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1. Introduction

The study of extended objects subjected to thermal fluctuations such as interfaces,
membranes, and polymers, constitutes a fundamental chapter in statistical physics [1].
Interfaces separating coexisting phases, as in the case of a liquid in equilibrium with its
vapor [2], have received considerable attention from both theory, simulations [3], and
experiments [4]; we refer to [5–13] for reviews on this subject.

Within the language of statistical physics, the characterization of thermal fluctu-
ations exhibited by extended objects is inevitably formulated in terms of correlation
functions of certain quantities. This is also the case for liquid–vapor interfaces. In a
seminal paper by Wertheim [14] it was shown that density fluctuations in the presence
of phase separation become long-ranged along the interface separating coexisting phases
and that these correlations are confined within the interfacial region [2, 15]. This situ-
ation happens to be in sharp contrast with the exponential decay of correlations that
characterizes pure phases4 [18, 19]. The above features exhibited by correlations within
interfacial region separating coexisting phases have been at the center of numerous stud-
ies based on coarse-grained descriptions in terms of effective interfacial models [20–24]
followed from the so-called capillary wave model [25]. We refer to [26] for a historical
account and to [22–24] (and references therein) for the state of the art on effective
interfacial models.

4 See [16, 17] for rigorous results in the framework of Ornstein–Zernike theory.
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Going beyond effective models, and focusing on exactly solvable models, for a long
time the study of interfacial behavior has been limited to the planar Ising model on
the lattice [27]. The possibility of obtaining analytic results from the scaling limit of
exact solutions on the lattice proved to be essential for the formulation of heuristic
interpretations based on the analogy between fluctuating interfaces in two dimensions
and random walks [28] as well as formulations based on solid-on-solid models [29, 30]
in which spin interfaces are identified with fluctuating Onsager–Temperley strings [31]
and statistical sums are implemented by path integrals [32, 33].

The two-dimensional case turns out to be very interesting because the exact analytic
form of interfacial correlations can be obtained for several models of statistical mechanics
[34]. In particular, it is possible to characterize in a mathematically precise form the
anisotropic character of interfacial correlations, their long-range character, as well as
their confinement, providing thus a quantitative analysis of the scenario outlined by
Wertheim within the context of non uniform fluids [14, 15].

In this paper, we show how to find closed-form expressions for certain four-
point correlation functions of the order parameter field in the presence of phase sep-
aration. The systems considered in this paper are generic models of two-dimensional
statistical mechanics at phase coexistence close to a second-order phase transition point.
The analytic expressions derived in this paper follow from the exact theory of phase
separation in two dimensions5 [34, 37, 38] and wetting phenomena [39–43] and, more
specifically, to recently obtained results for n-point correlation functions in the pres-
ence of an interface [44]. In particular, it has been shown in [44] how the first-principle
field-theoretic calculation for n-point correlation functions admits an exact probabilis-
tic interpretation in which the interface fluctuates as a Brownian bridge. The results
obtained in this paper are thus self-contained and derived by following the probabilis-
tic interpretation, which is exact at both leading and first subleading corrections in
finite-size corrections.

This paper is structured as follows. In section 2, we recall the probabilistic interpreta-
tion and we introduce the specific four-point correlation functions considered throughout
this paper. We then derive the corresponding analytic expression for each order param-
eter correlator and discuss some analytic properties they satisfy. In section 3, we present
the comparison between the analytic expressions and the results obtained from Monte
Carlo simulations for the Ising model. Conclusive remarks are summarized in section 4.
Appendix A collects some mathematical details involved in the calculations presented
in section 2.

2. Interfacial correlations

We consider a two-dimensional statistical system at phase coexistence close to a second
order phase transition point. To be definite, the system we consider is a ferromagnetic
spin model defined on the two-dimensional strip (x, y) ∈ R× (−R/2,R/2) with finite
width R in the y direction. Boundary conditions with spins fixed in state a for x < 0

5The three-dimensional case has been recently addressed in [35, 36].
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Figure 1. Spatial arrangement of the order parameter fields (green circles) for the
four-point correlation functions considered in this paper.

and b for x > 0 are used to enforce the emergence of an interface separating coexisting
phases; see figure 1.

The quantity that we are going to examine is the four-point correlation function of
the order parameter field σ(x, y)

〈σ(x1, y1)σ(x2, y2)σ(x3, y3)σ(x4, y4)〉ab, (2.1)

where 〈. . .〉ab stands for statistical averages in the strip geometry with ab boundary
conditions corresponding to figure 1. It has been shown in [44] how general results for
n-point interfacial correlation functions with arbitrary n can be derived from the under-
lying field theory associated to the scaling model. In this paper, we specify the above
mentioned results to n = 4 with the four points arranged in particularly symmetric con-
figurations. This choice will allow us to write the exact results of [44] in an explicit form,
which is particularly suited for both analytical considerations as well as for comparison
with numerical simulations.

The configurations we will examine throughout this paper are those depicted in
figure 1, and the corresponding four-point correlation functions are those defined in
(2.2)–(2.4). The correlation function

G‖(y1, y2, y3, y4) = 〈σ(0, y1)σ(0, y2)σ(0, y3)σ(0, y4)〉ab (2.2)

corresponds to order parameter fields aligned along the straight line that connects the
pinning points, as illustrated in figure 1(a). The correlation function

G�(x, y) = 〈σ(0, y)σ(−x, 0)σ(x, 0)σ(0,−y)〉ab (2.3)

corresponds to order parameter fields arranged in a rhomboidal pattern with diagonals
of length 2x and 2y parallel to the coordinate axes, as indicated in figure 1(b). Lastly,
the correlation function

G�(x, y) = 〈σ(−x, y)σ(x, y)σ(−x,−y)σ(x,−y)〉ab (2.4)

https://doi.org/10.1088/1742-5468/ac257c 4
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corresponds to order parameter fields arranged in a rectangular pattern with edges of
length 2x and 2y parallel to the coordinate axes, as depicted in figure 1(c). Throughout
this manuscript we will refer to G‖(y1, y2, y3, y4), G�(x, y), and G�(x, y) as the parallel ,
rhomboidal , and rectangular correlation functions, respectively.

We are now in the position to introduce the theoretical framework employed to
calculate the correlation functions we are interested in. To this end, we recall those
results obtained in [44], which are essential for the discussion in the present paper. It has
been shown in [44] that exact results for n-point correlation function—such as (2.1) when
n = 4—can be represented within a probabilistic interpretation in which the correlation
function is reconstructed by averaging over interfacial configurations weighted with the
probability density of a Brownian bridge. This probabilistic interpretation is valid for
those universality classes and boundary conditions in which phase separation in two
dimensions occurs through a single interface [37, 38, 45].

