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Abstract: Due to late diagnosis, high incidence of metastasis, and poor survival rate, pancreatic
cancer is one of the most leading cause of cancer-related death. Although manifold recent efforts
have been done to achieve an early diagnosis of pancreatic cancer, CA-19.9 is currently the unique
biomarker that is adopted for the detection, despite its limits in terms of sensitivity and specificity.
To identify potential protein biomarkers for pancreatic ductal adenocarcinoma (PDAC), we used
three model liposomes as nanoplatforms that accumulate proteins from human plasma and studied
the composition of this biomolecular layer, which is known as protein corona. Indeed, plasma
proteins adsorb on nanoparticle surface according to their abundance and affinity to the employed
nanomaterial, thus even small differences between healthy and PDAC protein expression levels
can be, in principle, detected. By mass spectrometry experiments, we quantified such differences
and identified possible biomarkers for PDAC. Some of them are already known to exhibit different
expressions in PDAC proteomes, whereas the role of other relevant proteins is still not clear. Therefore,
we predict that the employment of nanomaterials and their protein corona may represent a useful tool
to amplify the detection sensitivity of cancer biomarkers, which may be used for the early diagnosis of
PDAC, with clinical implication for the subsequent therapy in the context of personalized medicine.
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1. Introduction

Nanotechnologies represent an emerging science that has been recognized as a po-
tential game-changer in cancer management [1]. When Nanoparticles (NPs) interact with
biological fluids (e.g., plasma, urine), they are coated with a layer of molecules, which is
called biomolecular corona (BC), that provide NPs with a totally new biological identity [2].
Since the BC is mainly made up of proteins, it is often referred to as the protein corona (PC).
The characteristics (e.g., shape, composition, electric charge, etc.) [3] of the PC depend on
different factors. Some of these are related to the source with which NPs interact and to
the environmental and experimental conditions (e.g., pH, temperature, type of biological
fluid, etc.), [4] others depend on the type of used NPs (e.g., liposomes, gold, etc.) and on
their chemical-physical characteristics (e.g., shape, size, electric charge, etc.) [5]. These
peculiarities also allowed to demonstrate that the PC adsorbed to the surface of NPs is not
only specific to different oncological pathologies but is also personalized from subject to
subject [6–8].

These abilities have been proved to be very useful in the development of diagnostic
tools [9–11] that are able to detect, with high sensitivity and specificity, insidious and highly
lethal tumor such as pancreatic cancer [12]. Pancreatic adenocarcinoma is burdened by a
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poor prognosis in the majority of cases. Indeed, usually asymptomatic in its early stages
and having a very aggressive biological behavior, it is often diagnosed in an advanced
stage to be treated effectively [13]. Nevertheless, recent advances in the field of pancreatic
adenocarcinoma early detection allowed to demonstrate how NPs can be effectively used
for early diagnosis of this lethal disease. Furthermore, since in addition to the diagnos-
tic ability [14] the analysis of the PC also proved to be useful in distinguishing among
pancreatic cancers in different stages of disease [15], it is possible to hypothesize the use
of nanotechnologies in the “molecular” staging of pancreatic cancer. Moreover, taking
into account that proteins alterations represent the hallmark of carcinogenesis and that the
analysis of the protein corona obtained using nanoparticle enabled blood test are promising
in pancreatic cancer detection, deeper analysis of the protein pattern forming the PC could
lead to the identification of novel biomarkers useful in pancreatic cancer early detection.

