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Abstract: We construct and study solitonic representations of the conformal net associ-
ated to some vacuum Positive Energy Representation (PER) of a loop group LG. For the
corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC)
and the Bekenstein Bound. As an intermediate result, we show that a Positive Energy
Representation of a loop group LG can be extended to a PER of Hs(S1,G) for s > 3/2,
whereG is any compact, simple and simply connected Lie group.We also show the exis-
tence of the exponential map of the semidirect product LG� R, with R a one-parameter
subgroup of Diff+(S1), and we compute the adjoint action of Hs+1(S1,G) on the stress
energy tensor.

1. Introduction

Recently, much attention has been focused on quantum information aspects of Quantum
Field Theory, which naturally takes place in the framework of quantum black holes ther-
modynamics [20,21]. However, more unexpected and interesting connections between
the relative entropy and the stress energy tensor have arisen, and in particular it is of
interest to provide and prove an axiomatic formulation of the Quantum Null Energy
Condition (QNEC). In this work we prove the QNEC for some states of interest on loop
group models. We refer to [26] for similar results on the Virasoro nets.

Classically, the Null Energy Condition (NEC) is a constraint on the stress energy
tensor which states that Tabkakb ≥ 0, where ka is a null vector field. This constraint is
motivated by the positivity of the energy and it is a necessary condition for the field ka

to have some physical meaning. However, quantum fields can violate all local energy
conditions, including the NEC. At any point the energy density 〈Tkk〉 can be made nega-
tive, with magnitude as large as we wish, by an appropriate choice of a quantum system
[13]. In the study of relativistic QFT coupled to gravity, Bousso, Fisher, Leichenauer and
Wall [3] establish a new and surprising link between quantum information and the stress
energy tensor. In this work, a Quantum Null Energy Condition (QNEC) is defined as a

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04170-3&domain=pdf
http://orcid.org/0000-0001-7982-3939


398 L. Panebianco

null energy lower bound which is expected to be satisfied by most reasonable quantum
fields. This lower bound is defined by using the relative entropy of Araki, an object
typically used in quantum information theoretical contexts.

The first non commutative entropy notion, von Neumann’s quantum entropy, was
originally designed as a Quantum Mechanics version of Shannon’s entropy: if a normal
state ψ is given by a density matrix ρψ , then the von Neumann entropy is defined by

S(ψ) = −tr ρψ log ρψ .

However, in Quantum Field Theory local von Neumann algebras are typically factors
of type I I I1 [19], no trace or density matrix exists and the von Neumann entropy
is undefined. Nontheless, the Tomita–Takesaki modular theory applies and one may
consider the relative entropy of Araki [25]

S(ϕ‖ψ) = −(ξ | log�η,ξ ξ)

between the normal states ϕ and ψ . The relative entropy generalizes the classical
Kullback-Leibler divergence and measures how ψ deviates from ϕ. From an infor-
mation theoretical viewpoint, S(ϕ‖ψ) is the mean value in the state ϕ of the difference
between the information carried by the state ψ and the state ϕ.

Let now (A,U,�) be a local QFT on the Minkowski space R
n+1 with vacuum state

ω and stress-energy tensor T . Denote by A = ⋃
O A(O) the C∗-algebra of quasi-local

observables. Consider one of the two null directions u tangent to the standard Rindler
wedge W . By Poincaré-covariance, we can associate a wedge Wu to any pair of a null
direction u and a point x of theMinkowski space. LetMu

t = A(Wu
t ) be the local algebra

associated toWu
t = Wu + tu. Given a locally normal stateψ ofA represented onA(Wu)

by some vector η, consider the relative entropy S(t) = SMu
t
(ψ‖ω) and the averaged

stress-energy density tensor 〈Tuu(t)〉 = (η|Tuu(x + tu)η). In natural units, we will say
that the vector η satisfies the Quantum Null Energy Condition (QNEC) if for any u and
x we have the null energy bound

〈Tuu(t)〉 ≥ S′′(t)/2π (1)

for any t ≥ 0, u and x , assuming this inequality to have some distributional or classical
meaning. The wedges Wu

t can be replaced with arbitrary regions deformed in the null
direction u [22], but here we will not work in such a generality. In this context, the
convexity of the relative entropy often appears, and for this reason in other works the
QNEC is just stated as the convexity of thementioned relative entropy [8]. This convexity
property has been proved in a model independent setting for a very wide class of states.

Theorem 1. [7]LetN ⊆ Mbe a±hsm inclusionwith standard vector�giving the state
ω. Denote by P the positive generator of translations and by (Mt )t∈R the associated
flow of von Neumann algebras. Ifψ(x) = (η|xη) is a vector state with finite null energy,
namely such that

Pη = (η|Pη) < +∞ , (2)

then the relative entropy S(t) = SMt (ψ‖ω) is convex. Furthermore, if S(t0) is finite
then we have

−S′(t) = 2π inf
w′∈C ′

t

Pw′η , t ≥ t0 a.e. , (3)
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where C ′
t is the set of all the isometries w′ in M′

t such that the complement relative
entropy S̄w′(t) = SM′

t
(ψw′ ‖ω) is finite, with ψw′(x) = (w′η|xw′η). The identity (3) is

satisfied at each point such that S′(t) exists and on such points it can be computed by

−S′(t) = 2π inf
s

Ps(t) = π P̂(t) . (4)

In the above notation, we have

Ps(t) = Pu′
s (t)η , u′

s(t) = (Dω : Dψ ;M′
t )s , (5)

and P̂(t) = P̂ηt , where η̂t is the unique vector in the natural cone of Mt representing
the state ψ .

Actually, the provided proof refers to -hsm inclusions, but the +hsm case can be
similarly proved. It is also shown that the null energies (5) are finite and that the infimum
(4) is obtained as s → ±∞ if the inclusion is ∓hsm. Of course, in principle such
a characterization can be used for computational purposes. However, determining the
Connes cocycle (5) for each deformation parameter t is a not trivial issue. For this
reason, the proof of the QNEC (1) on loop group models led us to the study of Sobolev
extensions of Positive Energy Representations of loop groups. We describe our work a
bit more in detail.

The first result is the construction of solitonic representations σγ of the conformal net
associated to a vacuum PER π of a loop group LG. In general, these solitons are induced
by a path γ in C∞([−π, π ],G). If the path γ satisfies some periodicity conditions
on its derivatives, then it can be extended to what we here call a discontinuous loop.
Discontinuous loops are defined as elements of

LhG = {
ζ ∈ C∞(R,G) : ζ(x)−1ζ(x + 2π) = h

}
,

where h is a generic element ofG. If the discontinuity h of ζ is in Z(G), then it is already
known that the obtained soliton σζ extends to a DHR representation which corresponds
to a PER ζ∗π of same level as π [29]. What we show here is that this condition is also
necessary: the soliton σζ extends to a DHR representation if and only if the discontinuity
h is central. The proof follows by a contradiction argument, since a locally normal DHR
representation is automatically Rot-covariant [10].

Consider now the conformal net (A,U,�) associated to some vacuum PER π of a
loop group LG. In the real line picture, the von Neumann algebras associated to half-
lines define a hsm inclusion. Since on these local algebras the solitonic states ωγ of
above have a representing vector satisfying (2), the convexity of the relative entropy is
satisfied by Theorem 17. We then use some intermediate results used in the proof of
Theorem 1 to explicitly compute the relative entropy and we show the QNEC (1) to
be satisfied with an equality. Furthermore, the obtained formula allow us to prove the
Bekenstein Bound in a very simple way. The purpose of doing the mentioned proof
led us to the second main result of this work, that is the extension of a PER of a loop
group LG to a PER of the Sobolev loop group Hs(S1,G) for s > 3/2. Such a Sobolev
extension allows us to compute the adjoint action of Hs+1(S1,G) on the stress energy
tensor. Similar issues involving the smearing with non-smooth functions in conformal
nets contexts have been treated in [5], [23] and [31].

Unexpectedly, it turns out that our extension result follows by amore general theorem
proved in [24], which implies that a Positive Energy Representation of a loop group LG
can be extended to a PER of H1(S1,G) by using holomorphic induction methods.
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However, even if not completely general, the proof presented here is mathematically
simpler and original. Without knowing the results of [24] we were not able to prove the
QNEC (1) by directly using the expression (5), and for this reason we used an approach
more similar to that ones of [17] and [26]. Nevertheless, by using explicit constructions
of [30], in the case G = SU (n) we are able to show that the Sobolev extension holds up
to Hs(S1, SU (n)) for s > 1/2. This technical improvement allows us to show that the
identity (4) is indeed verified. The exhibited proof is not just an application of Theorem 1
or of [24] and it is thought in such a way to make this work as self contained as possible.

2. Mathematical Background

We mainly follow [29]. Let G be a compact, simple and simply connected Lie group.
A Positive Energy Representation (PER) of the loop group LG = C∞(S1,G) on a
separable Hilbert space H is a projective strongly continuous unitary representation π

of LG � T with a commutative diagram

LG � T
π �� PU (H)

T

��

U �� U (H)

��

where the torus T
∼= Rot acts on LG by rotations Rθ .γ (φ) = γ (φ − θ) and U is a

strongly continuous unitary representation inducing an isotypical decomposition H =⊕
n≥n0 H(n) for some integer n0.Without loss of generality, we can suppose that n0 = 0

and thatH(0) is not zero-dimensional. A PER is said to be of finite type if dimH(n) <

+∞ for every n. Irreducible PERs are of finite type.
We denote by g0 the Lie algebra of G and by g the complexification of g0. Recall

that g0 is a compact Lie algebra, that is its Killing form is negative definite. In particular,
there is an antilinear involution X �→ X∗ of g such that

g0 = {X ∈ g : X∗ = −X} .

Let X (n) be the map θ �→ Xeinθ for X in g and n integer. Then [X (n),Y (m)] =
[X,Y ](n +m), showing that the space spanned by these elements, which we will denote
by Lpolg, forms aLie algebra.On Lpolgwecandefine an involution by X (n)∗ = X∗(−n).
Moreover, if Hfin is the subspace of finite energy vectors, namely the algebraic sum of
the subspaces H(n), then we can define a projective representation π of Lpolg on Hfin

in such a way to verify the commutation relations ([29], Theorem 1.2.1.)

[π(X), π(Y )] = π([X,Y ]) + i�B(X,Y ) , B(X,Y ) =
∫ 2π

0
〈X, Ẏ 〉 dθ

2π
.

