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1

Introduction

In the last decades, both regulatory and technological evolutions have made a vast
and still growing amount of data available. Indeed, the recent Solvency 2 and Basel 3
regulatory frameworks have strongly incentivized insurance and financial industries
to increase their investments in creating and maintaining high-quality databases.
Furthermore, the continuous technological improvement, both on the database and
the measurement instruments side, has opened new and exciting possibilities.

Therefore, recent efforts of the statistics community have been primarily devoted to
developing new techniques to face the problems arising when classical data process-
ing techniques are applied to the new “big data” context. This aroused a renewed
interest in machine learning and artificial intelligence topics, both on the theoretical
and the applications side. Actuarial science is no exception to this general trend,
as it is developing an increasing number of big data and AI applications in pricing,
provisioning, and risk management.

However, there are several real-life applications where insurance companies can
hardly benefit from this new course. A relevant example is the set of all lines of
business whose covered claims are catastrophic - or “cat” - events. A cat event is
a claim characterized by expected low frequency and high severity, and only a few
sparse observations are available. Thus, a “small data” problem must be faced when
inferring probability from frequency.

An especially “unfortunate” case is the Credit and Suretyship insurance, a.k.a. C&S
(i.e., the Line of Business 9 in the Solvency 2 framework). This LoB deals with
insolvency and unfulfilled bond events - a particular type of cat man-made risks.
The similarities between LoB 9 and a part of banking activities (e.g., factoring,
surety) led the scientific community to avoid the effort of developing dedicated tools.
However, there are also relevant differences between LoB 9 insurance companies and
the banking/financial sector.
In contrast to C&S insurance companies, banks often have the possibility of im-
plementing hedging strategies in financial markets. Furthermore, national banking
supervisory authorities promote centralized databases where historical information
about debtors’ payment behavior is collected and shared among banks. These ele-
ments have reduced the need for improving the precision of real-world probabilities
inference of insolvency/unfulfillment events in the banking sector.

The lack of models and instruments dedicated to C&S insurance applications in-
centivizes the use of methodologies developed for the similar needs of the banking
sector. However, a liquid market for C&S insurance liabilities is missing to date,
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while the banks have access to financial markets, where credit derivatives are avail-
able for hedging purposes. Further, C&S insurance companies do not benefit from
centralized databases that reduce the “small data” problem through shared infor-
mation in the banking sector.

This work investigates the problems faced by a C&S insurance company when in-
ferring claim probabilities and proposes a set of dedicated tools to address these
problems. The topic is vast and largely unexplored to date, and hence there is
no claim to completeness. However, our effort has been devoted to investigating
both the estimation of a single claim probability and the dependence structure that
relates the future claim events together. These two tasks are related to the two
components of the LoB 9 cat risk identified by the Solvency 2 framework:

• the catastrophe default risk, which measures the impact of a single claim event
originated by the largest risk (influenced by severity but also by marginal claim
probability);

• the catastrophe recession risk, where a sudden increase of claim frequency
across the whole portfolio is considered as the effect of a systemic crisis that
can be modeled through the dependence structure of a given portfolio model.

The thesis is organized as follows.
Chapter 1 introduces the features and the context of C&S LoB. The chapter outlines
a brief historical background, from the ancient origins of this class of products up
to its contemporary development. The main C&S insurance products are described
and compared with similar products offered by the banking sector.
Chapter 2 compares credit insurance and suretyship to discuss the appropriateness
of modeling these two types of insurance business as a whole. The chapter high-
lights relevant similarities (e.g., in both cases, claims are absorbing events) and
differences (e.g., only credit insurance is affected by stochastic censoring events) to
describe their respective claim probabilities in a single framework. To this purpose,
a selection of classic credit risk models from the mathematical finance literature is
presented. Each model is briefly examined with regards to its applicability to the
C&S LoB. The Standard Formula approach to model this LoB is described as well.
It is considered a reference for the elements that a proper modeling approach must
include to represent the C&S future claims probability.
Chapter 3 describes the classic methods to infer the probability of absorbing events,
either in the case of complete information available or not. In particular, the effect
of censoring events on frequency estimation is discussed, considering the seminal
papers that addressed the problem in medical statistics. The limits of these studies
are investigated in the case when their results have to be applied to credit insurance,
where the remarkable presence of stochastic censoring events affects the claims
frequency estimation.

Chapters 4−6 present the original research results obtained in this thesis.
Chapter 4 investigates some mathematical properties of the CreditRisk+ model,
presented in chapter 2 as a sounding candidate to describe future claims occurring
in both credit insurance and suretyship in a unitary framework. In particular, the
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model is generalized to a multi-period framework, and the consistency of its funda-
tive assumptions is investigated when introducing temporal autocorrelation. These
results are applied to improve the model’s parameters calibration when short time
series are available and observed claim events are rare. Hence, the improved cali-
bration framework enables a more punctual description of the dependency structure
among risks in a C&S insurance portfolio.
Chapter 5 investigates the possible relevance of creditworthiness variations in claim
probability estimation, with specific reference to the bid bonds - a typical suretyship
product introduced in chapter 1. It is shown that suretyship insurance companies
can completely prevent this effect by applying a proper risk appetite framework.
Further, this effect is shown to be negligible in comparison with the effect of a wrong
starting price choice in the public tender where the bid bond is issued. Hence, the
considered CreditRisk+ model, analyzed in chapter 4, is confirmed as a fitting choice
for C&S applications, although not being designed to describe rating migration and
other credit dynamics phenomena.
Chapter 6 addresses the problem introduced in chapter 3, about the inapplicability
of the classic frequency estimators when dealing with the stochastic censoring events
that the insurer experiences in credit insurance. A new estimator is introduced,
developed in this work, and specifically designed to overcome these issues.

Finally, the Concluding Remarks chapter summarizes the results obtained and high-
lights the future perspectives of this work, outlining a research agenda that the
candidate intends to develop in the following years.
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Chapter 1

Credit and Suretyship insurance

Credit and suretyship insurance (also referred to as C&S insurance in the following)
is a type of non-life insurance focused on providing protection against the breach of
contracts, duties, or other obligations. Business entities purchase credit insurance
to insure their accounts receivable against customers that fail to pay what they
owe. On the other hand, suretyship insurance (also surety) has a broader range
of applications, aiming to guarantee the accomplishment of a generic underlying
obligation that can be related either to outstanding debt or performance duty or
other objectives.
In this chapter, the main features of this line of business are introduced, with a
particular focus on the elements relevant to the C&S claim probability estimation
- which is the key topic investigated in this work.
The chapter is organized as follows. §1.1 presents a brief historical outline of the
evolution of the C&S line of business (also LoB in the following), without claim
to completeness, from its origins to the current situation. The following §§1.2 and
1.3 discuss the main products available in credit insurance and suretyship respec-
tively. Finally, §1.4 highlights similarities and differences between C&S products
and comparable products that are offered by the banking sector.

1.1 Brief history of Credit and Suretyship insurance
A brief picture of the evolution of credit insurance and surety contracts is outlined
hereinafter, without claim to completeness. The early evolution of surety in ancient
times and the middle ages mainly follows the dissertation available in [1], where
the same topic is discussed in greater detail. On the other hand, the source of
information considered about the origins of credit insurance is [2] and references
therein. Figure 1.1 summarizes the contents addressed in the next subsections.
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Time

Ancient Times X-XIX Centuries XX-XXI Centuries

102 B.C.

Lex Apuleia

82 B.C.

Lex Cornelia

Advanced suretyship law in ancient Rome

2250 B.C.

First public credit insurance in Code of Hammurabi

2750 B.C.

First known performance bond

X-XI cent.

Borh institution (criminal surety)

XIX cent.

Fundation of first surety insurance companies
Developement of trade credit insurance
Heard Act (1895)

XII-XVIII cent.

Spread of private suretyship

1906

1st public credit
insurance program
(Switzerland)

1934

U.S. credit insurance program
Berne Union fundation

1935
Miller Act

1950

Inclusion of
Suretyship companies:
ICIA→ICISA

1928

ICIA fundation

2020

Credit insurance as
a support tool in
Covid-19 Crisis

Figure 1.1. Brief summary of the contents reported in §§1.1.1−1.1.3.

1.1.1 Ancient history and the origins of credit and surety contracts

Suretyship is an ancient form of contract. The first known example of such a
contract dates back to 2750 B.C., found in a tablet belonging to the library of
Saigon I, king of Accad and Sumer [1, 3].
A farmer had been drafted into the military service of the king. A second farmer
agreed to cultivate the soldier’s farm for the period of his absence, under the con-
tractual obligation to fertilize the land and maintain the property, to be returned to
the owner in the same condition he left it. Half of the farm production during the
lease was intended for the lessee in return for his services. The owner was unable
to check the performance of the contract. Hence a merchant of Accad became the
surety of the lessee: he was responsible for the lessee’s behavior and had to indem-
nify the landowner in case the lessee would breach his obligations. The three players
of a modern surety contract were established: the surety (i.e. the merchant), the
beneficiary (i.e. the owner) and the contractor (i.e. the lessee). Also, the underly-
ing risk of performance is the same guaranteed by one of the main modern surety
products (the so-called performance bond, presented in paragraph 1.3) - mutatis
mutandis.
A first example of surety law is available in the Code of Hammurabi (2250 B.C.) [4].
Section 32 rules the case of an official captured by the enemy and ransomed by a
merchant. If the official had the means to pay his ransom, he was obliged to refund
the merchant. Otherwise, a public entity (the temple treasury of his city or the
state) was obliged to refund the merchant. It is worth noticing two features of this
case: the involvement of a public entity and the presence of underlying credit risk.
A public entity that provides protection against credit risk in a private transaction
prefigures to some extent the current role of Export Credit Agency in long-term
trade credit insurance (discussed in §1.2.2). Furthermore, the Code of Hammurabi
testifies the introduction of invoices in private commercial relations1, which are a
central element in modern credit insurance contracts.
Further evolution of surety law took place in ancient Rome, as testified by Gaius
in his Commentaries (150 A.D.). The adpromissor (i.e. the surety) was classified

1See sections 104-105.
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in three distinct types: sponsor, fidepromissor and fideiussor, depending on the
type of the underlying contract they could act on and the requirement of being
Roman citizens or not. In the Roman world, surety was disciplined by a complex
and modern legal framework. For example, Lex Apuleia (102 B.C.) disciplined the
right of recovery among co-adpromissors2. In comparison, Lex Cornelia (81 B.C.)
imposed a cap to the exposure at risk that a single adpromissor could be liable for
(namely, 20.000 sesterces). Roman Law also introduced the right of the surety to
attempt a recovery action against the obligor, which is a foundational element of
current surety law.

1.1.2 From middle ages to the 19th century

During the middle ages, a relevant application of surety can be found in Anglo-
Saxon England. In this context, surety was mainly intended as a means of enforcing
criminal laws. Men were commonly required to have a borh (i.e. a surety), who was
responsible for the criminal acts of his principal. This form of surety was originated
from the early structure of Anglo-Saxon society, divided into clans, that needed to
disciple the case of injuries provoked to a clan member by someone belonging to
another clan. Two significant improvements were implemented in years 960 and
1150, respectively. The Law of Edgar (960) introduced the mandatory application
of the institution of the borh to every man in the kingdom. In order to address
the problem of criminals escaping from justice after committing an offense - and
their respective borhs doing the same as well - the peculiar system of frankpledge
was introduced in 1150: men were clustered by groups of ten individuals, who were
surety to each other. Hence, if one of them escaped after a crime, the other nine
would bring him to justice.
The application of borh was progressively extended from criminal law to commercial
practices, coming back the original purpose of financial and/or contractual guar-
antee that surety had in ancient history. A law of Ethelred (early XI century)
imposed the borh as a necessary condition to “buy or exchange”. Private surety
agreements continued to be stipulated for various purposes also in the centuries
following the middle ages. Attestations of this are available even in literature: the
plot of Shakespeare’s “Merchant of Venice” is an example of the wide use of surety
in Elisabethean England3.
The weakness of a private suretyship agreement lies in the fact that the guarantee’s
creditworthiness is as solid as the standing of the person who acts as a surety.
Indeed, this was well understood since the Roman law4. However, the need for a
more reliable surety institution arose only during the 19th century under the spur
of the first industrial revolution, leading to establish the first suretyship insurance
companies.