More specifically, the probabilistic interpretation allows us to express the correlation
function (2.1) as follows

〈σ1(x1, y1)σ2(x2, y2)σ3(x3, y3)σ4(x4, y4)〉ab

=

∫
R4

du1 du2 du3 du4 P4(u1, y1;u2, y2;u3, y3;u4, y4)

× σab|1(x1|u1)σab|2(x2|u2)σab|3(x3|u3)σab|4(x4|u4). (2.5)

Some comments are in order. The subscript j in σj denotes the jth spin field entering in
(2.5). In the more general setting, the spin field σj can have more than one component
and j can be used to label them. For instance, this situation happens in the quantum
field theory associated to the scaling q-state Potts model [37]. Then, P 4 du1 du2 du3 du4

is the probability for the interface to cross all the intervals (xj, xj + dxj) at y = yj with
j = 1, 2, 3 and 4. As shown in [44], the joint passage probability P 4 is the one that
characterizes a Brownian bridge in which the random walker starts its motion in x = 0
at time y = −R/2 and comes back to x = 0 at time y = R/2 (the specific form of Pn is
provided in (2.12)). The profile

σab|i(x|u) = 〈σi〉aθ(u− x) + 〈σi〉bθ(x− u) + A
(σi)
ab|i δ(x− u) + . . . (2.6)

gives the magnetization at point (x, y) when the interface is conditioned to cross the
point (u, y). In (2.6), θ(x) denotes Heaviside unit step function, i.e. θ(x) = 1 if x > 0
and θ(x) = 0 if x < 0, and δ stands for Dirac delta function.

The first two terms in the right-hand side of (2.6) correspond to a step profile in
which the two coexisting phases are sharply separated by the interface. According to this
picture, the interface sharply separates two regions in which the order parameter exhibits
the vacuum expectation values 〈σi〉a and 〈σi〉b. The subsequent term proportional to the
Dirac delta takes into account the first correction beyond the picture in which the
interface is regarded as a structureless entity. The interface structure term originates a

subdominant correction that contributes at order R−1/2 and whose overall factor A
(σi)
ab|i is

known for integrable field theories [37]; we refer to [46] for recent numerical simulations.
We also mention that subsequent corrections can be systematized in an exact expansion
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in powers of the small parameter
√
ξ/R and that corrections at order R−�/2 with � =

2, 3, . . . can be obtained within the field-theoretical method outlined in [44]. Since in
this paper we are interested in the leading-order form of interfacial correlations, from
now on we retain the first two addends in (2.6).

Let us discuss the general structure of the leading-order result for the correlation
function. It is straightforward to realize how the Heaviside theta functions in (2.5)
yield a representation in which the correlation function is expressed through cumulative
distributions of the probability density P 4. It turns out to be convenient to write the
first two terms in the right-hand side of (2.6) in the form

〈σi〉a −Δ〈σi〉θ(x− u), (2.7)

with the jump of expectation values in pure phases given by Δ〈σi〉 = 〈σi〉a − 〈σi〉b. The
joint passage probability P 4 satisfies the following properties:

P3(u1, y1;u2, y2; u3, y3) =

∫
R

du4 P4(u1, y1;u2, y2;u3, y3;u4, y4) (2.8)

P2(u1, y1; u2, y2) =

∫
R2

du3 du4 P4(u1, y1;u2, y2; u3, y3;u4, y4) (2.9)

P1(u1, y1) =

∫
R3

du2 du3 du4 P4(u1, y1; u2, y2;u3, y3; u4, y4) (2.10)

1 =

∫
R4

du1 du2 du3 du4 P4(u1, y1;u2, y2;u3, y3;u4, y4); (2.11)

the first three equations give the marginal distributions and the last one is the normal-
ization condition. Analogously to P 4, the joint probabilities Pn express the probability
density for the crossing of n intervals. It has been shown in [44] that that Pn can be
expressed in terms of the n-variate normal distribution Πn [47, 48] through

Pn(x1, y1; . . . ; xn, yn) =

(
n∏

j=1

√
2

κjλ

)
Πn(

√
2χ1, . . . ,

√
2χn|R1...n), (2.12)

with the following notations

χj = xj/(κjλ), κj =
√
1− τ 2

j , τj = 2yj/R, λ =
√

R/(2m); (2.13)

the parameter m, which is the kink mass in field theory, and the surface tension in the
language of liquid state theories [37], is related to the subcritical bulk correlation length
ξ via ξ = 1/(2m). Then, Πn(u1, . . . , un|R1...n) is the n-variate normal distribution with
(symmetric) correlation matrix R1...n. The ij matrix element of the correlation matrix
ρij = (R1...n)ij is given by

ρij =

√
1− τi
1 + τi

1 + τj
1− τj

i � j. (2.14)

https://doi.org/10.1088/1742-5468/ac257c 6
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The elements in the lower triangular part follow by recalling that R1...n is a symmet-
ric matrix. Note that we are taking yi > yj for i < j, and so also τ i > τj for i < j.
Expectation values with measure Πn are defined by

E[f(u1, . . . , un)] =

∫
Rn

du1 . . .dun f(u1, . . . , un)Πn(u1, . . . , un|R1,...,n). (2.15)

The probability density is standardized, meaning that E[u2
i ] = 1 and

E[uiuj] = ρij. (2.16)

The normalization condition then ensures that E[1] = 1. The last quantity we need to
introduce is the cumulative function of the n-variate normal distribution

Fn(X1, . . . ,Xn|R1...n) =

∫ X1

−∞
du1 . . .

∫ Xn

−∞
dun Πn(u1, . . . , un|R1...n). (2.17)

The above allows us to cast integrals arising from the probabilistic interpretation in
terms of cumulative functions. For instance∫ x1

−∞
du1 . . .

