h are locally Lipschitz continuous, one has

|`
(
xA′(t), u(t)

)
− `
(
xA(t), u(t)

)
| = 1

2 |xA
′T (t)QxA′(t)− xTA(t)QxA(t)|

≤ 1
2 |xA

′TQ(xA′(t)− xA(t))|+ 1
2 |(xA

′(t)− xA(t))TQxA(t)|

≤ ‖Q‖2Cx|(xA′(t)− x(t))| ≤ Lu` Cux t e‖A‖2t
∥∥A−A′∥∥2 ,

and, similarly,

|h
(
xA′(T )

)
− h

(
xA(T )

)
| ≤ LuhCux T e‖A‖2T

∥∥A−A′∥∥2 ,

where we defined the Lipschitz constants

Lu` := ‖Q‖2C
u
x and Luh := ‖Qf‖2C

u
x ;
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these two constants inherits from Cux the dependency on x0 and u.
Finally, the cost difference between two single trajectories can be easily bounded by∫ T

t0

∣∣`(xA′(t), u(t)
)
− `
(
xA(t), u(t)

)∣∣dt+ |h(xA′(T ))− h(xA(T ))|

≤ (TLu` + Luh)CuxT eCAT
∥∥A−A′∥∥2 .

(4.22)

STEP 2: Cost difference between two probability distributions.
Fix an initial condition x(t0) = x0 ∈ Rn with 0 ≤ t0 < T and a control u ∈ Ut0 . We
want to prove a bound for the distance between Jπ,t0,x0 [u] and Jπ′,t0,x0 [u].
As a property ofW1, there exists (see Theorem 4.1 on [141]) a probability distribution
γ∗ ∈ Γ(π, π′) on A×A with marginal distributions π and π′ such that

W1(π, π′) =
∫
A×A

d2(A,A′) dγ∗(A,A′) , (4.23)

where d2(A,A′) = ‖A−A′‖2 is the distance between two matrices A,A′ ∈ Rn×n
induces by the 2-norm. We can thus write

∣∣Jπ,t0,x0 [u]− Jπ′,t0,x0 [u]
∣∣ =

∣∣∣∣∣
∫
A

∫ T

t0
`(xA(t), u(t)) dtdπ(A)−

∫
A

∫ T

t0
`(xA′(t), u(t))dtdπ′(A′)

+
∫
A
h(xA(T ))dπ(A)−

∫
A
h(xA′(T ))dπ′(A′)

∣∣∣∣
=
∣∣∣∣∣
∫
A×A

[ ∫ T

t0
(`(xA(t), u(t))− `(xA′(t), u(t))) dt

+ h(xA(T ))− h(xA′(T ))
]
dγ∗(A,A′)

∣∣∣∣∣ ,
where we have used that∫

A×A

(
ϕ(A) + ψ(A′)

)
dγ∗(A,A′) =

∫
A
ϕ(A)dπ(A) +

∫
A
ψ(A′)dπ′(A′)

for all measurable functions ϕ,ψ on A, since γ∗ admits π and π′ as marginals.
Using the bound (4.22) from STEP 1 and formula (4.23), we get

∣∣Jπ,t0,x0 [u]− Jπ′,t0,x0 [u]
∣∣ ≤ ∫

A×A
(TLu` + Luh) Cux T eCAT

∥∥A−A′∥∥2 dγ
∗(A,A′)

= (TLu` + Luh)Cux T eCAT W1(π, π′) .
(4.24)

Note that the constant Cux which appears here depends merely on x0 and u.
STEP 3: Lipschitz estimate for the value function.
We will now show that an estimate similar to (4.24) holds true even for the value
functions Vπ and Vπ′ .
Fix any point (t0, x0) ∈ [0, T ] × K. In view of Lemma 4.5, there exist controls
ū, ū′ ∈ Ut0 such that

Jπ,t0,x0 [ū] = Vπ(t0, x0), Jπ′,t0,x0 [ū′] = Vπ′(t0, x0) .
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Then one has

Vπ′(t0, x0)− Vπ(t0, x0) = inf
u∈Ut0

Jπ′,t0,x0 [u]− Jπ,t0,x0 [ū] ≤ Jπ′,t0,x0 [ū]− Jπ,t0,x0 [ū]

and, in the same way,

Vπ(t0, x0)− Vπ′(t0, x0) = inf
u∈Ut0

Jπ,t0,x0 [u]− Jπ′,t0,x0 [ū] ≤ Jπ,t0,x0 [ū′]− Jπ′,t0,x0 [ū′] .

Hence

|Vπ(t0, x0)− Vπ′(t0, x0)| ≤ max
{∣∣Jπ′,t0,x0 [ū]− Jπ,t0,x0 [ū]

∣∣ , ∣∣Jπ′,t0,x0 [ū′]− Jπ,t0,x0 [ū′]
∣∣} .

Moreover, being both ū and ū′ optimal control for some distribution on A, we can
use the uniform constant Cx given by Remark 4.6 and define an analogous uniform
constants for the Lipschitz continuity of ` and h:

L` := ‖Q‖2Cx , Lh := ‖Qf‖2Cx .

In this way, the estimate becomes independent from ū and ū′ and thus from π and
π′:

|Vπ′(t0, x0)− Vπ(t0, x0)| ≤ Cx0 W1(π, π′) ,

where
Cx0 :=

(
T L` + Lh

)
CxT e

CAT .

Finally, noting that the estimate depends on x0 only through its norm, we get that
the bound is uniform in compact sets K ⊂ Rn, letting

CK := sup
x0∈K

Cx0 .

A straightforward consequence of the previous Theorem is the following conver-
gence result for the value function V N .

Corollary 4.14 (Convergence of the value function). If πN ∗
⇀ π∞, then V N (t0, x0)→

V∞(t0, x0) for each (t0, x0) ∈ [0, T ]× Rn. The convergence is uniform in compact
sets [0, T ]×K, where K ⊂ Rn is compact.

4.3.2 Convergence of the optimal control

In what follows, we will use ūN (·) to denote the optimal control of Problem BπN .
Furthermore, x̄NA (·) and pNA (·) denote, respectively, the optimal trajectories and the
multipliers relative to Problem BπN , that is the solutions of the differential systems
(4.9) and (4.19).

The following theorem provides a strong convergence of ūN (·) to the optimal
control ū∞(·) of the limit problem Bπ∞ , assuming that πN ∗

⇀ π∞.

Theorem 4.15 (Convergence of the optimal control). Let the assumption (SH) be
satisfied. Consider a sequence of probability distributions {πN} ⊂ P(A), such that
πN

∗
⇀ π∞ and fix 0 ≤ t0 < T and x0 ∈ Rn. If ūN (·) and ū∞(·) are respectively the

optimal controls of Problem BπN and Bπ∞, i.e. they satisfy (4.10) respectively for
πN and π∞, then ūN (·) converges uniformly to ū∞(·) for N →∞.
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Proof. Without loss of generality, one can take t0 = 0, being all the other cases
similar.
Lemma 4.5 assures that, for each πN ∈ P(A), there exists a unique optimal process{

(x̄NA , ūN )(·) : A ∈ A
}
. Taking into account Theorem 4.10 and Remark 4.11, that

process satisfies the following necessary conditions: for each N ∈ N, there exists a
continuous function pN : [0, T ]×A → Rn, pN (t, A) ≡ pNA (t), such that

(i)
pNA (·) ∈W 1,1([0, T ];Rn) ∀A ∈ A ;

(ii)
ūN (t) = +R−1BT

∫
A
pNA (t) dπN (A), ∀ t ∈ [0, T ] ;

(iii)
−ṗNA (t) = AT pNA (t)−Qx̄NA (t) a.e. t ∈ [0, T ], ∀A ∈ A ;

(iv)
−pNA (T ) = Qf x̄

N
A (T ) ∀A ∈ A .