Wepoint out that the existence of such a representation of Lpolg is not a trivial issue, since
these commutation relations do not uniquely determine the projective representation of
Lpolg, and also the representation of LG cannot be differentiated in a straightforwardway
as in finite dimensional cases. If d is the generator of rotations, namely U (Rθ ) = eiθd ,
then we have that [d, π(X)] = iπ(Ẋ) where Ẋ(θ) = d

dθ
X (θ). The above operators

are all closable and we also have the formal adjunction property π(X)∗ = π(X∗) on
Hfin. Furthermore, the projective representation π of Lpolg on Hfin can be lifted to a
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projective representation π of Lg = C∞(S1, g) on H∞ in such a way to verify all the
previous relations, whereH∞ is the Fréchet space of smooth vectors for Rot. We recall
that by definition H∞ = ⋂

s Hs , where s ∈ R and Hs is the scale space, that is the
completion of Hfin with respect to the Sobolev norm ‖ξ‖s = ‖(1 + d)sξ‖. Notice that
the projective representation π of Lg is actually a representation if restricted on g, since
the projective representation of G lifts to a unitary representation. Also, the subspaces
H(n) are G-invariant. The adjoint action of LG on the mentioned operators is given by
[29]

π(γ )π(X)π(γ )∗ = π(γ Xγ −1) + ic(γ, X) ,

π(γ )dπ(γ )∗ = d − iπ(γ̇ γ −1) + c(γ, d) , (6)

where the real constants c(γ, X) and c(γ, d) are explicitly given by

c(γ, X) = −�

∫ 2π

0
〈γ −1γ̇ , Ẋ〉 dθ

2π
, c(γ, d) = −�

2

∫ 2π

0
〈γ −1γ̇ , γ −1γ̇ 〉 dθ

2π
.

Here 〈·, ·〉 denotes the basic inner product, namely the Killing form normalized on the
highest root θ in such a way that 〈θ, θ〉 = 2. The elements γ −1γ̇ and γ̇ γ −1 of Lg are
the left logarithmic derivative and the right logarithmic derivative of γ , respectively
defined by

γ −1γ̇ (t) = d

dh

∣
∣
∣
∣
h=0

γ −1(t)γ (t + h) and γ̇ γ −1(t) = d

dh

∣
∣
∣
∣
h=0

γ (t + h)γ −1(t) .

We will use the following notation:

x = π(X) , x(n) = π(X (n)) , 〈x, y〉 = 〈X,Y 〉 .

We can define a representation of the Virasoro algebra Vir

[Ln, Lm] = (n − m)Ln+m + δn+m,0
n(n2 − 1)

12
c , (7)

by Sugawara construction, that is such a representation is given by defining onHfin the
operator

Ln = 1

2(� + g)

∑

m

: xi (−m)xi (m + n) : , (8)

wherewe used the Einstein convention on summations and the normal ordering notation,
namely the symbol : x(n)y(m) : stands for x(n)y(m) if n ≤ m and for y(m)x(n) if
n > m. The elements {xi } and {xi } appearing in (8) can be arbitrary dual basis with
respect to the basic inner product, namely 〈xi , x j 〉 = δi j , and g is the dual Coxeter
number, that is

g = 1 +
∑

a∨
i , θ =

∑
a∨
i α∨

i ,

whereα∨
i are the simple coroots anda∨

i are strictly positive.By the assumption 〈θ, θ〉 = 2
it can be shown that the dual Coxeter number is half the Casimir of the adjoint repre-
sentation, namely we have [Xi , [Xi ,Y ]] = 2gY for Y in g. Notice that if Xi are in g0
and such that −〈Xi , X j 〉 = δi j then Xi = −Xi . The constant c uniquely determined by
(7) is called the central charge of the representation. If the PER is irreducible then we
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have L0 = d + h for some rational number h, where h is therefore the lowest eigenvalue
of L0 and it is called the trace anomaly. In any irreducible PER, the central charge and
the trace anomaly are given by [15]

c = � dim g

� + g
, h = Cλ

2(� + g)
, (9)

where Cλ is the Casimir associated to the basic inner product 〈·, ·〉 and to the null energy
spaceH(0) = Hλ, which is the irreducible highest weight representation of g associated
to some dominant integral weight λ satisfying

〈λ, θ〉 ≤ � . (10)

The set of dominant integral weights λ satisfying condition (10) is called the level �

alcove. We will say that π is a vacuum positive energy representation, or simply a
vacuum representation, if H(0) is one-dimensional. If H(0) = C� with (�|�) = 1,
then the state ω associated to � is called the vacuum state. Notice that π is a vacuum
representation if and only if irreducible and with h = 0. More in general, ifH(0) = Hλ

then the trace anomaly can be computed by taking in account that

Cλ = 〈λ, λ + 2ρ〉 , g = 1 + 〈ρ, θ〉 ,

where ρ is theWeyl vector, that is the sum of all the fundamental weights. Equivalently,
the Weyl vector can be defined as half the sum of all the positive roots.

Consider now Diff+(S1), the Fréchet Lie group of the orientation preserving diffeo-
morphisms of the circle. The natural action of Diff+(S1) on LG is smooth. Furthermore,
every PER π of LG is Diff+(S1)∼-covariant, namely there is a projective unitary repre-
sentationU of the universal covering Diff+(S1)∼ such thatU (ρ̃)π(γ )U (ρ̃)∗ = π(ρ.γ )

[14,15]. Consider nowH0,fin, the algebraic direct sum of the eigenspaces of L0. On the
infinitesimal level, in general the space H0,fin is a direct sum of infinitely many uni-
tary irreducible representations V (c, hi ) of the Virasoro algebra. Such a representation
integrates to a unitary projective representation U of Diff+(S1)∼, and if the appearing
highest weights hi differ only by integers thenU reduces to a unitary projective represen-
tation of Diff+(S1) [11,14]. Nowwe briefly study the irreducible unitary representations
V (c, h) of the Virasoro algebra appearing from an irreducible PER of level � of LG. If
� = 0 then λ = 0, and by c = h = 0 we have the trivial representation of Vir. If � ≥ 1,
then V (c, h) belongs to the continuous series, namely we have h ≥ 0 and c ≥ 1. The
estimate on the central charge follows by the inequality g + 1 ≤ dim g, which can be
noticed by studying the following table [18]:

Dynkin diagram An Bn Cn Dn E6 E7 E8 F4 G2
Complex simple Lie algebra sln+1 so2n+1 sp2n so2n e6 e7 e8 f4 g2
Complex dimension n2 + 2n 2n2 + n 2n2 + n 2n2 − n 78 133 248 52 14
Dual Coxeter number n + 1 2n − 1 n + 1 2n − 2 12 18 30 9 4

Lemma 2. [18] [Ln, x(k)] = −kx(n + k) on H0,fin.

As a corollary of Lemma 2, the representation of Vir = C · c ⊕ ∂ , with ∂ the Witt
algebra, extends to a representation of the semidirect product g[t, t−1] � Vir ∼= g̃ � ∂ ,
with g̃ = g[t, t−1] ⊕ C · c. Indeed, if we set Ln = π(�n), where �n(θ) = einθ d

dθ
, then

we can define the stress energy tensor π(h) = ∑
n ĥn Ln for any polynomial vector field

h on the circle, namely a vector field which is a finite linear combination of the fields
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�n . Therefore, by Lemma 2 we have [π(h), π(X)] = π(h.X) on H0,fin for every X in
Lpolg, where h.X (θ) = h(θ) d

dθ
X (θ).

The Lie algebra Lpolg can be completed to a Banach Lie algebra Lgt for any t ≥ 0.
Indeed, given X = ∑

k Xk(k) in Lpolg, we can define Lgt as the completion of Lpolg
with respect to the norm

|X |t =
∑

k

(1 + |k|)t‖Xk‖ .

We have norm continuous embeddings with dense range C�t�+1(S1, g) ↪→ Lgt ↪→
C�t�(S1, g), and for any t ≥ n we have ‖X (n)‖∞ ≤ |X |t . Notice that, in general, we can
similarly define the Banach Lie algebra Lgs,p as the completion of Lpolg with respect
to the norm

|X |s,p =
( ∑

k

(1 + |k|)sp‖Xk‖p
)1/p

.

We now set St = LCt , namely the space of continuous complex functions h on S1

satisfying

|h|t =
∑

k

(1 + |k|)t‖ĥk‖ < +∞ .

Notice that we can naturally identify St with a space of Sobolev vector fields on the
circle. We can define two continuous actions of St by h.X (θ) = h(θ) d

dθ
X (θ) and

hX (θ) = h(θ)X (θ). Indeed, by noticing that (1+ |n + k|)t ≤ (1+ |n|)t (1+ |k|)t we have
|h.X |s,p ≤ |h|s |X |s+1,p and |hX |s,p ≤ |h|s |X |s,p.

We conclude this preliminary section with some standard notions about the stress
energy tensor. Let h(θ) d

dθ
be a smooth vector field on the circle and define V =

⋂
k≥0 D(Lk

0). The stress energy tensor

T (h) =
∑

n

ĥn Ln ,

is a closable operator with H0,fin as a dense core [5,11,17]. Moreover, by the energy
bounds [16]

‖(1 + L0)
k Lnξ‖ ≤ √

c/2(1 + |n|)k+3/2‖(1 + L0)
k+1ξ‖ ,

with k ≥ 0 any natural number and ξ in H0,fin, we have that T (h) is well defined and
closable for every h in S3/2, since

‖Lk
0T (h)ξ‖ ≤ (c/2)1/2|h|3/2+k‖(1 + L0)

k+1ξ‖

for every k ≥ 0 natural and ξ in D(Lk+1
0 ). It follows that V is a dense invariant domain

for T (h) if h is smooth. Furthermore, we have that T (h̄)∗ = T (h) for every h in S3/2
and therefore T (h) is essentially selfadjoint if h is real valued. For further properties of
the stress-energy tensor, see [14].
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3. Solitonic Representations from Discontinuous Loops

In this section we follow [11] and we construct proper solitonic representations of the
conformal net associated to some vacuum positive energy representation of a loop group.
We begin by briefly recalling some basic definitions about conformal nets. We refer to
[11,15,29] for further treatments of the topic.