2Namely, a sponsor or a fidepromissor who had paid more than his share, was entitled to recover
the excess from his co-sponsors or co-fidepromissors.

3W.D. Morgan remarks [1]: we must remember that this play was written, as were all of Shake-
speare’s plays, not as a literary production but primarily for presentation to Elizabethan audiences.
Shakespeare, the actor, and the dramatist would have chosen as the center of his plot only a subject
which would have been familiar to London’s play-goers.

4As discussed in paragraph 1.1.1, a cap to the single adpromissor liability was introduced by
the Lex Cornelia.
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The first proposal for establishing a surety company dates back to 1837: the Amer-
ican W.L. Haskins published a pamphlet titled “Considerations on the Project and
Institution of a Guarantee Company, on a New Plan, with some general views
on Credit, Confidence, and Currency” where the main features of a new type of
company were outlined. The proposed company, hypothetically named New York
Guarantee Co., would have had the purpose to guarantee the payment of notes and
other written obligations or contracts, whether of individuals, corporations, or pri-
vate associations. This business was supposed to be sustainable by setting a high
capitalization level since its fundation5. Although New York Guarantee Co. never
became a reality, Haskins deserves credit for introducing the main features of a
modern corporate suretyship company. A few years later, an article6 published by
professor De Morgan of London University outlined another type of surety company,
proposing to apply the principle of averages to fidelity bonds. Namely, he proposed
that a large enough group of professionals holding positions of trust7 should orga-
nize themselves in a company. The company aimed to indemnify the losses arising
from the fraudulent activities of one of its members. In return, each member had
to pay a yearly premium collected in a fund to pay the company’s expenses and
insured losses. According to De Morgan, 500 individuals were enough to stabilize
the company if the new risky professionals joining the club were selected based on
their reputation.
Unlike New York Guarantee Co., the De Morgan project led to establishing a surety
company, named the Guarantee Society of London. Fidelity insurance, which nowa-
days contributes to a residual share of the suretyship market, was the surety type
that enabled the constitution of the first surety insurance companies in the 19th
century. Indeed, in 1849 there were already five surety companies active in England.
In those years, surety companies began to consider selling protection against credit
and performance risk, as done by a private surety. Indeed, the 1852 prospectus of
the Contract Guarantee Co. presented the intention to ensure credit risk generated
by contracts8. Furthermore, the 1853 prospectus of the Achilles Co. expressed a
similar intention referred to the performance risk9. Unfortunately, as in the case of
New York Guarantee Co., none of these ideas was implemented. However, there are
records10 suggesting that by 1875 a suretyship market to protect public contracts

5According to the Haskins’ project, the company’s stakeholders should have paid a capital worth
$ 10 millions.

6Dublin Review, 1840. Further references are available in [1].
7At the time when De Morgan wrote his article, such professionals were mainly clerks, secre-

taries, and bankers.
8The Contract Guarantee prospectus reads: “The object for which this company is incorpo-

rated, is to supersede the necessity of individual security under commercial or trading contracts by
providing that of an associated body.”

9The Achilles prospectus reads “The success of those companies which have been established to
provide a substitute for personal guarantees for fidelity is well known, but no company at present
exists securing performance of contracts. [. . . ] One of the objects of this society, therefore, will be
to take the place of the surety in those instances so that any contractor of known respectability and
ascertained credit may be able immediately to offer to his principal an undoubted and unquestionable
security for the due performance of his contract.” Hence, this record not only implies that the idea
of developing a performance bond issued by a company was arising in those days, but also proves
that such a product was not available in the insurance market at that time.

10In [1], W.D. Morgan refers to some notes found in The Insurance Encyclopedia by Walford.
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was available in England.
The mandatory application of surety to public works was introduced in the U.S.A.
only in the last years of the century: an 1894 law, commonly known as Heard Act [5],
required each contractor involved in public works to buy a surety policy in order to
guarantee the payments due to providers and subcontractors.
In the 19th century also trade credit insurance began to develop. After the Napoleonic
wars (1803-1815), the first trade credit insurance practices were introduced to guar-
antee safety and payments in trades [2,6]. Insurance companies offering this type of
protection were established in large ports like Venice, Livorno, Naples, and Genoa.
However, the essential elements of the contemporary credit insurance techniques
were developed for the first time by the British Commercial Insurance Company in
1820 [2, 7].

1.1.3 From the 20th century to the contemporary framework

In the words of E.H. Cushman [8], “the Heard Act failed to protect the United
States”. Unfortunately, such a bold statement is fully justified by the lawsuits that
the Heard Act generated against the United States. The act proved to be ineffective
in preventing the occasional insufficiency of bonds to cover subcontractors’ claims
or various jurisdictional problems.
Although Congress attempted to fix those problems through the 1905 amendment,
a completely reliable surety law of public contracts was available only in 1935: the
so-called Miller Act [9], which is still effective nowadays [10]. This law requires that
each contractor who enters a public works contract buys two different surety prod-
ucts: a performance bond, that guarantees to U.S. government the fulfillment of the
obligation underlying the contract, and a payment bond, that protects subcontrac-
tors and providers against the counterparty risk generated by the contractor. Since
the U.S. government is not accountable in case of contractor’s default, nowadays,
the standing of the surety company issuing the payment bond is critical to stimulate
the competition among potential subcontractors. Nowadays, both U.S. and Euro-
pean laws require surety contracts as a means of protecting public works execution.
However, there are some relevant differences between the two frameworks, furtherly
discussed in section 1.3 by the comparison between Italian and U.S. performance
bond regulations, presented in paragraphs 1.3.1 and 1.3.2 respectively.
In the early 20th century, while U.S. congress was defining the current American
surety law, an increasing interest in managing commercial credit risk arose on both
sides of the ocean. In fact, since the second half of the 19th century, the first mer-
cantile credit agencies were established in the U.S.A., prefiguring the constitution
of the modern rating agencies [16]. On the other hand, European countries were
developing the contemporary trade credit insurance sector [2]. The first European
country to introduce a credit insurance program was Switzerland in 1906 to reduce
unemployment and stimulate trade. Many other European countries followed in
the next three decades11. The worldwide economic depression after the 1929 crisis

However, to the best of our knowledge, it is not clear when and how such a market began to
develop.

11United Kingdom (1919); Belgium (1921); Denmark (1922); Netherlands (1923); Finland (1925);
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stimulated the introduction of credit insurance programs in Japan (1930) and the
U.S.A. (1934). In the latter case, the first form of credit insurance practice is due
to Export-Import Bank, which offered different guarantees similar to trade credit
insurance.
As the number of countries active in the credit insurance sector was increasing,
the international nature of this business (i.e. credit insurance is strongly related to
exportations to foreign countries) stimulated the natural constitution of associations
among credit insurers from different countries, involving both private and public
entities related to the trade credit insurance industry to some extent.
The first international conference on trade credit insurance was held in London in
1926. The conference led to the foundation of the International Credit Insurance
Association (ICIA), established in Paris in April 192812. Since 1950 ICIA began
to accept also surety insurers among its members. The name was changed to In-
ternational Credit Insurance & Surety Association (ICISA) in 2001 to reflect that
more than half of its members are involved in the underwriting of surety business.
Nowadays, ICISA is still active, and its current members account for over 95% of
the world’s private credit insurance business [17]. According to Sec. 2 of the ICISA
statutes [18], the purpose of this association is “to study questions relating to Credit
Insurance and Surety, to provide opportunities for Members’ employees to acquire
knowledge of the theory and practice of credit insurance and surety underwriting,
to represent the Members’ interests and to initiate means whereby the common ac-
tion of the Members can be facilitated in order to develop their mutual relations in
the interest of their national and the international economy, in the interest of their
insured and in their own interest.”
Another relevant association related to the C&S insurance sector is Berne Union,
founded in 1934 and still operating. Unlike ICISA, the Berne Union - also known
as the International Union of Credit and Investment Insurers - has remained fo-
cused on credit insurance across the decades. Indeed, Berne Union members are
Government-backed Export Credit Agencies13 and private credit and political risk
insurers. Berne Union mission is “to actively facilitate cross-border trade by sup-
porting international acceptance of sound principles in export credit and foreign
investment”. To this purpose, the association “provides a forum for professional ex-
change, sharing of expertise and networking and coordinates collaborative projects
with stakeholders from across the trade-finance industry” [19].
Nowadays, Credit & Surety LoB has about 450 companies operating in Europe14,
that generate 1.5% of European gross written premium (GWP) volume underwritten
by non-life insurance sector [21]. As shown in figure 1.2, this LoB can be considered

Germany (1926); Austria and Italy (1927); France and Spain (1928); Norway (1929); Czechoslovakia
and Latvia (1931); Poland (1933); Sweden and Ireland (1935).

12From the ICISA website: “The founding Members were Cobac of Belgium (now Euler Hermes),
Crédito y Caución of Spain, Eidgenössische of Switzerland (now Winterthur), Hermes of Germany
(now Euler Hermes), NCM of Netherlands (now Atradius), SFAC of France (now Euler Hermes),
SIAC of Italy (now Euler Hermes) and Trade Indemnity of the UK (now Euler Hermes).”

13Export Credit Agencies are presented in paragraph 1.2.2 together with long-term credit insur-
ance practice.

14Section 2312 of EIOPA’s second set of advices [20] counts 456 European companies active in
C&S LoB in early 2018.
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residual among the various non-life insurance types. Nevertheless, its impact on the
global economy is relevant. Credit insurance guarantees almost USD three trillions
of trade receivables [17] which is about 13% of world cross border trade for goods
and services [19]. On the other hand, the mandatory recourse to the surety in public
works - both in Europe and in U.S.A.15 - makes this LoB have a remarkable impact
on contemporary society.

Figure 1.2. European market, year-end 2018: the total non-life insurance market split
into lines of business by GWP volume. Split between direct business, proportional
reinsurance and non-proportional reinsurance displayed. This picture is contained in
EIOPA’s European Insurance Overview 2019 [21] (fig. 20, p. 15).

To date, the most recent example of C&S social impact is represented by the newly
arisen interest of European countries in credit insurance as a means of boost the
economy to recover from the worldwide 2020 Crysis, originated by the COVID-19
pandemic [34,35].

1.2 Elements of Credit insurance
Credit insurance - also known as trade credit insurance - protects manufacturers,
traders, and providers of services. The risky covered event is that a buyer of the
insured subject does not pay its commercial debt or pays very late with respect
to the due date. If a claim occurs, the insurer pays a pre-defined percentage of
the outstanding debt, typically ranging between 75% and 95%. The percentage of
coverage and other forms of risk-sharing that are discussed later in this chapter limit
the moral hazard of the insured, who could be otherwise incentivized to an adverse
selection of its buyers. The insurer benefits from the eventual recovery of the debt
in proportion to its share of the losses. Commonly the insured and the insurer

15According to the Surety & Fidelity Association of America [22], surety bonds have protected
more than USD 9 trillion in U.S. contracts through the period 1998-2018.
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cooperate in the recovery process as a part of the accessory services offered together
with the policy. The claim is not necessarily associated with the buyer’s bankruptcy,
although the trigger event is the violation of a financial obligation between the two
parties.
Invoices are commonly provided to the insurer as a certification of the insured credit
and its maturity. A copy of the contract between the insured and the buyer may
be provided as well, especially in the case of complex transactions, where the two
parts have formerly agreed on an amortization schedule or multiple future trades.
Credit insurance is characterized by a high degree of customization and a low degree
of information available to the insurer.
The policies are Taylor-made on the insured’s needs, ranging from the coverage of a
single transaction to insuring the whole portfolio of buyers, including the subjects
who are not buyers at the beginning of the coverage. The special clauses of policies
are highly customizable as well, including both elements of risk mitigation for the
insurer and possibilities of profit-sharing for the insured.
Furthermore, the complexity of this insurance business is increased because the
insurer has only partial and delayed information on the covered buyers and the
trades that occur between them and the insured during the policy period. Invoices
are usually provided to the insurer only on established dates (e.g., quarterly or
yearly) unless a claim occurs. Hence the actual exposition of the seller against
a covered buyer is typically unknown to the insurer before the buyer generates a
claim event or the policy expires. The following paragraph 1.2.1 describes the most
common features of a credit insurance policy that is available on the regulated
insurance market.
In many countries, a public credit insurance service is also available through the
so-called Export Credit Agencies (ECA in the following). These public entities are
not in competition with the private insurance sector. On the contrary, ECAs are
intended to be a means to offer protection to enterprises where private companies are
not able to. Typically ECAs deal with long-term coverages (i.e., beyond 24 months
in credit insurance market) and against buyers located in non-marketable countries.
Paragraph 1.2.2 contains the main features of the typical insurance policies issued
by an ECA, compared to the ones offered by a standard credit insurance company.