For each A ∈ A, the family of functions

FA :=
{(
x̄NA , p

N
A

)
(·)
}
N∈N

is uniformly bounded due to Lemma 4.4 and Lemma 4.12. Moreover, one can find
the bounds on the derivatives:∫ T

0
|ẋNA (t)|dt =

∫ T

0

∣∣∣Ax̄NA (t) +BūN (t)
∣∣∣ dt ≤ TCACx +

√
T ‖B‖2Cu,

|ṗNA (t)| = |AT pNA (t)−Qx̄NA (t)| ≤ CACp + ‖Q‖2Cx ,
(4.25)

for all A ∈ A, a.e. t ∈ [0, T ]. The second bound in (4.25) and the relation (ii), imply
that also the map

[0, T ] 3 t 7→ ūN (t) = +R−1BT
∫
A
pNA (t) dπN (A)

is equibounded and equicontinuous in N . For each A ∈ A fixed, one can then apply
Theorem 2.5.3 on [143], implying the existence of some limit functions x∞A , p∞A ∈
W 1,1([0, T ];Rn) and u∞ ∈ C([0, T ];Rm) such that

ẋNA (t) ⇀ ẋ∞A (t) and ṗNA (t) ⇀ ṗ∞A (t) weakly in L1([0, T ];Rn) as N →∞ ,

x̄NA (t)→ x∞A (t) and pNA (t)→ p∞A (t) uniformly on [0, T ] as N →∞ ,

ūN (t)→ u∞(t) uniformly on [0, T ] as N →∞ ,

and such that, for each A ∈ A, (x∞A , p∞A )(·) is a solution of the boundary value
problem 

ẋ∞A (t) = Ax∞A (t) +Bu∞(t), t ∈ [0, T ]
−ṗ∞A (t) = AT p∞A (t)−Qx∞A (t), t ∈ [0, T ]
x∞A (0) = x0

−p∞A (T ) = Qfx
∞
A (T ) .

(4.26)
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Furthermore, since πN ∗
⇀ π∞, u∞ satisfies the relation

[0, T ] 3 t 7→ u∞(t) = +R−1BT
∫
A
p∞A (t) dπ∞(A). (4.27)

In fact, the result follows from the estimate∣∣∣∣∫
A
pNA (t)dπN (A)−

∫
A
p∞A (t)dπ∞(A)

∣∣∣∣ ≤ ∣∣∣∣∫
A
pNA (t)dπN (A)−

∫
A
pNA (t)dπ∞(A)

∣∣∣∣
+
∣∣∣∣∫
A
pNA (t)dπ∞(A)−

∫
A
p∞A (t)dπ∞(A)

∣∣∣∣
(4.28)

for all t ∈ [0, T ], which implies that

ūN (t) = R−1BT
∫
A
pNA (t)dπN (A)→ u∞(t) = R−1BT

∫
A
p∞A (t)dπ∞(A)

uniformly on [0, T ] as N →∞.
Notice that the convergence is guaranteed along a subsequence, but one can say

that the whole sequence converges since the limit does not depend on the subsequence
(it solves (4.26)).
It remains to show that the limiting process {(x∞A , u∞)(·) : A ∈ A} is actually optimal
for the Problem B (4.6) relative to π∞. To this aim, let us stress the following
properties of the cost functional Jπ,0,x0 in (4.7), using the lighter notation

JN := JπN ,0,x0 and J∞ := Jπ∞,0,x0 :

1) if πN ∗
⇀ π∞, JN [u] → J∞[u] for each u ∈ U0, since the map A 7→ xA(·) is

continuous by Lemma 4.4;

2) each JN is continuous with respect to u, since for each A ∈ A, the map
u 7→ xA(·;u) is continuous, again from Lemma 4.4.

Since ūN is the optimal control of Problem BπN and u is an admissible control for
the same problem, then we get

JN [ūN ] ≤ JN [u], ∀N ∈ N

so, letting N →∞, it easily follows from the previous relation and properties 1) and
2) that

J∞[u∞] ≤ J∞[u] .

In view of the uniqueness of the optimal control ū∞ for Problem Bπ∞ , one can
conclude that u∞ ≡ ū∞. Hence also the process {(x∞A , u∞)(·) : A ∈ A} is optimal
for the given problem. This concludes the proof.

Remark 4.16 (Special Case: π = δ
Â
). The particular case in which π is a Dirac delta

δ
Â
for a given matrix Â ∈ Rn×n deserves special attention. Indeed, when π = δ

Â
,

the cost functional Jπ,t0,x0 (4.7) becomes the cost functional

Jt0,x0 [u] := 1
2

∫ T

t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt+ 1

2x(T )TQfx(T ) ,
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and Problem B in (4.6) coincides with a standard Problem A (see (4.1))

minimize
{

1
2
∫ T
t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt+ 1

2x(T )TQfx(T )
}

over (x, u)(·) such that u : [t0, T ]→ Rm is measurable and
ẋ(t) = Âx(t) +Bu(t), t ∈ [t0, T ]
x(t0) = x0 .

(4.29)

Furthermore, the definition of the value function and of the optimal control we gave
in (4.8) and (4.10) agree, in this special case, with the classic definitions in control
theory (see (4.4) and (4.5)):

V (t0, x0) := inf
u∈Ut0

Jt0,x0 [u] and ū := arg min
u∈Ut0

Jt0,x0 [u] .

If we apply Corollary 4.14 and Theorem 4.15 to a sequence πN converging to δ
Â
,

then we obtain

V N (t0, x0)→ V (t0, x0) ∀ t0 ∈ [0, T ], x0 ∈ Rn

and
ūN → ū uniformly in [0, T ] ,

where V N and ūN are respectively the value function in (4.8) and the optimal control
(4.10) relative to πN .

4.4 On finite support measures converging to δÂ

In this section, we will assume that A is a finite set, namely A := {A1, . . . , AM}
for some integer M ∈ N. Let us consider a sequence of probability distributions
{πN} ⊂ P(A), that can be written as

πN :=
M∑
i=1

αNi δAi , for some αNi ≥ 0 such that
M∑
i=1

αNi = 1, ∀N ∈ N. (4.30)

For a given t0 ∈ [0, T ] and x0 ∈ Rn, suppose that the underlying dynamics
governing the optimal control problem is a standard Problem A (see (4.1)):

minimize Jt0,x0 [u]
over (x, u)(·) such that u : [t0, T ]→ Rm is measurable and
ẋ(t) = Âx(t) +Bu(t), t ∈ [t0, T ]
x(t0) = x0 ,

(4.31)

where Â ∈ A and the cost functional Jt0,x0 [u] is defined as in (4.2):

Jt0,x0 [u] := 1
2

∫ T

t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt+ 1

2x(T )TQfx(T ) . (4.32)
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Without loss of generality, one can set Â ≡ A1. For each t0 ∈ [0, T ] and x0 ∈ Rn,
the value function V (t0, x0) for this problem has been defined in (4.4).

