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ABSTRACT
The constant up-scaling of wind turbines encourages researchers to develop innovative
aeroelastic models for the study of Fluid-Structure Interaction in wind energy. In this pa-
per, we present a novel two-way coupling method joining a Large-Eddy Simulation fluid
solver and a modal beam-like structural solver. The model takes advantage of the Ac-
tuator Line Model representing the rotor in the fluid domain, and exploits the superior
accuracy of the high-fidelity Computational Fluid Dynamics solver to describe the com-
plex aerodynamics of wind turbines. The comparison for a benchamark turbine between
the cases with and without aeroelastic feedback showed how significantly the coupling
procedure affects the structural dynamics, especially when the blades pass in front of the
tower. Conversely, the coupled fluid field was only slightly altered in the proximity of
the turbine. Moreover, the considerable magnitude of the rotational deformations suggest
their potential importance in future developments.
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NOMENCLATURE
Cd, Cl lift and drag coefficients FoR frame of reference
Cm aerodynamic moment coefficient faero aerodynamic force vector
Cp, Ct power and thrust coefficients Fd, Fl drag and lift forces per unit length
Cs Smagorinsky constant f t body force from rotor model
Ct Thrust coefficient K modal structural stiffness matrix
c airfoil chord Kc modal centrifugal stiffness matrix
D turbine diameter KE modal Euler stiffness matrix
D modal structural damping matrix kgen control gain of the turbine
DC modal Coriolis damping matrix I rotational inertia of the rotor
d displacement vector in relative FoR I identity matrix
di displacement along Ei L length of the blade
Ei i-th versor of the rotating FoR M number of structural modes
e modal external load array M modal structural mass matrix
ec modal centrifugal load array Maero aerodynamic moment
eE modal Euler load array N number of structural nodes
F Prandtl correction factor P filtered pressure
fi i-th structural natural frequency P̂ modified pressure
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Q 2nd invariant of vel. gradient Θ azimuthal angle of the blade
q modal coordinates array θi angular displ. around Ei

r radial position along the blade λ tip speed ratio
R radius of the rotor ν air kinematic viscosity
Rh radius of the hub νsgs subgrid eddy viscosity
ROP position vector in undeformed conf. ρ air density
Re Reynolds number ρs structure density
S̄ filtered strain rate tensor τ sub-grid scale (SGS) tensor
Taero external aerodynamic torque τ d deviatoric part of the SGS tensor
Tgen generator torque φ twist angle
t time ψm m-th elastic mode shape
U filtered velocity vector Ω rotor angular speed
Urel relative velocity vector ωi angular deform. vel. around Ei

U∞ undisturbed reference velocity · scalar product
V structural volume × vector product
v struct. deformation velocity vec. ⊗ tensor product
vi deform. velocity along Ei

˙(•), ¨(•) time derivation
X coord. vector in the rotating FoR sym symmetric operator
x coord. vector in the fixed FoR tr trace operator
α angle of attack ā, A filtered part of variable a
∆ sub-grid scale filter width ã time avg of variable a
∆xi grid spacing in i-th fixed direction 〈a〉 azimuthal phase avg of variable a
ε actuator line spreading radius

INTRODUCTION
The increased demand for clean electricity of the last decades has encouraged the develop-

ment of renewable energy science and in particular of wind energy, because of its technological
maturity and economical competitiveness (Komusanac et al., 2019).

To maximise the power capture and minimise the costs, the size of wind turbines has been
constantly increasing, making them the largest rotating machines on Earth. However, rotor
diameters exceding 200 m entail major modifications on the structure, in particular on the long
and slender blades, whose increasing flexibility will lead to a more intense Fluid-Structure
Interaction (FSI). For this reason, researchers advocate new advanced models for the study of
aeroelasticity that are capable of capturing the different spatial and temporal scales involved in
this problem (Van Kuik et al., 2016).

Today’s aeroelastic models, such as FAST (Jonkman and Buhl Jr, 2005) and HAWC2 (Larsen
and Hansen, 2007), are mainly based on low-fidelity aerodynamics models, such as the Blade
Element Momentum (BEM) theory. However, despite the high numerical efficiency, researchers
have found that the simplifying assumptions of BEM theory may cause revelant errors in the
modelling of the complex unsteady 3D aerodynamics, even if correction models are included
(Simms et al., 2001).

