
Learning Bayesian Networks for
Nonparanormal Data
Apprendimento di reti bayesiane per dati non parametrici

Abstract In the literature, structural learning procedures for selecting the directed
acyclic graph of a Bayesian network are increasingly explored and specified ac-
cording to the analyzed data typology. With respect to data drawn from a Gaussian
Copula model, the Rank PC algorithm, based on Spearman rank correlation, has
been introduced. Moreover, we recently proposed a modified version of the well
known Grow-Shrink algorithm, the Copula Grow-Shrink one, based on the Spear-
man rank correlation and the Copula assumption. Here, we show a simulation study
to verify the robustness of our Copula Grow-Shrink algorithm and we discuss the
performance results in comparison with the baseline and the Rank PC algorithm.
Abstract In letteratura, le procedure di apprendimento strutturale per la stima di
un grafico diretto aciclico di una rete bayesiana sono sempre più esplorate e det-
tagliate in base alla tipologia di dati analizzati. Per quanto riguarda i dati derivanti
da un modello di copula gaussiana l’algoritmo Rank PC, basato sulla correlazione
di Spearman, è stato proposto in letteratura. Inoltre, abbiamo recentemente pro-
posto una versione modificata del noto algoritmo Grow-Shrink, l’algoritmo Copula
Grow-Shrink, basato sulla correlazione tra ranghi di Spearman e sull’assunzione di
Copula. Qui, mostriamo uno studio di simulazione per verificare la solidità del nos-
tro algoritmo Copula Grow-Shrink e discutiamo i risultati delle prestazioni rispetto
agli algoritmi Grow-Shrink e Rank PC.

Key words: joint normal copula, Copula Grow-Shrink algorithm, simulation study,
diagnostic measures

1 Introduction

Statistical multivariate data modeling is increasingly carryed out through Bayesian
networks, (BN, [2]) that depict the multivariate probability distribution of a set of
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variables by a graphical representation of independencies encoded in a directed
acyclic graph (DAG). A DAG is a finite set of nodes, standing for random variables,
and directed edges, arranged never producing cycles, that point out direct relevance
of one variable to another. In a DAG, a parent node has an outcoming arrow pointing
to another node namely child; every node is associated with a conditional distribu-
tion given its parents and the joint distribution can be factorized according to the
DAG.

In this context, a common issue concerns the DAG structural elicitation. When
the dependencies are unknown or partially known, DAG structure has to be es-
timated directly from data. Most often, researchers wish to maximize the learn-
ing power respecting the typology of managed data. For nonparanormal data some
structural learning algorithms have been discussed in the literature; we recently pro-
posed the Copula Grow-Shrink [1], a modified version of the Grow-Shrink algo-
rithm, based on the recovery of the Markov blanket of the nodes and on the Spear-
man correlation. The paper, aiming at evaluating the robustness of the our proposal,
is organized as follows: nonparanormal graphical models are briefly recalled in Sec-
tion 2; the Grow-Shrink and the Copula Grow-Shrink algorithms are discussed in
Section 3; the simulation study and preliminary results are addressed in Section 4.

2 Nonparanormal Graphical models and their estimations

Nonparanormal data modeling by graphical models has been studied in the liter-
ature. Generally speaking, a nonparanormal graphical model is a semiparametric
extentions of a Gaussian graphical model useful when the analysed continuous vari-
ables follow a Gaussian graphical model only if trasformed by unknown smooth
monotone functions preserving the dependencies structure of the underlying multi-
variate normal distribution. According to [7]:

Definition 1. Let f = ( fv)v∈V a collection of strictly increasing functions fv : R→
R and Σ ∈ RV×V be a positive definite correlation matrix. The nonparanormal
distribution NPN(f, Σ ) is the distribution of the random vector ( fv(Zv))v∈V for
(Zv)v∈V ∼ N(0,Σ).

Definition 2. The nonparanormal graphical model NPN(G) associated with a
DAG G is the set of all distributions NPN(f, Σ ) that are Markov with respect
to G.

The function fv realizes a deterministic transformation on Zv preserving the same
dependence structure of the underlying latent multivariate normal distribution also
in the nonparanormal model.
If X ∼NPN( f ,Σ) and Z∼N(0,Σ), for any triple of pairwise disjoint set A,B,S⊂V ,
then XA ⊥⊥ XB|XS⇔ ZA ⊥⊥ ZB|ZS.
For two nodes (u, v) and a separating set S we have Xu ⊥⊥ Xv|XS⇔ ρuv|S = 0.
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A trigonometric transformation on Spearman rank correlation (r) produces la-
tent Normal correlation coefficients accurate estimators. Reference [5] show that if
(X ,Y ) are bivariate normal with Corr(X ,Y ) = ρ , it yelds:

P(|2sin(
π

6
r̂)−ρ|)> ε)≤ 2exp(− 2

9π2 nε
2) (1)

Since r̂ depends on the observations via their ranks that are preserved under
strictly increasing functions, (1) still holds for nonparanormal graphical models with
Pearson correlation ρ = Σxy in the underlying latent bivariate normal distribution.
On the basis of the previous result ρ is estimated as:

ρ̂ = 2sin(
π

6
· r̂) (2)

The same transformation still holds for the partial correlation coefficients.