One can expect that, after some interactions with the system, it would be possible
to construct a sequence of probability distributions {πN} ⊂ P(A) capturing the
current belief that one has about the real system (4.31) and such that, when N is
sufficiently large, πN gets closer and closer to δA1 and eventually πN ∗

⇀ δA1 .
For each fixed N ∈ N, one can reformulate Problem B associated to πN as a

classical LQR problem on an augmented system of dimension nM :

minimize JNt0,X0
[u]

over (X,u)(·) such that u : [t0, T ]→ Rm is measurable and
Ẋ(t) = ÃX(t) + B̃u(t), t ∈ [t0, T ]
X(t0) = X0 ,

(4.33)

with cost functional

JNt0,X0 [u] := 1
2

∫ T

t0

(
X(t)T Q̃NX(t) + u(t)TRu(t)

)
dt+ 1

2X(T )T Q̃Nf X(T ) . (4.34)

where we have used the compact notation X(t) := (xA1(t), . . . , xAM (t)) ∈ RnM and
X0 ∈ RnM is made by vector x0 repeated M times. The matrices of the augmented
system are defined as

Ã =


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · AM

 , B̃ =


B

B
...
B

 ,

Q̃N =


αN1 Q 0 · · · 0
0 αN2 Q · · · 0
...

... . . . ...
0 0 · · · αNMQ

 and Q̃Nf =


αN1 Qf 0 · · · 0
0 αN2 Qf · · · 0
...

... . . . ...
0 0 · · · αNMQf

.

In this section, we will use V N (t0, X0) to denote the value function related to the
LQR problem (4.33), namely

V N (t0, X0) = inf
u∈Ut0

JNt0,X0 [u]. (4.35)

Since the optimal control problem (4.33) can be seen as a classic LQR problem, then
one has the following relation between the value function and the optimal control in
feedback form (see Section 2.1.2 and Remark 2.15): there exists PN such that

V N (t0, X0) = XT
0 P

N (t0)X0, ∇XV N (t0, X0) = 2PN (t0)X0 (4.36)

ūN (s,X0) = −R−1B̃TPN (t0)X0, (4.37)
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where [t0, T ] 3 t 7→ PN (t) ∈ RnM×nM solves the Riccati equationÃ
TP (t) + P (t)Ã− P (t)B̃R−1B̃TP (t) + Q̃N = −Ṗ (t), t ∈ [t0, T ]

P (T ) = Q̃f
N
.

(4.38)
For x0 ∈ Rn, we will use the notation V N (t0, x0) to denote the value function

V N (t0, X0) evaluated at X0 = (x0, . . . , x0) ∈ RnM .
Now we can summarize the results of the previous section applied to problem (4.33).

Corollary 4.17. Let the assumption (SH) be satisfied. For each 0 ≤ t0 < T ,
x0 ∈ Rn and {πN} ⊂ P(A), the optimal control problems (4.33) and (4.31) satisfy
the following conditions:

i) problem (4.33) and (4.31) admit a unique optimal process
{

(x̄NA , ūN )(·) : A ∈ A
}

and (x̄, ū)(·), respectively;

ii) for each K ⊂ Rn, ∃CK such that

||V N − V ||∞,K ≤ CKW1(πN , δ
Â

) ; (4.39)

iii) if, moreover, {πN} is such that πN ∗
⇀ δ

Â
, then the optimal control ūN → ū

uniformly for t ∈ [t0, T ].

For each N ∈ N, the solution of (4.38) is related to the matrices XN , Y N :
[t0, T ]→ RnM×nM , such that the pair (XN , Y N )(·) is the solution of the backward
Hamiltonian differential equation

Ẋ(t)
Ẏ (t)

 = HN

X(t)
Y (t)

 for t ∈ [t0, T ]

X(T )
Y (T )

 =

 I

Q̃f
N

 ,

(4.40)

where

HN =

 Ã −B̃R−1B̃T

Q̃N −ÃT

 . (4.41)

The relation between the solutions of (4.38) and (4.40) was stated in precise terms
by Coppel in [33, pp. 274-275]:

Theorem 4.18. Suppose that (SH) holds true. Let X,Y : [t0, T ] → RnM×nM be
the solutions of the Hamiltonian differential problem (4.40). Then

1. X(t) is non-singular for all t ∈ [t0, T ];

2. the solution of (4.38) is

P̃ (t) = Y (t)X−1(t), t ∈ [t0, T ] . (4.42)
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We are now ready to strengthen the results of the previous section by showing
that, in the case in which the sequence of probability measures and its limit have finite
support, then also the solution of the Riccati equation (4.38) has good convergence
properties:

Theorem 4.19. (Convergence of the Riccati equation) Let the assumption (SH) be
satisfied. Suppose that the sequence {πN} ⊂ P(A) is such that πN ∗

⇀ δA1, that is,
for each i = 1, . . . ,M the weights converge:

αN1 → 1
αNi → 0 for i = 2, . . . ,M.

when N →∞. Then the sequence of matrices {P̃N (t)} ⊂ RnM×nM which solve the
Riccati equation (4.38) for each N ∈ N converges to the matrix

P̄ (t) =


P (t) 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ,

uniformly on t ∈ [t0, T ], where P (t) ∈ Rn×n is the solution of the Riccati equation
related to the optimal control problem (4.31) with state matrix A1, namely:{

AT1 P (t) + P (t)A1 − P (t)BR−1BTP (t) +Q = −Ṗ (t), t ∈ [t0, T ],
P (T ) = Qf ,

(4.43)

Proof. Consider the Hamiltonian systems in (4.40) related to all different distribu-
tions πN . Notice that the norm of HN in (4.41) can be bounded:∥∥∥HN

∥∥∥
2
≤ 2CA + ‖Q‖2 +M ‖B‖22

∥∥∥R−1
∥∥∥

2
,

for all N ∈ N.
Using Grönwall’s Lemma, one can easily show that the pair of matrices (XN , Y N )

solution to (4.40) is uniformly bounded and that, using again (4.40), (ẊN , Ẏ N ) is
uniformly integrally bounded, for all N ∈ N. So it is possible to apply Theorem 2.5.3
of [143] to show that the pair (XN , Y N ) converges to some matrices (X∞, Y∞)
solution of the system

Ẋ(t)
Ẏ (t)

 = H∞

X(t)
Y (t)

 for t ∈ [t0, T ]

X(T )
Y (T )

 =

 I

Q̃f
∞

 ,

(4.44)

where

H∞ =

 Ã −B̃R−1B̃T

Q̃∞ −ÃT

 (4.45)
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and

Q̃∞ =


Q 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 , Q̃∞f =


Qf 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .

Theorem 4.18 guarantees that the matrixX∞(t) is also nonsingular for each t ∈ [t0, T ],
and the matrix P̃∞(t) := Y∞(t)X∞(t)−1 is the solution of the Riccati equationÃT P̃ (t) + P̃ (t)Ã− P̃ (t)B̃R−1B̃T P̃ (t) + Q̃∞ = − ˙̃

P (t) t ∈ [t0, T ]
P̃ (T ) = Q̃∞f .