Because of the paucity of experimental studies on utility-scale wind turbines, high-fidelity
numerical models will be crucial for the turbine design process. Recently, researchers have thus
tried to leverage the superior accuracy of Computational Fluid Dynamics (CFD) and Compu-
tational Structural Dynamics (CSD) to better characterise the complex aerodynamics and the
mutual interaction between fluid and structure for big wind turbines.

One of the first CFD-CSD studies of the 3D FSI of the full machine, including tower and
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nacelle, was reported in Hsu and Bazilevs (2012). The authors coupled a low-order Finite Ele-
ment Method (FEM) to model the aerodynamics (ALE-VMS technique) with an Isogeometric
Analysis (IGA) to model the structural dynamics. The results have shown an important impact
of the tower shadowing and a non-symmetric blade deformation. In Churchfield et al. (2012),
the National Renewable Energy Laboratory (NREL) presented the aeroelastic tool SOWFA
(Simulator for Off/Onshore Wind Farm Applications), in which they coupled the OpenFOAM
Large-Eddy Simulation (LES) solver for the fluid dynamics with the FAST module, which com-
bines modal and multibody representations for the structural dynamics of the entire turbine. To
represent the action of the blades in the fluid domain avoiding expensive body-fitted meshes,
the authors used a Generalised Actuator Disc model: the Actuator Line Model (ALM) pro-
posed by Sorensen and Shen (2002). Heinz (2013) linked the multibody structural solver of
HAWC2 with a 3D Reynolds Averaged Navier-Stokes Equations (RANS) solver. The compar-
ison between the simulations with loose and strong couplings showed that for the study of FSI
of wind turbines, exchanging information between the solvers only once per time step (loose
coupling) is sufficient to provide accurate results. Recently, Meng et al. (2018) proposed the
Elastic Actuator Line Model (EALM), a two-way coupling method which combines a RANS
approach, employing the actuator line modelling, with a finite difference structural solver based
on a rotating cantilever Euler-Bernoulli beam with only flexural behaviour.

This work presents a novel high-fidelity CFD-CSD model for the aeroelastic study of wind
turbines. The method couples in a loosely manner our in-house LES fluid solver, in which the
rotor is modelled by means of the Actuator Line Model, to a modal structural solver, which
considers only the blades represented as cantilever rotating equivalent 1D beams. In this initial
study, the fluid solver evaluates the aerodynamic loads at each section of the blades by defining
the local effective incidence as a function of the fluid velocity field and of the instantaneous de-
formation velocity of the structure. The blades’ motion, in turn, is forced by the instantaneous
loading provided by the fluid solver. The tower and the nacelle are modelled in the fluid domain
by means of an Immersed Boundary Method (IBM) (Orlandi and Leonardi, 2006).
In our study, we considered the reference onshore 5 MW wind turbine defined by the NREL
(Jonkman et al., 2009). We compared the results of the simulations with a rigid structure with
those with a flexible structure, by examining power and thrust coefficients, structural deforma-
tions and fluid quantities. We found that the coupling has a relevant effect on the aerodynamic
loading, especially because of the tower shadowing effect on the structural dynamics. Moreover,
coupled simulations allowed us to confirm previous findings regarding the larger aerodynamic
damping of the flapwise (out-of-plane) motion of the blade compared to the edgewise (in-plane)
one (Hansen, 2007). On the other hand, we observed how fluid quantities are relatively insensi-
tive to this kind of coupling by means of the induced-vibration velocities.

The paper is organised as follows: in the next section, we will present the methodology
of the fluid and structural solvers and their coupling; then, after reporting the simulation setup
used, we will illustrate the results of the comparison between the rigid and the flexible cases; in
the end, we will summarise the main conclusions of our study and its future improvements.

METHODOLOGY
In this section, we present the fluid and structural solvers and the coupling approach used.

3



The fluid solver
To model the fluid domain, we chose the LES approach. In fact, because of the large sep-

aration of scales for the big wind energy problem, Direct Numerical Simulation (DNS) of
the Navier-Stokes at real Reynolds numbers are unfeasible even for modern supercomputers.
RANS simulations would reduce the expense, but turbulence modelling is afflicted with known
problems in the description of separated regions and of unsteady flows. The Large-Eddy Sim-
ulation approach, instead, allows researchers to model unsteady turbulent flows with superior
accuracy compared to RANS, but with affordable computational resources compared to DNS.