1.2.1 Short-term Credit Insurance

In the following, the main features of a short-term credit insurance policy are out-
lined without claiming to be exhaustive in describing a class of insurance products
that presents an extremely high degree of customization.

1.2.1.1 Underlying buyers management

A credit insurance policy may be formally underwritten as a master agreement,
even without any underlying risk at the beginning of the policy period. Insured
sellers request coverage to the insurer for each buyer they want to be protected
from. The insurer may agree on each request partially or entirely, granting the
insured a part of the whole credit limit needed. It is also possible for the insurer
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to reject any request for coverage received from the insured. While the protection
is active, invoices that are issued to the covered buyer are guaranteed against the
event that the buyer does not pay.
However, the insurer usually reserves the right to modify the credit limit anytime
during the policy period. In particular, the credit limit on each covered buyer can
be reduced or zeroed without any form of insured’s consent. Any variation of the
credit limit affects only invoices that have been issued afterward. Hence, zeroing
the exposure generated by a buyer who has a negative outlook does not protect the
insurer from existing invoices when the management action takes place.
The insurer has to take management actions on each existing credit limit on an
ongoing basis during the policy period. Furthermore, the insurer’s decision is re-
quested each time the insured needs protection against a new buyer. Information
needed to handle the portfolio of credit limits underlying a policy may come from
three sources: previous experience of the insurer (e.g., in case the buyer has already
been covered previously under another policy); information available publicly; data
acquisition from info-provider. The latter source, which usually includes an exter-
nal opinion/rating on the buyer’s creditworthiness, has a cost that is added to the
policy premium due to the insurer.
Furthermore, it is mandatory for the insured to share any adverse information
regarding any covered buyer with the insurer, even if this may reduce the formerly
granted credit limit. In fact, credit insurance is intended to be a partnership between
the insurer and the insured in handling the risks to which the insured is exposed.
Shared information and shared risk should lead to improving the average quality
of the buyer’s portfolio, creating value to the insured in the medium-long term.
Reductions and cancellations of credit limits must be regarded as a part of this
process of improvement.
The insurer’s right to handle the insured risks may be limited or even nullified,
depending on which special clauses have been underwritten in a given policy. The
policy may establish a grace period between the insurer’s declaration of credit limit
reductions or withdrawals and their effective date. During the grace period insured
can keep issuing new invoices to the buyer under the former coverage conditions.
Non-cancellable limits are possible as well: in that case, the protection granted by
the insurer against a given buyer cannot be modified during the whole policy period.
When a policy provides for grace periods or non-cancellable limits, the insurer re-
serves the right to receive information about the underlying buyer, although having
lost - in full or in part - the right to modify the associated credit limit. Instead,
in the case of a discretionary limit, the buyer’s identity is unknown, and the credit
limit is decided by the insured. This clause allows the insured to choose the cov-
ered buyers without any insurer review, provided that insurer guidelines - agreed in
policy - are respected.

1.2.1.2 The claim event

When a credit limit is active for a given buyer, any invoice issued by the insured
to the buyer is covered until the credit limit is reached. The risk generated by
outstanding debt in excess is fully retained by the insured.
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Each invoice provides for a credit term, at the expiry of which the invoice has to be
paid. The credit term must not exceed the maximum credit term, which is stated
in the policy; otherwise, the invoice is not guaranteed by the insurer. On the other
hand, there is no inferior limit to the duration of an eligible credit term.
Once the due date is reached, a claim does not occur immediately if the debt is
not paid off. The insured has the right to extend the due date until a maximum
extension period is reached. Anyhow, the claim may be submitted, and the loss is
assessed after a given waiting period has passed.

1.2.1.3 Risk mitigation and risk-sharing elements

After claim submission, the indemnification is quantified depending on the amount
of the overdue account and the specific policy condition. In this paragraph, the
most common risk-sharing conditions are introduced. Let us consider a set of losses{

L
(ji)
i

}
i = 1, . . . , N

occurred to the insured during a policy period. In the notation above, i−th loss
L

(ji)
i has been generated by the ji−th buyer. Although the insurer shall likely

nullify the credit limit on the j−th buyer, just after having received the first claim,
it is possible to observe further claims on the same buyer due to invoices already
issued but not expired when the first claim is communicated to the insurer. I.e., it
is possible that j = ji = ji′ where i 6= i′.
In a sense, the credit limit can be regarded as a first loss-sharing tool. Indeed, if the
total amount of the invoices at risk simultaneously on the same buyer exceeds the
credit limit, the excess part is not covered by the policy in case the buyer becomes
insolvent. Excluding this case, the first condition applied to reduce the amount
of each overdue account is the deductible, which is commonly used in all non-life
insurance businesses. The deductible amount D is the part of the loss absorbed by
the insured before any indemnification under the policy. Hence each loss become

L
(ji),D
i := max

{
L

(ji)
i −D; 0

}
The presence of this condition is not mandatory in the policy despite being widely
used. An alternative condition is AFL (the acronym for “aggregate first loss”),
which has the same effect on the aggregate loss instead of acting on the single
overdue account. Without loss of generality, let us suppose that the index “i” sorts
the claims according to their chronological order. Hence the variable

ΣLi :=
∑
i′≤i

L
(ji)
i

represents the aggregate loss generated to the insured by i−th claim and the claims
that occurred before. AFL clause allows the insurer to consider the claims when a
minimum aggregate loss threshold A has been reached. The part of the i−th loss
that can be considered for indemnification under the policy is

L
(ji),A
i := min

{
L

(ji)
i ; max {ΣLi −A; 0}

}
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AFL clause is not mandatory, as in the case of the deductible clause. On the con-
trary, the percentage of coverage Cj must be included amongst the policy conditions
(see e.g. [41] for Italy). Cj is commonly defined as a function of the country where
the buyer’s registered office is located. Sometimes Cj can also depend on other
features of the buyer. The aggregate loss is reduced by the percentage of coverage
as follows

ΣL̃ :=
N∑
i=1

CjiL̃
(ji)
i

where L̃
(ji)
i ∈ {L(ji)

i ;L(ji),D
i ;L(ji),A

i } depending on the possible presence of de-
ductible clause or AFL clause in the policy. Finally, the aggregate loss is usually
bounded above by the so-called policy limit M . M can be expressed both as an
amount or as a function of the policy premium. The capacity M is reinstated at
every policy renewal. The final indemnification L (before any recovery from the
insolvent buyers) is

L := min
{

ΣL̃;M
}

Other risk-sharing clauses may have an effect on the final quantification of the
premium due to the insurer at the end of a policy annuity. The profit-share clause
may reduce the premium that the insured has to pay for an annuity, depending on
the value of L at the annuity end. Conversely, the malus clause may increase the
premium due to the insurer in case L is greater than a given threshold.

1.2.1.4 Credit insurance product types

The types of policy available on the credit insurance market are different in the
fraction of the insured’s covered risks, given that every credit insurance policy can
be customized with its own special clauses, regardless of the type to which it belongs.
The whole turnover policy offers total coverage of the insured’s credit sales. This is
the most suitable product for the insurer in terms of moral hazard mitigation. In
fact, the insured cannot perform any adverse selection of buyers to ask for a credit
limit since all of them must be reviewed by the insurer. The diagram depicted in
figure 1.3 outlines the whole turnover protection mechanism.
The single risk policy is designed to satisfy the opposite need of an insured. In
fact, it covers only the sales to one specific buyer. This product has two versions:
the underlying risk can be either the wholesales to the given buyer over the policy
period or just a specific deal between the insured and the buyer.
The key debtor policy is an intermediate product between the whole turnover and
the single risk policies. It covers only a selection of the insured’s buyer, up to a
maximum number.
The top-up cover is complimentary protection that can be added to an already
existing credit insurance policy. It provides an extra credit limit in excess of the
one established by another insurer on the same buyer. It can also be issued by
the same insurer that has accorded the first credit limit to receive an additional
separated premium from the insured for the extension of coverage.
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Credit
insurance
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CIC
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Buyer bj

Buyer b1

Buyer b2

· · ·

· · ·

Underlying risks

Credit limit on j-th buyer

Request of protection

Premium

Cost of info-provider
for j-th buyer

Delayed payment

Goods or services

Protection up to credit limit on j-th buyer

Figure 1.3. Schematics of the most typical credit insurance product: the whole turnover
policy. The symbol bj (j = 1, 2, . . . ) and acronyms CIC and ISE will be used in chapter
6.

1.2.2 Long term Credit Insurance and the Export Credit Agencies

Broadly speaking, credit insurances are classified as short-term (usually one or two
years), medium-term (two to five years), and long-term (over five years). This
distinction originates from the agreements and understandings between countries
within different frameworks. In fact, in almost all OECD countries, medium and
long-term export credits are officially supported.
The support is either offered directly by the government or indirectly through a
government agency or backing a private insurer through a reinsurance agreement.
Institutions dealing with export credits are called Export Credit Agencies (ECAs).
In case of official support, an ECA can be a government department or a commercial
institution administering an account for or on behalf of the government, separate
from the institution’s commercial business.
In April 1978, a large number of ECAs had arranged a “Gentlemens Agreement”16

[42] among its Participants to provide a framework for the orderly use of officially
supported export credits with repayment terms of two years or more. It places
limitations on the terms and conditions of export credits that benefit from official
support. Such limitations include - amongst others - minimum premium rates, the
minimum cash payment to be made at or before the starting point of the credit,
and maximum repayment terms.
ECAs are not to be considered competitors to the private credit insurance sector.
Indeed their role is actually complementary to the private sector in order to support
their respective countries’ export where insurance coverages are not available on
the market. Although this is generally true, in rare cases, public and private credit
insurances can overlap.
Apart from the typical duration of the risks and the restrictions imposed by the
aforementioned international agreements, the description of a short-term credit in-

16This definition stems from the fact that the agreement is not an OECD Act, although it receives
administrative support of the OECD Secretariat.
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surance policy, available in paragraph 1.2.1, applies to the policies issued by an
ECA as well.

1.3 Elements of Surety insurance
Surety policies provide a guarantee of performance and principles of various ob-
jectives and duties. They are commonly required to secure the obligations of the
principal debtor (generally known as the principal) against the beneficiary. Unlike
in credit insurance, in this case, the insurer directly relates to the source of risk. In
fact, the principal usually underwrites a surety policy because this is a requirement
to engage the beneficiary in business.
Risks underlying surety policies can be very diverse from each other, ranging from
performance risk in an engineering contract to moral hazard/operational risks in
claiming a VAT credit to be refunded. Surety bonds fall under two categories [43]:

• contract bonds, intended to guarantee the performance of contractual obliga-
tions, mainly in the areas of public works and private construction projects;

• commercial bonds, intended to secure the performance of legal or regulatory
obligations.

Without claim to completness, examples of products belonging to each category
[3, 43,44] are listed in table 1.1 .

Contract bonds
bid bond guarantees that a contractor has submitted a bid in good faith

and intends to enter the contract in case of award
performance
bond

offers protection from the case that a contractor fails to fulfill
the terms of the contract

advance payment
bond

guarantees that the contractor will be able to repay the procur-
ing entity any funds received in advance

payment bond protects the credit of workers, subcontractors and suppliers
against the contractor

maintenance
bond

guarantees against defective workmanship or materials

Commercial bonds
costums bond assures customs authorities that an importer will pay the import

duties required
tax bond ensures the proper declaration and timely payment of taxes
licence/permit
bond

guarantees the obligor’s compliance with laws

court/fidelity
bond

guarantees the performance of fiduciaries’ duties and their com-
pliance with court orders

Table 1.1. A brief description of the main suretyship products.

Let us focus on two typical products in surety insurance among the ones listed
above: the bid bond and the performance bond. The life cycle of these two products
- depicted in figures 1.4 and 1.5 - can be summarized as follows.