(4.46)

Since each XN (t)−1 is continuous and well defined for each N ∈ N and that
X∞(t)−1 is uniformly continuous on [t0, T ], then

P̃N (t) := Y N (t)XN (t)−1 −→ Y∞(t)X∞(t)−1 =: P̃∞(t)

uniformly on t ∈ [t0, T ]. To conclude, consider the matrix P̄ (t) ∈ RnM×nM ,

P̄ (t) =


P (t) 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ,

where P (t) ∈ Rn×n is the unique solution of the Riccati equation (4.43). A direct
verification shows that P̄ (t) ∈ RnM×nM also satisfies the Riccati equation (4.46).
However the problem (4.46) admits a unique solution, implying that P̃∞(t) ≡ P̄ (t)
for all t ∈ [t0, T ]. This ends the proof.

Remark 4.20 (Feedback optimal controls). We would like to stress that the conver-
gence of the Riccati matrix solution P̃N to P provided by Theorem 4.19 has the
following implication: for each (t0, x0) ∈ [0, T ]× Rn, we define

ūN (t0, x0) := −R−1B̃TPN (t0)(x0, . . . , x0) and
ū(t0, x0) := −R−1BTP (t0)x0,

(4.47)

then ūN tend to ū for N going to +∞. Namely, that the optimal control of problem
(4.33), which satisfies the formula (4.37), evaluated at X0 = (x0, . . . , x0) converges
pointwise to the optimal control of problem (4.31). Furthermore, for each K ⊂ Rn
compact, one has that

ūN (t0, x0)→ ū(t0, x0) uniformly on [0, T ]×K. (4.48)

It is important to point out that, whereas Theorem 4.15 proves the convergence for
the class of optimal open-loop controls, Theorem 4.19 deals with the convergence of
optimal controls in feedback form.

It remains an open question if Theorem 4.19 can be proved for a generic sequence
of probability measures

{
πN
}
N∈N

⊂ P(A) converging weakly-* to a generic proba-
bility measure π ∈ P(A). Such an issue is delicate and will be studied in the next
future.
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4.5 A numerical test
The aim of this section is to verify that the results summarized in Corollary 4.17
hold in a concrete example.

The model is the one presented in Section 4.4. The true dynamics is a controlled
harmonic oscillator described by the matrices

Â :=
(

0 1
−1 0

)
and B :=

0
1

 ;

the coefficients that are used to define the cost functional are

Q :=
(

1 0
0 1

)
and R := 0.1 ,

and the final time is T = 5. Let us write πN as in (4.30) for M = 9 and the 9
matrices are defined in a neighborhood of matrix Â, i.e.

A1 = Â ,

A2∗j+i := Â+ (−1)i 0.5 ej i = 0, 1, j = 1, 2, 3, 4

where {ej}j=1,...,4 are the matrices of the canonical basis of R2×2. The probabilities
αNi are defined according the following rule:

αN1 = 1− 1
2N , αNi = 1

8
1

2N for i = 2, . . . , 9 .

Note that the Wasserstein distance with respect to the euclidean norm on R2×2

between πN and δ
Â
can be computed exactly:

W1(πN , δ
Â

) = 1
2N+1 .

Both Problem A, that is the LQR problem with the matrix Â known, and Problem
B, that is the LQR problem with the matrix Â unknown can be solved by finding
the solution of a Riccati equation (see §IV.5 on Fleming-Rishel monograph [50]).
We solved the equation numerically for N = 0, . . . , 9. For each N we computed the
sup norm of the difference Ṽ N − V and of the difference ūN − ū, where ūN and ū
are respectively the optimal controls for the two problems starting from x0 = (1, 0).
The results are summarized in Table 4.1.

Notice that when we increase N by one we halve the distance W1(πN , δ
Â

) and
Table 4.1 tells us that also the error ||Ṽ N − V ||∞,K , with K := [−2, 2]2, is halved;
this is consistent with the estimate given by Corollary 4.17. At the same time,
we remark that the error ||ūN − ū||∞ is halved as well, even if we didn’t have any
estimate on the convergence rate of the optimal controls. We can say that in this
example both the errors are going to 0 with order 1.

The optimal trajectory of Problem A starting from x0 = (1, 0) is represented in
Figure 4.1. For Problem B the optimal trajectory is actually made of 9 trajectories,
the costs of which are weighted averaged in order to compute the cost functional
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Table 4.1. Errors for value functions and optimal controls related to πN with N = 0, . . . , 9
with respect to the true value function and the true optimal control of Problem A. The
initial point for the optimal control is x0 = (1, 0).

N α1 ||Ṽ N − V ||∞,[0,5]×K order ||ūN − ū||∞ order

0 0 6.08e-0 - 5.25e-1 -
1 0.5 3.21e-0 0.92 3.21e-1 0.71
2 0.75 1.66e-0 0.95 1.82e-1 0.82
3 0.875 8.49e-1 0.97 9.78e-2 0.90
4 0.9375 4.29e-1 0.98 5.09e-2 0.94
5 0.9687 2.16e-1 0.99 2.59e-2 0.97
6 0.9844 1.08e-1 1.00 1.31e-2 0.99
7 0.9922 5.42e-2 1.00 6.59e-3 0.99
8 0.9961 2.71e-2 1.00 3.30e-3 1.00
9 0.9980 1.36e-3 1.00 1.65e-3 1.00

J̃ . Two examples of optimal (multi-)trajectory, respectively for π0 and π2, are
represented in Figure 4.2 and Figure 4.3; note that the trajectory related to the
true dynamics is x1(t), which is the darkest one. Finally, in Figure 4.4 the optimal
controls for Problem B with N = 0, . . . , 4 are compared with the true optimal control.



4.5 A numerical test 83

Figure 4.1. Optimal trajectory of Problem A, computed solving a 2-dimensional Riccati
differential equation associated to matrix Â. The initial point is indicated with a red
dot.

Figure 4.2. Optimal (multi-)trajectory for Problem B with π0. To compute the optimal
solution we solved a 18-dimensional Riccati differential equation. The initial point is
indicated with a red dot.
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Figure 4.3. Optimal (multi-)trajectory for Problem B with π2.

Figure 4.4. Comparison of the optimal controls of Problem B relative to different probability
distributions πN , with N = 0, . . . , 4, and the true optimal control of Problem A (in
blue). In the legend we reported, for each N , the probability α1 that the true matrix
A1 ≡ Â has under the distribution πN . When α1 → 1, the optimal control of Problem
B converges to the true one.
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Chapter 5

A new online algorithm for an
LQR problem with partially
unknown dynamics

In this chapter, we present a new algorithm for an LQR problem with partially
unknown dynamics. Our setting here is slightly different from the one in Chapter 4.
In fact, while in Chapter 4 a probability distribution describing our knowledge of Â
was given, here we assume that the matrix Â is completely unknown at the beginning.
When the dynamics is known, the optimal control is obtained in feedback form
solving a backward Riccati differential equation (see Section 2.1.2). On the other
hand, when the matrix Â is unknown, the LQR solution via the Riccati equation
cannot be applied directly. We proposed a new model-based algorithm to obtain an
approximation of the dynamics and of the control at the same time during a single
simulation.

We already discussed the strong connection between RL and optimal control
theory in the previous chapters. In particular, in Section 3.2 we identified some RL
tasks as optimal control problems with unknown dynamics. We argue that these
two research areas can greatly benefit from each other. Our algorithm fits well in
this context, as it takes contributions from both fields since it can be considered as
a case of Bayesian RL (cf. Section 2.4.3), but at the same time it borrows the LQR
solution from optimal control theory to get the synthesis of a suitable control.