∫ x4

−∞
du4 P4(u1, y1;u2, y2;u3, y3;u4, y4) = F4(

√
2χ1, . . . ,

√
2χ4|R1234). (2.18)

By proceeding along the above lines, the four-point correlation function (2.1) reads

〈σi(x1, y1)σi(x2, y2)σi(x3, y3)σi(x4, y4)〉ab

= 〈σi〉4a − 〈σi〉3aΔ〈σi〉
4∑

j=1

F1(
√
2χj)

+ 〈σi〉2a(Δ〈σi〉)2
∑

1�i<j�4

F2(
√
2χi,

√
2χj |Rij)

− 〈σi〉a(Δ〈σi〉)3
∑

1�i<j<k�4

F3(
√
2χi,

√
2χj,

√
2χk|Rijk)

+ (Δ〈σi〉)4F4(
√
2χ1,

√
2χ2,

√
2χ3,

√
2χ4|R1234) +O(R−1/2), (2.19)

where all spin fields carry the same index i. The most general case in which different
components of the order parameter occur in (2.19) can be treated along the same lines.
It is worth pointing out how clustering properties of correlation functions can be derived
from (2.19). For instance, by taking x4 →∓∞, we have the following limiting behavior

lim
x4→∓∞

〈σi(x1, y1)σi(x2, y2)σi(x3, y3)σi(x4, y4)〉ab

= 〈σi〉a[b]〈σi(x1, y1)σi(x2, y2)σi(x3, y3)〉ab, (2.20)

https://doi.org/10.1088/1742-5468/ac257c 7
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where the three-point correlation function

〈σi(x1, y1)σi(x2, y2)σi(x3, y3)〉ab = 〈σi〉3a − 〈σi〉2aΔ〈σi〉
3∑

j=1

F1(
√
2χj)

+ 〈σi〉a(Δ〈σi〉)2
∑

1�i<j�3

F2(
√
2χi,

√
2χj |Rij)

− (Δ〈σi〉)3F3(
√
2χ1,

√
2χ2,

√
2χ3|R123) +O(R−1/2),

(2.21)

agrees with field-theoretic calculations [44, 49].
The remaining part of this section is devoted to a detailed case-by-case analysis of

(2.19) with spin fields arranged as shown in figure 1. Such an analysis will allow us
to find explicit expressions for (2.19) involving either single integrals or certain special
functions related to the Gaussian distribution [50, 51].

2.1. Parallel correlation function

For spin fields arranged in the configuration of figure 1(a), we have xj = 0 with j =
1, . . . , 4 and −R/2 < y4 < y3 < y2 < y1 < R/2. Since χj = 0 in (2.19), the calculation
of the parallel correlation function involves orthant probabilities only. We introduce the
following shorthand notation for orthant probabilities:

Φ2(ρ12) = F2(0, 0|R12)

Φ3(ρ12, ρ23) = F3(0, 0, 0|R123)

Φ4(ρ12, ρ23, ρ34) = F4(0, 0, 0, 0|R1234).

(2.22)

Clearly, F 1(0) = 1/2. We recall that R1...n is a n× n symmetric matrix with 1 along
the main diagonal, therefore it comprises n(n− 1)/2 nontrivial entries in the upper tri-
angle. Thanks to the Markov property6, ρijρjk = ρik for i < j < k. It thus follows that
the number of independent entries is actually lowered to n− 1. For this reason the
orthant probability for the trivariate normal distribution depends on two independent
variables and, analogously, the orthant probability for the quadrivariate normal distribu-
tion depends on three independent variables. Without loss of generality, we can take for
the independent correlation coefficients those that appear in the superdiagonal entries,
namely, ρi,i+1 for i = 1, . . . ,n− 1. Thanks to (2.19) and (2.22) the parallel correlation
function reads

G‖(y1, y2, y3, y4) = 〈σi〉4a − 2〈σi〉3aΔ〈σi〉+ 〈σi〉2a(Δ〈σi〉)2
∑

1�i<j�4

Φ2(ρij)

− 〈σi〉a(Δ〈σi〉)3 [Φ3(ρ12, ρ23) + Φ3(ρ12, ρ24) + Φ3(ρ13, ρ34)

+ Φ3(ρ23, ρ34)] + (Δ〈σi〉)4Φ4(ρ12, ρ23, ρ34) +O(R−1/2).

(2.23)

6 See, e.g. [52, 53].
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The orthant probabilities Φj for the bivariate (j = 2) and trivariate (j = 3) normal
distributions are given by [47, 48]

Φ2(ρ12) =
1

4
+

1

2π
sin−1(ρ12), (2.24)

and

Φ3(ρ12, ρ23) =
1

8
+

1

4π

[
sin−1(ρ12) + sin−1(ρ13) + sin−1(ρ23)

]
, (2.25)

where ρ13 = ρ12ρ23 because of the Markov property that characterizes the Brownian
bridge. The expression of the orthant probability for the quadrivariate normal distribu-
tion is considerably more involved and reads [54]

Φ4(ρ12, ρ23, ρ34) =
1

16
+

1

8π

∑
1�i<j�4

sin−1(ρij) +
1

4π2
sin−1(ρ12)sin

−1(ρ34)

+
1

4π2

∫ ρ12ρ23ρ34

0

du√
1− u2

sin−1

(
u

√
1− ρ212
ρ212 − u2

1− ρ234
ρ234 − u2

)
. (2.26)

By plugging (2.24)–(2.26) into (2.23), and introducing

〈̃σi〉 =
〈σi〉a + 〈σi〉b

2
, (2.27)

we find

G‖(y1, y2, y3, y4) = 〈̃σi〉4 +
1

4
〈̃σi〉2(Δ〈σ〉)2C‖(y1, y2, y3, y4)

+
1

16
(Δ〈σi〉)4G‖(y1, y2, y3, y4) +O(R−1/2), (2.28)

where C‖ and G‖ are the scaling functions

C‖(y1, y2, y3, y4) =
2

π

∑
1�i<j�4

sin−1(ρij), (2.29)

and

G‖(y1, y2, y3, y4) =
4

π2
sin−1(ρ12)sin

−1(ρ34)

+
4

π2

∫ ρ12ρ23ρ34

0

du√
1− u2

sin−1

(
u

√
1− ρ212
ρ212 − u2

1− ρ234
ρ234 − u2

)
. (2.30)

The above provides an exact result for the parallel correlation function when order
parameter fields are placed along the interface, as shown in figure 1(a).