The governing equations of our LES solver (Santoni et al., 2017) are the filtered incom-
pressible Navier-Stokes equations:

∇ ·U = 0 , (1)
∂U

∂t
+∇ · (U ⊗U) = −∇P̂ +

1

Re
∇2U −∇ · τ d + f t , (2)

whereU is the filtered velocity vector field; P̂ is the modified pressure, sum of the filtered pres-
sure P and of the isotropic part of the Sub-Grid Scale (SGS) tensor τ = u⊗ u−U ⊗U =
τ d + 1

3
tr(τ)I; Re is the Reynolds number based on the turbine’s diameter D, the undisturbed

inflow velocity U∞ and the air kinematic viscosity ν; f t are the body forces of the rotor model.
To represent the SGS tensor, we adopted the Boussinesq’s hypothesis, and we used the Smagorin-
sky model to express the subgrid eddy viscosity νsgs as a function of the filtered strain rate tensor
S̄ and the filter width ∆ = (∆x1∆x2∆x3)

1/3, provided by the grid spacing ∆xi. According to
our previous works (Santoni et al., 2017), we chose a Smagorinsky constant equal to Cs = 0.09.
A finite-difference method discretises the governing equations on an orthogonal staggered grid.
Second-order central schemes approximate derivatives in space. Time advancement is carried
out by a hybrid third-order low-storage Runge-Kutta (RK) scheme treating implicitly the linear
terms and explicitly the non-linear terms of the equations. Finally, a fractional step method
enforces the solenoidal constraint on velocity and updates the pressure accordingly (Orlandi,
2012). The Message Passing Interface (MPI) paradigm parallelises the code.

To represent the action of the blades on the fluid, we adopted the Actuator Line Model
(Sorensen and Shen, 2002). According to this method, the blades are represented in the fluid
domain as body forces distributed along radial lines rotating with the rotor angular speed. The
local aerodynamic forces are determined by a blade element approach using the tabulated airfoil
data and the velocity field determined by the fluid solver at each section of the blades. The body
forces are finally obtained by spreading the aerodynamic forces around the actuator lines by
means of a kernel function, to avoid numerical instabilities.

For a 2D airfoil, the lift and the drag forces per unit length are respectively:

Fl =
1

2
ρU2

relcCl(α)F and Fd =
1

2
ρU2

relcCd(α)F , (3)

where ρ is the air density, Urel is the local relative velocity, c is the chord length of the airfoil,
Cl(α) and Cd(α) are the lift and drag coefficients at the local angle of attack α. To consider
3D effects on the 2D airfoil data and to limit the overprediction of the aerodynamic loads at the
blade hub and tip, we used a modified Prandtl correction factor F (Shen et al., 2005):

F =
4

π2
cos−1

[
exp

(
−g3

2

R− r
r sin (α + φ)

)]
cos−1

[
exp

(
−g3

2

r −Rh

r sin (α + φ)

)]
,

with g = exp [−0.125 (3λ− 21.0)] + 0.1 ,

(4)
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where r is the local radial position, R is the rotor radius, Rh is the hub radius, φ is the local
twist angle , and λ = ΩR/U∞ is the tip speed ratio, where Ω is the rotor angular speed.

In the end, we obtained the body force in eq.2 by filtering the aerodynamic force vector
faero by means of a 2D Gaussian spreading function:

f t = − 1

ε2π
exp

[
−
(rη
ε

)2]
faero , (5)

where rη is the radial distance of a generic point in the spreading volume from the centre of the
actuator line and ε is the spreading radius. As suggested in Troldborg et al. (2009), we used a
spreading radius ε = 2∆ to avoid numerical instabilities.

To fully determine the loading conditions on the structure, we also defined similarly the
aerodynamic moment referred to the quarter of chord, i.e. the centre of the structural axes, as:

Maero = −1

2
ρU2

relc
2Cm(α)F , (6)

with Cm(α) local pitching moment coefficient. The minus accounts for the opposite signs
between the nose-up airfoil data convention and our nose-down positive torsion.

We modelled the fixed elements of the turbine, i.e. the tower and the nacelle, by means of
an IBM procedure already validated in Santoni et al. (2017), and we used a 1D model equation
to determine the rotor angular speed:

IΩ̇ = Taero − Tgen with Tgen = kgenΩ2 , (7)

where I is the inertia of the rotor, Taero is the external aerodynamic torque, and Tgen is the
generator torque. For our variable-speed turbine, we assumed a standard quadratic control law
(Laks et al., 2009) with a turbine-dependent torque gain kgen.