Let K be the set of open, nonempty and non dense intervals of the circle. For I in K,
I ′ denotes the interior of the complement. The Möbius group Möb acts on the circle by
linear fractional transformations. AMöbius covariant net (A,U,�) consists of a family
{A(I )}I∈K of von Neumann algebras acting on a separable Hilbert spaceH, a strongly
continuous unitary representation U of Möb and a vector � in H, called the vacuum
vector, satisfying the following properties:

(i) A(I1) ⊆ A(I2) if I1 ⊆ I2 (isotony),
(ii) A(I1) ⊆ A(I2)′ if I1 ⊆ I ′

2 (locality),
(iii) U (g)A(I )U (g)∗ = A(g.I ) for every g inMöband I inK (Möbius covariance),
(iv) The representation U has positive energy, namely the generator of rotations

has non-negative spectrum (positivity of the energy),
(v) � is cyclic for the von Neumann algebra

∨
I∈KA(I ), and up to a scalar � is

the unique Möb-invariant vector of H (vacuum).
By the Howe-Moore vanishing theorem, it follows by the axioms (iv) and (v) that
the vacuum vector � is, up to a phase, the only vector fixed by the subgroups of
rotations, translations and dilations defined below (12). With these assumptions,
the following properties automatically hold [11,15]:

(vi) A(I ′) = A(I )′ for every I in K (Haag duality),
(vii) A(I ) ⊆ ∨

α A(Iα) if I ⊆ ⋃
α Iα (additivity),

(viii) If I+ is the upper half of the circle and � is the modular operator associated to
A(I+) and �, then for every t in R we have

�i t = U (δ−2π t ) , (11)

where δt .u = etu is the one parameter group of dilations (Bisognano–Wichmann),
(ix) Each local algebraA(I ) is a type III factor and

∨
I∈IR

A(I ) = B(H), with IR the
set of all the open, nonempty and non dense intervals of S1 \ {−1} (irreducibility).

Definition 3. By a conformal net, or also a Diff+(S1)-covariant net, we shall mean a
Möb-covariant net (A,U,�) which satisfies the following condition:

(x) U extends to a projective unitary representation of Diff+(S1) onH such that

U (ρ)A(I )U (ρ)∗ = A(ρ.I ) , ρ ∈ Diff+(S
1) ,

for every I inK. Furthermore, if supp ρ ⊂ I ′, with supp ρ the closure of the complement
of the set of the points z such that ρ(z) = z, then we have

U (ρ)xU (ρ)∗ = x , x ∈ A(I ) ,

A Möbius covariant net is either also conformal or not, but if it is, the extension of
the of the representation to Diff+(S1) is unique [5,6]. In a conformal net, the following
is automatic [23]:

(xi) if Ī ⊂ J then there is a type I factor R such that A(I ) ⊂ R ⊂ A(J ) (split
property).
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If the interval I does not contain −1, one can pass from the circle picture to the
real line picture [11,15]. Explicitly, by the changes of variables z = C(u) with C(u) =
(1+ iu)/(1− iu) the Cayley transform, we can identify I with an interval of the real line.
In the real line picture the point−1 of S1 corresponds to∞, withR∪{∞} theAlexandroff
compactification of R. With this identification, we can define the one parameters groups
of rotations, dilations and translations mentioned above:

Rθ .z = eiθ z , z ∈ S1 , δt .u = etu , u ∈ R , τa .u = u + a , u ∈ R . (12)

If α is a Möbius transformation mapping the upper half of the circle I+ onto I , then
by conjugating (12) by α we can define the groups RI , δI and τI of rotations, dilations
and translations of the interval I .

Now we give some definitions about the representation theory of conformal nets.
A (locally normal) DHR (Doplicher-Haag-Roberts) representation of a conformal net
(A,U,�) is a family ρ = {ρI }I∈K of normal representations ρI of the von Neumann
algebras A(I ) on some Hilbert space Hρ such that ρI = ρJ |A(I ) if I ⊆ J . We say that
two DHR representations ρ1 and ρ2 are equivalent if there is some unitary operator U
from Hρ1 to Hρ2 such that Uρ1,I (x) = ρ2,I (x)U for every x in A(I ) and I in K. The
DHR representation induced by the identity is called the vacuum representation. A DHR
representation ρ is said to be irreducible if

∨
I∈K ρI (A(I )) = B(Hρ). If a topological

groupG acts continuously on S1 by elements ofDiff+(S1), aDHR representationρ is said
to be G-covariant if there exists a strongly continuous unitary projective representation
Uρ of G such that

AdUρ(g) · ρI (x) = ρg.I (AdU (ι(g)) · x) , x ∈ A(I ) ,

for all g in G and I in K, where ι : G → Diff+(S1) is the induced homomorphism. A
locally normal DHR representation is automatically Möb-covariant [10].

A similar class of representations of a conformal net is given by the so-called solitonic
representations. In the following, we will denote by IR the set of all the open, nonempty
and non dense intervals of S1 \ {−1}. A (locally normal) soliton σ of a conformal net
(A,U,�) is a family of maps σ = {σI }I∈IR

where σI is a normal representation of
the von Neumann algebra A(I ) on a fixed Hilbert space Hσ such that σI = σJ |A(I ) if
I ⊆ J . Every DHR representation gives rise to a solitonic representation by restriction,
while the converse is in general not true. If G is a topological group equipped with
some homomorphism ι : G → Diff+(S1), then we will say that a soliton σ is locally G-
covariant if there is a unitary projective continuous representationUσ ofGwhich satisfies
the following property: if I is in IR and V is a connected neighborhood of the identity in
G such that g.I is in IR for every g in V , then AdUσ (g)σI (x) = σι(g).I (AdU (ι(g)) · x)
for every x in A(I ). With R± considered as elements of IR, the index of a soliton σ is
the Jones index of the inclusion σ(A(R+)) ⊆ σ(A(R−))′.

Finally, we have concluded our brief overview on conformal nets. We now consider a
vacuum positive energy representation π of level � of some loop group LG. We always
suppose G to be simple, compact and simply connected. It can be shown that the family
of von Neumann algebras

A�(I ) = {π̃(γ ) : supp γ ⊂ I }′′ ,
is a conformal net [15,29], where π̃ is the lift of π described below in Remark 16. We
will denote byU the projective unitary continuous representation of Diff+(S1) verifying
the covariance property. Consider now a smooth path γ : [−π, π ] → G. We suppose γ
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to admit, at all orders, finite right derivatives in −π and finite left derivatives in π . We
then define σγ = {σ I

γ }I∈IR
as the collection of maps given by

σ I
γ : A�(I ) → B(H) , σ I

γ (x) = Adπ(γI )(x) , (13)

where γI is a loop in LG such that γI (θ) = γ (θ) for θ in I seen as a subinterval of
(−π, π).

Proposition 4. σγ is an irreducible locally normal soliton with index 1.

Proof. Normality on each A�(I ) follows because on these local algebras σγ is given
by the adjoint action by a unitary operator. The compatibility property is clear, since if
I ⊆ J then π(γIγ

−1
J ) is in A�(I ′) = A�(I )′. The index is 1 since if I is in IR then

σγ (A�(I )) = A�(I ), and for the same reason we have that
∨

I∈IR

σγ (A�(I )) =
∨

I∈IR

A(I ) = B(H)

since the conformal net A� is irreducible. ��
We will now focus on a smaller class of solitons. Given h in G, we define a discon-

tinuous loop as an element of the group

LhG = {
ζ ∈ C∞(R,G) : ζ(x)−1ζ(x + 2π) = h

}
. (14)

The restriction of a discontinuous loop on [−π, π ] clearly induces a soliton σζ . In the
following, we will study the equivalence classes of such solitonic representations.

Since π is irreducible if and only if it is irreducible as a projective representation of
LG, then σζ is irreducible if π is irreducible (see also Corollary 1.3.3. of [29]). Notice
that for ζ in LhG we have that ζt (φ) = ζ(φ)ζ(φ − t)−1 is in LG for any t in R. We
now denote by Rot∼ the universal covering of Rot ∼= T, the group of rotations of the
circle. If Ut is the unitary representation of Rot associated to π , then we can define
V ζ
t = π(ζt )Ut in PU (H) for t in R and notice that V ζ

t V
ζ
s = V ζ

t+s . However, in general
V ζ
2π is not a scalar and therefore σζ is not Rot-covariant but only locally Rot∼-covariant.

We can notice that if ζ is in LgG and η is in LhG then ζη−1 is in Lh−1gG if h−1g is in
Z(G). In particular, if ζ and η are both in LhG then ζη−1 is in LG and σζ is unitarily
equivalent to ση.

Theorem 5. Let π be a vacuum positive energy representation of LG of level � ≥ 1.
Given ζ in LhG, the soliton σζ extends to aDHR representation if and only if h is central.

Proof. First we suppose h to be in Z(G). A quick computation shows that in this case
V ζ
2π = π(h). By the identity π(h)eπ(X)π(h)∗ = eπ(X) for any X in Lg0 we have that

V ζ
2π is a scalar since π is irreducible. This implies that σζ is locally Rot-covariant and

we have that σζ can be extended to a locally normal DHR representation by using the
arguments of Proposition 3.8. of [11]. Now we suppose h to be not central. By absurd,
σζ extends to a DHR representation and thus it is Rot-covariant [10]. Denote by U ζ

θ the
corresponding intertwining projective representation of the circle. If we define the DHR
representation

ρζ (x) = AdUπ · σζ · AdU−π · σζ−1 · AdV ζ
π · AdU−π (x) ,
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then by construction ρζ is implemented by the unitary UπU
ζ
−πV

ζ
πU−π . Since σζ is a

locally normal DHR representation, by using the additivity property one can show that
ρζ (x) = x for x in A((0, π)) and for x in A((0, π))′. It follows that U ζ

−πV
ζ
π is a scalar

and thus V ζ
2π is a scalar. Now consider a maximal torus T ⊂ G containing h. Since T is

connected, we can suppose that ζ(x) belongs to T for any x in R, and by commutativity
we have that V ζ

2π = π(h) in PU (H). Therefore we have that h is a noncentral element
acting on H as a scalar. If we now consider the kernel

N = {g ∈ G : π(g) ∈ T} ,

then N is a normal subgroup of G which is not contained in the center. But G is simple
and connected, hence we have that N = G, which is an absurd. ��

We conclude this section by studying the equivalence classes of the solitons con-
structed above. If z is in Z(G), then the DHR representations σζ with ζ in LzG corre-
spond to inequivalent irreducible positive energy representations ζ∗π of the same level
as π (see Remark 16 and Theorem 3.2.3. of [29]). Now we pick a maximal torus T in
G. Consider ζ in LsG and η in LtG for some s and t in T . We can suppose ζ and η to
be both contained in T . It can be easily noticed that

σζ · ση = σζη , ζη ∈ LstG , σ−1
ζ = σζ−1 , ζ−1 ∈ Ls−1G .

It follows that σζ and ση are unitarily equivalent if and only if s = t , hence we have
infinitely many inequivalent solitons. If we consider two maximal tori T and T ′ =
gTg−1, then what we can say is that we have the identity

σgζg−1 = Adπ(g) · σζ · Adπ(g)∗ ,

that is the solitons σgζg−1 and σζ are equivalent up to some inner automorphism.