2. Materials and Methods
2.1. Preparation of Liposomes

In this work we used Cholesterol (Chol), DOPC (dioleoylphosphatidylcholine), DOPE
(dioleoylphosphatidylethanolamine), DOPG (1,2-dioleoylsn-glycero-3-phospho-(10-rac-
glycerol)), and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) to prepare liposomes
by thin-film hydration method. Chol was purchased from Sigma Aldrich (St. Louis, MO,
USA), all the other lipids were purchased from Avanti Polar Lipids (Alabaster, AL, USA).
Three types of liposomes were prepared from DOPG, DOPC-Chol (1:1 molar ratio), and
DOTAP–DOPE (1:1 molar ratio) and are hereafter referred to as L1 (anionic), L2 (neutral)
and L3 (cationic), respectively. After dissolving the lipid mixtures in chloroform, letting
the solvent evaporate under vacuum for 2 h, lipid films were hydrated with phosphate
saline buffer (PBS) to a final concentration of 1 mg/mL. Finally, liposomes were extruded
through a 100 nm polycarbonate carbonate filter by employing an Avanti Mini-Extruder
(Avanti Polar Lipids, Alabaster, AL, USA).

2.2. Human Plasma Collection and Protein Corona Formation

Human blood (HP) was collected from healthy donors and patients diagnosed with
pancreatic ductal adenocarcinoma (PDAC). The study was approved by the Ethical Com-
mittee of University Campus Bio-Medico di Roma. Plasma was obtained from blood
by centrifugation at 1000× g for 5 min. Biocoronated formulations were obtained by
incubating liposomes with HP (1:1 v/v) for 1 h at 37 ◦C.

2.3. Size and Zeta Potential Measurements

All size and zeta-potential measurements were carried out at room temperature
using a Zetasizer Nano ZS90 system (Malvern, UK), operating under non-invasive back
scattering configuration. For both size and zeta potential, 10 µL of each sample were
diluted with 990 µL of distilled water. Results are given as mean ± standard deviation of
three measurements. Experiments were performed on unwashed samples. Consequently,
contamination from biological nanoparticles was not examined and could not be excluded.
However, previous studies indicated that it should produce minor, if any, effect on the size
of liposome-protein complexes [16,17].

2.4. Protein Corona Composition

Liposome-HP samples were pelleted at g for 15 min at 4 ◦C, then washed three times
with PBS. After washing three times with 10 mmol/L Tris HCl (pH 7.4), 150 mmol/L NaCl,
and 1 mmol/L EDTA, the pellet was air-dried and resuspended in 40 mL of 8 mol/L urea,
and 50 mmol/L NH4HCO3 (pH = 7.8). The obtained protein solution was reduced with
2 mL of 200 mmol/L DTT, alkylated with 8 mL of 200 mmol/L IAA and added with 8 mL
of 200 mmol/L DTT. Finally, the solution was diluted with 50 mmol/L NH4HCO3 and
digested overnight with 2 mg of trypsin at 37 ◦C. Digested peptides were desalted using the
SPE C18 column and analyzed by nano-high-performance liquid chromatography (HPLC)
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coupled to tandem mass spectrometry, by means of a Dionex Ultimate 3000 system (Dionex
Corporation, Sunnyvale, CA, USA) directly connected to a hybrid linear ion trap-Orbitrap
mass spectrometer (Orbitrap LTQ-XL, Thermo Scientific, Bremen, Germany) provided with
a nanoelectrospray ion source. Reversed-phase (RP) chromatography was employed to
separate the peptide mixtures, with a 3 h optimized LC gradient composed of mobile phase
of ddH2O/HCOOH (99.9/0.1, v/v) and mobile phase of ACN/HCOOH (99.9/0.1, v/v).
MS spectra of eluting peptides were collected over an m/z range of 350–1700, RAW data
were submitted to Mascot (v1.3, Matrix Science, London, UK) and finally compared to the
non-redundant Swiss-Prot database (09-2014, 546,000 sequences, Homo Sapiens taxonomy
restriction). Validation of peptide identifications were approved if the probability threshold
set by the PeptideproPhet algorithm was higher than 95%, protein identifications were
accepted only for probability >99.0% and if they contained at least two unique peptides.
Further details of the employed technique can be found elsewhere [7]. Results are provided
as average ± standard deviation of three independent replicates.

2.5. Statistical Analysis

Data analysis and the corresponding graphs were performed using custom Matlab
(Mathwork) scripts.