In the following, we further specialize the parallel correlation function to spin fields
symmetrically arranged with respect to the horizontal axis. We set y1 = −y4, y2 = −y3
and observe that this choice implies ρ12 = ρ14 in (2.29) and (2.30). Thus, we introduce

G
(sym)
‖ (y1, y2) = G‖(y1, y2,−y2,−y1), (2.31)
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the above reads

G
(sym)
‖ (y1, y2) = 〈̃σi〉4 +

1

4
〈̃σi〉2(Δ〈σi〉)2C(sym)

‖ (τ1, τ2)

+
1

16
(Δ〈σi〉)4G(sym)

‖ (τ1, τ2) +O(R−1/2), (2.32)

with the scaling functions

C(sym)
‖ (τ1, τ2) =

2

π

[
2 sin−1(ρ12) + 2 sin−1(ρ12ρ23) + sin−1(ρ23) + sin−1(ρ212ρ23)

]
, (2.33)

and

G(sym)
‖ (τ1, τ2) =

4

π2

(
sin−1(ρ12)

)2
+

4

π2

∫ ρ212ρ23

0

du√
1− u2

sin−1

(
u
1− ρ212
ρ212 − u2

)
. (2.34)

We defer the examination of some limiting cases in which the parallel correla-
tion function reduces to the rhomboidal or rectangular one in sections 2.2 and 2.3,
respectively.

2.2. Rhomboidal correlation function

The analysis for the correlation function with spin fields in rhomboidal arrangement
does not proceed along the lines illustrated in the previous section. Firstly, because we
do not provide a general expression for F4(X1,X2,X3,X4|R1234) that we could use in
the limit of interest, secondly because the correlation coefficient degenerates to unity,
i.e. ρ23 = 1; such a limit has to be handled carefully. The perfect correlation between
the random variables u2 and u3—as signaled by ρ23 = 1—is best treated by taking the
limit ρ23 → 1 in the passage probability density (2.12). The correlation function then
follows by plugging the passage probability for the rhomboidal arrangement, hereinafter

denoted P
(�)
4 , into (2.19). This is the calculation strategy that we are going to detail.

The passage probability for the rhomboidal arrangement is obtained from the
following limiting procedure

P
(�)
4 = lim

ρ23→1
P4. (2.35)

Since y ≡ y1 = −y4, we have ρ12 = ρ34 ≡ α, with

α =

√
1− τ

1 + τ
, τ =

2y

R
. (2.36)

As a result, the passage probability P
(�)
4 is characterized by one correlation coefficient,

say α; note that ρ14 = ρ12ρ23ρ34 = α2 by virtue of ρ23 = 1. Recalling the relationship
between P 4 and Π4 given by (2.12), a simple calculation yields for the rescaled passage
probability the following expression

Π
(�)
4 (u1, u2, u3, u4|α) =

√
2π

4π2(1− α2)
δ(u2 − u3)e

− Q

2(1−α2) , (2.37)
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where

Q = u2
1 + u2

4 + α2(u2
2 + u2

3) + (1− α2)u2u3 − 2α(u1u2 + u3u4). (2.38)

A simple check reveals that Π
(�)
4 (u1, u2, u3, u4|α) is correctly normalized. This fact can

be confirmed by a direct calculation:∫
R2

du1 du4 Π
(�)
4 (u1, u2, u3, u4|α) =

1√
2π

δ(u2 − u3)e
−u2u3/2, (2.39)

thus ∫
R3

du1 du3 du4 Π
(�)
4 (u1, u2, u3, u4|α) =

1√
2π

e−u22/2 = Π1(u2), (2.40)

and since Π1(u2) is normalized, it follows that∫
R4

du1 du2 du3 du4 Π
(�)
4 (u1, u2, u3, u4|α) = 1, (2.41)

as we anticipated and as consistency requires.
The four-point correlation function is computed by plugging the passage probability

(2.37) into the probabilistic representation (2.19). Leaving in appendix A the lengthy
mathematical manipulations, the result for the rhomboidal correlation function reads

G�(x, y) = 〈̃σi〉4 +
1

4
(Δ〈σi〉)2〈̃σi〉2C�(η, τ) +

1

16
(Δ〈σi〉)4G�(η, τ) +O(R−1/2), (2.42)

where C�(η, τ) and G�(η, τ) are the scaling functions

C�(η, τ) = 1− 2 erf(|η|) + 2

π
sin−1

(
α2

)
+ 16T (

√
2η, r)

G�(η, τ) =
2

π
sin−1

(
α2

)
− 2Y(|η|, r),

(2.43)

where T is Owen’s function (see (A.5) for its definition) and Y(η, r) is defined by

Y(η, r) =
2√
π

∫ η

0

du e−u2 erf2(ru), (2.44)

where erf(z) = (2/
√
π)

∫ z

0
dt e−t2 is the error function [55], η = x/λ is the rescaled

horizontal coordinate, and

r =
α√

1− α2
. (2.45)

Let us discuss some general properties of the rhomboidal correlation function. By
definition, G�(x, y) is an even function under the exchange of x with −x. The parity
G�(x, y) = G�(−x, y) is thus satisfied by both the scaling functions (2.43); recall that
T (

√
2η, r) = T (−

√
2η, r) (see (A.5)). The limit x→ +∞ for the rhomboidal correlation
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function projects the order parameter field σi(x, 0) deep into the b phase and, analo-
gously, σi(−x, 0) deep into the a phase. As a result, we obtain the following clustering
relation

lim
x→+∞

G�(x, y) = 〈σi〉a〈σi〉b

[(
〈σi〉a + 〈σi〉b

2

)2

+

(
〈σi〉a − 〈σi〉b

2

)2
2

π
sin−1

(
α2

)]
. (2.46)

The quantity enclosed in square brackets is the two-point correlation function with order
parameter fields placed along the interface, i.e. 〈σi(0, y)σi(0,−y)〉ab [34].

As a cautionary check, it is useful to compare the limit x→ 0 of the rhomboidal cor-
relation function with the limit y2 → 0 of the parallel correlation function. Consistency
requires that the above limits have to coincide, i.e.

lim
x→0

G�(x, y) = lim
y2→0

G
(sym)
‖ (y, y2). (2.47)

In order to check that (2.47) is satisfied, we firstly examine the limit x→ 0 of the scal-
ing functions that appear in the correlation function G�(x, y). For the scaling function
C�(η, τ), we have

lim
x→0

C�(η, τ) = 1 +
2

π
sin−1

(
α2

)
+

8

π
tan−1

(
α√

1− α2

)
= 1 +

2

π
sin−1

(
α2

)
+

8

π
sin−1(α); (2.48)

in the first line, we used property (A.6) of Owen’s T -function while in the second line,
we used the trigonometric identity tan−1

(
α/

√
1− α2

)
= sin−1(α). The scaling function

G�(η, τ) reduces to

lim
x→0

G�(η, τ) =
2

π
sin−1

(
α2

)
. (2.49)