4. Sobolev Loop Groups

We know that LG = C∞(S1,G) is a Fréchet Lie group if endowed with the Whitney
smooth topology. Its topology is induced by the norms defined on the Banach Lie groups
LkG = Ck(S1,G). The exponential map expLG : Lg0 → LG is naturally defined by
expLG(X) = expG ·X and is a local homeomorphism near the identity [27]. Here we
define and describe some properties of Sobolev loop groups.

Let M be a Riemannian manifold. Suppose M to be isometrically embedded in R
ν

for some ν > 0. Define, for 1 ≤ p < ∞ and 0 ≤ s < ∞, the fractional Sobolev space
[2,12]

Ws,p(S1, M) = { f ∈ Ws,p(S1, R
ν) : f (θ) ∈ M a.e.} .

HereWs,p(S1, R
ν) is the completion ofC∞(S1, R

ν)with respect to the norm ‖ f ‖s,p =
‖�s/2 f ‖p + ‖ f ‖p, where � ≥ 0 is the closure on L p(S1, R

ν) of the laplacian seen
as an operator on C∞(S1, R

ν) [9]. We recall that the closure of an operator between
linear subspaces of Banach spaces (and not only Hilbert spaces) is its smallest closed
extension, and that the fractional Laplacian �α for 0 < α < 1 can be defined by the
Fourier transform [12].

In the following, every compact Lie group G will be considered as a Riemannian
Lie group with respect to the unique Riemannian structure extending −〈·, ·〉, namely
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the opposite of the basic inner product, and such that left and right translations are
smooth isometries. We show that if G is compact and simple then every faithful uni-
tary representation ρ : G → U (n) induces an isometric embedding of G in some real
euclidean space. By continuity of the representation we have that G is represented as
a compact embedded Lie subgroup of U (n). Moreover, by simplicity of g0 we have
that λtr(ρ(x)∗ρ(y)) = −〈x, y〉 for some λ > 0. Therefore, if we consider Mn(C) as a
real vector space with inner product λRe tr(X∗Y ) then we have an isometric embedding
G ↪→ Mn(C).

Theorem 6. If G is a compact, simple and simply connected Lie group faithfully repre-
sented in some space of matrices, then Ws,p(S1,G) is an analytic Banach Lie group for
p and sp in (1,∞). Its Banach Lie algebra is Ws,p(S1, g0), the exponential map exists
and it is a local homeomorphism. Moreover, C∞(S1,G) is dense in Ws,p(S1,G) and
thus Ws,p(S1,G) is connected.

Proof. First we show that Ws,p(S1,G) is a topological group. This can be proved by
using the fact that any two functions f, g inWs,p(S1, R

ν) verify, for p and sp in (1,∞),
the estimate [9]

‖ f g‖s,p ≤ Cs,p‖ f ‖s,p‖g‖s,p . (15)

By this estimate and by the identity f −1 − g−1 = f −1(g − f )g−1 it follows that
Ws,p(S1,G) is a topological group for p and sp in (1,∞), since it is clearly a Hausdorff
space. Now we define the map

exps,p : Ws,p(S1, g0) → Ws,p(S1,G) , exps,p(X)(z) = expG(X (z)) .

This map is well defined since expG ·X = eX is an absolutely convergent series and it is
also a local homeomorphism.We check thatWs,p(S1,G) is connected. By the density of
C∞(S1,G) inWs,p(S1,G) (seeTheorem1.1. of [2]), it suffices to prove thatC∞(S1,G)

is path connected and then connected. But a smooth homotopy between two loops in G
is a path inC∞(S1,G), and the connectedness follows. Finally, we conclude if we prove
that the group operations of inversion and multiplication are analytic. By connectedness
we can reduce to prove this in an open neighborhood of the identity (see [29], Lemma
2.2.1.). The inversion X �→ −X is clearly analytic. The analyticity of left and right
multiplication follows from the Baker-Campbell-Hausdorff-Dynkin formula, where the
continuity of the appearing homogeneous polynomials is guaranteed by equation (15).
The theorem is proved. ��
Corollary 7. Every loop γ in Ws,p(S1,G) is a finite product of exponentials, since the
exponential map is a local homeomorphism and Ws,p(S1,G) is connected.

Remark 8. Theorem 6 still holds if the circle S1 is replaced with a torusT
m . This follows

from the fact that the mentioned density theorem [29] is verified for a generic cube Qm ,
that T

m can be defined as a quotient of Qm and that the convolution with a smooth
function preserves the periodicity.

We have formally defined our Sobolev loop groupWs,p(S1,G) and we have checked
that such a space has good topological and analytical properties. Nowwe are finally ready
to extend our PER of LG. The definition of Positive Energy Representation of a Sobolev
loop group can be given just by replacing LG with Ws,p(S1,G) in the definition given
above.
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Proposition 9. Let ι : G → H and π : G → U be two homomorphisms of topological
groups. We suppose H to be connected and ι(G) to be dense in H. Suppose the existence
of a neighborhood V of the identity in H and of a continuous function p0 : V → U such
that π(gα) → p0(v) whenever ι(gα) → v, with (gα)α∈A a net in G and v in V . Then,
p0 extends to a continuous homomorphism p : H → U such that π = p · ι.

Proof. By the connectedness of H we have that H = ∪nV n . We show by induction
that p can be well defined on V n for every n. We set p = p0 on V . Suppose the thesis
true for V n , and consider elements w in V n and v in V . Pick a net (hβ)β∈B such that
ι(hβ) → v. By inductive hypothesis the limit

p(wv) = lim
α

π(gα) = lim
β

lim
α

π(gαh
−1
β )p0(v) = p(w)p(v)

is well defined and does not depend on the net (gα)α∈A such that ι(gα) → wv. Hence
p is a well defined group homomorphism. The continuity of p follows by induction as
well, and the identity π = p · ι is satisfied by construction. ��
Proposition 10. Letπ be a PER of a loop group LG. If X is in Ws,p(S1, g0) for 1 ≤ p ≤
2 and s > 3/2+1/p, then π(X) is a closable operator which is essentially skew-adjoint
on any core of L0.

Proof. We first notice that by the Sugawara formula we have L0 ≥ 0, since we have
L0 = d + hi for some hi ≥ 0 on each irreducible summand πi of π . If H0,fin is the
algebraic direct sumof the eigenspaces of L0, thenwewill denote byH0,s the completion
of H0,fin with respect to the Sobolev norm ‖ξ‖0,s = ‖(1 + L0)

sξ‖. By Lemma 2 and
Proposition 1.2.1. of [29], for ξ inH0,fin and X in Lpolg we have

‖π(X)ξ‖0,s ≤ √
2(� + g)|X ||s|+1/2‖ξ‖0,s+1/2 ,

‖[1 + L0, π(X)]ξ‖0,s ≤ √
2(� + g)|X ||s|+3/2‖ξ‖0,s+1/2 ,

for any s in R. By density one extends π to (Lg)|s|+3/2 in such a way to still verify the
same estimates for ξ in H0,s+1/2. It follows that if X is in Lg3/2 then both π(X) and
[1 + L0, π(X)] are bounded operators from H0,1/2 to H. By the Nelson commutator
theorem [28, Thm. X.36] we have that if X is in (Lg0)3/2 then the restriction of π(X)

on

D = {
ψ ∈ H ∩ H0,1/2 : π(X) ∈ H}

is a closable operator onH which is essentially skew-adjoint on any core of L0 such as
H0,fin. Notice now that, by standard arguments, there is a norm continuous embedding
Ws,p(S1, g) ↪→ Lg3/2. Indeed, if X (θ) = ∑

k Xkeikθ then by the Hölder inequality

|X |3/2 =
∑

k

(1 + |k|)3/2‖Xk‖ =
∑

k

(1 + |k|)3/2−s(1 + |k|)s‖Xk‖ ≤ As,p|X |s,p′ ≤ Bs,p‖X‖s,p ,

where As,p and Bs,p exist and are finite by construction andbyRiesz-Thorin respectively.
Therefore, by the arguments given above we have that if X is inWs,p(S1, g0) then π(X)

is a skew-symmetric operator onH0,fin which is essentially skew-adjoint on any core of
L0.
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Propositions 9 and 10 can be used to extend a strongly continuous projective rep-
resentation of LG to a strongly continuous projective representation of Ws,p(S1,G).
However, for convenience in the following we will focus on Hs(S1,G) = Ws,2(S1,G).
We show how a different approach can improve the results of Proposition 10.

Proposition 11. If π is a PER of a loop group LG, the induced projective representation
π of Lg can be extended to Hs(S1, g) for s > 3/2, with π(X) closable and such that

‖π(X)ξ‖0,1/2 ≤ Cs |X |s,2‖ξ‖0,1/2 , ξ ∈ H0,1/2 , (16)

for some Cs > 0. Moreover, π(X)∗ = π(X∗), and in particular π(X) is essentially
skew-adjoint if X is skew-adjoint.

Proof. We use some techniques shown in [5]. Given X = ∑
n Xn(n) in Lg1,1, the

operator π(X) is well defined on H0,1/2 and (16) follows by the previous estimates
since for t > 1/2 and s = 1 + t we have

|X |1 =
∑

n

(1 + |n|)‖Xn‖ =
∑

n

(1 + |n|)−t (1 + |n|)1+t‖Xn‖ ≤ ct |X |s,2 .

It is also closable since π(X∗) ⊆ π(X)∗. Notice also that since H0,fin is a core for
(1 + L0)

1/2 then π(X∗) is the formal adjoint of π(X) on the associated scale space
H0,1/2 for any X in H3/2(S1, g). Now we define on H0,1/2 the operator

RX,ε = [π(X), e−εL0 ] ,

which is well defined since e−εL0 : H → H0,∞ ⊆ H0,1/2. By −RX∗,ε ⊆ R∗
X,ε we have

that RX,ε is closable. Notice that if L0vk = kvk then

Rx(n),εvk = fn,k(ε)x(n)vk , fn,k(ε) = e−εk − e−ε(k−n) .