3. Results

In this work, we carried out a comparative analysis of the BC formed on three liposo-
mal formulations upon incubation with human plasma from non-oncological (CTR) and
pancreatic cancer (PDAC) patients. Size and Zeta potential of the employed liposomes were
measured by dynamic light scattering and electrophoretic light scattering, respectively
(Table 1). By this preliminary analysis, we found that all the formulations had homogenous
size distributions, with average hydrodynamic diameter ranging between 140 nm and
180 nm and polydispersity index smaller than 0.2. Furthermore, due to their different lipid
compositions, the corresponding zeta potentials were negative, almost neutral and positive
for L1, L2 and L3, respectively. After exposure to human plasma, we detected a remarkable
increase of size and polydispersity for all the liposome-plasma dispersions and the mea-
sured values of zeta potential ranged within about −30 mV and −40 mV, independently on
the original surface charge of the bare liposomes (Table 1). This experimental evidence is in
agreement with the expected behavior of NPs in biological media. Indeed, the adsorption
of plasma proteins is generally responsible for an increase of the hydrodynamic diameter
(possibly leading to particle aggregation), a reduction of the dispersion’s homogeneity and
a “normalization” of the surface zeta potential to common negative plateau-values.

By incubating the employed liposomal formulations (anionic, neutral and cationic)
with human plasma from n = 3 healthy donors and n = 3 pancreatic cancer patients,
we obtained a set of 18 independent coronas, which were subdivided into six classes,
according to the scheme of Figure 1A. The corresponding protein corona compositions
were assessed by nano-liquid chromatography-mass spectrometry. This allowed us to
measure the relative abundance of the detected proteins in each of the investigated samples.
Figure 1B shows the Venn diagrams depicting the number of identified proteins in control
(light colors) and pancreatic cancer (dark colors) coronas for L1, L2, and L3 (from top to
bottom, respectively). Interestingly, the anionic formulation recruited a larger number of
different proteins with respect to the other ones and, for all the liposomes, unique corona
proteins on CTR and PDAC samples were detected. These preliminary outcomes point out
that (i) the lipid composition of the employed formulations affects the resulting protein
corona and (ii) the protein corona may reveal significant changes of certain plasma levels,
which are specifically due to the pathological condition. Whilst, to date, these aspects are
not surprising, here, we try to give a deeper insight by a comparative analysis. First, we
studied the global effects of the NP’s lipid content on the resulting corona composition.



J. Nanotheranostics 2021, 2 85

Table 1. Zeta potential, size and polydispersity index of bare liposomes and their counterparts
after exposure to human plasma from healthy donors and pancreatic ductal adenocarcinoma
(PDAC) patients.

Bare Liposomes Zeta Potential (mV) Size (nm) PdI

L1 −69.1 ± 4.5 146 ± 3 0.113 ± 0.076
L2 −3.5 ± 1.2 173 ± 3 0.050 ± 0.001
L3 46.5 ± 2.3 154 ± 11 0.170 ± 0.040

Liposome + Healthy Plasma Zeta Potential (mV) Size (nm) PdI

L1 −42.7 ± 1.3 179 ± 3 0.406 ± 0.052
L2 −28.4 ± 2.3 251 ± 8 0.378 ± 0.038
L3 −38.1 ± 1.1 233 ± 4 0.330 ± 0.090

Liposome + PDAC Plasma Zeta Potential (mV) Size (nm) PdI

L1 −35.6 ± 0.7 205 ± 4 0.262 ± 0.066
L2 −31.3 ± 2.1 269 ± 3 0.270 ± 0.068
L3 −28.3 ± 1.3 240 ± 4 0.350 ± 0.020
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Figure 1. (A) Scheme of the employed samples: we studied the corona composition of three liposomal formulations (L1, L2,
and L3) with different surface charge (anionic, neutral and cationic, respectively), upon incubation with human plasma
from non-oncological (CTR) and pancreatic cancer (PDAC) patients. (B) Venn diagrams depicting the number of detected
proteins in CTR and PDAC coronas for each liposomal formulation.