Let us consider now the right-hand side of (2.47). The limit y2 → 0 of the scaling function

C(sym)
‖ (τ , τ2) gives (see (2.33))

lim
y2→0

C(sym)
‖ (τ , τ2) = lim

ρ12→α
lim
ρ23→1

C(sym)
‖ (τ , τ2)

= 1 +
2

π
sin−1

(
α2

)
+

8

π
sin−1(α), (2.50)

which coincides with (2.48), as it should. Finally, we consider the same limit discussed

above but now for the scaling function G(sym)
‖ (τ , τ2). From (2.34), we have

lim
y2→0

G(sym)
‖ (τ , τ2) = lim

ρ12→α
lim
ρ23→1

G(sym)
‖ (τ , τ2)

=
4

π2

(
sin−1(α)

)2
+

4

π2

∫ α2

0

du√
1− u2

sin−1

(
u
1− α2

α2 − u2

)
=

2

π
sin−1

(
α2

)
, (2.51)
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Figure 2. The scaling function G�(η, τ). The dot-dashed red curves indicate the
contour lines corresponding to the values ±0.01, the black dashed curve between
the red ones is the contour line where G�(η, τ) vanishes. The remaining black dashed
curves are contour lines corresponding to the values ranging from −0.9 to +0.9 with
spacing 0.1.

the last equality follows from the identity (A.14), whose proof is supplied in appendix A.
Summarizing, thanks to the results (2.48)–(2.51), we have proved the connection
between the parallel and rhomboidal correlation functions given by (2.47).

The scaling function G�(η, τ) is plotted in figure 2 as function of η and τ .

2.3. Rectangular correlation function

The correlation function with spin fields arranged as shown in figure 1(c) can be
calculated by following the procedure outlined in section 2.2. Leaving the mathemat-
ical details in appendix A, the rectangular correlation function admits the following
representation

G�(x, y) = 〈̃σi〉4 +
1

4
(Δ〈σi〉)2〈̃σi〉2C�(η, τ) +

1

16
(Δ〈σi〉)4G�(η, τ) +O(R−1/2),

(2.52)

with the scaling functions

C�(η, τ) = 2− 4 erf(|χ|)− 16T (
√
2χ,

√
τ) + 16T (

√
2χ, 1/

√
τ)

G�(η, τ) = 5− 4 erf(|χ|)− 16T (
√
2χ,

√
τ)− 16T (

√
2χ, 1/

√
τ),

(2.53)

and the rescaled coordinates η = x/λ, χ = η/κ, κ =
√
1− τ 2, τ = 2y/R.

Analogously to the rhomboidal case, reflection symmetry is expected, namely:
G�(x, y) = G�(−x, y). The limit x→ +∞ in (2.52) entails a separation of the four spin
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fields into two infinitely separated clusters. By using the properties of Owen’s T function
listed below (A.5) and the limits

lim
x→+∞

C�(η, τ) = −2 (2.54)

lim
x→+∞

G�(η, τ) = 1, (2.55)

we have

lim
x→+∞

G�(x, y) = 〈σi〉2a〈σi〉2b , (2.56)

which is the expected clustering behavior. Then, the limit x→ 0 of the rectangular
correlation function must reduce to the limit y2 → y1 ≡ y in the parallel correlation
function, i.e.

lim
x→0

G�(x, y) = lim
y2→y

G
(sym)
‖ (y, y2), (2.57)

which is indeed the case. The identity (2.57) can be easily verified by observing that the
scaling functions that appear in the left-hand side of (2.57) satisfy the limits

lim
x→0

C�(η, τ) = 6− 16

π
tan−1(

√
τ) (2.58)

lim
x→0

G�(η, τ) = 1, (2.59)

while for the scaling functions in the right-hand side, we have

lim
y2→y

C(sym)
‖ (τ , τ2) = 2 +

8

π
sin−1

(
1− τ

1 + τ

)
(2.60)

lim
y2→y

G(sym)
‖ (τ , τ2) = 1. (2.61)

By virtue of the identity

2

π
sin−1

(
1− τ

1 + τ

)
= 1− 4

π
tan−1(

√
τ), (2.62)

the right-hand side of the first equations in (2.58) and (2.60) coincide, and the property
(2.57) follows.

The analytical examination of interfacial correlations can be carried out by taking
the limit of small τ in (2.53). Among the two scaling functions in (2.53), we focus on
G�(η, τ) because it is the one that characterizes the Ising model. The analysis we are
going to provide for G�(η, τ) can be straightforwardly extended to the scaling function
C�(η, τ). The analytical study is better achieved by writing the scaling function G�(η, τ)
in the equivalent form

G�(η, τ) = 1− 4 erf(χ)erfc(χ/
√
τ)− 16T (

√
2χ,

√
τ) + 16T (

√
2χ/

√
τ ,

√
τ),

(2.63)
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Figure 3. The scaling function G�(η, τ). Dashed curves indicate contour lines cor-
responding to the values ranging from 0.9 to 0.1 with spacing 0.1 from outer to
next to inner curve, and 0.01 for the inner curve.

which follows from the functional identity (A.8) satisfied by the T -function; in the
above, erfc(z) = 1− erf(z) is the complementary error function [55]. The scaling func-
tion G�(η, τ) is plotted in figure 3. As already anticipated by the study of clustering
properties, G�(η, τ) exhibits a nontrivial dependence through the coordinates η and τ
only within the interfacial region, i.e. when the rescaled horizontal coordinate η is not
large and the vertical one does not vanish (τ > 0).

For small vertical separations τ the scaling function (2.63) can be approximated with
the expansion

G�(η, τ) = 1− 4 erf(η)erfc(η/
√
τ) +

16

2π

√
τ
[
e−η2/τ − e−η2

]
+O(τ 3/2), (2.64)

up to higher-order corrections of order O(τ 3/2). The small-y expansion provided by (2.64)
accurately encompasses any value of η both within and without the interfacial region
provided ξ  y  R. The term

√
τ ∝

√
y/R is the signature of long range correlations

in the direction parallel to the interface. The term enclosed in square brackets provides
a non-trivial spatial dependence that is specific for the rectangular arrangement of spin
fields.