We will now show that ‖Rx(n),ε‖2 ≤ 2(� + g)|x(n)|1,1. The case n = 0 is trivial and we
can suppose n < 0 as −RX∗,ε ⊆ R∗

X,ε . By simple analysis techniques one can prove
that

| fn,k+n(ε)|2 ≤ n2

(k − n)2
,

1 + k

(k − n)2
≤ 1

|n| ,

for any ε ≥ 0 and k ≥ 0. Therefore if v = ∑
k≥0 vk is inH0,fin then we have

‖Rx(n),εv‖2 =
∥
∥
∥

∑

k≥0

Rx(n),εvk

∥
∥
∥
2 =

∥
∥
∥

∑

k≥0

| fn,k(ε)|2x(n)vk

∥
∥
∥
2

=
∑

k≥0

| fn,k(ε)|2‖x(n)vk‖2

≤ 2(� + g)
∑

k≥0

n2

(k − n)2
(1 + |n|)(1 + k)‖x‖2‖vk‖2

≤ 2(� + g)
∑

k≥0

(1 + |n|)2‖x‖2‖vk‖2

= 2(� + g)|x(n)|21,1‖v‖2 .
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It follows that ‖RX,ε‖2 ≤ 2(� + g)|X |1,1 for every X in Lg1,1 and that RX,ε → 0
strongly as ε → 0. Moreover, by the identity R∗

X,ε = −RX∗,ε we have that R∗
X,ε → 0

strongly as well. Now we arrive to the crucial point: if v is in D(π(X)∗) then

π(X∗)e−εL0v = π(X)∗e−εL0v = e−εL0π(X)∗v − R∗
X,εv → π(X)∗v , ε → 0 ,

and this concludes the proof since e−εL0v → v as ε → 0. ��
Theorem 12. Let π : LG → PU (H) be a positive energy representation of LG. Then
π can be extended to a positive energy representation of Hs(S1,G) for s > 3/2.

Proof. We consider an open neighborhood U in Hs(S1, g0) on which the exponential
map of Hs(S1,G) is a homeomorphism and set V = expHs (U ). For γ = expHs (X) in
V we define in PU (H)

π(γ ) = eπ(X) , X ∈ U .

The neighborhood V verifies Proposition 9, since if γα = exp(Xα) converges to γ =
exp(X) in V then the estimate (16) implies that π(Xα)ξ is a Cauchy net for every ξ

in H0,1/2. But the pointwise convergence of self-adjoint operators on a common core
implies the strong resolvent convergence of such operators (TheoremVIII.25.(a) of [28]),
thusπ can be continuously extended. Finally, since the rotation group acts on Hs(S1,G)

by continuous operators (see Lemma A.3 of [4]) and since LG is dense in Hs(S1,G),
we have that π is actually a Positive Energy Representation since it is Rot-covariant.
��
Proposition 13. [29] Let ρs = expDiff+(S1)(sh) be a smooth diffeomorphism of S1, with
h a smooth real vector field of the circle. Set Rh = {ρs}s∈R. Then the exponential map
Lg0�Rh → LG�Rh iswell definedand continuous.Moreover, if Xα = ρα.X = X ·ρ−1

α

then

expLG�Rh
(X + αh) = lim

n→∞ expLG(X/n) expLG(Xα/n/n) · · · expLG(Xα(n−1)/n/n)ρα .

(17)

Proof. To compute the exponential map, we fix X + αh in Lg0 � Rh and look for
f : R → LG � Rh which satisfies (X + αh) f = ḟ and f (0) = 1. We suppose f to
be of the form ft = γ tρφ(t) with γ in LG. As a manifold, LG � Rh is the product of
LG and Rh , thus s �→ expLG(sX)ρsα is the integral curve for X + αh at the identity.
Therefore, with the notation γs(θ) = γ (ρ−1

s (θ)) we have

(X + αh) ft = d

ds

∣
∣
∣
∣
s=0

expLG(sX)ρsαγ tρφ(t) = d

ds

∣
∣
∣
∣
s=0

expLG(sX)(γ t )sαρsα+φ(t)

= Xγ tρφ(t) + α
d

ds

∣
∣
∣
∣
s=0

(γ t )sρφ(t) + αγ t hρφ(t) ,

ḟt =
(
d

dt
γ t

)

ρφ(t) + φ′(t)γ t hρφ(t) ,

whence φ(t) = αt , and we must solve

d

dt
γ t = Xγ t + α

d

ds

∣
∣
∣
∣
s=0

(γ t )s , γ 0 = 1 . (18)
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Now we notice that if γ t
0 is a solution of the equation d

dt γ
t
0 = X−αtγ

t
0 with initial

condition γ 0
0 = 1, then γ t = (γ t

0)αt is the solution of (18) we were looking for.
Therefore, if we embed G in a space of matrices Mm(C) and we consider LG as a
closed subspace of C∞(S1, Mm(C)), then by Theorem 1.4.1. of [29] we have

γ 1
0 = lim

n→∞ exp(X−α/n) exp(X−α(n−1)/n/n) · · · exp(X−α/n/n)ρα , (19)

where the right side of (19) converges in eachCk(S1, Mm(C)) and hence in LG. Finally,
equation (17) follows from γ 1 = (γ 1

0 )α , and the continuity of expLG�Rh
follows from

Theorem 1.4.1. of [29]. ��
Corollary 14. The following holds in PU (H):

eπ(X+iαh) = π(expLG�Rh
(X + αh)) .

Proof. By the Trotter product formula and Proposition 13 we have the following iden-
tities in PU (H):

eπ(X+iαh) = lim
n→∞(eπ(X/n)eiαπ(h)/n)n = lim

n→∞ π(expLG(X/n) expRh
(αh/n))n

= lim
n→∞ π(expLG(X/n) expLG(Xα/n/n) · · · expLG(Xα(n−1)/n/n)ρα)

= π(expLG�Rh
(X + αh)) ,

where we used the identities eiT (h) = π(expRh
(h)) and eπ(X) = π(expLG(X)) which

hold in PU (H). ��
Lemma 15. Let π : G → PU (H) be a strongly continuous projective representation of
a topological group G. Then the map

G ×U (H) → U (H) , (g, u) �→ π(g)uπ(g)∗ ,

is well defined and strongly continuous.

Proof. The map is clearly well defined, and if gα converges to g in G then we can
choose lifts vα and v of π(gα) and π(g) such that vα converges to v in U (H), since
the short exact sequence given by U (H) → PU (H) admits local continuous sections
[1]. But in the unitary group the strong topology and the ∗-strong topology coincide and
multiplication is continuous on bounded sets by the uniform boundedness principle, so
the assertion follows. ��
Remark 16. A continuous projective representation π : G → PU (H) can be naturally
lifted to a continuous unitary representation π̃ of G̃ = {

(g, u) ∈ G × U (H) : π(g) =
[u]} given by π̃(g, u) = u.

Theorem 17. If γ is in Hs(S1,G) and X is in Hs(S1, g0) for some s > 3/2, then

π(γ )π(X)π(γ )∗ = π(Ad(γ )X) + ic(γ, X) , (20)

for some continuous real function c(γ, X). Moreover, if γ is in H1+s(S1,G) and h is a
real vector field Ss , then

π(γ )π(X + ih)π(γ )∗ = π(Ad(γ )X) + iT (h) + π(hγ̇ γ −1) + ic(γ, X) + ic(γ, h) (21)

for some continuous real function c(γ, h).
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Proof. We first prove (21) in the smooth case. We will identify Rh with iRh for formal
convenience. By the previous propositions, if γ is in LG and Y = X +ih is in Lg0�iRh,
then the following identities hold in PU (H):

π(γ )etπ(Y )π(γ )∗ = π(γ )π(expLG�Rh
(sY ))π(γ )∗

= π(γ expLG�Rh
(tY )γ −1)

= π(expLG�Rh
(tAd(γ )Y ))

= etπ(Ad(γ )Y ) , (22)

and consequently π(γ )etπ(Y )π(γ )∗ = λ(t)etπ(Ad(γ )Y ) for some function λ : R → T.
But λ : R → T is a continuous homomorphism and therefore λ(t) = eiat for a unique
real number a = c(γ,Y ). We point out that Ad(γ ) has to be intended as the adjoint
action with respect to the semidirect product LG � Rh . Notice also that c(γ,Y ) is linear
in Y , so we can write c(γ, X + ih) = c(γ, X)+c(γ, h), where we set c(γ, ih) = c(γ, h)

for simplicity. Therefore, the claimed expression follows by the Stone’s theorem and by
using the product rule for the derivative on the identity 1 = γt · γ −1

t .
Now we prove (20) in the Sobolev case. Consider (γα, Xα) in LG × Lg0 converg-

ing to (γ, X) in Hs(S1,G) × Hs(S1, g0). We have that both π(γα)esπ(Xα)π(γα)∗ and
esπ(Ad(γα)Xα) strongly converge to the corresponding terms in γ and X . By the argument
used before we have that eic(γα,Xα) converges to eic(γ,X), that is eic(γ,X) is continuous
in γ and X . But continuity is a local property and the exponential map has local left
inverses, thus c(γ, X) is continuous and the first part of the theorem is proved. Now we
prove (21) in the Sobolev case. Consider γ in H1+s(S1,G) and h real in Ss . Notice that
iπ(h) and π(hγ̇ γ −1) are both essentially skew-adjoint. Consider now smooth approxi-
mating nets γα → γ , Xα → X and hα → h as before. By the previous propositions, the
approximating right hand side of (21) minus c(γα, hα) converges in the strong resolvent
sense to the corresponding term in γ , X and h since we have a net of skew-adjoint
operators pointwise convergent on a common core. Similarly, π(Xα + ihα) converges in
the strong resolvent sense to π(X + ih) and therefore

π(γα)etπ(Xα+ihα)π(γα)∗ → π(γ )etπ(X+ih)π(γ )∗

strongly for every t inR. By the argument used before we have that eic(γ,h) is continuous
and thus c(γ, h) is continuous. The thesis is proved. ��
Corollary 18. The scale spaceHα ⊆ H is Hs(S1,G)-invariant for α ≥ 0 and s > 5/2.
Moreover, for any integer n such that n ≤ �s−1�, the corresponding map Hs(S1,G)×
Hn → Hn/T is continuous.

Proof. Since D(u∗Au) = u∗D(A) for every unitary u and every self-adjoint operator
A, then

D((1 + d)α) = π(γ )∗D((1 + d − iπ(γ̇ γ −1) + c(γ, d))α)

⊆ π(γ )∗D((1 + d)α) . (23)

Since D((1 + d)α) = Hα for α ≥ 0, the Hs-invariance follows. Now we prove the
second statement, where we can suppose n ≥ 1. By Proposition 1.5.3. of [29] we have
‖π(γ )ξ‖n ≤ (1 + Mn−1)

n‖ξ‖n , where Mp = C |γ −1γ̇ |p+1/2 + |c(γ −1, d)| for some
C > 0, and the joint continuity can be proved as in [29]. ��
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Theorem 19. With the hypotheses of Theorem 17, we have

c(γ, X) = −�

∫ 2π

0
〈γ −1γ̇ , X〉 dθ

2π
, c(γ, h) = −�

2

∫ 2π

0
h〈γ −1γ̇ , γ −1γ̇ 〉 dθ

2π
.