As the main differences among the physical-chemical properties of the employed
formulations are related to their surface charge, we focused on the distributions of isoelec-
tric points (pI) of the adsorbed proteins. As shown in Figure 2, the coronas formed on
the anionic liposome had a larger portion of high-pI proteins, with respect to the neutral
and cationic systems. Indeed, the cumulative abundance of proteins with pI > 8.5 was
about three times higher on L1 than L3 (Table 2). Conversely, we found an opposite trend
for low-pI proteins (pI < 6), whose abundance reached about 50% of the whole corona
for the cationic liposome, versus 41% and 42% for the anionic and neutral counterparts,
respectively. Finally, the dominant portion of the pI distributions for the neutral system
(L2) was the range of intermediate isoelectric points (6 < pI < 8.5). These outcomes are in
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agreement with the expectations and elucidate the crucial role of NP’s surface charge on
the protein corona formation. Indeed, the isoelectric point of a molecule is the pH at which
that molecule carries no net electrical charge. Depending on the solution pH, a protein
can act as an anionic, neutral or cationic object. If the solution pH is above the pI of a
generic protein, that protein’s surface is negatively charged. Likewise, at a solution pH that
is below the pI, the protein surface is predominantly positively charged. By considering
that the pH of human plasma is about 7.4, proteins with low pI are negatively charged
objects and tend to be attracted to cationic particles. Proteins with high pI preferentially
adsorb on anionic surfaces and proteins with intermediate pI act mainly as neutral systems.
We finally point out that despite the electrostatic interaction is not the only one driving
the protein adsorption on nanomaterials, our results suggest that it has a great impact on
shaping the overall composition of the corona. Thus, detailed knowledge of the role of
NP’s surface charge may be employed to modulate properly the interactions in biological
environments for biomedical purposes (e.g., discovery of biomarkers for cancers, diagnosis
by nanomaterials’ corona and smart targeting for drug delivery applications).
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Figure 2. Isoelectric point distributions of the detected corona proteins on (A–C) healthy and (D–F) PDAC coronas for
(A,D) L1, (B,E) L2 and (C,F) L3.

Table 2. Cumulative abundances of corona proteins with low (pI < 6), intermediate (6 < pI < 8.5) and
high (pI > 8.5) isoelectric points for L1, L2, and L3. Values are reported as averages over healthy and
PDAC coronas.

Low pI Medium pI High pI

L1 41.3% 47.0% 11.7%
L2 42.1% 49.1% 8.8%
L3 50.2% 45.9% 3.9%

Similarly to the pI, we evaluated the molecular weight (MW) distributions of the inves-
tigated coronas. As Figure 3 clearly shows, adsorbed proteins had MW ranging from a few
to a few hundred kDa and the largest portion of the distributions were found within about
40 kDa and 100 kDa, independently on lipid formulations and protein sources. Further-
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more, all the curves exhibited a remarkable peak at about 11 kDa and minor contributions
within 15–40 kDa and 100–500 kDa. In the specular representations of Figure 3, vertical
solid lines quantify the detected differences between healthy (CTR) and pancreatic cancer
(PDAC) coronas. Horizontal lines indicate the dominant contributions to such differences,
which were mainly due to the proteins listed on the right and in Table 3. In this regard,
some clear trends can be outlined. As an instance, complement C4-A and C4-B (CO4A
and CO4B, respectively, MW = 193 kDa) were found to be significantly downregulated
in all the PDAC coronas, complement component 3 (CO3, MW = 187 kDa), C4b-binding
protein (C4BPA, MW = 67 kDa) and platelet basic protein (CXCL7, MW = 14 kDa) were
significantly downregulated in PDAC samples for two out of three liposome formulations.
Among the upregulated proteins in PDAC samples, the most significant differences cor-
responded to fibrinogen gamma chain (FIBG, MW = 52 kDa), serum amyloid A-2 (SAA2,
MW = 14 kDa) and apolipoprotein C-II (APOC2, MW = 11 kDa), which were detected
with larger relative protein abundances (RPAs) for at least one of the three liposomes.
Finally, some proteins exhibited opposite trends, e.g., fibrinogen alpha and beta chains
(FIBA and FIBB, MW = 95 kDa and MW = 56 kDa, respectively) were more abundant in
PDAC coronas for the cationic liposome and in CTR coronas for the neutral one. The same
trend was detected for apolipoprotein C-III (APOC3, MW = 11 kDa), while apolipoprotein
E (APOE, MW = 36 kDa) and apolipoprotein A-II (APOA2, 11 kDa) were more abundant
in cancer coronas for the anionic liposome and less abundant for the cationic and neutral
formulations, respectively.
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Table 3. Relative protein abundances (RPAs) of the most represented (RPA > 1%) proteins underlying the differences
between PDAC and non-oncological coronas.