The T -functions in (2.63) may not allow for a direct visualization of the dependence
through the horizontal coordinate η, the coordinate transverse to the interface. Alter-
natively, we can examine the slope in the horizontal direction, the latter is given by the
first derivative of G�(η, τ) with respect to η

∂ηG�(η, τ) =
8√
πκ

e−χ2 [
erf(

√
τχ)− erfc(χ/

√
τ)
]
. (2.65)
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The overall exponential envelope e−χ2
suppresses interfacial correlations far away from

the interfacial region (|χ| � 1) and determines the confinement of the long-ranged char-
acter of density fluctuations in the region where |χ|  1, where it is more probable to
find the interface.

We conclude this section with a discussion on a general property satisfied by cor-
relation functions. It is known from rigorous studies that fluctuations of the interface
midpoint grow as

√
R [56, 57] and that interface fluctuations in Ising [58] and q-state

Potts models [59] are characterized by the Brownian bridge property. This feature is also

well visualized by the explicit form of the passage probability P1(x, 0) = π−1/2λ−1 e−(x/λ)2 ,
which gives for the mean square position of the interface midpoint

E[x2] =

∫
R

dxx2P1(x, 0) =
Rξ

2
, (2.66)

meaning that 〈x〉 ≡
√

E[x2] ∝
√
R. In the limit R→∞ with fixed x and y both the

rescaled variables variables η = x/
√
Rξ and τ = 2y/R tend to zero. As a result, the

scaling functions encountered in this paper satisfy the following relations

lim
R→∞

Cq = 6, lim
R→∞

Gq = 1, q ∈ {‖, �,�}, (2.67)

which can be obtained by evaluating the scaling functions for η = τ = 0. The above
limits imply

lim
R→+∞

〈σi(x1, y1)σi(x2, y2)σi(x3, y3)σi(x4, y4)〉ab = 〈̃σi〉4 +
6

4
〈̃σi〉2(Δ〈σi〉)2 +

1

16
(Δ〈σi〉)4

=
〈σi〉4a + 〈σi〉4b

2
, (2.68)

meaning that the limit R→∞ of the four point correlation function yields an averaging
over coexisting phases. The above limit is actually a particular case of a more general
result that holds for any n and generic universality classes [44], and includes an analogous
result for the Ising model [27] as a particular case.

3. Numerical results

The analytical predictions obtained in the previous sections are specialized to the Ising
model and compared against Monte Carlo simulations. We set the notation by recalling
the lattice Hamiltonian

H = −J
∑
〈i,j〉

sisj, (3.1)

where si = ±1 and the sum is restricted over nearest neighboring sites of a two-
dimensional square lattice. The critical temperature is given by Tc/J = 2/ log(1 +

√
2) =
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2.269 185 . . . [60]. The correlation length7 in the low-temperature phase reads

ξ = (4K − 4K�)−1, (3.2)

with the dual coupling K� defined by means of exp(−2K�) = tanhK withK = J/T [27].
Without loss of generality, we set the ferromagnetic coupling J = 1 in our simulations.

We consider boundary conditions with a = −1, b = +1 and recall that Ising sym-
metry implies 〈σ〉+ = −〈σ〉−. The spontaneous magnetization M = 〈σ〉+ > 0 is given by
[61, 62]

M =
(
1− (sinh(2K))−4

)1/8
. (3.3)

From the above boundary conditions it follows that 〈̃σ〉 = 0 and Δ〈σ〉 = −2M . Focus-
ing on the leading-order result, the parallel, rhomboidal and rectangular correlation
functions reduce to:

G
(sym)
‖ (y1, y2) = M 4G(sym)

‖ (τ1, τ2)

G�(x, y) = M 4G�(η, τ)

G�(x, y) = M 4G�(η, τ),

(3.4)

with G‖, G�, and G� the scaling functions (2.34), (2.43), and (2.53), respectively. We
recall that ρ12 and ρ23 in (2.34) are given by (2.14) with τ 2 = −τ 3. Then, η and τ in
(3.4) are defined below (2.53).

We emphasize that (3.4) are exact results at leading order in finite-size corrections.

Interface structure corrections proportional to R−1/2 occur in general but actually vanish
for the Ising model [44]. As a result, (3.4) are valid up to subleading corrections at order
O(R−1).

The numerical simulations have been carried out on a rectangular lattice of horizontal
length L and temperature T such that ξ  R. The theory is defined for L→∞ but in
practice it is enough to take L/λ� 7 as a criterion for the sizing of the simulation box.
We summarize the details of the simulation scheme that we have already employed in a
companion paper [49]. The simulations are performed by means of a hybrid Monte Carlo
scheme (see, e.g. [63]), which combines the standard Metropolis algorithm and the Wolff
cluster algorithm [64]. The minimum number of MC steps per site is 107. Parallelization
was obtained by independently and simultaneously simulating up to 128 Ising lattices
on a parallel computer. An appropriately seeded family of dedicated, very large period,
Mersenne Twister random number generators [65], in the MT2203 implementation of the
Intel Math Kernel Library, was used in order to simultaneously generate independent
sequences of random number to be used for the MC updates of the lattices.

The first observable we consider is the parallel correlation function. The analytic
result (2.34) and the numerical data are compared in figure 4 as function of τ 2 = 2y2/R
for fixed τ 1 = 2y1/R. For small values of y2 the correlation function approaches the

7 Lengths are measured in units of lattice spacing.
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Figure 4. Parallel correlation function G(sym)
‖ (τ1, τ2) as function of τ 2 for fixed τ 1 =

2y1/R. Data points are obtained from numerical simulations at T = 2, R = 201.

asymptotic value given by

lim
y2→0

G(sym)
‖ (τ1, τ2) =

2

π
sin−1

(
1− τ1
1 + τ1

)
. (3.5)

The above result is actually confirmed by the numerical simulations. For each value of
y1 sampled in figure 4, τ 1 provides the maximum value allowed for τ 2. This maximum
value is reached when the order parameter field σ(0, y2) approaches σ(0, y1) from below;
see figure 1(a). In such a regime the correlation function approaches the limiting value

lim
y2→y1

G(sym)
‖ (τ1, τ2) = 1, (3.6)

a feature that is well visible in the plot of figure 4. It has to be emphasized that such
a limiting result is obtained in field theory from the single-particle contribution that
dominates the asymptotic of the large-separation behavior of correlation functions and
that further corrections arising from interface structure effects are expected at order
O(R−1) for the Ising model [44]. Therefore, the limit y2 → y1 has to be understood in
the sense that the separation y1 − y2 is small compared to R but it has to be large
compared to the bulk correlation length, i.e. ξ  y1 − y2  R. With this in mind, we
actually observe an excellent agreement between theory and numerics.