18 1. Credit and Suretyship insurance

A procuring entity requires a generic “performance”, such as the construction of an
infrastructure or the supply of specific goods or services. Hence, the aforementioned
entity uses a bidding process in order to select the best contractor for the assignment.
Each contractor interested in submitting the bid has to underwrite a bid bond that
guarantees the procuring entity against the case that the awarded contractor is
not able to take charge of the required performance. Indeed, the contractor could
go bankrupt during the bidding process, or some requirement necessary to fulfill
the obligation could not be met (e.g. legal authorizations needed to perform the
underlying task). In this case, the bidding process has to be reopened, and the
insurer indemnifies the procuring entity.
In case the winning contractor satisfies all the other requirements, a performance
bond is still needed to close the bidding process. It is worth noticing that the
insurer who has issued the bid bond may refuse to underwrite the performance bond.
However, if the contractor cannot find another insurer available to underwrite the
required performance bond, the tender is reopened, and thus the bid bond issuer has
to indemnify the procuring entity. This mechanism implies that insurers who issue
a bid bond are also sharing the subsequent performance risk with the procuring
entity to some extent.
The phase following the conclusion of the bidding process is the execution phase
when the obligation has to be fulfilled by the winner of the tender. The perfor-
mance bond guarantees the beneficiary against the risk that the principal is not
able to satisfy the timing or any other requirement of the obligation. In case the
performance does not meet all the requirements declared in the bidding process, the
insurer indemnifies the procuring entity.
Depending on the considered regulatory framework, the procuring entity has the
right to increase the duration or to vary other features of the obligation during
the execution phase. This is usually the case when the procuring entity is a public
institution. When the risk underlying the performance bond is modified, the insurer
may require the payment of a premium supplement but must accept to guarantee
the beneficiary against the risk extension.
In case of claim, the subrogation17 takes place. Namely, the subrogation can be
thought of as the set of rules that defines the role of the insurer when the execution
phase is interrupted by a violation of the underlying obligation. Different regulatory
frameworks decline this concept in different ways, as shown below by the comparison
between the Italian and the American bidding laws, described in the next paragraphs
1.3.1 and 1.3.2.

17From late Latin “subrogare” (i.e. to choose as substitute), “subrogation” is a juridic expression
specifically referred to the surety context. It means that the “surety” (i.e. the insurer) has the
right (and/or the oblige) to act as the beneficiary and/or the principal when a claim occurs.
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Figure 1.4. Schematics of the most typical surety insurance products: the bid bond and
the performance bond. The bidding process is represented, when the beneficiary receives
protection by the bid bond and the following performance bond is not issued yet.
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Figure 1.5. Schematics of the most typical surety insurance products: the bid bond and
the performance bond. The execution phase is represented, when the beneficiary receives
protection by the performance bond.



20 1. Credit and Suretyship insurance

1.3.1 Bid and performance bonds: the Italian case

According to the Italian bidding law [45], the exposure generated by a bid bond
is typically fixed to a αbid = 2% (also αB in chapter 5) fraction of the underlying
obligation notional value NV0, established by the procuring entity at the begin-
ning t = 0 of the bidding process. However, depending on the risk profile of the
obligation, the procuring entity may choose a different αbid value in the interval
[1%, 4%].
The performance bond exposure likewise is represented as a fraction αperformance
(also αP in chapter 5) of the obligation notional values NVT , re-estabilished at the
time t = T when the tender ends. Since each candidate contractor offers to take
charge of the obligation at a cost that is lower than the auction base NV0, it holds
NVT < NV0 by construction. However, the Italian law forbids to choose αperformance
and provides a mechanism to protect the beneficiary from the risk arising when
NVT � NV0 (i.e. quality requirements of the obligation are likely to not be met).
In fact it holds [46]

αperformance = 10% + max{0; 90%− NVT
NV0
}+ max{0; 80%− NVT

NV0
}

Namely, the base value of αperformance is equal to 10%, but it is increased by 1%
per each percentage point exceeding a 10% bidding discount and by 2% per each
percentage point exceeding a 20% bidding discount.
Hence, in the case of NVT ' NV0, αbid = 2% and αperformance = 10%, the exposure
at risk guaranteed by a given performance bond is approximately five times the
exposure at risk covered by the corresponding bid bond. However, depending on
the choice of αbid and the value of NVT /NV0, the notional value of the performance
bond can easily reach an amount ranging between 10 and 20 times the corresponding
bid bond exposure. This fact incentivizes the insurer to perform an assessment of
the contractor as accurate as possible when underwriting the bid bond to avoid the
choice between the bid bond payment and the issue of a performance bond that
causes the exposure generated by the contractor to be too big with respect to the
contractor’s worthiness.
The performance bond exposure decreases over time as the completion percentage
of execution increases. The effective exposure can decrease up to 20% of the initial
exposure in t = T [47]. However, the insurer is usually not aware of the execution
status since there is no obligation for the beneficiary nor for the principal to keep
the insurer update unless a claim is notified.
In case of a claim, the insurer indemnifies the beneficiary according to the rules
described above, and then the subrogation takes place: the insurer acquires the
right to recover from the principal the amount indemnified to the beneficiary [48].

1.3.2 Bid and performance bonds: the U.S.A. case

Public works promoted either by the U.S. federal government or by a specific country
in the U.S.A. are subject to a law that shares many features with the Italian bidding
law described above in paragraph 1.3.1. Indeed, processes outlined in figures 1.4 and
1.5, for the tender and the subsequent execution phase, respectively, still apply in
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this case. However, it is worth noticing two relevant differences with respect to the
Italian case, regarding the mandatory presence of another type of surety product -
the payment bond, described in the following - and a different implementation of
the subrogation concept.
Each contract exceeding $ 100.000 and awarded by the U.S. federal government
for the construction, alteration, or repair of a public building is disciplined by the
Miller Act [10]. When a specific state requires public work in the U.S.A., similar
regulatory frameworks are applied - known as “little Miller Acts” to highlight their
analogy with the federal law they are inspired by.
As anticipated in paragraph 1.1.3, the Miller Act aims to protect both the govern-
ment and the subcontractors during the execution phase. Indeed, the risk that the
contractor does not pay subcontractors and suppliers of goods would reduce com-
petition and raise construction costs, given the sovereign immunity that prevents
a mechanic’s lien. Hence, transferring the credit risk generated by the contractor
is an indirect defense of the public interest. To this purpose, a payment bond is
required together with the performance bond18.
A payment bond can be thought of as a simplified credit insurance policy: the
underlying risk is still the violation of a financial obligation, but the surety contract
cannot be customized by adding implicit options and risk/profit sharing elements.
Furthermore, the surety insurer has not the possibility to handle the credit limit
dynamically during the coverage period, nor can the insured vary the exposure at
risk by issuing new invoices to the risky debtor (i.e. the contractor in this case).
The American law interpretation of the performance bond is less structured and
more effective than the one discussed above in paragraph 1.3.1 in the Italian case.
In fact, in this case, the surety insurer is generally requested to guarantee the
execution of the underlying obligation. Depending on the specific case, this may
imply replacing the defaulted contractor with another executioner or the payment
of the remaining part of the public work to be completed after the principal default.
However, while Italian law requires paying a specific fraction of the contract value,
American law requires the contract to be fulfilled somehow. Hence a sort of “double”
subrogation takes place: the insurer replaces the contractor who is guaranteeing the
work completion and then replaces the beneficiary in the recovery attempt against
the defaulted contractor. The concept of double subrogation in American surety
law is explicit in the doctrine. For example, in Hall v. Windsor Sav. Bank [49] the
court observed that “whenever the surety of a fiduciary is compelled to answer for
the latter’s breach of trust, he succeeds to the rights of both the fiduciary and the
cestui”19.

18In the Italian case, there is no sovereign immunity, and hence the presence of a payment bond
is not mandatory, although possible. Furthermore, other forms of protection are available as well.
In case a given public work is managed as project finance, the banking system provides the liquidity
needed to pay subcontractors and suppliers, and the banks involved in the operation can be insured
against the counterparty risk generated by the contractor.

19Cestui or Cestui que is a shortened version of “cestui a que use le feoffment fuit fait”, literally,
“The person for whose benefit the feoffment was made”, i.e. the beneficiary. The word “fiduciary”
(also “trustee”) is referred to the principal.
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1.4 Similar but not quite the same: financial products
related to Credit and Suretyship insurance

Subjects belonging to both SME and large corporate segments generate a vast de-
mand for protection from credit events and from loss events belonging to the broader
breach-of-contract class.
Insurance companies, banks, and other financial institutions have been stimulated
to develop and offer a wide range of products to satisfy this need. Without claim to
completeness, it is worth recalling some of the most similar products to the ones in-
vestigated in this work, to highlight their similarities and differences in comparison
with the Credit&Suretyship insurance products. The following sections briefly intro-
duce two examples of banking products that are comparable with credit insurance
and suretyship, respectively. §1.4.1 summarizes the basic features of factoring oper-
ations that provide support to a seller in handling its unexpired commercial credit,
implying natural comparability with credit insurance. §1.4.2 introduces banking
guarantees that are a possible replacement to a surety bond, although being a fi-
nancial (i.e., not insurance) product.
No other financial product is explicitly considered in the following, although there
are notable products designed to transfer the credit risk originated by a corporate
entity or a basket of generic debtors (SMEs or even retail borrowers). E.g., Credit
Default Swap (a.k.a. CDS) belongs to the former category, while Collateralized
Debt Obligations or Asset-Backed Securities (a.k.a. CDO and ABS, respectively)
are examples of the latter.

1.4.1 Factoring

Factoring [50] is a type of financial transaction requested by subjects who have
a commercial credit against a risky counterparty. Credit insurance and factoring
have remarkable similarities, although the latter being a banking product. In fact, in
both cases, accounts receivable (i.e., unexpired invoices) underlie a contract between
the creditor and the bank or the insurer. Further, either in factoring or in credit
insurance, the creditor may receive the amount due from the bank or the insurer
instead of the debtor, under certain conditions.
The first relevant difference between factoring and credit insurance is that the factor
(i.e., the bank) pays the creditor in advance, buying the credit and receiving the
outstanding amount from the debtor at the due date. Although the invoice is trans-
ferred from the creditor to the bank, the credit risk is not necessarily transferred as
well. Indeed, the factoring transaction may be pro-soluto (a.k.a. without recourse)
or pro-solvendo (a.k.a. with recourse). The former factoring type implies that the
factor must bear the loss in case of the debtor’s insolvency, while the latter type
gives the factor the right to recover the credit from the invoice seller in case the
debtor does not pay. Thus, the pro-soluto factoring offers actual protection against
commercial credit risk, while the pro-solvendo factoring is just a means of financing
the credit by anticipating the outstanding amount. Unlike in credit insurance, the
factoring may be requested by the debtor instead of the creditor. Such a transac-
tion is known as reverse factoring and allows the debtor to maintain the duration
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of its outstanding commercial debts, although offering an immediate payment to its
creditors.
Although pro-soluto factoring is a form of protection against commercial credit risk,
it is different from credit insurance in one relevant aspect at least. In fact, each
unexpired invoice has to be purchased by the bank and, thus, the creditor must
present it in advance, and the bank can accept it or not. As discussed in §1.2, the
credit insurer grants a credit limit without knowing the actual exposure to the risk
generated in a given time instant by the business relationship existing between the
insured seller and its buyer. Hence, while the bank is required to pay in advance
the amount due but enjoys complete information to decide its risk appetite level,
the credit insurer is required to pay the amount due only if a claim is notified but
is forced to decide its risk appetite level without knowing the amount of exposure
to risk by each time instant.