Proof. We follow Theorem 1.6.3. of [29], skipping some computations for the sake of
brevity. Consider a smooth loop γ in LG and a smooth real vector field h. For Y in
Lg0 � iRh we have

c(γ1γ2,Y ) = c(γ2,Y ) + c(γ1,Ad(γ2)Y ) . (24)

If γ t = expLG(t X), then the map t �→ c(γ t ,Y ) is differentiable at t = 0 since LG ×
Rh → LG is smooth. In particular, we have that

∂t
∣
∣
t=0c(γ

t ,Y ) = �B(X,Y ) ,

and so

∂t
∣
∣
t=0c(γ

t , h) = 0 .

By using (24) we have that c(γ t , h) is differentiable everywhere, with

∂t c(γ
t ,Y ) = �B(X,Y ) + c(γ t , [X,Y ]) ,

or more compactly
ċt (Y ) = iX�B(Y ) − (X.ct )(Y ) . (25)

We naturally expect the solution of the ODE to be given by the Duhamel formula

c(γ t ,Y ) = �B(X,Ad(γ t )

∫ t

0
Ad(γ −τ )Ydτ) = �B(X,

∫ t

0
Ad(γ s)Yds) . (26)

Using d
dtAd(γt )Y = [X,Ad(γt )Y ], it is easy to verify that (26) defines a C1(R, (Lg �

iRh)∗) solution of (25) with initial condition c0 = 0. The solution is unique. Finally,
one can use (26) and Corollary 1.6.2. of [29] to obtain the claimed expressions in the
smooth case. By the continuity of c(γ,Y ) shown in Theorem 17 the thesis is proved.

��
Corollary 20. By repeating the proof of Theorem 17, one can show that if γ is in
Hs(S1,G) and X is in Hs(S1, g0) for some s > 3/2, then

π(γ )∗π(X)π(γ ) = π(Ad(γ −1)X) + ib(γ, X) , (27)

for some continuous real function b(γ, X). Similarly, if γ is in Hs+1(S1,G) and h is a
real vector field in Ss , then

π(γ )∗π(X+ih)π(γ ) = π(Ad(γ −1)X)+iT (h)−π(hγ −1γ̇ )+ib(γ, X)+ib(γ, h) (28)

for some continuous real function b(γ, h). In particular, by b(γ,Y ) = c(γ −1,Y ) we
have

b(γ, X) = −�

∫ 2π

0
〈γ̇ γ −1, X〉 dθ

2π
, b(γ, h) = −�

2

∫ 2π

0
h〈γ̇ γ −1, γ̇ γ −1〉 dθ

2π
.
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5. Relative Entropy and QNEC

Let M be a von Neumann algebra in standard form, and let ϕ and ψ be two faithful,
normal and positive linear functionals onM represented by vectors ξ and η in the natural
cone. The relative entropy is defined by [22]

S(ϕ‖ψ) = −(ξ | log�η,ξ ξ) ,

where the above scalar product has to be intended by applying the spectral theorem to
the relative modular operator �η,ξ . The relative entropy is nonnegative, convex, lower
semicontinuous in the σ(M∗,M)-topology and monotone increasing with respect to
von Neumann algebras inclusions (Theorem 5.3. of [25]). If the relative entropy is finite,
then

S(ϕ‖ψ) = i
d

dt
ϕ((Dψ : Dϕ)t )

∣
∣
∣
∣
t=0

= −i
d

dt
ϕ((Dϕ : Dψ)t )

∣
∣
∣
∣
t=0

, (29)

where (Dϕ : Dψ)t = (Dψ : Dϕ)∗t is the Connes cocycle.
We now denote by A� = {A�(I )}I∈K the conformal net associated to a level �

vacuum representation π of some loop group LG. As before, we will denote by K the
set of all the open, non empty and non dense intervals of the circle. To each interval I
in K we associate the von Neumann algebra

A�(I ) = {π̃(γ ) : supp γ ⊂ I }′′ , (30)

where π̃ is the lift of π described in Remark 16 and the support of a loop γ is defined
by

supp γ = {z ∈ S1 : γ (z) �= e} .

If the interval I does not contain−1, then it can be identified with an open interval of the
real line through the Cayley transform. On the real line picture the stress energy tensor
is given by �( f ) = T (C∗ f ), with C∗ f the push-forward of the vector field f (u) d

du by
the Cayley transform C(u) = (1+ iu)/(1− iu) [17]. Notice that even if we can identify
the function f with the vector field f (u) d

du , the push-forward C∗ f has to be intended
as a pushforward of vector fields and not just a composition of functions.

We now come back to our work. We are interested in computing

S(t) = SA�(t,+∞)(ωγ ‖ω) , (31)

whereω is the vacuum state represented by the vacuum vector� andωγ = ω ·Adπ(γ )∗
is represented by π(γ )� for some loop γ in LG. More in general, the same result will
apply to the solitonic states given by the solitons (13) of above. We introduce the groups
of Sobolev loops

B(z1, . . . , zn) = {
γ ∈ H2(S1,G) : γ (zi ) = e , γ̇ (zi ) = 0

}
. (32)

By standard arguments, continuously differentiable and piecewise smooth loops are in
Hs(S1,G) for s < 5/2 [11,17], where we say that γ is piecewise smooth if right and
left derivatives always exist and if γ is smooth except on a finite number of points.
If there is no ambiguity, we will use a similar notation to denote the groups (32) in
the real line picture. Consider now the interval I = (z, w) of S1 obtained by moving
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counterclockwise from z to w. We will denote by γI the map such that γI = γ on [z, w)

and γI = e on [w, z), so that we have the identity

γ = γIγI ′ . (33)

By Theorem 12 we have that if γ is a loop in B(z, w) then in PU (H) we have π(γ ) =
π(γ(z,w))π(γ(w,z)). In particular, in this case π(γ(z,w)) is inA�((z, w)) and π(γ(w,z)) is
in A�((w, z)). We also recall that by the Bisognano-Wichmann theorem (11) we have
the identity log� = −2πD with D = − i

2 (L1 − L−1), that is log� = −2πT (δ) with
δ the vector field generating δ(s).u = esu. Notice also that the vacuum expectation of

π(γ )∗T (δ)π(γ ) = T (δ) + iπ(δγ −1γ̇ ) + b(γ, δ) (34)

is given by the real constant b(γ, δ) described in Corollary 20.

Proposition 21. Letγ be a loop in H3(S1,G). Pick a non dense open interval I = (z, w)

of the circle and write γ = γIγI ′ as in (33). Denote by δI the generator of dilations of
the interval I and set �i t

I = e−2π i tT (δI ). If γ̇ vanishes on the boundary of I then the
Connes cocycle (Dωγ : Dω)t of A�(I ) is given by

(Dωγ : Dω)t = eit (a−2πc(γI ,δI ))e−2π t (iπ(δI )+π(δI γ̇I γ
−1
I ))�−i t

I (35)

for some a = aγ in R. In particular, a depends only on the values of γ at the boundary
of I and aγ = 0 if γ (z) = e for z in the boundary of I .

Proof. First we check that δI γ̇Iγ
−1
I is in H2(S1, g0) since it vanishes with its first

derivative on the boundary of I . Hence the right hand side of (35), which we denote by
ut , is a well defined unitary operator which is in A�(I ) by the Trotter product formula.
To prove the existence of a in R as in the statement it suffices to check that ut verifies
the relations

(i) σ
γ
t (x) = utσt (x)u∗

t , x ∈ A�(I ) ,

(ii) ut+s = utσt (us) .

Here σt and σ
γ
t are the modular automorphisms associated to the states ω and ωγ .

The first relation follows by noticing that

σ
γ
t (x) = Ad�i t

I,γ (x) = Adπ(γ )�i t
I π(γ )∗(x)

= Adπ(γ )�i t
I π(γ )∗�−i t

I �i t
I (x)

= Ad ut · σt (x) , (36)

where we used Lemma 3.(ii) of [26] and Theorem 19. The second relation can be easily
verified and thus a does exist. Now we prove that a = aγ depends only on the values
of γ at the boundary of I . Consider η in H3(S1,G) such that η(z) = e and η̇(z) = 0
for z in the boundary of I . Notice that (Dωηγ : Dω)t = π(η)(Dωγ : Dω)tσt (π(η)∗).
Therefore, with the notation of Corollary 20 we have

aηγ + 2πb(ηIγI , δI ) = −i
d

dt
ωηγ ((Dωηγ : Dω)t )

∣
∣
∣
t=0

= −i
d

dt
ωηγ (π(η)(Dωγ : Dω)tσt (π(η)∗))

∣
∣
∣
t=0

= aγ + 2π(b(γI , δI ) + b(ηIγI , δI ) − b(γI , δI )) ,

and by the identity aηγ = aγ the assertion is proved. If γ (z) = e for z in the boundary
of I then π(γI ) is inA�(I ) and the last statement follows by Lemma 3.(iv) of [26]. ��
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Remark 22. If γ is an element of H2([−π, π ],G), then as in the smooth case we can
consider the soliton σγ given above by (13). In particular, Proposition 21 still holds for
the solitonic states ωγ = ω · σ−1

γ with γ in H3([−π, π ],G). This follows from the fact
that if η is a loop in H3(S1,G) such that γ = η on I , then ωη = ωγ on A(I ).

Now we arrive to the main part of this work, that is we will use the previous results to
prove the QNEC (1) on loop groups models for the solitonic states ωγ = ω · σ−1

γ given
by (13). In the real line picture, the path γ corresponds to an element of H2(R,G).

Theorem 23. Let ωγ = ω · σ−1
γ be a solitonic state corresponding, in the real line

picture, to some element γ of H2(R,G). Then the relative entropy (31) is finite for every
t in R and explicitly given by

S(t) = −�

2

∫ ∞

t
(u − t)〈γ̇ γ −1, γ̇ γ −1〉du . (37)

Proof. As discussed in Remark 22, we can suppose γ to be the real line parametrization
of some element of H2(S1,G). Since the vacuum is G-invariant, we can replace γ with
γ g for any g inG, thus we can suppose γ (∞) = e. By using the real line picture notation
for the groups (32), we first suppose γ to be in B(∞). We point out that if γ (t) = e
and γ̇ (t) = 0 then S(t) is finite and given by (37) since we can use equation (29),
Proposition 21 and the continuity of ωγ ((Dωγ : Dω)t ) with respect to γ in H2(S1,G).
Nowwe prove that S(t) is finite for any t real. Indeed, for any t real we can pick a smooth
loop η with supp η ≤ t and such that η(t − k) = γ (t − k)−1 and ˙(ηγ )(t − k) = 0 for
some k > 0. This implies that

SA�(t,+∞)(ωγ ‖ω) = SA�(t,+∞)(ωηγ ‖ω) ≤ SA�(t−k,+∞)(ωηγ ‖ω) < +∞ ,

where the last relative entropy is finite by the argument used above. By similar arguments
we have that

S̄(t) = SA�(−∞,t)(ωγ ‖ω) (38)

is finite for any t real. Now we focus on the case t = 0, since the general case follows
by covariance. We suppose γ̇ (0) = 0 and we write γ = γ+γ−, with γ+(u) = e for u ≤ 0
and γ−(u) = e for u ≥ 0. By Proposition 21 we have

S(0) = aγ − �

2

∫ ∞

0
u〈γ̇ γ −1, γ̇ γ −1〉du .