Protein
MW

(kDa)
pI

Relative Protein Abundance on
Healthy Corona

Relative Protein Abundance on
PDAC Corona Difference

L1 L2 L3 L1 L2 L3 L1 L2 L3

CO4A 193 7 0.48 ± 0.12% 0.77 ± 0.06% 2.42 ± 0.17% 0.00 ± 0.00% 0.32 ± 0.04% 1.86 ± 0.20% − − −
CO4B 193 7 0.55 ± 0.03% 0.81 ± 0.06% 2.45 ± 0.15% 0.26 ± 0.04% 0.42 ± 0.05% 1.92 ± 0.20% − − −
CO3 187 6 0.69 ± 0.05% 1.75 ± 0.23% 0.45 ± 0.07% 0.42 ± 0.03% 0.77 ± 0.11% 0.46 ± 0.06% − −
FIBA 95 6 1.18 ± 0.26% 2.10 ± 0.35% 0.66 ± 0.12% 1.26 ± 0.53% 1.30 ± 0.30% 2.22 ± 0.77% − +

C4BPA 67 7 0.42 ± 0.09% 1.04 ± 0.27% 5.43 ± 0.62% 0.35 ± 0.10% 0.50 ± 0.09% 3.62 ± 0.66% − −
FIBB 56 8 1.92 ± 0.27% 2.81 ± 0.02% 1.28 ± 0.20% 1.98 ± 0.63% 2.18 ± 0.46% 5.12 ± 1.07% − +
FIBG 52 5 1.48 ± 0.10% 1.88 ± 0.11% 0.77 ± 0.06% 1.63 ± 0.65% 1.49 ± 0.36% 2.25 ± 0.64% +

APOA4 45 5 0.62 ± 0.08% 1.00 ± 0.16% 3.88 ± 0.86% 0.41 ± 0.20% 0.60 ± 0.29% 0.99 ± 0.08% −
APOE 36 5 0.78 ± 0.05% 2.11 ± 0.17% 2.44 ± 0.41% 1.29 ± 0.29% 2.16 ± 0.51% 1.37 ± 0.06% + −
HBB 16 7 0.80 ± 0.11% 1.43 ± 0.19% 1.57 ± 1.88% 0.98 ± 0.35% 1.18 ± 0.40% 0.42 ± 0.08%
HBA 15 9 0.82 ± 0.12% 1.11 ± 0.21% 1.48 ± 1.68% 0.71 ± 0.31% 1.12 ± 0.48% 0.35 ± 0.04%

CXCL7 14 9 0.76 ± 0.12% 0.52 ± 0.06% 0.74 ± 0.44% 0.45 ± 0.04% 0.13 ± 0.12% 0.27 ± 0.20% − −
SAA1 14 7 0.00 ± 0.00% 0.03 ± 0.05% 0.66 ± 0.07% 0.04 ± 0.07% 0.71 ± 0.93% 0.91 ± 0.36%
SAA2 14 10 0.00 ± 0.00% 0.00 ± 0.00% 1.33 ± 1.32% 0.40 ± 0.45% 0.31 ± 0.14% 0.92 ± 0.61% +