In particular, our algorithm is similar to PILCO [37], from which it takes the
use of Gaussian distributions and the whole process of Bayesian update. However,
we propose here some novelties. The first is that in PILCO the optimal control
is chosen through a gradient descent algorithm in a class of controls, whereas we
solve a Riccati differential equation to identify the minimizer. The second is that
PILCO needs several trials to reconstruct the dynamics and stabilize the system.
Our algorithm is designed to approximate the dynamics and to find a suitable control
in a single run but can be applied only to linear dynamical systems. Finally, let
us mention that other works have already studied LQR problems with unknown
dynamics (see i.e. [52, 54, 88, 106] and references therein), but they all need several
trials to converge, whereas our method works with just one. The contents of this
chapter have been published in [104].
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The chapter is structured as follows. In Section 5.1 we recall the LQR problem.
In Section 5.2 we present our algorithm and discuss some implementation details.
Finally, in Section 5.3 we show and discuss some numerical tests.

5.1 The classical LQR problem
We briefly recall the LQR problem (cf. Section 2.1.2) and state the standing
assumptions for the algorithm. For t0 = 0, the system dynamics is{

ẋ(t) = Âx(t) +Bu(t), t ∈ [0, T ]
x(0) = x0,

(5.1)

while the cost functional is

Jx0 [u] := 1
2

(∫ T

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt+ x(T )TQfx(T )

)
. (5.2)

We look for a control function u(t) ∈ Rm that minimizes Jx0 admissible controls
U := {u : [0, T ] → Rm, Lebesgue measurable}. Our assumptions on the cost
matrices are the following:

(SH): Q,Qf ∈ Rn×n are symmetric and semipositive definite and R ∈ Rm×m is
symmetric and positive definite.

When the dynamics is fully known, the optimal control is given by

u∗(t) = −R−1BTP (t)x(t) ∀ t ∈ [t0, T ], (5.3)

where P (t) is the unique symmetric solution of a Riccati matrix differential equation{
−Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q, t ∈ [t0, T ]
P (T ) = Qf .

(5.4)

We want to investigate: what happens if the dynamics is partially unknown?
How can one find a suitable control? We considered the following framework:

Setting. We assume that the matrices B ∈ Rn×m, Q,Qf ∈ Rn×n and R ∈ Rm×m

are given, whereas the state matrix Â ∈ Rn×n is unknown.

5.2 Description of the algorithm
In this section, we describe our model-based algorithm able to solve the LQR problem
without knowing matrix Â. The algorithm is online, meaning that it doesn’t need
any previous simulation or computation. Our goal is twofold: first, we look for a
good estimate for the unknown dynamics matrix Â; and secondly, we want to choose
a control that can steer the trajectory towards the origin. Furthermore, we assume
that we can run the experiment just once, so the system must be controlled while
the dynamics is still uncertain. To this end, we use a technique to get an estimate
of the matrix Â and to update the control at the same time.
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Figure 5.1. Time discretization for the proposed algorithm. The whole interval [0, T ] is
divided into N ∗ S small time steps. These are grouped into N rounds of S small time
steps. In this example, N = 6 and S = 4.

We divide the interval [0, T ] into equal time steps of length ∆t, globally we will
have N ∗ S small time steps, and we group them into N rounds of S steps each,
as shown in Figure 5.1. The i-th round will be denoted by Ii = [ti, ti+1] and a
superscript index will indicate a single time step:

tji = ti + j∆t, j = 0, . . . , S. (5.5)

The current knowledge of the dynamics matrix Â is represented as a probability
distribution over matrices. For each round, two major operations are carried out:

1. At the beginning of each round, a probability πi is given from the previous
round. We use the mean Āi of this distribution and compute a feedback control
for the round solving a Riccati equation;

2. At the end of each round, the current probability distribution is updated using
Bayesian formulas, according to the trajectory observed during the round. The
output is a new probability distribution πi+1.

The whole algorithm is summarized below as Algorithm 10. In the following, we
will give more technical details.

5.2.1 Prior distribution

The algorithm requires the choice of a prior distribution π0. We fix some m0 ∈ Rn
and Σ0 ∈ Rn×n and consider a random matrix A such that each of its rows rk is
distributed as an independent Gaussian vector with mean m0 and covariance matrix
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Algorithm 10 An online algorithm for a partially unknown LQR problem
Require: B, Q, Qf and R

1: Divide [0, T ] into N ∗ S time steps of length ∆t, with ∆t = T
N∗S ;

2: Group the intervals in N rounds, each containing S time steps;
3: Choose a prior distribution π0 over matrices;
4: for each round i from 0 to N-1 do
5: Find a feedback control u∗i solving a Riccati equation with the mean matrix

Āi of the distribution πi
6: Use u∗i as control for all the steps in the i-th round;
7: Observe the actual trajectory;
8: Update the distribution according to the data from the observed trajectory

and compute πi+1
9: end

Σ0:

A =


rT1
...
rTn

 rk ∼ N (m0,Σ0) ∀ k = 1, . . . , n

A typical choice for the prior distribution, when no information about the true
matrix Â is available, is m0 = (0, . . . , 0)T and Σ0 = nmIn. A high variance in the
prior distribution results in little reliance on prior information, and is necessary when
there is no information before the run. The choice of a Gaussian distribution as
prior, together with a Gaussian likelihood function (5.13), ensures that the posterior
distribution (5.14) is also Gaussian. A prior and a posterior distribution belonging to
the same family of probability distributions are called conjugate distributions; such
a prior is called a conjugate prior for the likelihood function. The use of conjugate
priors is crucial in Bayesian regression, because it allows you to compute the posterior
distribution with closed formulas, without the need for other calculations. Another
famous conjugate prior for a Gaussian likelihood function is the Inverse Wishart
distribution [102].

Finally, another possibility could be to consider a probability distribution on ma-
trices, rather than on individual rows. However, this approach has the disadvantage
of working with larger matrices. In fact, to work with a Gaussian distribution on
matrices it would be necessary to save in memory a covariance matrix of dimension
n2 × n2, whereas when considering distributions on single rows it is sufficient to
store n matrices of dimension n×n. Furthermore, simple calculations show that the
two approaches are equivalent if the noises on each component of y are considered
independent.

5.2.2 Reconstruction of a feedback control at round Ii

At the beginning of the round Ii = [ti, ti+1] our knowledge of the matrix Â is
described by the distribution πi. In order to find the control to apply, we solve the
evolutive Riccati equation associated with the matrix Āi, where Āi is the mean of
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the distribution πi. The Riccati equation reads{
−Ṗ (t) = ĀTi P (t) + P (t)Āi − P (t)BR−1BTP (t) +Q t ∈ [ti, T ]
P (T ) = Qf .

(5.6)

If we denote by Pi(t) the solution of (5.6), our control will be the feedback control
given by

u∗i (t
j
i ) = −R−1BTPi(tji )x

j
i j = 0, . . . S − 1, (5.7)

where xji = x(tji ) ∈ Rn is the observed state of the system. Since the control must
be defined for all instants t ∈ [ti, ti+1], we choose a piecewise constant control:
u∗i (t) = u∗i (t

j
i ) ∈ Rm for t ∈ [tji , t

j+1
i ]. Notice that we need real-time observations of

the system state to compute u∗i , since it depends on the real trajectory x(·).
We emphasize the fact that in choosing the optimal control we do not take into

account the uncertainty of the model, as happens in other probabilistic model-based
RL algorithms (cf. Section 2.4.3), but we only use the mean Āi of the distribution
πi, according to the “certainty equivalence” principle of adaptive control theory (cf.
Section 2.3.3).