The structural solver
Because of their direct impact on the aerodynamics and the significant stiffness of the tower

and the shaft, in our structural model we considered only the dynamics of the blades. We
modelled the blades as rotating cantilever beams fixed at the rotor’s hub, under the assumption
of small deformations, by means of a modal structural method. We described the structural
dynamics in a relative Frame of Reference (FoR) rotating with the beams.
According to these assumptions, the elastic displacement along the neutral axis of the beam is:

d (X1, t) =
M∑
m=1

qm(t)ψm (X1) (8)

where ψm (X1) is the m-th elastic mode shape along the X1 coordinate starting from the hub,
qm is the correspondant modal coordinate, and M is the number of modes considered.

The finite element model used for the modal analysis was based on complete 6 DFs beam
elements having Euler-Bernoulli behaviour for bending and linear shape functions for the axial
and torsional DFs. We assumed a lumped-mass representation properly considering the local
offset of the centres of mass, and we used a normal mass normalisation for the definition of the
modes. The natural frequencies obtained match the ones of other studies (Jeong et al., 2014).

To include the effects of the motion of the relative FoR in the fixed FoR, we expressed the
inertial coupling terms in modal basis according to the approach proposed by Reschke (2005)
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and further developed by Saltari et al. (2017). From the principle of the virtual work for a de-
formable body under a generic motion, we decomposed the absolute acceleration in its relative,
centrifugal, Coriolis and Euler contributions. The following system of equations represented
the elastic dynamics of each blade in modal basis:

M q̈ + [D + DC (Ω)] q̇ + [K + Kc (Ω) + KE(Ω̇)] q = e+ ec (Ω) + eE(Ω̇) (9)

where M and K are the structural mass and stiffness matrices in modal basis, e is the modal
external load, made of the instantaneous aerodynamic and gravity forces, and D is the structural
damping matrix, defined by a constant modal damping for all the modes. The other remaining
terms are the inertial contributions and are made of:

• the centrifugal stiffness matrix and load

Kc
nm = Ω · sym

{∫∫∫
V
ρs [(ψm ·ψn) I−ψm ⊗ψn] dV

}
Ω , (10)

ecn = −Ω · sym

{∫∫∫
V
ρs [(ROP ·ψn) I−ROP ⊗ψn] dV

}
Ω , (11)

• the Coriolis damping matrix

DC
nm = 2 Ω ·

∫∫∫
V
ρs(ψ

m ×ψn) dV , (12)

• the Euler stiffness matrix and load

KE
nm = −Ω̇ ·

∫∫∫
V
ρs(ψ

m ×ψn) dV and eEn = −Ω̇ ·
∫∫∫

V
ρs(ROP ×ψn) dV , (13)

whereROP is the vector from the hub centre to the generic point P in the undeformed configu-
ration, I is the identity matrix, sym extracts the symmetric part of the following matrix, ρs is the
structural density and V is the structural volume. We discretised these terms according to the
procedure described in Saltari et al. (2017). The second-order accurate generalised-α method
(Chung and Hulbert, 1993) integrates in time the structural dynamics.

The coupling method
Our aeroelastic model leverages the formulation of the Actuator Line Model and allowed us

to avoid the presence of complex interfaces between the fluid and the structural problems.
Each physical subproblem has its own independent or staggered solver exchanging information
with the other one only once per time step (loose coupling). We chose to implement a Non-
Conventional Serial Staggered (NCSS) coupling algorithm (Farhat and Lesoinne, 1996) which
allowed us to advance fluid and structural dynamics simultaneously and to restrict inter-field
communications only at the beginning of each RK-substep. By means of this method, we thus
managed to avoid subcycling between the two solvers, which would have damaged the overall
performance of the code. According to the algorithm, to estimate the new fluid and structural
states at a certain instant, we evaluated the aerodynamic forces by using the blade’s distribution
of the angle of attack determined by the fluid velocity field and the structural deformation ve-
locity at the previous RK-substep. Indeed, we estimated the effective incidence along the blades
from the projection on each airfoil plane of the local relative flow velocity Urel, defined as:

Urel = U −Ω×ROP − v (14)
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where U is the filtered velocity sampled at the position of the actuator line and v = ḋ is the
deformation velocity of the structure at that position. Finally, we obtained:

α = atan

(
Urel ·E2

−Urel ·E3

)
− φ = atan

[
(U − v) ·E2

Ωr − (U − v) ·E3

]
− φ, (15)

Urel =
√

(Urel ·E2)2 + (Urel ·E3)2 (16)

where Ei are the versors of the right-handed rotating FoR, with E2 indicating the streamwise
direction, E1 indicating the radial direction pointing outwards, and E3 indicating the positive
azimuthal direction. Hence, U · E2 is the streamwise absolute velocity component, U · E3 is
the azimuthal absolute velocity component, v2 = v · E2 and v3 = v · E3 are respectively the
flapwise (out-of-plane) and edgewise (in-plane) deformation velocities.

SETUP OF THE SIMULATIONS
We carried out our simulations for the NREL 5 MW wind turbine (Jonkman et al., 2009),

which has a rotor diameter of 126 m. Detailed structural and aerodynamical data of the turbine
are available and, moreover, several studies using different approaches have already analysed its
behaviour (Hsu and Bazilevs, 2012, Churchfield et al., 2012, Heinz, 2013, Meng et al., 2018).
Turbulence and wind shear represent relevant sources of unsteadiness for the structural dy-
namics, and can thus amplify the role of the structure in the aeroelastic interaction. Thus, we
imposed a turbulent inflow with a mean power-law velocity profile, simulating a neutral Atmo-
spheric Boundary Layer (ABL) with a hub velocity of 10 m/s and a shear exponent of 1/7.
We imposed no-slip condition at the lower wall with Van Driest damping functions (Van Driest,
1956) to correct the flow behaviour at the wall, periodic conditions at the lateral boundaries,
slip condition at the top wall and a radiative boundary condition at the outlet.

A grid of 1296 × 432 × 432 points, in the streamwise, wall-normal and spanwise fixed
directions respectively, discretised the fluid computational domain of 9.0D × 10.0D × 2.88D,
thus providing a resolution of 150 points per diameter. We located the turbine’s hub at 2.95D
from the inlet. For the structural dynamics, we chose a number of modesM = 15, discretised by
a number of structural nodes N = 80. All the simulations run for approximately 36 revolutions,
for a Reynolds number of 7× 107 and the optimal tip speed ratio λ = 7.5.

RESULTS
In this section, we will indicate with ALM results, those obtained with one-way coupled

simulations in which only the fluid solver passed the aerodynamic forces to the structural solver,
and with ALM/IV (Induced Vibrations) results, those obtained with the coupled simulations in
which also the structural solver passed the structural deformation velocity to the fluid solver.

We report in fig.1 the time history of the power and thrust coefficients. The time-averaged
ALM and ALM/IV results are almost equal and, in general, the estimations agree with the BEM
prediction. The drops in the coefficients reflect the periodic passage of the blades in front of the
tower, as reported also in Hsu and Bazilevs (2012), and underline the importance of considering
the tower in the fluid domain. However, the introduction of the coupling procedure modified the
time behaviour, especially in the instants of and immediately after the negative peaks, whose
intensity is reduced. This suggests that the tower represents a major source of unsteadiness for
the structural dynamics, and that, by means of our aeroelastic model, we can detect the effect
of this unsteadiness on the instantaneous aerodynamic loading, especially in the last quarter
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Figure 1: Time history of power and thrust coefficients for two revolutions. Respective
time-averaged values are indicated with horizontal lines. ALM –, ALM/IV –, BEM – –.
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Figure 2: Time average along the blades of: a) aerodynamic moment, b) flapwise aerodynamic
force, c) edgewise aerodynamic force. We normalised the aerodynamic forces to have a unitary
maximum value for the in-house results. ALM –, ALM/IV – –, � HAWC2 (Heinz, 2013).
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Figure 3: Percentual difference between the ALM/IV and ALM cases with respect to the lo-
cal values in the ALM case of the phase-averaged: a) incidence, b) aerodynamic moment, c)
flapwise aerodynamic force component, d) edgewise aerodynamic force component.

of revolution of the blades. Figure 2 shows the time-averaged aerodynamic forces along the
blades. The results obtained match well those of Heinz (2013) and confirm that this kind of
coupling procedure does not influence the time-averaged behaviour. However, if we look at
fig.3, where we show the percentual differences of the phase-averaged aerodynamic quantities
between ALM and ALM/IV simulations with respect to the local values of the ALM case, we
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Figure 4: Phase-averaged deformation velocity at the blade tip. Unitary maximum normal-
isation. ALM –, ALM/IV –. DFs: a) axial translation, b) flapwise translation, c) edgewise
translation, d) torsional rotation, e) edgewise rotation, f) flapwise rotation.