1.4.2 Banking Guarantees

When a beneficiary requests protection against the breach-of-contract risk generated
by a principal obligation, an insurance company can act only as a surety. In contrast,
a bank can act either as a surety or as a guarantor.
In the first case, the protection offered by the bank is basically the same as the
suretyship insurance products presented in §1.3. Minor differences can be found
depending on the regulatory framework applied in the country where the considered
principal obligation takes place. Practically speaking, the main difference is that a
bank is likely to require full collateralization of the transferred risk in advance, and
a suretyship insurance company usually exercises the right of subrogation against
the contractor only after the claim [51].
When a bank acts as a guarantor, it always requires the full collateralization of the
underlying notional value in advance. The reason for this mandatory requirement
lies in the second difference between suretyship and banking guarantees. Indeed, a
guarantee is a distinct promise to pay and is not dependent on the principal obliga-
tion. The guarantor must pay upon the first written demand of the beneficiary. In
that perspective, the guarantee is not an insurance product. Although it provides
protection against the breach of the principal obligation, the obligation does not
underlie the guarantee contract that gives a unilateral right to the beneficiary [52].
As a practical consequence, a suretyship policy allows a rearrangement of the terms
of the obligation, with the intermediation of the surety, before the claim is settled.
In public works, it is common practice to extend the principal obligation expiry date
when needed, provided that the public procuring entity considers the contractor able
to fulfill its obligation, although in a time longer than expected. In such a case,
the surety must accept the time extension of the underlying performance risk, while
the principal has to pay an additional premium. This flexibility allows to progress
and - hopefully - to complete the required public works without interruption. On
the other hand, the exercise of a guarantee generates two (ideally) instantaneous
cash flows, from the bank to the beneficiary and from the principal to the bank, the
latter being possible through the collateralization of the notional amount. In such
a case, the related - not underlying - obligation is nullified, and the contractor must
be replaced.
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Chapter 2

Modeling the future claim event
in credit and suretyship
insurance

In chapter 1, the main elements of C&S insurance have been outlined in paragraphs
1.2 (credit insurance) and 1.3 (suretyship). Now it is worth comparing these two
types of insurance business in the perspective of better understanding to what extent
the claim events they generate are similar and therefore can be described by using
the same modeling approach.
The following chapter shows that the relevant features shared between these two
insurance lines are enough to use a single model to describe the joint probability
distribution of claim events generated from credit and surety risks. However, credit
insurance is affected by an information asymmetry stronger than the one experi-
enced by a surety insurer and so requires special care in estimating marginal claim
probabilities. The latter problem is addressed in chapter 6, as a part of the original
research developed in this work.
In the next section 2.1 differences and similarities between credit and surety are
discussed concerning the modelization of their claim events probabilities.
In section 2.2, a model is selected among the “classic” credit risk models available
in the literature to cope with the features of both these insurance types and so to
be used as a possible joint probability distribution of their claim events. This choice
allows for parametric estimation of the dependence structure among risks belonging
to a mixed C&S portfolio of insurance liabilities. Details about the chosen model -
that is, CreditRisk+ - and its calibration are presented in chapter 4. In the same
chapter, an original technique is presented to increase the precision of CreditRisk+

calibration when performing it in the C&S context - completing the original research
results contained in this work.
Finally, section 2.3 presents the modeling choices made by EIOPA when considering
this LoB in the Solvency 2 Standard Formula framework.
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2.1 Comparison between credit and surety
Credit insurance and suretyship have many features in common that justify the
choice of supranational authorities to represent them as a whole and to issue a unique
regulation relevant to both of them [36,37,41]. Conversely, national insurance laws
may consider them as distinct lines of business, depending on the specific country1.
Their similarities are also relevant from an actuarial perspective to choose the most
suitable modeling approach to represent the various components of their under-
writing risk. Among their features, the ones of interest in modeling claim events
probability are listed and discussed hereinafter.

i. Claims as absorbing events. This can be considered a common feature shared
between credit and suretyship to a fair approximation. When the beneficiary
notifies a claim to the surety, subrogation is activated, implying the indem-
nification or the contractor replacement and the subsequent attempt of the
insurer to recover the loss. This sequence can occur once at most in the policy
life cycle, so it is an absorbing event. On the other hand, an insolvency event
in credit insurance may be not related to the buyer’s bankruptcy but just to
a temporary condition of financial distress. Hence it is possible that a buyer
generates a credit insurance claim, improves his or her creditworthiness again,
and then generates a second claim after some time. However, this double
claim event can be considered negligible since the insurer is likely to exercise
the right to nullify the credit limit as the first claim event takes place, avoiding
the second event. Furthermore, the insured seller likely decides to interrupt
the business relation with the insolvent buyer after the first event due to his
or her loss implied by the risk-sharing elements of the credit insurance policy.

ii. Heterogeneity of loss events. The suretyship insurance is characterized by a
wide range of loss event types. In contrast, credit insurance aims to protect
the insured only against the risk of losses arising from the insolvency of a
debtor. As discussed in paragraph 1.3, a suretyship policy may guarantee
the beneficiary against credit risk as well (e.g. payment bond introduced in
paragraph 1.3). However, surety insurance products also protect against the
risk that almost any other kind of obligation is violated, including, inter alia,
performance requirements, and self-declarations accuracy. Suretyship also
guarantees the commitment not to do something (e.g. the obligation not to
renovate a historic building while renting it).

iii. Scarcity of information about (the majority of) sources of risk. In principle,
scientific literature developed for the banking sector offers a wide range of
techniques dedicated to estimating the probability of insolvency events. How-
ever, these techniques require the availability of specific pieces of information,
such as the price of stocks or bonds listed in markets or, at least, an up-
dated financial statement. This information is usually available for subjects

1According to Italian insurance law, credit and surety are classified as distinct lines of insurance
business (n. 14 and 15 respectively). However, they are regulated by standard administrative
orders and laws [41].
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belonging to the corporate segment, while the typical source of risk for credit
insurers is the SME segment. It is true that also banks have to manage the
credit risk generated by the SME segment, but with two relevant advantages.
First, the debtor relates directly with the bank, which has the right to request
all the information needed to evaluate the debtor’s creditworthiness. On the
other hand, credit insurers evaluate the debtors only based on the information
available to the insured seller - usually another SME - and (when applicable)
to info providers.

Furthermore, banks provide information on the payment behavior of cus-
tomers to each other nationwide. At the same time, a centralized database
of claims does not exist in the credit insurance sector, nor credit insurance
companies are allowed to access centralized data collected by their domestic
banking system on their debtors. In surety, the heterogeneity of insured loss
events makes estimating the claim probability for a specific underlying obliga-
tion even more difficult. There are no data or models to quantify an obligor’s
idiosyncratic risk not to fulfill his or her obligation for the majority of obliga-
tion types (namely, all the types not directly related to credit risk). As might
be expected, technical evaluations are possible in the case of extensive pub-
lic works, where projects and other features of the underlying obligation are
available to the insurer to some extent. However, these evaluations are expert-
judgment based, and it is unlikely that they allow quantifying the probability
of the corresponding surety claim.

iv. Information asymmetry with the insured: duration of risk. This kind of in-
formation asymmetry concerns surety insurance specifically. A credit insurer
knows precisely how long he or she may receive a claim notification after hav-
ing nullified the credit limit granted on a specific buyer. In fact, the loss
event cannot occur after the maximum credit term passes and must be noti-
fied within the maximum extension period. On the other hand, the maturity
of a surety policy can be extended even after its expiration date. Indeed, sup-
pose the beneficiary is a public entity, and the underlying obligation is related
to public works. In that case, the insured is obliged to accept a premium
supplement against providing an extended guarantee. In principle, this can
occur multiple times before the actual expiration date is reached, implying a
stochastic duration for a relevant fraction of surety insurance products.

v. Information asymmetry with the insured: exposure at risk. This kind of in-
formation asymmetry concerns credit insurance specifically. The presence of
an actual exposure at risk generated by a given buyer depends on the simul-
taneous existence of two elements: a nonzero credit limit and (at least) one
outstanding invoice issued by the insured seller to the underlying buyer. The
second condition only depends on the commercial relation ongoing between
buyer and seller. Hence, the credit insurer cannot say which risks generate
an actual exposure at a specific time - not only in the present but, in most
cases, also in the past. On the other hand, the severity of a surety claim may
be a priori unknown - since the insurer is not (entirely) aware of the progress
status of the principal obligation - but exposure at risk is certainly present
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until the principal obligation is not redeemed.

vi. Insensitivity to creditworthiness dynamics. This is a common feature shared
between credit and surety. Although credit insurance protects against insol-
vency events and most of the suretyship loss events are somewhat related to the
case of an obligor default, the variation of the underlying risk (debtor/obligor)
creditworthiness during the life cycle of the policy does not represent a loss
event in itself. Even if the source of risk belongs to the large corporate seg-
ment and hence observable and updated information is available, such as a
rating issued by an ECAI rating agency, C&S products are triggered only by
their specific underlying loss events. Namely, a defaulted debtor that can pay
the last invoice issued by the insured seller or a defaulted obligor promptly
replaced in fulfilling his or her obligation towards the beneficiary does not
generate any loss event. Although there is no direct effect of creditworthiness
migration onto claim probability of any C&S product, there is an interesting
case of possible indirect effect in suretyship insurance. When a surety guaran-
tees a bidder in a public tender process if the granted bidder wins the tender
has to obtain a performance bond, commonly issued by the same insurer who
issued the bid bond, as a requirement to enter the contract. If the bidder’s
creditworthiness worsens remarkably during the tender process, the insurer
may refuse to issue the performance bond, and the same may apply to the
other C&S insurers. This scenario implies an increased claim probability for
the bid bond. However, as discussed later in chapter 5, this effect is not worth
being considered for practical purposes.

vii. High volatility of claim probability and loss ratio. Both credit and surety in-
surance policies protect low-frequency absorbing events. However, frequency
and the degree of dependence among these loss events may grow depending on
systemic factors, such as the macroeconomic situation of a considered coun-
try. Hence, this line of business results especially volatile over the years if
compared to other lines of business of the non-life insurance sector. For ex-
ample, let us compare the recent claim history of C&S insurance against two
among the main2 non-life LoBs in the Italian market. As shown in table 2.1,
the historical default frequency observed in non-performing loans (NPLs) over
the period 2013-2018 is approximately five times as volatile as the claim fre-
quency recorded for GLI and FDP during the same period. In relative terms
(i.e. considering CV instead of RSME), NPLs default frequency still results
three to five times as volatile as the claim frequencies of the two considered
LoBs. Although being recorded by the banking sector [54], NPLs are a good
benchmark to study the trend of credit insurance claim frequency, given the
lack of publicly available information about C&S number of claims per year.
Similar results are obtained comparing loss ratios (see figure 2.1): in this case,
historical data are disclosed also about Credit and Surety LoBs3. It is worth

2Taken together, GLI and FDP LoBs are worth 25.8% of premiums earned by Italian non-life
insurance sector in 2019, while C&S LoB generated 1.4% of Italian non-life insurance premiums in
the same year [82]. This premium distribution is comparable to the one observed in the European
non-life insurance market in 2018 (see figure 1.2).

3In Italian insurance law, Credit insurance and Suretyship are two distinct LoBs (number 14
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noticing not only that credit and surety loss ratios exhibit a strong reaction
to systemic crises (increasing their volatilities), but also that the reaction is
not the same. Indeed, figure 2.1 shows that suretyship seems to be affected
especially by the 2003 crisis, while credit insurance results more impacted by
2009 and 2012 crises. This is likely to be related to “feature ii.” above. The
strong correlation between C&S performance and the economic cycle has been
also recognized and considered by CEIOPS in Solvency 2 Standard Formula
design4.
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Figure 2.1. Italian market (1998-2019): comparison among historical loss ratio time series
of the entire non-life Italian insurance market, and the ones of four lines of non-life
insurance business. Data source: ANIA [82].

Features listed above are summarized in table 2.2. These elements allow to draw
some conclusions about the representation of a C&S future claim event and the
estimation of its probability.

and 15 respectively), while they are considered as a whole in European Solvency 2 framework (i.e.
LoB n. 9).