5.2.3 Distribution update for the next round

At the end of each round, we can update the probability distribution based on the
observed trajectory, using Bayesian linear regression formulas (see Section 2.3.2).
More precisely, we know that during the time step [tji , t

j+1
i ] the system evolves

according to (5.1) where we plug in the chosen piecewise constant control, which is
constantly equal to u∗(tji ) for all t ∈ [tji , t

j+1
i ]. We can easily get an approximation

of the state derivative with a finite difference scheme using the state observations
xji = x(tji ) ∈ Rn. By a first-order scheme, rearranging the terms, we get

Âxji '
xj+1
i − xji

∆t −Bu∗(tji ) j = 0, . . . , S − 1. (5.8)

For each j = 0, . . . , S − 1, we interpret these data as observations of the dynamics
with a Gaussian noise ε due to the error in the derivative approximation, which in
this case is O(∆t), and in the measurements:

Âxji + ε = xj+1
i − xji

∆t −Bu∗(tji ) with ε ∼ N (0, σ2IS). (5.9)

The standard deviation σ is a parameter to be chosen. When the measurement errors
are negligible, we can choose σ according to the order of the derivative approximation,
e.g. σ = O(∆t).
Denoting by yj the right-hand side in (5.8),

yj := xj+1
i − xji

∆t −Bu∗(tji ), (5.10)

we can rewrite equation (5.9) as

yj = Âxji + ε with ε ∼ N (0, σ2IS). (5.11)
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We treat and approximate each row r̂k of Â separately. The k-th component of yj
satisfies

yj(k) = r̂kx
j
i + ε with ε ∼ N (0, σ2), (5.12)

for each j = 0, . . . , S − 1. Equation (5.12) is of the same form as equation 2.76.
We can therefore estimate the vector θ̂ ≡ r̂k using Bayesian linear regression. The
likelihood function (cf. equation (2.77)) for the k-th component yj(k) is thus Gaussian,
and precisely

p(yj(k)|x
j
i , r̂k) ∼ N (r̂kxji , σ

2). (5.13)

For each row k we have a prior distribution rk ∼ N (m0,Σ0) (cf. equation (2.79))
given by πi, the distribution from the previous round. We define X as the ma-
trix whose columns are x0

i , . . . , x
S−1
i and y as the column vector (y0

(k), . . . , y
S−1
(k) )T .

Applying BLR, we obtain a posterior distribution (cf. equations (2.80) and (2.81))

p(rk|y,X) ∼ N (m,Σ), (5.14)

where
Σ−1 = 1

σ2XX
T + Σ−1

0 and m = Σ(Xy/σ2 + Σ−1
0 m0). (5.15)

5.2.4 Higher-order schemes

We already noticed that, if there are no significant measurement errors, the noise
in (5.12) mainly depends on the precision in the derivative approximation in (5.8).
Consequently, using more accurate schemes to approximate the derivative can
provide more accurate approximations of the matrix Â. For instance, we could use
a second-order scheme or a fourth-order scheme, which are given respectively by

ẋ(tji ) '
xj+1
i − xj−1

i

2 ∆t and ẋ(tji ) '
−xj+2

i + 8xj+1
i − 8xj−1

i + xj−2
i

12 ∆t .

The interested reader can find more details on higher-order finite difference schemes
in [133].

However, the use of high-order schemes has some drawbacks. First, trajectory
regularity is required in the interval containing the nodes used in the approximation.
While a first-order approximation uses only two nodes, higher-order approximations
use more nodes, thus the control cannot jump at each time step, but rather we have
to keep it constant for multiple steps. This forces the use of longer rounds, delaying
the learning process. Second, as we will see in the numerical tests, this order only
concerns the convergence of the estimate Āi to the true matrix Â as the round
number i increases, whereas the cost of the trajectory produced by the algorithm
converges only with numerical order 1.

5.2.5 Heuristic argument for convergence

The algorithm cannot find the optimal control for the problem, since at the begin-
ning the matrix Â is unknown, and it needs at least some steps to have a good
approximation for Â. However, from Bayesian regression theory (see e.g. [119]) we
know that the more “good” data we observe, the more precise our distribution πi
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becomes, eventually converging to the Dirac delta δ
Â
. The choice of data is crucial,

since they must provide new information with respect to previous data. This is
why we speak of “good” data. We have observed experimentally that our algorithm
always generates good data, except when the true matrix Â has some symmetries
(cf. Section 5.3.4). In the latter cases, the rank of the trajectory matrix X may not
be maximum and the information available may not be sufficient to reconstruct the
matrix. In this case, the presence of some noise might help.

Let us now consider a case when the distribution πi is converging to δ
Â
. Then,

also the mean matrix Āi of πi is converging to Â. Thus, after few rounds, the
feedback control computed by the algorithm (which is using Āi) in the interval [ti, T ]
should be close to the optimal control of a trajectory of the real dynamics which
starts from the same point x0

i . It should not be difficult to rigorously prove the
convergence of the algorithm and possibly provide an error estimate, assuming that
the matrix X has maximum rank. Notice that this argument is very close to the
theory developed in Chapter 4. The difference with the framework presented there is
that here we do not use our probabilistic model by solving an average cost problem,
but we only use the average of the distribution, following the certainty equivalence
principle.

Finally, when ∆t → 0, the algorithm reaches earlier a good estimate of the
dynamics matrix. This means that also the computed control is closer to the optimal
one. All these heuristics are confirmed by the numerical simulations in the next
section.

5.3 Numerical tests
The following numerical tests for the algorithm described above were performed in
Matlab and took few seconds to run.

5.3.1 Test 1

We first consider a dynamical system where the state lies in R2 and the control is
1-dimensional, i.e. n = 2 and m = 1. The LQR problem is defined by the following
matrices:

Â =

 0 1
−1 0

 B =

 0
1

 Q =

 1 0
0 1

 R = 0.1 Qf =

 0 0
0 0

 .
The time horizon is set to T = 5 and the starting point is x0 = (0, 1)T . We assume
that the matrix Â is unknown to the algorithm, though we use it to simulate the
dynamics, as if we were interacting with a real environment. We choose the prior
distribution as recommended in Section 5.2, using m0 = (0, 0)T and Σ0 = 2I2; for all
the tests we set σ =

√
10∆tp and S = 2p, where p is the order of the scheme used in

the derivative approximation.
Fig. 5.2 shows the piecewise constant controls chosen by the algorithm with

p = 1 for different values of ∆t and the corresponding trajectories. Recall that the
matrix Â is completely unknown at the beginning, so the control we apply in the
first steps depends only on the prior distribution we have chosen and clearly is not
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(a) control ∆t = 0.1 (b) trajectory ∆t = 0.1

(c) control ∆t = 0.05 (d) trajectory ∆t = 0.05

(e) control ∆t = 0.025 (f) trajectory ∆t = 0.025

Figure 5.2. Test 1: Simulations for different values of ∆t. The left column shows the control
chosen by the algorithm as a function of time (in red) compared with the optimal control
(in blue), computed knowing the matrix Â; the right column shows the trajectories in
R2. The red dot is the trajectory starting point.
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accurate. This causes the trajectory to deviate from the optimal solution. However,
after few steps the matrix Â is well approximated and the algorithm manages to
steer the state towards the origin anyway. In Table 5.1 we have reported the cost
of the solution found by the algorithm for different choices of ∆t, compared with
the optimal cost; the latter has been computed solving the Riccati equation relative
to the true matrix Â. When ∆t is smaller, the algorithm recovers the matrix Â
quickly and thus the deviation from the optimal solution is smaller. This confirms
the heuristic argument presented in Section 5.2.5. We can also observe a numerical
order of convergence almost equal to 1.