APOA2 11 7 0.83 ± 0.16% 2.21 ± 0.47% 1.51 ± 0.31% 1.48 ± 0.47% 1.23 ± 0.14% 1.35 ± 0.08% + −
APOC2 11 4 1.02 ± 0.07% 1.49 ± 0.30% 2.19 ± 0.34% 1.45 ± 0.34% 1.17 ± 0.03% 4.14 ± 1.26% + +
APOC3 11 5 2.33 ± 0.25% 4.03 ± 0.87% 3.94 ± 0.49% 1.78 ± 0.74% 2.30 ± 0.71% 10.5 ± 2.15% − +

We incidentally state that all those differences are simply evaluated by arithmetical
subtraction of the detected RPAs on PDAC and CTR samples, protein by protein. Thus, the
aforementioned dominant contributions are intrinsically related to corona proteins that
were quite abundant (RPA ≥ 1%) in at least one of the investigated samples. To take into
account the statistical significance between non-oncological and PDAC coronas, we studied
the PDAC-to-healthy RPA ratio and the corresponding p-value from Student’s t-test, for
each of the detected proteins. Results are shown in Figure 4 as Volcano plots. Dots located
in the upper region of the graphs correspond to upregulated proteins in the corona of the
specific liposomal dispersion. Similarly, dots located in the lower region correspond to
downregulated corona proteins. For each point, the x-location represents the p-value from
t-test, which was evaluated by comparing the non-oncological and PDAC RPA. For each
liposome, proteins with |log2 (fold change)| > 1 and p < 0.01 were identified as the most
significant and their (abbreviated) names are reported in each panel. This analysis provides
a way to find even small, but significant differences between the RPAs of single proteins,
separately for each of the three liposomal formulations.

To detect common trends along all the explored liposomal formulation, and thus to
take into account proteins with small abundance in the coronas, but that may be expressed
differently in PDAC and non-oncological patients, we employed a different approach. For
each of the detected proteins, we defined an RPA-based parameter as

λi
j =

xi
j − yi

j

xi
j + yi

j
(1)

where xi
j and yi

j are the RPA of the i-th protein in the PDAC and CTR coronas, respectively,
on the j-th formulation (j = 1, 2, 3). It can be easily demonstrated that −1 ≤ λ ≤ 1, where
λ = −1 if x = 0 and y > 0 (i.e., the generic protein populates the CTR corona but not the
PDAC ones) and λ = 1 if y = 0 and x > 0 (i.e., the generic protein populates the PDAC
corona but not the CTR ones). In other words, λ is a normalized parameter that quantifies
the unbalance of the protein abundance towards the healthy (negative values) or the
PDAC condition (positive values). If λ is close to zero, then the measured RPA of that
protein is almost the same in CTR and PDAC coronas. As we used three formulations,
we associated a set of three coordinates (λ1; λ2; λ3) to each protein and represented the
corresponding data points in a three-dimensional space. Thus, data points are scattered
in a cubic box, as shown in Figure 5. Proteins located near the center populate almost
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equally healthy and cancer coronas for all three liposomes. Conversely, proteins with
larger RPAs in the PDAC coronas than the CTR ones are in the top right corner, since
their λ-values tend to reach the maximum for all the liposomal formulations. Similarly,
proteins with lower RPAs in the PDAC coronas than the CTR ones are located near the
bottom left corner. A list of these most representative proteins is provided in Table 4.
These proteins exhibit remarkable differences of relative abundances between cancer and
non-oncological coronas, simultaneously on all the investigated liposomal formulations.
Thus, the measured differences are most likely due to upregulation or downregulation of
the protein expressions that are triggered by the pathological condition and are detected
by the employment of NPs as “nano-accumulators”. Indeed, the average abundance of
those proteins is quite small (RPA ≤ 1%), but the aforementioned approach allowed us
to distinguish the most relevant small but significant variations between PDAC and CTR
samples. As an instance, ficolin-3 (FCN3) and carboxypeptidase N catalytic chain (CBPN)
are almost absent on all the CTR coronas but populate all the PDAC counterparts, yielding
to significant variations of the measured RPAs (i.e., the p-values from Student’s test are
0.041, 0.006 and 0.001 for FCN3 on L1, L2 and L3 and 0.009, 0.002, and 0.0001 for CBPN
on L1, L2 and L3, respectively). Proteins exhibiting opposite trends are located within the
other box’s corner, e.g., histidine-rich glycoprotein (HRG, p-values equal to 8.5 × 10−6,
0.011 and 0.063 for L1, L2 and L3, respectively).
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Table 4. Relative abundances of proteins which exhibited major differences between healthy and PDAC coronas, simultane-
ously for all the employed formulations.