Now we emulate some techniques used in [17] and we prove that aγ = 0. Given λ > 0
real, consider the function f (u) = ueλu . For n > 0 integer, we consider a smooth
diffeomorphism ρ = ρλ,n of the circle such that, in the real line picture, it verifies
ρ(u) = f (u) for 0 ≤ u ≤ n − 1

n and ρ(u) = f ′(n)u + ( f (n) − n f ′(n)) for u ≥ n. We
also suppose ρ(u)/ρ′(u) to be uniformly bounded for n− 1

n ≤ u ≤ n. Consider now the

loop γλ,n(u) = γ (ρ−1
λ,n(u)). By the identity aγ = aγλ,n and by monotone convergence

once more we have

0 ≤ inf
λ

SA�(0,+∞)(ωγλ,n‖ω) = aγ − �

2

∫ ∞

n
(u − n)〈γ̇ γ −1, γ̇ γ −1〉du , (39)
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and by monotone convergence we have aγ ≥ 0. Now we prove the other inequality.
Consider a smooth path ζn in G with extremes ζ(0) = e and ζ(1) = γ (0). We also
suppose that ζ̇ (0) = ζ̇ (1) = 0. We now define

γn(u) =

⎧
⎪⎨

⎪⎩

γ (u) u ≥ 0 ,

ζ(nu + 1) −1/n ≤ u ≤ 0 ,

e u ≤ −1/n .

By monotonicity SA�(0,+∞)(ωγ ‖ω) = SA�(0,+∞)(ωγn‖ω) ≤ SA�(−1/n,+∞)(ωγn‖ω), so
that after a limit we have the inequality

aγ ≤ −�

2

∫ 1

0
u〈ζ̇ ζ−1, ζ̇ ζ−1〉du .

However, if we now consider the function gλ(u) = ueλ(u−1) and we define ζλ(u) =
ζ(g−1

λ (u)), then

aγ ≤ −�

2

∫ 1

0
u〈ζ̇λζ

−1
λ , ζ̇λζ

−1
λ 〉du ≤ − �

2λ

∫ 1

0
u〈ζ̇ ζ−1, ζ̇ ζ−1〉du → 0 , λ → +∞ .

Finally, we have proved that aγ = 0 if γ̇ (0) = 0. To remove this condition, we notice
that if P is the generator of translations then the average energy in the state ωγ is finite
and given by

Eγ = (π(γ )�|Pπ(γ )�) = −�

2

∫ +∞

−∞
〈γ̇ γ −1, γ̇ γ −1〉 du

2π
. (40)

Therefore we can apply Lemma 1. of [7], namely for every t1 and t2 in R we have

(S(t1) − S(t2)) + (S̄(t2) − S̄(t1)) = (t2 − t1)2πEγ . (41)

This implies that S(t) and S̄(t) are both Lipschitz functions. Consider now a smooth real
function ρ(u) defined on [0, 1] and such that ρ(0) = 0 and ρ(1) = 1. We also suppose
ρ′(0) = ρ′′(0) = 0, ρ′(1) = 1 and ρ′′(1) = 0. We define

γn(u) =

⎧
⎪⎨

⎪⎩

γ (u) u ≥ 1/n ,

γ (ρ(nu)/n) 0 ≤ u ≤ 1/n ,

η(u) u ≤ 0 ,

where η is a smooth function such that γn is in H2(S1,G). Therefore, by (41) we have

0 ≤ SA�(0,+∞)(ωγn‖ω) − SA�(1/n,+∞)(ωγn‖ω) ≤ 2π

n
Eγn → 0 ,

and thus we have

SA�(0,+∞)(ωγ ‖ω) = lim
n

SA�(1/n,+∞)(ωγ ‖ω) = lim
n

SA�(1/n,+∞)(ωγn‖ω)

= lim
n

SA�(1/n,+∞)(ωγn‖ω) − SA�(0,+∞)(ωγn‖ω) + SA�(0,+∞)(ωγn‖ω)

= lim
n

SA�(0,+∞)(ωγn‖ω)
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= −�

2

∫ ∞

0
u〈γ̇ γ −1, γ̇ γ −1〉du . (42)

The most of the work is done. Now we just have to remove the condition γ̇ (∞) = 0. If
we apply covariance to equation (42) then we have

SA�(−∞,0)(ωγ ‖ω) = −�

2

∫ 0

−∞
u〈γ̇ γ −1, γ̇ γ −1〉du

for any γ in H2(S1,G) such that γ̇ (0) = 0. But this condition can be removed as in
(42), and by covariance we have that the above expression of S(0) holds for a generic
loop γ in H2(S1,G). ��
Corollary 24. If Eγ is the null energy (40), then we have the Bekenstein Bound

SA�(−r,r)(ωγ ‖ω) ≤ πr Eγ , (43)

where

SA�(−r,r)(ωγ ‖ω) = −�

2

∫ r

−r

1

2r
(r − u)(r + u)〈γ̇ γ −1, γ̇ γ −1〉du . (44)

Furthermore, the complement relative entropy (38) is given by

S̄(t) = −�

2

∫ t

−∞
(t − u)〈γ̇ γ −1, γ̇ γ −1〉du . (45)

Proof. As in the previous theorem, it is not restrictive to suppose γ to be in H2(S1,G).
The statement then follows by Möb-covariance, since in general we have

SA�(a,b)(ωγ ‖ω) = −�

2

∫ b

a
D(a,b)(u)〈γ̇ γ −1, γ̇ γ −1〉du , (46)

for every interval (a, b) of the real line, with D(a,b)(u) the density of the dilation operator
of (a, b). ��

Now we use the previous theorem to discuss the QNEC (1). In this case we have that
the second derivative S′′(t) exists everywhere in the classical sense with S′′(t) ≥ 0. If
P is the generator of translations, then by the Sugawara formula we have P = �( d

du ),
hence the quantity E = Eγ given by (40) is an averaged stress energy tensor in the null
direction u in the state ωγ .

Theorem 25. Let γ be an element of H2(R,G) as in Theorem 23. If we consider the
null energy density

Eγ (t) = − �

4π
〈γ̇ γ −1, γ̇ γ −1〉(t) , (47)

then the states ωγ verify the QNEC (1), with

Eγ (t) = S′′(t)/2π ≥ 0 . (48)

Similarly, Eγ (t) = S̄′′(t)/2π ≥ 0, where S̄(t) is the complement relative entropy (38)
given by (45).
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This theorem is the main result of this work. However, definition (47) may seem not
rigorous to the reader, since we can arbitrarily add a function with null average to the
integral (40). For this reason, we will nowmotivate our definition of stress energy tensor
density. Given h in S3/2, the notation

T (h) =
∫

S1
T (z)h(z)dz , T (z) = − 1

2π

+∞∑

n=−∞
z−n−2Ln , (49)

is widely used. Therefore, in general we can consider two vectors ξ and η in V =⋂
k≥0 D(Lk

0), recall that

|(η|T (h)ξ)| ≤ (c/2)1/2|h|3/2‖η‖‖(1 + L0)ξ‖ ,

and define (η|T (z)ξ) as the kernel of some tempered distribution. This definition is
consistent by defining (η|T (z)ξ) by using (49) if ξ and η are inH0,fin. By Corollary 20,
in the real line picture in our case we have

(π(γ )�|T (h)π(γ )�) = − �

4π

∫

h(t)〈γ̇ γ −1, γ̇ γ −1〉(t)dt ,

for every h, and this motivates (47) since in general we expect the identity

(ξ |T (h)ξ) =
∫

S1
h(z)(ξ |T (z)ξ)dz

to hold. In addition, we can also show a different way to recover (47) by using some
results of [7].

LetN ⊆ M be a -hsm inclusionwith corresponding family of vonNeumann algebras
(Mt )t∈R. We denote by P ≥ 0 the generator of translations and byω the faithful normal
state given by the common standard vector�. Given two real parameters t < t ′, consider
a normal state ψ of Mt with representing vector η. If u is some isometry, then we will
denote by ψu the vector state represented by uη. We will use the notation Pη = (η|Pη).
We define

Eψ(t, t ′) = inf
(w′,w)∈C ′

t×Ct ′
Pww′η , (50)

where C ′
t is the family of all the isometries w′ in M′

t such that Pw′η and SM′
t
(ψw′ ‖ω)

are both finite, and similarlyCt ′ is the family of all the isometriesw inMt ′ such that Pwη

and SMt ′ (ψw‖ω) are finite. Notice that Eψ(t, t ′) is well defined as a state-dependent
quantity, since any two vectors which represent ψ onMt differ by an isometry ofM′

t .

Proposition 26. Let A be a von Neumann algebra on H and let Us = e−is P be a one
parameter strongly continuous unitary group such that U−sAUs ⊆ A for s ≥ 0. If u
and u′ are isometries in A and A′, then for every vector ξ inH we have

Puu′ξ + Pξ = Puξ + Pu′ξ ,

under the assumption that the quantities |P|uu′ξ , |P|uξ , |P|u′ξ , and |P|ξ are all finite.
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Proof. Take s > 0 and consider

D = (ξ |U−sξ) + (uu′ξ |U−suu
′ξ) − (uξ |U−suξ) − (u′ξ |U−su

′ξ) .

Note that (uu′ξ |U−suu′ξ) = (ξ |(u∗U−suU−s)(u′)∗U−su′ξ), where we used the fact
that u∗U−suUs belongs to A for s > 0. Thanks to this remark, we can write D =
D1 + D2 + D3 + D4, where

D1 = (u∗(Us − 1)uξ |Us(u
′)∗(U−s − 1)u′ξ)

D2 = (u∗(Us − 1)uξ |(Us − 1)ξ)

D3 = ((U−s − 1)ξ |(u′)∗(U−s − 1)u′ξ)

D4 = −((U−s − 1)ξ |(U−s − 1)ξ) , (51)

and so we have the estimate |D| ≤ |D1| + |D2| + |D3| + |D4|. We can bound all of
these terms as |Di | ≤ ‖(Us − 1)η1‖ ‖(Us − 1)η2‖, where η1, η2 ∈ {ξ, uξ, u′ξ}. For ζ in
{ξ, uξ, u′ξ} we can use the spectral representation of P to write, for s > 0, the identity

(ζ |(1 −Us)ζ )/s =
∫

1 − e−isλ

s
d(ζ |Eλ(P)ζ ) .