Table 5.1. Test 1: Cost of the trajectory for different values of ∆t, when using a first-order
scheme. The cost is compared with the optimal cost C∗ computed knowing Â.

∆t Cost Error Order
0.1 0.3897 0.0072 -
0.05 0.3866 0.0041 0.81
0.025 0.3849 0.0023 0.82
0.0125 0.3838 0.0013 0.88
C∗ 0.3825 - -

We tried different finite difference schemes for the approximation of the state
derivatives (see Section 5.2.4). Table 5.2 shows the error in the approximation of Â
at the end of the simulation, when using schemes of order p = 1, 2, 4 and for different
values of ∆t. As expected, when we consider more accurate approximations of the
gradient, we get better estimations of the matrix Â. Unfortunately, the same does
not hold for the solution costs, which are not significantly improved if compared with
the ones found by the first-order approximation (see Table 5.3). Indeed, the cost
obtained by the methods using the second-order and fourth-order schemes is higher
than the cost obtained by the first-order scheme method. This is due to the fact that
errors in the control are made mainly at the beginning, when the dynamics is still
unknown and the distribution π is the one chosen arbitrarily as prior. Therefore,
methods that use higher-order approximations are “disadvantaged” because they
require to keep the first control constant for longer rounds, and this may take the
system away from the optimal trajectory.

5.3.2 Test 2

For the second test we choose n = 4, m = 3 and T = 10. The true Â (unknown) is

Â =


−0.0215 −0.7776 −0.1922 0.9123
−0.3246 0.5605 −0.8071 0.1504

0.8001 −0.2205 −0.7360 −0.8804
−0.2615 −0.5166 0.8841 −0.5304

 ,
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Table 5.2. Test 1: Error in the approximation of Â at the end of the simulation using
different ∆t and different finite difference schemes for the derivatives approximation; p
is the scheme order.

p = 1 p = 2 p = 4
∆t Error Order Error Order Error Order
0.1 0.167 - 9.74e-3 - 1.63e-4 -
0.05 0.087 0.94 1.91e-3 2.3 3.00e-6 5.8
0.025 0.045 0.95 4.14e-4 2.2 1.03e-7 4.8
0.0125 0.018 1.00 6.30e-5 2.1 1.70e-9 4.5

Table 5.3. Test 1: Cost of the trajectory for different values of ∆t, when using a second-
order and a fourth-order scheme. The cost is compared with the optimal cost C∗

computed knowing Â.

p = 2 p = 4
∆t Cost Error Order Cost Error Order
0.1 0.4003 0.0178 - 0.5884 0.2059 -
0.05 0.3892 0.0067 1.41 0.3995 0.0169 3.6
0.025 0.3864 0.0038 0.80 0.3888 0.0063 1.4
0.0125 0.3847 0.0021 0.86 0.3862 0.0037 0.78
C∗ 0.3825 - - 0.3825 - -

while the matrix B (known) is

B =


−0.2937 −0.6620 −0.0982

0.6424 0.2982 0.0940
−0.9692 0.4634 −0.4074
−0.9140 0.2955 0.4894

 .

The cost matrices are respectively Q = 1
4I4, R = 1

3I3 and Qf = I4, and the starting
point is x0 = ones(4, 1), i.e. the R4 vector with all ones. We set ∆t = 0.025, S = 4
and use a second-order approximation for the derivatives. Fig. 5.3 shows the three
components of the control found by the algorithm, together with the optimal control.
In Fig. 5.4 we plot the components of the corresponding trajectory, which lives in R4.
The components are drawn in pairs, in two graphs on the R2 plane. The behavior
observed in Test 1 is even more visible here: in the first steps the control is not
accurate since we do not know Â, but after few steps the algorithm learns more on
the matrix and manages to bring the state to the origin. The cost of the control
found by the algorithm is 1.111, whereas the optimal cost computed using Â is 1.056.
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Figure 5.3. Test 2: The three components of the control (in red) compared with the
components of the optimal control (in blue).

Figure 5.4. Test 2: The state trajectory in R4, represented by projecting components in
pairs: (x1, x2) on the left and (x3, x4) on the right. The red dots indicate the starting
point of the trajectory.
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5.3.3 Test 3

In the third test we considered a system with state dimension n = 10 and control
dimension m = 5. The matrices A and B were generated randomly with elements
between -1 and 1; due to the large dimension, we choose not to write them down.
We set ∆t = 0.01, S = 2 and we used a first-order scheme for the derivative
approximation. The initial point was ones(10, 1). The cost obtained by the algorithm
was about 3.32, while the optimal cost was about 2.52. In Figure 5.5 we reported the
5 components of the control, together with the components of the optimal control. In
Figure 5.6 we have drawn the 10 components of the trajectory grouped in pairs. The
qualitative behavior of the algorithm is similar to what happened in previous tests.
In fact, at the beginning the control is far from the optimal one and the trajectory
moves away from the optimal one. However, after a few rounds the estimate of the
matrix Â becomes more precise and eventually the algorithm manages to bring the
state towards the origin.

5.3.4 Test 4

To conclude, we present here a simulation in which the matrix Â is simple, but
our algorithm still can’t reconstruct it. The reason is that the data given by
the trajectory, i.e. the matrix X of the state observations, don’t contain enough
information. However, we will observe that despite this the algorithm manages to
control the system well.

The state dimension is n = 10 and the control u(t) is 1-dimensional. The matrices
that define the system dynamics are Â = −I10 and B = ones(10, 1), the matrix in
R10×1 with all ones. The cost matrices are Q = 1

10I10, R = 1 and Qf = 010. Starting
from x0 = ones(10, 1), each component k of the state is independent of the others
and follows the same dynamics{

ẋ(k)(t) = −x(k)(t) + u(t) t ∈ [0, 2]
x(k)(0) = −1.

(5.16)

Notice that the notation we use here is different from the one used in Section 5.2.3,
where the symbol xji denoted the whole vector state at time tji , i.e. x

j
i = x(tji ) ∈ Rn.

Here instead we denote by x(k)(t) ∈ R the single k-th component of the state
vector x(t) at time t ∈ [0, 2]. Since the system dynamics (5.16) and the cost
matrices completely symmetric in the components, the problem is equivalent to a
1-dimensional optimal control problem:

minimize
∫ 2

0

[
1
10

(
x(1)(t)

)2
+ u(t)2

]
dt

over (x, u)(·) such that u : [0, 2]→ R measurable and
ẋ(1)(t) = −x(1)(t) + u(t), t ∈ [0, 2],
x(1)(0) = −1.