The next quantity we consider is the correlation function for the rhomboidal pattern.
The comparison between theory and numerics is presented in figure 5. In figure 5(a), we
plot the correlation function G�(η, τ) as function of the rescaled coordinate η = x/λ for
several values of τ = 2y/R; the vice versa is done in figure 5(b). The analytic result for

G�(η, τ) is provided by (2.43) with α =
√

(1− τ)/(1 + τ). Focusing firstly on figure 5(a),
we observe that for small η the correlation function approaches the limiting value

lim
η→0

G�(η, τ) =
2

π
sin−1

(
α2

)
, (3.7)

while for η → +∞ the asymptotic value is the opposite of the one attained for η → 0.
The origin of this symmetry can be easily understood by noticing that in both cases the
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Figure 5. (a) The rhomboidal correlation function G�(η, τ) as function of η for fixed
τ = 2y/R. (b) G�(η, τ) as function of τ for fixed η = x/λ. Data points are obtained
from numerical simulations at T = 2, R = 201.

spin fields σ(−x, 0) and σ(x, 0) probe either the same phase, or oppositely magnetized
phases. Another interesting feature is the rapidity upon which the above limiting values
are attained. By taking a first derivative of G�(η, τ) with respect to η, we find

∂ηG�(η, τ) =
2√
π
erf2(rη)e−η2 , (3.8)

meaning that the decay of correlations is exponentially fast along the x axis, in analogy
with the rectangular correlation function; see (2.65). Such a behavior happens to be
in sharp contrast with the algebraic form that characterizes the correlation along the
direction parallel to the interface (y-direction); see the power law ∝

√
y/R in (2.64).

The long-range form of interfacial correlations can be investigated analytically by per-
forming an asymptotic analysis of the function Y(|η|, r) for small y/R. This task has
been recently carried out in the examination of the three-point correlation function
〈σ(0, y)σ(x, 0)σ(0,−y)〉−+ [49]. In fact, it has been shown in [44] that the above men-
tioned three-point correlation function for the Ising model is proportional to the scaling
function Y(|η|, r), which occurs in the rhomboidal correlation function. We thus refer
the interested reader to [49] for a detailed mathematical account on this matter.

The remarkable agreement between theory and numerics is confirmed by figure 5(b)
where the correlation function is plotted as function of τ for fixed η. The deviations for
small τ that occur in the plot of figure 5(b) are actually expected since that regime is
at the boundary of the applicability domain of the analytic result at leading order in
powers of (ξ/R)1/2. We refer to [34, 44] for a detailed discussion about the theoretical
treatment of interface structure corrections and to [46, 49] for numerical simulations.

Lastly, we discuss the comparison between theory and numerics for spin fields in the
rectangular arrangement. The qualitative features discussed for the rhomboidal pattern
occur also for the rectangular one. The analytic expression for G�(η, τ) given in (2.53)
turns out to be in good agreement with the numerical results shown in figure 6. The
small deviations that are visible in the plot of figure 6(b) have the same nature as those
arising in figure 5(b).
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Figure 6. (a) The rectangular correlation function G�(η, τ) as function of η for
fixed τ = 2y/R. (b) G�(η, τ) as function of τ for fixed η = x/λ. Data points are
obtained from numerical simulations at T = 2, R = 201.

Although in the field-theoretical approach the bulk correlation length is supposed to
be large compared to the lattice spacing a, and small compared to the system size, i.e.
a  ξ  R, numerical data are found to be in quantitative agreement even when the
constraint ξ � a is not satisfied. For the temperature T = 2 considered in the simulations
shown in this paper, the correlation length slightly exceeds two lattice spacings. An
analogous agreement between theory and simulations for correlation functions within the
interfacial region of an Ising interface has been observed for T = 2.15, corresponding to
ξ ≈ 5 lattice spacings. Furthermore, the striking agreement between theory and numerics
even when ξ does not exceed the few lattice spacings has been already observed in recent
simulations for the q-state Potts model [46].

4. Conclusions

In this paper we have illustrated how to find exact closed-form expressions for certain
four-point correlation functions for statistical systems exhibiting phase separation on
a strip of finite width R � ξ, with ξ the bulk correlation length. The analytic results
derived in this paper are self-consistent with the sole exception of equations (2.5), (2.6)
and (2.12), corresponding to the exact probabilistic representation of n-point correlation
functions that has recently been established from a field-theoretic calculation in [44].
We have examined correlation functions with order parameter fields arranged in three
configurations: along the interface, in a rhomboidal pattern, and in a rectangular pattern;
see figure 1. For each pattern the corresponding correlation function is characterized by
two scaling functions whose analytic expression is provided in closed form. These scaling
functions are universal in the sense that they are shared by models that exhibit phase
separation through a single interface. The exact analytic expressions for the correlation
functions provided in this paper allow for a direct examination of general properties
of interfacial correlations. In particular, the long-range character of correlations in the
direction parallel to the interface and their confinement within the interfacial region
follow from a direct inspection of the analytic results we provided. In the second part
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of the paper we have specialized the analytic results to the Ising model. We have shown
that Ising symmetry selects only one of the above mentioned scaling functions (see (3.4))
and that analytic results are confirmed by high-precision Monte Carlo simulations we
performed.
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Appendix A. Mathematical details

A.1. The correlation function G�

The calculation of G� involves certain integrals arising from the cumulative distribution
for the passage probability Π�. In this appendix, we adopt some tricks that enable us to
shorten the calculation considerably. Firstly, we write the sharp magnetization profile
as follows

σab|i(xi|ui) = 〈̃σi〉 −
1

2
Δ〈σi〉s(xi − ui) + . . . , (A.1)

where s(xi − ui) ≡ sign(xi − ui). Then, we introduce the following shorthand notation
for integrals with measure Π�:

[[f]]� =

∫
R4

du1 du2 du3 du4 f(u1, u2, u3, u4)Π
(�)
4 (u1, u2, u3, u4|α), (A.2)

where f is a function of u1, . . . , u4 and [[f]]� stands for its the expectation value. The result
of (A.2) is a function of x and y but, as we shall see in a while, the dependence through
x occurs by means of the rescaled coordinate η = x/λ, while the dependence through

y is encoded in α =
√
(1− τ)/(1 + τ), with τ = 2y/R. Thanks to these notations, the

correlation function we are interested in can be written as follows

G�(x, y) = 〈̃σi〉4 −
1

2
Δ〈σi〉〈̃σi〉3

(
4∑

i=1

[[si]]�

)
+

1

4
(Δ〈σi〉)2〈̃σi〉2

( ∑
1�i<j�4

[[sisj]]�

)

− 1

8
(Δ〈σi〉)3〈̃σi〉

( ∑
1�i<j<k�4

[[sisjsk]]�

)
+

1

16
(Δ〈σi〉)4[[s1s2s3s4]]� +O(R−1/2),

(A.3)
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where s1 = sign(−u1), s2 = sign(
√
2η − u2), s3 = sign(−

√
2η − u3), and s4 = sign(−u4).