By |1−e−isλ|/s ≤ |λ| and by the finiteness of |P|ζ = (ζ ||P|ζ )wecan use the dominated
convergence theorem, and so we have

lim
s→0+

(ζ |(1 −Us)ζ )/s = i Pζ .

It follows that

lim
s→0+

‖(Us − 1)ζ‖2
s

= lim
s→0+

2Re(ζ |(1 −Us)ζ )/s = 0 ,

and so by the estimates above we finally obtain that D/s → 0 for s → 0+. Therefore

0 = lim
s→0+

D/s = Pξ + Puu′ξ − Puξ − Pu′ξ ,

and the thesis follows. ��
The previous proposition is an intermediate result used in the proof of Theorem 1.

Finally, by using the proof of Theorem 1 and Proposition 26 we have the following fact.

Proposition 27. Given two real parameters t < t ′, consider a normal state ψ of Mt
with representing vector η such that Pη < +∞. Consider the Connes cocycles

u′
s(t) = (Dψ : Dω ;M′

t )s , us(t
′) = (Dψ : Dω ;Mt ′)s .

If the relative entropies S(t) = SMt (ψ‖ω) and S̄(t ′) = SM′
t ′
(ψ‖ω) are finite, then

Eψ(t, t ′) = inf
s,s′

Pu′
s (t)η + Pus′ (t ′)η − Pη = lim

s→+∞ Pu′
s (t)η + Pu−s (t ′)η − Pη . (52)
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In other words, what we did was just to notice by the proof of Theorem 1 that, under
some finiteness assumptions, the null energies of all the representing vectors for a normal
state are minimized by the Connes cocycles. Notice also that by Theorem 1 and (41) we
have

Eψ(t, t ′) = −S′(t)/2π + S̄′(t ′)/2π − Pη .

Finally, we can define
Eψ(t) = lim inf

h→0+
Eψ(t, t + h)/h . (53)

After this premise, we can show that the density (47) is actually given by the limit
(53). In this step we will use the results of [24], which ensures us that a PER of a
loop group LG can be extended to a PER of H1(S1,G). In particular, this implies that
Theorem 23 and Theorem 25 are still true in this generality. The same argument applies
to Proposition 31 below as well. Furthermore, as shown later in Proposition 31, we can
compute (50) by using (52). By doing so we have

Eγ (t, t ′) = − �

4π

∫ t ′

t
〈γ̇ γ −1, γ̇ γ −1〉du .

This tells us that the null energy density (47) can be recovered by using (53).

5.1. QNEC on LSU (n). In this section we focus on the case G = SU (n) and we use a
construction illustrated in [30] to show that a positive energy representation of LSU (n)

can be extended to a positive energy representation of the Sobolev group Hs(S1, SU (n))

for s > 1/2. In particular, we will use this fact to provide a simpler proof of the QNEC
(48).

We begin by considering the natural action of G = SU (n) on V = C
n and we set

H = L2(S1, V ), or equivalently H = L2(S1)⊗V . We can naturally define a continuous
action M of LG on H by Mγ f (φ) = γ (φ) f (φ). We can also define an action of Rot on
H by Rθ f (φ) = f (φ − θ) with respect to the representation of LG is covariant, that is
it satisfies Rθ Mγ R

−1
θ = MRθ γ . If P is the orthogonal projection onto the Hardy space

H+, namely

H+ =
{

f ∈ L2(S1, V ) : f (θ) =
∑

k≥0

fke
ikθ with fk ∈ V

}

,

then we can define a new Hilbert space HP which is equivalent to H as real Hilbert
space, but with complex structure given by J = i P − i(1− P). The Segal quantization
criterion, which we now recall, allows us to define a positive energy representation of
LG on the fermion Fock space FP = �HP known as the fundamental representation
of LSU (n) [27,30]. Notice that FP (0) = �V is the fundamental representation of
SU (n). The fundamental representation of LSU (n) is the direct sum of all the n + 1
irreducible positive energy representations of LSU (n) of level � = 1. The fundamental
representation contains the basic representation, that is the unique level one vacuum
representation.

Definition 28. The restricted unitary group is the topological group

UP (H) = {
u ∈ U (H) : [u, P] ∈ L2(H)

}
,

where the considered topology is the strong operator topology combined with the metric
given by the distance d(u, v) = ‖[u − v, P]‖2.
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Any u ∈ U (H) gives rise to an automorphism of CAR(H), called Bogoliubov au-
tomorphism, via a( f ) �→ a(u f ). For every projection P on H there is an irreducible
representation of CAR(H) on FP which is denoted by πP . The Bogoliubov automor-
phism is said to be implemented onFP ifπP (a(u f )) = UπP (a( f ))U∗ for some unitary
U ∈ U (FP ) [30].

Theorem 29. Segal’s quantization criterion. [30] If [u, P] is a Hilbert-Schmidt operator
then u is implemented on FP by some unitary operator UP. Moreover, UP is unique up
to a phase and the constructed map UP (H) → PU (FP ) is continuous.

Proposition 30. The fundamental representation of LSU (n) can be extended to
Hs(S1, SU (n)) for any s > 1/2. In particular, every positive energy representation
of LSU (n) extends to a positive energy representation of Hs(S1, SU (n)) for s > 1/2.

Proof. Notice that since a loop γ in LSU (n) is also a map from S1 to Mn(C), then we
can write γ as a Fourier series γ (z) = ∑

γ̂k zk , where γ̂k ∈ Mn(C). We consider on H
the basis ekj (z) = zke j , where (e j ) is the standard basis of C

n . We define Mpq = γ̂p−q

and we note that Mγ ekj = ∑
i Mikeij , so that (epi , Mγ e

q
j ) = (ei , Mpqe j ). So Mγ is

represented by a Z × Z matrix (Mpq) of endomorphisms. We have

‖[P, Mγ ]‖22 =
∑

p≥0,q<0

‖Mpq‖22 +
∑

p<0,q≥0

‖Mpq‖22

=
∑

k>0

k‖γ̂k‖22 −
∑

k<0

k‖γ̂k‖22

=
∑

k∈Z

|k|‖γ̂k‖22 ≤
∑

k∈Z

(1 + |k|)2s‖γ̂k‖22 ,

for s > 1/2. It is easy to verify that the map γ �→ Mγ ∈ UP (H) is continuous. We also
have that the rotation group acts on Hs(S1,G) by continuous operators (see LemmaA.3
of [4]), and by [Rθ , P] = 0 we have that the projective representation of Rot is actually
a strongly continuous unitary representation. Therefore, the thesis follows by the Segal
quantization criterion, the complete reducibility of positive energy representations (Thm.
9.3.1. of [27]), Proposition 2.3.3. of [29] and remarks below. ��
Proposition 31. Let γ be a loop in H1(S1, SU (n)). Pick a non dense open interval
I = (z, w) of the circle and write γ = γIγI ′ as in (33). Then, in PU (H) we have

(Dωγ : Dω)t = π(γI δI (−2π t).γ −1
I ) , (54)

where (Dωγ : Dω)t is the Connes cocycle of A�(I ) and δI (t) denotes the dilation
associated to I .

Proof. First we check that γI δI (t).γ
−1
I is in H1(S1, SU (n)) since it is continuous on

the boundary of I , hence the right hand side of (54) is well defined. With the same
computations of Proposition 21 we have that σ

γ
t (x) = Adπ(γI δI (−2π t).γ −1

I ) · σt (x)
for x inA�(I ). Therefore, we have that (Dωγ : Dω)t is equal to π(γI δI (−2π t).γ −1

I ) up
to a unitary V in the commutant of A�(I ), but (Dωγ : Dω)t and π(γI δI (−2π t).γ −1

I )

are both in A�(I ) and thus V is a scalar. ��
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Theorem 32. Let γ be a loop in H1(S1, SU (n)). Suppose also that, in the real line
picture, the support of γ is bounded from below. Then the relative entropy (31) is finite
and given by

S(t) = −�

2

∫ ∞

t
(u − t)〈γ̇ γ −1, γ̇ γ −1〉du . (55)

In particular, the QNEC (1) is satisfied as shown above in Theorem 25.

Proof. Since the vacuum is SU (n)-invariant, we can replace γ with γ g for any g in
SU (n), thus we can suppose γ (∞) = e. As above, if γ (t) = e then S(t) is finite and
given by (55). We can prove that S(t) is finite for any t real as in Theorem 23, and
similarly we have that S̄(t) = SA�(−∞,t)(ωγ ‖ω) is finite for any t real. If P is the
generator of translations then the average energy Eγ in the state ωγ is finite and given
by equation (40). Therefore we can apply Lemma 1. of [7], and equation (41) holds.
This implies that S(t) and S̄(t) are both Lipschitz functions and in particular they are
absolutely continuous. The next step is an estimate of S′(t). For simplicity we focus
on the case t = 0 and we write γ = γ+γ− with γ+(u) = e for u ≤ 0 and γ−(u) = e
for u ≥ 0. By Proposition 31 the Connes cocycle u′

s = (Dω : Dωγ )s on A�(−∞, 0)
is equal in PU (H) to π(γ−δ(2πs).γ −1− )∗. But also the state ωγ · Ad(u′

s)
∗ verifies the

finiteness conditions required to apply Lemma 1. and thus we have −S′(0) ≤ 2πEs ,
where Es = (u′

sπ(γ )�|Pu′
sπ(γ )�) for s real. However, one can simply prove that

inf
s
2πEs = −�

2

∫ +∞

0
〈γ̇ γ −1, γ̇ γ −1〉du .

Therefore, by repeating the argument with any t in R we have

−S′(t) ≤ −�

2

∫ +∞

t
〈γ̇ γ −1, γ̇ γ −1〉du .

Finally, if we define

F(t) = −�

2

∫ ∞

t
(u − t)〈γ̇ γ −1, γ̇ γ −1〉du ,

then we can conclude that S(t) = F(t) for any t in R. Indeed, if the support of γ is
compact then H(t) = S(t)−F(t) is an absolutely continuous function with nonnegative
derivative and going to 0 as |t | → +∞. If the support of γ is contained in (k,+∞) then
by lower semicontinuity S(t) ≤ F(t) for every t real, and we can similarly deduce that
H(t) = 0 for every t real. The QNEC inequality (48) can be proved as above, with the
only exception that in this case we do not have to use [24] to compute (47). ��
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