4Paragraph 3.1143 of Solvency 2 Calibration Paper [83] reads as follows: “In light of the credit
crisis, due attention was given to concerns regarding pro-cyclicality of financial systems and their
regulatory regimes. One particular insurance field on which this concern has focused is credit
insurance and suretyship (C&S). For instance, the EFC report to the Council of the European
Union states that credit insurance is, in terms of its risks, substantially similar to the banking
business and faces the same pro-cyclical challenges.[. . . ].”
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General liability insurance

Year number of
risk units

number of
claims

claim
frequency

2013 17′788′748 364′957 0.021
2014 17′875′067 333′750 0.019
2015 17′739′068 319′358 0.018
2016 19′222′243 310′237 0.016
2017 18′494′292 312′445 0.017
2018 19′695′904 325′578 0.017

Fire and other damage to property insurance

Year number of
risk units

number of
claims

claim
frequency

2013 31′556′833 1′186′587 0.038
2014 31′284′433 1′234′661 0.039
2015 30′816′617 1′139′994 0.037
2016 32′340′234 1′127′954 0.035
2017 33′916′290 1′178′279 0.035
2018 36′320′597 1′259′482 0.035

Non-performing loans

Year number of
borrowers

number of
defaults

default
frequency

2013 1′314′117 59′389 0.045
2014 1′234′151 53′417 0.043
2015 1′183′963 44′417 0.038
2016 1′156′716 34′995 0.030
2017 1′146′146 27′555 0.024
2018 1′144′550 24′829 0.022

GLI FDP NPL
Mean 0.018 0.036 0.034
RMSE 0.002 0.002 0.010
CV 9.19% 5.39% 29.34%

Table 2.1. Italian market (2013-2018): comparison among default frequency of Non-
performing loans (NPL) and historical claim frequency of two non-life insurance lines of
business (general liability insurance - GLI and Fire and other damage to property insur-
ance - FDP). Mean, root square mean error and coefficient of variation are compared
among the three considered time series. Data sources: IVASS [53] for GLI and FDP
time series; Bank of Italy [54] for NPL time series.
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Credit Surety

i. Claims as absorbing events 3 3

ii. Heterogeneity of loss events 7 3

iii. Scarcity of information about (the
majority of) sources of risk

3 3

iv. Information asymmetry with the
insured: duration of risk

7 3

v. Information asymmetry with the
insured: exposure at risk

3 7

vi. Insensitivity to credit worthiness
dynamics

3 3

vii. High volatility of claim probability
and loss ratio

3 3

Table 2.2. Comparison between credit and surety: recap of similarities and differences
presented in paragraph 2.1.

Loss events as Bernoulli variables. i. and vi. imply that a risk source (i.e. an
obligation or a commercial relation underlying a C&S policy) can generate losses
once at most during the whole coverage period. Hence, the occurrence of the claim
over a given time horizon is well represented by a Bernoulli r.v. by construction.
Therefore the marginal probability associated with such an event can be estimated
as the Bernoulli distribution parameter. Namely, this means that it is necessary to
estimate the time series of historical claim frequencies as first and proceed to further
model the probability of future events. The parametric estimation of absorbing
events probability is discussed in chapter 3. As anticipated in vi., the Bernoulli
representation of the underlying risk fits bid bonds claim events as well. In fact,
the effects of creditworthiness migration, if any, are indirect - as better discussed
in chapter 5 - and a claim is still an absorbing event even if related to migration
phenomena.

Clustering risk sources into risk-homogenous groups. ii. implies that C&S
insurance offers protection against claims which are different and therefore have to
be clustered into distinct groups, internally homogenous, to avoid the average among
the possibly different probability levels associated with each group. Indeed, the
mix of distinct populations would lead to confusing their dynamics, causing a bad
modelization. Furthermore, iii. suggests that the claim probabilities associated with
the majority of the debtors have to be evaluated on a clustering basis only. In fact,
the categorical variables needed to characterize each debtor in terms of economic
sector, geographical origin, and legal form are the only available information in
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many cases and are perfectly suitable to clusters definition purposes.
Estimating historical claim frequencies under a lack of information. iv.
and v. highlight that C&S insurers have to face a significant lack of information
implied by the features of this LoB discussed above. However, it is worth remarking
that information asymmetries - though present both in credit and suretyship - are
different in the two cases and thus have distinct consequences in terms of claim
probability estimation.
In the suretyship case, the beneficiary information advantage (presented in iv.) does
not cause any problem to the surety when estimating historical claim frequencies
since it affects not expired risks only. Hence, the most relevant practical consequence
arises when estimating the premium provision component of best estimate liabilities.
In fact, Solvency II requires the quantification of all the future cash-in and cash-
out installments until run-off, generated by the insurance liabilities underwritten
up to the evaluation date5. Therefore, surety insurers are required to estimate an
effective expiry for each underwritten risk that the beneficiary reserves the unilateral
right to extend. This can be easily achieved by the application of historical expiry
distributions per policy type. Furthermore, the estimation of claim probability per
unit of time is not impacted.
On the other hand, the partial information available to credit insurers about com-
mercial relations between their insured sellers and buyers affects the insurer’s abil-
ity to measure the historical frequency of potential loss events, due to past default
events which may be not observed depending on the insured seller behavior. In fact,
given a risk homogeneous cluster of buyers observed over the same time horizon,
the insurer will receive a number of claim notifications that is affected by the prob-
ability of having an invoice issued by the insured seller and still outstanding when
the buyer defaults. Therefore, in the credit insurance case, the commercial relation
affects the measure of historical default rates. Such a bias is not easily removable
since the information needed (i.e. historical insured invoices issued to each risky
buyer) is not available in most cases, even after the policy expires. However, the
factorization of default probability and claim observability may be relevant if both
evolve in time under independent dynamics. In this case, modeling them as a whole
may cause a misjudgment of recently observed trends and thus bad forecasting.
This problem is addressed in chapter 6.
Furthermore, claim rate estimation in C&S insurance may be made more difficult
by a reduced sample size. Indeed, table 2.1 shows that when considering the whole
Italian banking system - where information is shared among the banks - the average
number of risky borrowers is an order of magnitude lower than the typical number
of risk units in other common non-life insurance LoBs (FDP and GLI are compared

5Solvency 2 “Commission Delegated Regulation” 2015/35 [37], Chapter III, Section 3, Subsec-
tion 3, Article 28 reads: “The cash flow projection used in the calculation of the best estimate
shall include all of the following cash flows, to the extent that these cash flows relate to existing
insurance and reinsurance contracts: (a) benefit payments to policy holders and beneficiaries; (b)
payments that the insurance or reinsurance undertaking will incur in providing contractual benefits
that are paid in kind; (c) payments of expenses as referred to in point (1) of Article 78 of Di-
rective 2009/138/EC; (d) premium payments and any additional cash flows that result from those
premiums; [. . . ] (g) payments for salvage and subrogation to the extent that they do not qualify as
separate assets or liabilities in accordance with international accounting standards, as endorsed by
the Commission in accordance with Regulation (EC) No 1606/2002; [. . . ]”.



2.2 Model selection for a C&S basket of risks representation 33

NPL in the table). Since C&S insurers do not share information about their risks
and claims, the number of risk units observed by a specific insurance company can be
smaller by two orders of magnitude or more6. The necessity to cluster risk sources
into risk-homogenous groups reduces the sample size per group further. Hence,
samples used to estimate claim frequencies may be scarcely populated. Combined
with the generally low claim rate observed in C&S LoB, this fact leads to a relevant
estimation error associated with claim frequency measurement.

Modeling multivariate dynamics of claim probabilities. As stated in iii.,
credit insurance is mainly devoted to offering protection against business entities
belonging to the SME segment. Hence, it is reasonable to suppose that their in-
solvency events are mutually independent in general. Indeed, even in the case of
bankruptcy, a small business entity is most likely not to provoke any contagion phe-
nomenon at all. However, as observed in vii., credit insurance is sensible to crises,
as well as to macroeconomic evolutions in general. This implies factor models to be
a possible “natural” representation of the multivariate dynamics of claim probabil-
ities associated with a generic set of risk homogeneous clusters considered in this
context. Models belonging to this class describe the collective dynamics of random
variables set (allowed to be conditionally independent) subjected to a dependence
structure defined through an additional set of latent variables (commonly known as
“factors”) that represent the environment affecting the observable variables.
As discussed in iii. and vii., the same applies to suretyship, which is influenced
by macroeconomic phenomena as well. However, suretyship claims can be reason-
ably supposed to be conditionally independent since the violation of an obligation
underlying a surety policy is not likely to affect the probability of observing fur-
ther violations of other insured obligations. Furthermore, as discussed in paragraph
1.3 and recalled in ii., suretyship insurance offers protection against a variety of
loss event types. Hence, the flexibility provided by a factor model results to be
especially fitting in this case, where different loss event types could also exhibit a
different dependency on each latent factor.
In general, calibrating a dependence structure is a demanding task. In this case, the
lack of information experienced by C&S insurers, due to both the insured behavior
and the reduced number of observed risk units per cluster, makes it even harder. The
problem of calibrating a factor model for C&S insurance applications is addressed
in chapter 4, which presents a technique to increase the precision of the dependence
structure among claim probabilities in this context.

2.2 Model selection for a C&S basket of risks represen-
tation

As discussed in paragraphs 1.2 and 1.3, a C&S product protects a subject (not
necessarily the insured one, as seen in par. 1.3) from the failure of another sub-
ject in fulfilling a given obligation. The underlying obligation can have either a
financial nature, as in credit insurance products and payment bonds, or a nature
that is related to the creditworthiness of the risky subject to some extent (e.g. in

6E.g.: The number of C&S risk units recorded in [84] is approximately equal to 105.
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performance bond contracts, the contractors who are not able to fulfill their duties
are likely to be in a situation of financial distress). Even in the case when the loss
event is unrelated to a credit event at all (e.g. court bonds not related to financial
obligations), it maintains a certain similarity with a default event, at least in a
modeling perspective, since it can always be regarded as “absorbing” - as discussed
in paragraph 2.1.
Thus, it is worth recalling the main “classical” modeling approaches available in the
literature for representing credit risk in a financial context to evaluate their degree of
suitability for C&S insurance applications. Some amongst the most relevant credit
risk models are briefly reviewed hereinafter, without claim to completeness7, neither
in the list of the models presented below nor in the description provided about each
model. The considered models have been initially developed for the banking sector
between the 1970s and 1990s but are still an industry standard nowadays.
According to a classification that is widely accepted in the literature, credit risk
models are usually categorized as structural or reduced form models. Structural
models describe a firm’s bankruptcy event through a microeconomic model of the
firm’s capital structure. In contrast, reduced-form models directly represent the
default probability using a variable or a process not explicitly related to the firm’s
balance sheet. Examples belonging to both categories are discussed in the following
paragraphs.
However, before discussing each considered model and its feasibility for C&S applica-
tions, it is worth emphasizing that the distinction between structural and reduced-
form models introduced above is weak, although commonly used. Depending on
how parameterization is done, the same underlying assumptions can lead either to
a structural or a reduced-form model. Loosely speaking, when the underlying mi-
croeconomic model of the firm’s capital structure is directly used in calibrating the
corresponding credit risk model, the latter is considered to be “structural”. On the
other hand, if the functional form implied by a set of microeconomic assumptions
can be calibrated by exogenous default observations, without needing the direct
observation of the financial variables involved in the assumptions, the same credit
risk model becomes a “reduced-form” model.
Among the models presented in the following, only the Merton model, Moody’s
KMV model, and credit scoring models are classified as structural. Other models
based on the same structural assumptions introduced by the Merton model (i.e.
ROA being normally distributed and default event caused by a critical decrease
in assets value), such as CreditMetrics and Vasicek model, are considered to be
reduced-form because of the possibility to calibrate them considering a latent assets
dynamics.
Some models are considered neither reduced-form nor structural. This third set
includes all the models where the probability of default is explicitly dependent
on some non-latent variables, but the considered variables are not microeconomic.
The first and most important example of this model type is CreditPortfolioView,
presented in the following.

7An exhaustive discussion on this topic is available, e.g., in the books of Schönbucher [116] and
McNeil [122].
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2.2.1 Structural models: Merton model and Moody’s KMV model

The so-called “Merton model”, introduced in 1974 by Robert C. Merton [55], is
the first example of a structural model ever developed. Merton model has been
furtherly developed by KMV, a financial analysis society founded by Kealhofer,
McQuown, and Vasicek. The acquisition of KMV by Moody’s in 2002 [56] leaded
to the “Moody’s KMV model” [57] - only partially disclosed to date.