A simple (but tedious) exercise yields the following results:

4∑
i=1

[[si]]� = 0,

∑
1�i<j�4

[[sisj]]� = 1− 2 erf(|η|) + 2

π
sin−1

(
α2

)
+ 16T (

√
2η, r) ≡ C�(η, τ),

∑
1�i<j<k�4

[[sisjsk]]� = 0,

[[s1s2s3s4]]� =
2

π
sin−1

(
α2

)
− 2Y(|η|, r) ≡ G�(η, τ),

(A.4)

with α and r given by (2.36) and (2.45), respectively, T is Owen’s function [50, 51]

T (h, a) =
1

2π

∫ a

0

dx
e−h2 1+x2

2

1 + x2
, (A.5)

and Y is the function defined by (2.44). It is useful to recall some basic properties satisfied
by Owen’s T function [51]. The function (A.5) satisfies T (±∞, a) = T (h, 0) = 0, the
symmetry T (h, a) = T (−h, a), and it reduces to elementary functions for special values
of its arguments; for instance:

T (0, a) =
1

2π
tan−1(a). (A.6)

Other useful properties are the integral representation

T (
√
2η, r) = − 1

2
√
π

∫ η

−∞
du e−u2 erf(ru), (A.7)

and the functional identity [50]

T (h, a) + T (ah, 1/a) =
1

2
g(h) +

1

2
g(ah)− g(h)g(ah), a � 0

g(x) =
1 + erf(x/

√
2)

2
.

(A.8)

Equations (2.42) and (2.43) for the rhomboidal correlation function follow directly from
(A.3) and (A.4).

A.2. The correlation function G�

Let us consider now the rectangular correlation function. Since for this configuration
y1 = y2 and y3 = y4 the corresponding correlation coefficients degenerate to unity, i.e.
ρ12 = 1 and ρ34 = 1, respectively. The corresponding passage probability is found by

https://doi.org/10.1088/1742-5468/ac257c 22

https://doi.org/10.1088/1742-5468/ac257c


J.S
tat.

M
ech.

(2021)
103205

Four-point interfacial correlation functions in two dimensions. Exact results from field theory and numerical simulations

taking the double limit ρ12 → 1 and ρ34 → 1, the latter yields

Π
(�)
4 (u1, u2, u3, u4|ρ23) = lim

ρ12→1
lim
ρ34→1

Π4(u1, u2, u3, u4|R1234)

= δ(u1 − u2)δ(u3 − u4)Π2(u1, u4|ρ23), (A.9)

where Π2(u1, u4|ρ23) is a bivariate normal distribution with correlation coefficient ρ23.
By inserting (A.9) into the probabilistic representation for the correlation function, we
find

G�(x, y) =

∫
R4

du1 du2 du3 du4

[
〈̃σi〉 −

Δ〈σi〉
2

sign(
√
2χ− u1)

]
×
[
〈̃σi〉 −

Δ〈σi〉
2

sign(−
√
2χ− u2)

] [
〈̃σi〉 −

Δ〈σi〉
2

sign(−
√
2χ− u3)

]
×
[
〈̃σi〉 −

Δ〈σi〉
2

sign(
√
2χ− u4)

]
Π

(�)
4 (u1, u2, u3, u4|ρ23) +O(R−1/2). (A.10)

A rearrangement of the terms in (A.10) gives

G�(x, y) = 〈̃σi〉4 −
1

2
Δ〈σi〉〈̃σi〉3

(
4∑

i=1

[[si]]�

)
+

1

4
(Δ〈σi〉)2〈̃σi〉2

( ∑
1�i<j�4

[[sisj]]�

)

− 1

8
(Δ〈σi〉)3〈̃σi〉

( ∑
1�i<j<k�4

[[sisjsk]]�

)
+

1

16
(Δ〈σi〉)4[[s1s2s3s4]]� +O(R−1/2),

(A.11)

with s1 = sign(
√
2χ− u1), s2 = sign(−

√
2χ− u2), s3 = sign(−

√
2χ− u3), s4 =

sign(
√
2χ− u4), and the compact notation

[[f]]� =

∫
R4

du1 du2 du3 du4 f(u1, u2, u3, u4)Π
(�)
4 (u1, u2, u3, u4|ρ23) (A.12)

has been adopted. By using the integral representation (A.7) of Owen’s T function, a
simple (but rather long) calculation entails

4∑
i=1

[[si]]� = 0,

∑
1�i<j�4

[[sisj]]� = 2− 4 erf(|χ|)− 16T (
√
2χ,

√
τ) + 16T (

√
2χ, 1/

√
τ) ≡ C�(η, τ),

∑
1�i<j<k�4

[[sisjsk]]� = 0,

[[s1s2s3s4]]� = 5− 4 erf(|χ|)− 16T (
√
2χ,

√
τ)− 16T (

√
2χ, 1/

√
τ) ≡ G�(η, τ).

(A.13)
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The results (2.52) and (2.53) given in the main body of the paper follow
straightforwardly.

A.3. A useful identity

Here, we prove the following identity

f(x) =
4

π2

(
sin−1 x

)2
+

4

π2

∫ x2

0

du√
1− u2

sin−1

(
u
1− x2

x2 − u2

)
=

2

π
sin−1

(
x2
)
, (A.14)

with 0 � x � 1. By taking the first derivative with respect to x, we obtain

f ′(x) =
8

π2

sin−1 x√
1− x2

+
4

π

x√
1− x4

− 8x

π2

∫ x2

0

du
u

(x2 − u2)
√
x4 − u2

, (A.15)

the integral in the third term reads∫ x2

0

du
u

(x2 − u2)
√
x4 − u2

=
sin−1 x

x
√
1− x2

, (A.16)

thus, it follows that

f ′(x) =
4

π

x√
1− x4

. (A.17)

The identity (A.14) is established by integrating back with respect to x and fixing the
integration constant by using the boundary condition, f(0) = 0, or f(1) = 1.
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