3 Bayesian Netoworks Structural Learning

Bayesian netoworks structural learning methods are mainly scoring and searching
techniques or constraint-based algorithms; they estimate and depict the unknown
independencies relations among variables by a DAG. The most spread algorithm
is the PC algorithm [9] that proceeds along three steps: (i) the skeleton identifica-
tion by testing marginal and conditional independencies by Pearson correlation test
for Gaussian data, (ii) the v-structures identification standing for conditional depen-
dence between two nodes given a third and (iii) the orientation of the remaining
links without producing additional v-structures and/or directed cycles. If variables
are not Gaussian, a PC algorithm rank version named Rank PC (RPC) algorithm is
available [7]. RPC algorithm tests conditional independence between two variables
given a separating set by computing the rank-based partial correlation estimates (Eq.
2). The RPC algorithm consistency is proved by [7], under some non-strict assump-
tions. It is shown that RPC works at the same strength of PC algorithm for normal
data but considerably better for non-normal data under the strong assumption of
joint distribution following a normal copula model. The RPC algorithm could be
implemented using the pcalg R package [4].
A competitive algorithm to these common choices is the Grow-Shrink algorithm
(GS, [6]) based on the intuitive concept of the Markov blanket (MB) of a variable,
i.e. the set of all parents, children and parents of children of the variable of interest,
say X . Moreover, the MB(X) d-separates variable X from any other variable out-
side its Markow blanket. The GS algorithm focuses on the recovery of the MB(X)
based on pairwise independence tests by two phases: the growing phase, where,
from MB(X) empty set denoted by S, the procedure adds variables to S as long as
they are associated with X given the current contents of S; the shrinking phase iden-
tifies and removes variables not really belonging to MB(X) eventually added to S.
Our Copula GS algorithm (CGS) [1] has the same logical structure as GS but the
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marginal and partial correlations coefficients used in the statistical test for indepen-
dence are computed trough (2). The GS is implemented in bnlearn R package
[8] so that our proposal is developed in R as well.

4 Main Results and Conclusions

With the aim to explore the robustenss, a simulation study has been carried out.
According to the procedure in [3] and to the simulation plan in [7], we simulated
200 random DAGs with sparsity parameter s = 0.3 and we sampled from a Gaus-
sian Copula distribution faithful to them. Considered sample sizes are n = 50 and
n = 1000. On every training set, we performed the structural learning GS, CGS
and RPC algorithms with a significance level of 0.05. Algorithm performances have
been compared in terms of sensitivity, specificity and precision.
In details, the diagnostic measure true positive rate (TPR) is the proportion of edges
correctly estimated on the true edges; the closer the value is to 1, the better is the
sensitivity. The false positive rate (FPR) is the proportion of edges incorrectly found
over the number of true gaps; the closer the value is to 0, the better is the specificity.
The true discovery rate (TDR) is the proportion of edges correctly found on the
total number of estimated edges; the closer the value is to 1, the better is the preci-
sion. The performance measure distributions from simulations are displayed in the
following boxplot (see Figures 1 e 2).

For small sample size n = 50 (see Figure 1) the sensitivity of CGS algorithm
outperforms the GS and the RPC ones denoting a better capacity to catch the real
structure. The specificity of CGS is still better with respect to GS and only slightly
more variable in comparison to RPC. Also in terms of TDR, the CGS outperforms
the GS and works the same as the RPC. For large sample size n = 1000 (see Figure
2) the CGS outperforms the GS and works slightly better than the RPC in terms of
specificity and precision but gains a stronger sensitivity.
According to these simulation results the algorithm we propose represents a better
choice to estimate a DAG in case of nonparanormal data. Since 1−T PR is equal
to the False Negative Rate (FNR), it means that the CGS algorithm prevents from
bias in the model due to the absence of a ”true” arc. We argue that, as the RPC one,
also the CGS algorithm reduces the risk of an overparametrization of model since
the FPR is smaller than that of GS for both sample sizes.
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Fig. 1 Boxplot of diagnostic measures for n=50

●

GS CGS RPC

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(a) TPR

●

●●
● ●

GS CGS RPC

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b) FPR

●●●●
● ●●

●

●
●●

GS CGS RPC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) TDR

Fig. 2 Boxplot of diagnostic measures for n=1000
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