Model hypotheses and structure

The Merton model uses a log-normal process to describe the dynamics of a given
firm’s assets value Vt

dVt = µVtdt+ σV VtdWt

where Wt is a Wiener process. The firm’s equity is evaluated as the difference
between Vt and the debt level B. The default event is supposed to occur when
Vt ≤ B, implying a null or negative equity value.
Hence, the following expression holds for the firm’s probability of default (PD) in t

Prob(Vt ≤ B|F0) = Φ

 log B
V0

+ (r − σ2
V
2 )t

σV
√
t


where Φ(·) is the c.d.f. of the standard normal distribution and r the risk-free
interest rate. Since Φ(x) = 1 − Φ(−x) =: Φ(−x) we have that the 1-year PD is
Prob(V1 ≤ B|F0) = Φ(A), where

A :=
log V0 − logB − (r − σ2

V
2 )

σV

According to Moody’s KMV framework, PD is also referred to as Expected De-
fault Frequency (EDF), so that the current version of the model has been renamed
“Moody’s Analytics EDF”. An easily understandable variable, known as distance-
to-default (DD) is introduced instead of A in the passage from the original Merton’s
formulation of the model to the contemporary Moody’s KMV framework.

log V0 − logB − (r − σ2
V
2 )

σV
≈ log V0 − logB

σV
≈ V0 −B

σV V0
=: DD

Moreover, Moody’s KMV model improves the original Merton model by weakening
its distributional hypothesis. Indeed Φ(·) is replaced by an empirical DD-to-EDF
map M(·) (not disclosed to date) which is calibrated on historical data. This choice
implies that the log-normal distribution hypothesis is abandoned - increasing the
flexibility of the model and, according to Moody’s, its predictivity [57].
Although the Merton model aims to provide only an explicit description of the
PD associated with each considered firm, it can be easily extended to evaluate the
distribution of future losses generated by a basket of risks. Indeed, since the PDs
are inferred from the dynamics of stock prices, the model can be easily coupled with
any structure of dependence consistent with the assumption about the lognormality
of the stock prices’ marginal dynamics.
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2.2.2 Structural models without dynamics: credit scoring models

Merton model, presented in §2.2.1, can be thought as based on two assumptions:

• the (deterministic) relation existing between a microeconomic variable de-
scribing the state of a firm and its creditworthiness;

• the (stochastic) marginal dynamics of the considered microeconomic variable.

This setting is not shared among all the structural models. A comprehensive class
of structural models - known as “cross-sectional” credit scoring models - represents
a commonly accepted approach to model the default probability PD of a firm as a
function of the information available from the firm’s financial statements, without
introducing any additional assumptions about dynamics [58].

Model hypotheses and structure

In a nutshell, a typical credit scoring model is based on the hypothesis that the
default probability PD of a firm F , estimated in t over a given time horizon (t, t+∆t],
can be expressed as a generalized linear function of some financial ratios and/or
other numerical values taken from the firm’s financial statements.

PD(F, t,∆t) = E
[
1I{τF∈(t,t+∆t]}|Ft

]
= f

(
β0 +

N∑
i=1

βixiF (t)
)

where τF is the time to default of F , β := (β0, β1, . . . , βN ) ∈ RN+1 is the array
of the model parameters to be calibrated and xiF (t) ∈ R is the value of the i-th
considered variable, measured in t from the F ’s financial statements and/or other
selected information sources.
The function f : R → [0, 1] is chosen according to tractability criteria. Unlike in
Merton model, in this case there are no assumptions about the dynamics of credit
worthiness that imply a form of f(·). Two typical8 choices [58–60] are the standard
logistic function

f(x) ≡ ex

ex + 1 = 1
2 + 1

2tanh
(
x

2

)
and the standard normal CDF

f(x) ≡ 1
2

[
1 + 1

2erf(x)
]
,

where erf(x) := 2√
π

∫ x
0 exp

(
t−2) dt is the error function.

In this context, it is commonly assumed that default events over (t, t + ∆t] are
distributed as i.i.d. Bernoulli random variables, conditionally to the state xF (t) of
each firm. Under this assumption, the two f(·) forms listed above lead to the logit
and probit models9, respectively. A reason for the popularity of these models is the

8A comparative analysis on the presence of each cross-sectional model in the literature can be
found in [60], §3.3: the “logit” and “probit” models emerge as the most commonly studied in terms
of number of papers.

9These models are named as the corresponding inverse functions f−1(·). In fact, logit is the
inverse of the logistic function, while probit is the quantile function associated with the standard
normal distribution.
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possibility to calibrate them by ML estimation of their parameters from historical
data. Indeed, the likelihood function L can be easily written in closed form due to
the independence among defaults.

L (β|Ft′) =
∏
F

f(β · xF (t))DF [1− f(β · xF (t))]1−DF

where t′ ≥ t+ ∆t, xF (t) := (1, x1F (t), . . . ) and DF := 1I{τF∈(t,t+∆t]}.
Furthermore, in both cases, the optimal parameters choice is easily achievable due to
the computable form of the first derivative: in logit model, f ′(·) can be represented
as a closed-form expression of f(·), since the logistic function is a solution to the
differential equation f ′(x) = f(x)[1 − f(x)], while in probit model f ′(x) is the
standard normal PDF. Generally speaking, the choice between the two models is
not relevant to practical purposes in most cases since their outcomes are very similar
[59,61].
In banking practice, this technique is commonly embedded in a wider framework
[61–63] (i.e. an internal rating system), applied to assess the credit risk profile of
risky debtors in homogenous10 portfolios. Without claim to completeness, some of
the elements that are usually introduced to apply a logit/probit model (or other
comparable approaches) to practical purposes are listed below:

• univariate selection of the variables to be included among predictors xF (t),
according to a measure of their diagnostic ability;

• multivariate validation of the selected predictors and dimensionality reduction
of xF (t) by the application of PCA or other factor analysis technique;

• partition of the PD domain [0, 1] in a finite set of indexed subintervals (i.e.
rating classes, also known as grades), each of them being associated to a
symbol (e.g. AA, A, BBB, etc.) and to a qualitative description of the
corresponding risk level (the so-called master scale);

• allowance for expert-judgment-based override of the rating, leading to a joint
usage of quantitative and qualitative results to produce a final evaluation of
the firm creditworthiness;

• backtest and measure11 of model performance.

It is relevant to note that the complete specification of a rating model still need
the estimation of historical default rates and forward-looking default probabilities
in the same portfolio/cluster to which the model is being applied [62,63,65,66].
ML calibration on historical data is based on ∆t-long observations (being ∆t typ-
ically equal to 1 year) of defaulted/survived enterprises collected in a past period

10In this context, a cluster of debtors is homogenous if their PDs are supposed to be related to the
same predictors x(t) by the same parameters set (α, β1, . . . , βN ). Typical examples of homogeneous
clusters consist of enterprises that belong to the same segment, economic sector, and geographical
area (e.g. European financial large corporate; US agricultural small/medium enterprises).

11A typical measure of predictivity is the Accuracy Ratio, that can be expressed as a function of
the AUC (area under the curve) of the Receiver Operating Characteristics [64].
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that spans several years (i.e. a whole economic cycle or more). The resulting default
rate associated with the calibration sample is a long-run average, and the “natural”
map grade↔PD is built accordingly.
However, a financial entity may be interested in defining a different master scale.
From a short-term perspective, the forward-looking PDs expected for the next year
could be significantly far from the long-run average (either above or below). De-
pending on the considered application, the short term level, known as Point-In-Time
(PIT) PD, often results to be more appropriate12 and thus the master scale has to
be adjusted to reflect an average PIT PD level across the grades, instead of the
natural long-term PD level.
In literature, the PIT PD concept is usually contrasted with the Through-The-Cycle
(TTC) PD. It is worth noticing that “TTC” is a slightly ambiguous expression.
Indeed, some authors identify the TTC PD with the long-run average PD level
through a whole economic cycle - as its name suggests (see e.g. [66]). However,
according to the Basel Committee, TTC PD concept is associated to a prudential
long term PD level13, instead of the average default rate observed. Considering this
second possible meaning, also the application of the TTC PD level to the master
scale requires an adjustment.
Several techniques are available in the literature to adjust the PD associated with
each grade in a master scale. The seminal work of Falkenstein et al [61] suggests14

to scale each PD in the master scale by the coefficient such that the average PD
in the calibration sample is equal to the target PD level (i.e. PIT/TTC/other).
Hence this approach implies that the shape of the PD(grade) profile must not be
affected by the adjustment. A discussion where this choice is compared with other
non-uniform adjustment techniques is available in [65].

2.2.3 Econometric models: McKinsey’s CreditPortfolioView

Before introducing some classic reduced-form models in the following sections, it is
worth recalling the well-known CreditPortfolioView model, first proposed by Wilson
in September 1997 [68, 69]. In a sense, this model constitutes a third possible ap-
proach to credit risk modeling between structural and reduced-form models. In fact,
the so-called econometric models, started by CreditPortfolioView, assume that PDs
depend on exogenous variables - like in the structural models’ case. However, these
variables are not specific to each considered risky debtor. Indeed, macroeconomic

12 According to “The Internal Ratings-Based Approach” (BIS, 2001) [62], Section E, paragraph
54, p. 12, banks tend to consider the PIT PD level more often than the long-run average PD.
Moreover, IFRS 9 standard (see [67], paragraph B5.5.52) requires the estimation of a PIT PD, as
discussed in [66].

13From “The Internal Ratings-Based Approach” (BIS, 2001) [62], Section E, paragraph 53, p.
12: [. . . ] In a “point-in-time” process, an internal rating reflects an assessment of the borrower’s
current condition and/or most likely future condition throughout the chosen time horizon. As such,
the internal rating changes as the borrower’s condition changes throughout the credit/business cycle.
In contrast, a “through-the-cycle” process requires assessment of the borrower’s riskiness based
on a worst-case, “bottom-of-the-cycle scenario” ( i.e., its condition under stress). In this case, a
borrower’s rating would tend to stay the same throughout the credit/business cycle.

14See RiskCalc for private companies: Moody’s default model [61], Section VII: Mapping To
Default Rates And Moody’s Ratings.
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indexes {Xk} (k = 1, . . . ,K) are considered instead, each of them being modeled
by an autoregressive process. Applying an autoregressive process is possible due
to the availability of historical time series. In case of structural models, the only
variable with a populated time series is the stock price, which leads to the KMV
model described in §2.2.1. Other idiosyncratic variables available in the financial
statement of a debtor are observed yearly. Hence, modeling them through autore-
gressive processes is not feasible due to the insufficient number of observations. In
such a case, dynamics is eliminated from the model, leading to the scoring models
introduced in §2.2.2. Macroeconomic variables can be considered instead, enabling
the application of autoregressive processes to describe the regressors’ dynamics in
a framework similar to the scoring models.

Model hypotheses and structure

The model assumes a logistic dependence of the 1-year PD on {Xk}. Namely, the
same functional form introduced in §2.2.2 holds

PDi(t,∆t) = 1
1 + exp

(
−βi0 −

∑N
i=1 βijXj(t) + εit

)
Three main differences are worth being highlighted when comparing CreditPortfo-
lioView with a credit scoring model. First, PDi depends on a i-th economic sector
instead of a given specific firm F . Second, an explicit innovation term

εt ∼ N (0,Σε)

is introduced, where εt is the stacked vector of errors εit associated to each macroe-
conomic variable and Σε is the covariance matrix εt. Third, the financial statement’s
variables xjF (t) are replaced by the macroeconomic variables Xj(t).
As anticipated above, each Xj(t) is modeled through an autoregressive process to
allow forecasting

Xj(t) = γ0 + γ1Xj(t− 1) + γ2Xj(t− 2) + ϑjt,

where
ϑt ∼ N (0,Σϑ)

is the stacked vector of errors associated to each macroeconomic variable Xj(t) and
Σϑ is the associated covariance matrix.
This frameworks allows to forecast each PDi by forecasting the set {Xj(t)}, (j =
1, 2, . . . ). The idea underlying the model is easily generalized by considering differ-
ent autoregressive models and a diverse link function between {Xj(t)} and PDi.
Further, in [68] Wilson proposed to extend the model including also rating migration
dynamics. Indeed, the model provides scenarios for the PDi(t′ > t)|Ft dynamics
associated to a given i-th creditworthiness class (e.g., investment grade, high yield,
or a specific rating class such as BB). Hence, the ratio ri(t′) := PDi(t′)/φPDi

can be evaluated, where φPDi is the average TTC PD associated with the i-th
cluster, according to the notation used in [68]. For each scenario and future time
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t′, ri(t′) identifies the corresponding phase in the macroeconomic cycle. Then the
model chooses the historical rating migration matrix observed in the past for the
same ri value - or, at least, an approximately comparable level - and applies it to
the considered scenario. This approach can be maintained also in a multi-period
framework, where a pattern ri(t′) (t′ − t = 1, 2, . . . ) is simulated per scenario and
the corresponding 1-year transition matrixes M(ri) are composed by a product
operation:

M =
∏
t′

M
(
ri(t′)

)
.