Protein
MW

(kDa)
pI

RPA on Healthy Corona RPA on PDAC Corona

L1 L2 L3 L1 L2 L3

FCN3 33 6.7 0.00 ± 0.00% 0.00 ± 0.00% 0.03 ± 0.03% 1.50 ± 0.88% 1.72 ± 0.57% 0.54 ± 0.10%
CBPN 52 7.4 0.05 ± 0.02% 0.00 ± 0.00% 0.00 ± 0.00% 0.19 ± 0.04% 0.11 ± 0.02% 0.07 ± 0.02%

IC1 55 6.5 0.02 ± 0.01% 0.00 ± 0.00% 0.02 ± 0.02% 0.07 ± 0.05% 0.18 ± 0.04% 0.22 ± 0.05%
CNN2 34 7.4 0.12 ± 0.03% 0.00 ± 0.00% 0.00 ± 0.00% 0.22 ± 0.02% 0.11 ± 0.07% 0.09 ± 0.15%
VASP 40 9.4 0.20 ± 0.07% 0.00 ± 0.00% 0.00 ± 0.01% 0.35 ± 0.04% 0.18 ± 0.04% 0.07 ± 0.07%

IGHA2 37 6 0.08 ± 0.13% 0.08 ± 0.14% 0.05 ± 0.08% 0.26 ± 0.16% 0.91 ± 0.06% 0.12 ± 0.20%
CALD1 93 5.4 0.05 ± 0.02% 0.00 ± 0.00% 0.00 ± 0.00% 0.08 ± 0.01% 0.06 ± 0.03% 0.01 ± 0.01%
MASP1 79 5.2 0.00 ± 0.00% 0.00 ± 0.00% 0.16 ± 0.04% 0.02 ± 0.02% 0.03 ± 0.03% 0.23 ± 0.02%
CALL5 16 4.1 0.02 ± 0.03% 0.21 ± 0.02% 0.14 ± 0.19% 0.00 ± 0.00% 0.00 ± 0.00% 0.00 ± 0.00%

H4 11 11.9 0.24 ± 0.04% 0.16 ± 0.28% 0.07 ± 0.12% 0.03 ± 0.06% 0.00 ± 0.00% 0.00 ± 0.00%
QCR2 48 8.9 0.08 ± 0.03% 0.04 ± 0.01% 0.01 ± 0.01% 0.01 ± 0.01% 0.00 ± 0.00% 0.00 ± 0.00%

ML12A 20 4.4 0.34 ± 0.03% 0.11 ± 0.15% 0.05 ± 0.06% 6.00 ± 0.03% 0.00 ± 0.00% 0.01 ± 0.02%
MUCB 43 4.9 0.22 ± 0.19% 0.51 ± 0.89% 0.25 ± 0.09% 0.00 ± 0.00% 0.13 ± 0.23% 0.00 ± 0.00%
PROP 51 7.9 0.12 ± 0.01% 0.67 ± 0.04% 0.03 ± 0.02% 0.04 ± 0.03% 0.02 ± 0.02% 0.00 ± 0.00%
CO8G 22 8.5 0.15 ± 0.03% 0.28 ± 0.12% 0.04 ± 0.04% 0.01 ± 0.02% 0.15 ± 0.04% 0.00 ± 0.00%
HRG 60 7.5 0.37 ± 0.01% 0.41 ± 0.09% 0.13 ± 0.04% 0.02 ± 0.02% 0.12 ± 0.07% 0.06 ± 0.02%
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4. Discussion