can observe a relevant variation in the fourth, and last, quadrant of rotation. An intense variation
in the deformation velocity, especially in the flapwise component v2, induces a sudden increase
and then decrease of the local incidence. Indeed, because of its small value compared to the
large rotational component Ωr, the edgewise velocity v3 has only little influence on the angle
of attack and the observed variations are mainly ascribable to the flapwise deformation.
Figure 4 reports the phase-averaged deformation velocities of the 6 structural DFs at the tip of

the blade. The dominant component of the deformation velocity is the flapwise one 〈v2〉, which
reaches peak values comparable with the flow velocity in the lowest part of the rotor.
From eq.15, a positive variation of the v2 component reduces the incidence and viceversa, and
in fact, the regions of positive 〈v2〉 in fig. 3 correspond to the regions of negative 〈α〉 in fig.3.

We then reported in figure 5 the phase-averaged tip deformations. The mean values agree
well with the results in other studies (Yu and Kwon, 2014). Gravity is the main force for
the axial d1 and in-plane d2 and θ2 structural dynamics, which are rather insensitive to the
fluctuating aerodynamic forces, as reported also in Jeong et al. (2014). The introduction of the
aeroelastic coupling has a strong effect on the out-of-plane bending d2 and θ3 and on the torsion
θ1, by inducing an important aerodynamic damping of the out-of-plane structural dynamics
known in literature (Hansen, 2007). The high-frequency vibrations on the torsional Degree of
Freedom (DF) are related to the sixth structural mode, the first torsional mode, at a frequency of
f6 = 5.58Hz. Moreover, the large impact of the passage of the blades in front of the tower is
evident in the sudden jump of the deformations around the azimuthal position Θ = 270◦, which
underlines the importance of a tower model also in the structural dynamics.

While the structural dynamics is deeply influenced by the aeroelastic coupling, the be-
haviour of the fluid quantities is relatively insensitive to the introduction of the deformation
velocity in the expression of the relative velocity. In figure 6, we reported a general visualisation
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Figure 5: Phase-averaged displacement at the blade tip. Unitary maximum normalisation.
ALM –, ALM/IV –. DFs: a) axial translation, b) flapwise translation, c) edgewise translation,
d) torsional rotation, e) edgewise rotation, f) flapwise rotation.

of the wake for the ALM case, where we used the Q-criterion (Hunt et al., 1988) to identify the
flow coherent structures. The tip vortices are dissipated by turbulence after approximately one
diameter from the rotor, and their slope varies longitudinally because of the different convection
velocity of the wake imposed by the sheared inflow. The root vortices instead are promptly sup-
pressed by their interaction with the recirculating region behind the nacelle. We did not observe
any significant difference between ALM and ALM/IV flow structures.

CONCLUSIONS
In this work, we presented a novel high-fidelity two-way coupling aeroelastic model for

wind energy, which combines an LES fluid solver to a modal beam-like structural solver. A
loose coupling leverages the ALM formulation that represents the rotor in the fluid domain,
by utilising it as a fluid-structure interface to create an aeroelastic feedback. A blade element
approach determines the local aerodynamic loads forcing instantaneously both structural and
fluid dynamics, by defining the angle of attack as a function of the fluid velocity, provided by
the fluid solver, and of the deformation velocity, provided by the structural solver.

For the NREL 5 MW turbine, we compared the cases with and without the described
aeroelastic feedback mechanism. The results showed important variations in the instantaneous
and phase-averaged behaviour of the structural and aerodynamic quantities, even if the time-
averaged and fluid features were almost unchanged. In particular, we observed that the tower
represents the main source of unsteadiness especially for the flapwise and the torsional motion.
Moreover, the results confirmed the aerodynamic damping of the flapwise blade motion attested
in other works. In the end, tip deformations in fig.5 suggest that the rotational deformation, tor-
sion in particular, could play a significant role in the local incidence. Thus, future works will
further develop the present model by progressively including the full elastic state.
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Figure 6: Instantaneous visualisation of the flow structures for the ALM case. A positive Q
isosurface is shown and coloured, as the background slices, by the streamwise velocity U1.
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