(5.17)

However, our algorithm doesn’t know this, so it will try to solve a 10-dimensional
control problem. By using a time-step of ∆t = 0.025 and a first-order scheme in the
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Figure 5.5. Test 3: The five components of the control (in red) compared with the
components of the optimal control (in blue).
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Figure 5.6. Test 3: The state trajectory in R10, represented by projecting components in
pairs onto the R2 plane. The red dots indicate the starting point of the trajectory.
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derivative approximation, the matrix it reconstructs is a full matrix (whereas Â was
diagonal) with all elements equal to -0.0982:

Ã =


−0.0982 −0.0982 · · · −0.0982
−0.0982 −0.0982 · · · −0.0982

...
... . . . ...

−0.0982 −0.0982 · · · −0.0982

 ∈ R10×10. (5.18)

The reason is that the data gathered during the simulation don’t contain enough
information to reconstruct the corrected matrix. In particular, as described in
Section 5.2.3, to update our model of matrix Â we use the state observations from
the trajectory, gathered in a matrix X whose columns are the state vectors at
different time instants. Since in this example the trajectory is the same along each
component, the matrix X will have constant columns and its rank will be 1. In
Section 2.3.2 we observed that the mean of the distribution provided by BLR is
somewhat close to the LS solution and converges to it as the noise vanishes. We
can expect that since the LS solution (2.74) doesn’t work well when the rank of
X is not full, BLR will have similar problems. In this simulation, the rank of X
was 1 and this is why the reconstruction of Ã was not good. Despite this, we can
observe in Figure 5.7 how the algorithm still manages to reconstruct the optimal
control, except for the first instants of time in which it has no knowledge of the
dynamics, as already observed in the previous tests. In Figure 5.8, we have drawn
the trajectory reconstructed by the algorithm along the first component (along the
other components it is identical, given the symmetry of the problem). We note that,
although the matrix Â was not reconstructed correctly, the algorithm managed to
control the system well, bringing the state towards the origin. Finally, notice that
because of the problem symmetries the reconstructed matrix Ã in (5.18) has the
same effect on the state as Ã′ = 10 ∗ (−0.0982) I10 = −0.982 I10.

As a general comment, the BLR formulas may not work for systems with
symmetries and for which the trajectory matrix X does not admit maximum rank.
As a result, the algorithm may not correctly reconstruct matrix Â. But even in
these cases the algorithm may be able to control the dynamics well.
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Figure 5.7. Test 4: The 1-dimensional control reconstructed by our algorithm compared
with the optimal control.

Figure 5.8. Test 4: The trajectory obtained by our algorithm projected along the first
component, compared with the optimal trajectory. The starting point is x(1)(0) = 1.
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Conclusion and perspectives

This thesis has investigated the connection between optimal control and reinforcement
learning. These two research areas deal with similar problems but address them
differently. We believe that each can benefit from the other. For example, one can
draw on the long-standing theory of optimal control to prove convergence results of
RL algorithms, which are still missing in most cases. On the other hand, some RL
tools are achieving excellent results and could be integrated with classical control
methods, as it has already been done with Model Predictive Control (see e.g. [73, 32]).
In this thesis, we have worked in both directions, and we can therefore divide our
contributions into two parts.

Average cost optimal control problems

In Chapter 3, we have introduced and studied an optimal control problem in an
uncertain environment, following some recent works [98, 99]. In our framework, the
degree of uncertainty of the control system is captured by a probability measure
defined on a compact space of functions. The cost functional is defined as an average
cost along all possible trajectories. In Section 3.2 we showed how this framework is
closely related to a class of probabilistic MBRL algorithms that aim at designing
a probabilistic model of the dynamics rather than providing a pointwise estimate.
Having established this connection is in itself a relevant result, as it is a starting
point to better understand these RL algorithms. Then, we proved a convergence
result for the value function of the average cost problem in a generic, nonlinear
setting. Namely, that the value function Vπ of the average cost problem converges
towards the value function of the classical, underlying optimal control problem, when
the probability distribution π converges (w.r.t. the Wasserstein distance (3.6)) to the
Dirac delta δ

f̂
of the true dynamics. This result sheds new light on the convergence

of MBRL algorithms.
In Chapter 4 we analyzed the same framework in the context of linear-quadratic

control systems and proved stronger results. Under standard hypotheses on the
system dynamics and the cost functional, we proved that the open-loop, optimal
control ūπ of the average cost problem converges to the open-loop, optimal control
ū of the actual system as soon as the distribution π is sufficiently close to a Dirac
delta δ

Â
evaluated at the actual system matrix Â. We also showed that, when the

probability distribution π is a discrete probability measure, then also the closed-loop
optimal control of the average cost problem converges to the closed-loop optimal
control of the actual system. This further confirms that, when applied to linear
systems with quadratic costs, that class of MBRL algorithms converges to the correct
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solution, provided that the model they have reconstructed closely approximates
the dynamics of the system. Furthermore, even if the probabilistic model does not
converge to the Dirac delta evaluated at the true dynamics, these results help us
understand what the algorithm is doing and how it can be improved.
Future directions As a future direction, we would like to prove similar convergence
results for the optimal control in wider classes of nonlinear systems, e.g. control
affine optimal control problem with convex functional, getting closer to the problem
formulation studied in [37]. Some numerical examples in Section 3.4 seem to be a
good omen for future investigations in this direction. We believe this is a good track
to finally be able to prove the convergence of some MBRL algorithms. Another step
to take concerns the convergence of the probabilistic model to the true dynamics of
the system. This property depends on how the probabilistic model is constructed in
the model learning step (cf. Section 2.4.3) and can vary according to the algorithm.
A greater understanding of the properties a model must have can help us build new
and efficient algorithms that are guaranteed to converge to the exact solution.

Numerical methods for LQR problems with unknown dynamics

We also have proposed a new algorithm to deal with LQR problems when the state
matrix Â is unknown. Our algorithm is designed to approximate the matrix Â and to
find a suitable control that brings the system towards the origin in a single simulation.
It takes contributions from both optimal control and RL and is an example of how
this integration can produce innovative algorithms. In particular, it uses a Bayesian
linear regression to reconstruct the initially unknown state matrix. The feedback
control is computed by solving the Riccati differential equation corresponding to the
mean matrix of the probabilistic model. Numerical tests presented in Section 5.3
have demonstrated how it achieves excellent results, managing to control the system
online, despite not knowing Â at the beginning of the simulation. We also observed
that the state matrix is not well approximated when the rank of the trajectory
matrix X does not have full rank, but the algorithm still manages to control the
system. Our algorithm can be integrated with higher order approximation schemes,
and we have seen how this improves the approximation of Â.
Future directions Certainly, several directions of research remain open. In the
near future we would like to work on the convergence of the method, so far only
sketched in Section 5.2.5, and on a possible error estimate, which could concern not
only our algorithm but more in general all Bayesian linear regression methods. It
would be interesting to investigate whether the Bayesian update of the distribution
described in Section 5.2.3 could be made more efficient by using Kalman filtering [72]
and related theory. Then we would like to extend the algorithm to other settings, also
considering the control matrix B or the cost matrices Q and R as unknown. Another
interesting direction is the extension of our approach to nonlinear problems. These
are much more complex to solve online, since a generic Hamilton-Jacobi-Bellman
equation requires a considerable computational cost to solve, especially in high
dimension. Finally, a great application of the algorithm would be the identification
and control of linear PDEs, which are transformed into LQR problems through a
time discretization.
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