In this work, we studied the protein corona that forms on anionic, neutral, and cationic
liposomes upon exposure to human plasma from non-oncological donors and pancreatic
ductal adenocarcinoma (PDAC) patients. A physical-chemical characterization of these
systems confirmed some known effects of protein adsorption on nanoparticles, i.e., a re-
markable size increase and the “normalization” of the zeta potential to negative values,
independently on the original surface charge of the pristine objects. Unfortunately and
expectedly, the study of these trends did not provide valuable information for diagnostic
applications, e.g., to distinguish healthy and PDAC samples. Thus, an evaluation of the
protein corona composition was needed and was performed by mass spectrometry experi-
ments. Global differences among the coronas of anionic, neutral and cationic liposomes
were found. As an instance, proteins with a low isoelectric point (pI) tend to populate more
the corona of anionic liposomes, whereas high-pI proteins were more abundant for cationic
liposomes. This behavior is more likely due to the electrostatic interactions between the
nanoplatforms and the surrounding biomolecules. Despite the electrostatic force is not
the unique contribution to the formation of the protein corona, our results clearly indicate
that it has a significant role in shaping the corona composition. To find specific differences
between healthy PDAC samples, we adopted different approaches. The study of the molec-
ular weight distribution and the fold-change coupling with p-values provided information
about the most abundant discriminating proteins and the most statistically significant
contributions, respectively. These analyses are focused on the specific corona of each single
liposome. On the other hand, the evaluation of a global parameter (i.e., λ, Equation (1)) that
takes into account general trends for all the investigated systems, allowed us to identify
potential biomarkers for PDAC.

Globally, our results are consistent with what already reported in the literature. Com-
plement elements and their binding proteins have been already described as associated
with pancreatic cancer [15,18]. Moreover, Chen conducting a quantitative proteomics analy-
sis of rats pancreatic rough endoplasmic reticulum found a dramatic increase in fibrinogen
alpha, beta and gamma chains in presence of acute pancreatitis [19].

As for SAA2, in our experience, it was found abundant in the corona of PDAC subjects.
In this regard, it should be noted that Lee, studying the predisposition of the liver to
act as a niche for cancer cells, reported how during pancreatic tumorigenesis in mice,
hepatocytes activate molecular signaling that increase the production of SAA. Moreover,
higher circulating levels of SAA have also been detected in liver metastatic PDAC and
colorectal patients [20].

Nonetheless, previous experiences of proteomics analysis performed on serum of
PDAC patients lead to identify in apolipoprotein CII and CIII potential biomarkers of
this lethal disease. Furthermore, since ApoCII has been found able to significantly in-
crease both tumor growth and invasion, it has been proposed as selector of patients for
pancreaticoduodenectomy [21].

To the best of our knowledge, so far less has been reported about the role of Ficolin-
3 in pancreatic cancer. Since it has been found significantly increased in other GI tract
tumors [22] we can speculate an important role of this lectin pathway molecule that may
participate in the host immune response against cancer, even in PDAC.

5. Conclusions

Current efforts aim to develop new technologies for the early detection of PDAC, a
very lethal malignancy, already recognized as one of the biggest cancer killers in wealthy
countries and for which there are currently no sensitive and specific biomarkers. In this
work, we applied MS/MS to identify plasma proteins that enrich the protein corona
of anionic, neutral, and cationic liposomes upon exposure to human plasma from non-
oncological donors and PDAC patients. Corona proteins were ranked for their ability to
discriminate PDAC patients from healthy subjects. While some discriminating proteins
are already accepted as PDAC biomarkers, some others (e.g., Ficolin-3) do not have a
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clear role in PDAC onset and progression. Therefore, we envision that characterization of
the liposome-protein corona may pave the way for the discovery of new sensitive PDAC
biomarkers and may contribute to increase our knowledge of PDAC biology.
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