It is worth anticipating the main difference between this model and the reduced-
form factor models introduced in the remainder of this chapter. CreditPortfolioView
describes the risk factors and their relation with the default probabilities explicitly.
This feature enables the indirect forecasting discussed above but requires that the
dependence of PDi on {Xj(t)} is verified. On the other hand, latent factors models
introduced in the following, such as CreditRisk+, do not provide a macroeconomic
identification of the latent variables considered. Thus, a not specified set of market
factors is always applicable to describe the dependence structure among the risky
subjects, without any further assumption, but forecasting PDi trends based on the
market factors dynamics is not feasible.

2.2.4 Reduced-form models with rating migrations: JLT and Cred-
itMetrics models

In the following, two classical reduced-form models are presented. Both the models
were developed in the late ’90s to describe the creditworthiness dynamics of a risky
subject.
Jarrow-Lando-Turnbull model (JLT), published in 1997 [70], is the improved version
of the former Jarrow-Turnbull model [71], which is the first reduced-form model
developed in credit literature. The model aims to evaluate risky cash flows in a
complete, frictionless market and derivative products whose underlying risk is the
creditworthiness of a given counterparty.
In the same year, CreditMetrics was disclosed by JP Morgan & Co [73]. CreditMet-
rics is designed to assess the risk profile of a given portfolio of risky bonds. Although
classified as a reduced-form model due to its exogenous PDs, it is worth highlighting
that its dependence structure is based on a generalization of the structural Merton
model.

Model hypotheses and structure - Jarrow, Lando and Turnbull model

JLT assumes that a risky cash flow CT receivable in T can be represented in t as

CT |Ft = B(t)
B(T )N

[
R+ 1I{τ>T}(1−R)

]
,

where N is the notional amount due in T , R is a deterministic recovery rate, τ is
the stochastic time when the debtor defaults, and B(t) := exp[

∫ t
0 rsds] is the money

market account. No assumption is introduced on the risk-free spot rate dynamics rt.
However, rt and the creditworthiness of the debtor are supposed to be independent
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under the risk-neutral measure of probability P̃ . Hence, the price in t of the ZCB
associated with CT is

ct,T = Ẽ [CT |Ft] = vt,TN [R+ (1− q̃t,T )(1−R)] ,

where vt,T is the risk-free discount factor and q̃t,T is the risk neutral default proba-
bility associated to the debtor over the interval (t, T ].
The model is developed both in discrete and continuous-time cases.
In the discrete-time case, the creditworthiness of the debtor is modeled through a
time-homogenous Markov chain {ηt : 0 ≤ t ≤ T}, defined over a finite state space
S := {1 . . .K}. Each state in S represents a possible rating class (e.g., Aaa, Aa,
. . . ). Hence, the Markov chain is specified by a K ×K transition matrix

Q :=


q1,1 q1,2 . . . q1,K
...

qK−1,1 qK−1,2 . . . qK−1,K
0 0 . . . 1

 ,

in a given real world probability measure P equivalent to P̃ . It holds by construction
that qij ∈ [0, 1] and

∑
j qij = 1. Furthermore, the n-step transition matrix Q0,n can

be obtained by composition of the uniperiodal transition matrix Q. Namely, it holds

Q0,n = Qn.

A form of Q̃ is needed to evaluate the creditworthiness dynamics under P̃ . It is
assumed that the risk premia adjustments are such that the credit migration process
under P̃ satisfies

q̃ij(t, t+ 1) = πi(t)qij ,

for all i 6= j, where πi(t) is a deterministic function of the time and the state it of
the debtor, such that q̃ij(t, t+ 1) ≥ 0 for all i, j, t and

∑
j:j 6=i q̃ij(t, t+ 1) ≤ 1 for all

i, t. In matrix form it holds

Q̃t,t+1 − 1I = Π(t) [Q− 1I] .

where Π(t) := diag{π1(t) . . . πK(t)}. The Π(t) matrix calibration can be achieved
by observing the risky ZCB prices on the markets. In fact, given a debtor in the
i-th state at time t, we have

q̃iK(t, t+ 1) = 1− ct,t+1 − vt,t+1RN

vt,t+1(1−R)N ,

where R is calibrated from the historical default events. Since πi(t) does not de-
pend on the final state of the transition, it can be estimated considering only the
probabilities of default inferred from the prices:

πi(t) = q̃iK(t, t+ 1)
qiK

.
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The model can be extended to a continuous-time framework. In that case, given
the same state space S introduced in the discrete-time case, the time-homogenous
Markov chain {ηt : 0 ≤ t ≤ T} is specified in terms of its K ×K generator matrix

Λ :=


λ1,1 λ1,2 . . . λ1,K
...

λK−1,1 λK−1,2 . . . λK−1,K
0 0 . . . 0

 ,
where λij ≥ 0 for all i, j such that i 6= j and λii = −

∑
j:j 6=i λij . In this framework

Q can be evaluated over any interval (t, T ] by the relation

Q(t, T ) = exp [(T − t)Λ] .

Furthermore, also risk premia adjustments are imposed on the generator Λ instead
of considering the transition matrix Q. Namely, it is supposed that the risk-neutral
generator has the form

Λ̃(t) = U(t)Λ,

where U(t) := diag{µ1(t) . . . µK−1(t), 1}. The first K − 1 entries µ1(t) . . . µK−1(t)
are strictly positive deterministic functions that satisfy the requirement

∫ T
0 µi(t)dt <

+∞.
It is shown [72] that the K × K risk-neutral transition matrix Q̃ is given as the
solution to the Kolmogorov equations

∂tQ̃(t, T ) = −Λ̃(t)Q̃(t, T ), ∂T Q̃(t, T ) = Q̃(t, T )Λ̃(T ),

with the initial condition Q̃(t, t) = 1I, allowing for the model application to the
continuous-time case.
It is worth noticing that the special case when µ1 . . . µK−1 are positive constants is
easily solved:

Q̃(t, T ) = exp [(T − t)UΛ] .

Calibration is achieved based on the ZCB observed prices, as per the time-discrete
case.

Model hypotheses and structure - CreditMetrics

CreditMetrics [73, 74] is a complete framework to assess the risk profile of a given
portfolio of risky bonds. In this context, the word “complete” refers to the fact that
all the main components of credit risk are addressed. In a nutshell,

• the marginal dynamics of the rating migration (including the transition-to-
default event) associated with each considered obligor is described by the
rating transition matrix estimated by S&P;

• the recovery rate is modeled as a function of each considered bond seniority;

• the structure of dependence that defines the multivariate dynamics of the con-
sidered firms’ creditworthiness is built through a generalization of the Merton
model.



2.2 Model selection for a C&S basket of risks representation 43

The third feature - i.e., the structure of dependence - is the “signature” of the
CreditMetrics model.
In Merton model, introduced in §2.2.1, the return-on-asset rF of a given firm F is
assumed to be normally distributed

drF (t) = µFdt+ σFdWt

and, given a projection horizon (t0, T ], the firm is defaulted in T if rF (T |t0) ≤
XD, where XD := ln BT

VT
is a threshold implied by the underlying microeconomic

assumption. In CreditMetrics, the marginal distribution of F ’s creditworthiness
dynamics over (t0, T ] is defined by a given transition matrix Q. Hence, following the
same notation used in §2.2.4, we can rewrite the default condition as rF (T |t0) ≤ XK

where the threshold XK is redefined as a quantile of the rF distribution:

XK := Φ−1
F (qjK) .

The K-th state represents the firm’s bankruptcy, while the j-th state is the rating
assumed by F in t0. The final creditworthiness state assumed by F in T can be
generalized from alive/defaulted the whole master scale associated to the considered
transition matrix by introducing the partition

Xjk := Φ−1
F

(
K∑
k′=k

qjk′

)
, k = 1, . . . ,K;

where Xjk > Xjk+1 and Xj1 ≡ +∞ by definition. Thus, the migration from j-th
rating class to the k-th can be described in terms of return over the projection
horizon, as

Xjk+1 < rF (T |t0) ≤ Xjk.

This change of representation allows to introduce the aforementioned dependence
structure, since each rF (t) dynamics can be observed directly on financial markets
or assumed to be equal to an index representing F ’s economic sector. Hence, the
covariance cov [rF , rF ′ ] between two firms F and F ′ can be estimated and the
random vector r(T |t0) := (rF1(T |t0), rF2(T |t0), . . . ) can be simulated by using its
multivariate normal distribution. Conditioned to the initial rating of each firm,
the terminal return-on-asset values r(T |t0) can be used together with the partition
{−∞, XjK , XjK−1, . . . , Xj1} to generate sets of correlated migration events.
Despite being a generalization of the Merton model, CreditMetrics can still be clas-
sified among the reduced-form models. In fact, the marginal probability distribution
of migration and default events is defined based on an exogenous transition matrix,
without further assumptions on the microeconomic mechanisms that may lead a
considered firm to default or relevant creditworthiness variation.

2.2.5 Reduced-form models with default intensity dynamics:
Duffie&Singleton approach

In credit risk modeling, the default event is commonly represented as the first
occurrence τ := inf {t > 0 : N(t) > 0} of a Poisson process N(t)|N(0) = 0. The
theoretical justification of this choice is discussed in §3.1.
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When a reduced-form credit risk model is specified through an explicit assumption
on the default intensity λt ∈ R+, the assumption has a direct consequence on the
functional form of the probability of default. In the case of deterministic intensity,
the probability of default in (0, T ] is expressed as

P0,T := Prob (τ ≤ T |F0) = 1− exp
(∫ T

0
λtdt

)
.

This expression can be further simplified in the case of time-homogenous intensity.
On the other hand, λt can be assumed to behave as a (latent) stochastic process,
leading to a doubly-stochastic model for the resulting Poisson process (a.k.a. Cox
process [72, 129]). This framework has produced a widely populated class of credit
risk models15, depending on the process chosen to describe λt.
It is worth remarking that, in principle, these models are strongly related to the
rating-migrations models introduced in §2.2.4. In fact, the finite state space S :=
{1, . . . ,K}, that defines the “rating” Markov chain, is the codomain of the surjective
function

S 3 s =


1 P0,T ∈ [0, p1)
2 P0,T ∈ [p1, p2)
. . .
K P0,T = 1

where theK-th state corresponds to the default event that occurred in t ≤ 0. Hence,
the transition matrix generator Λ(t) and the SDE that defines the dλt dynamics
have the same role in the two representations.
As a relevant example, in the following, we summarize the main features of the
Duffie&Singleton model [130,131], firstly introduced in 1999.

Model hypotheses and structure

The Duffie&Singleton (DS) model aims to provide a pricing framework both for
plain-vanilla corporate bonds and embedded options as well (e.g., callable or put-
table bonds). Let us consider a defaultable future cash flow VT , payable in T , that
is discounted in discrete-time framework (i.e., t ∈ N)

Vt = hte
−rtẼt [ϕt+1] + (1− ht) e−rtẼt [Vt+1]

where Ẽs [·] is the risk-neutral expectation (conditional on Fs), hs is the conditional
risk-neutral probability of a default in s+ 1, rs is the default-free short rate and ϕs
is the recovery in units of account in case of default in s.
Basically, the DS model is characterized by the so-called “Recovery of Market Value”
(RMV) hypothesis, that is

Ẽt [ϕt+1] = (1− Lt)Ẽt [Vt+1]

where Lt ∈ [0, 1] is some process representing the fractional loss in case of default.
Alternate hypotheses that are also considered in the literature are “Recovery of
Treasury” (RT) hypothesis

Ẽt [ϕt+1] = (1− Lt)Pt,
15See, e.g., [116] for a comprehensive review.
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where Pt is a risk-free ZCB with the same notional value and maturity of Vt, and
the “Recovery of Face Value” (RFV) hypothesis

Ẽt [ϕt+1] = (1− Lt)VT .

Among the models presented in §2.2, JLT (see §2.2.4) assumes RT hypothesis, while
CreditRisk+ (see §2.2.6) is defined under RFV hypothesis.
Duffie and Singleton show that RMV has a relevant implication in terms of analytical
tractability of an underlying default intensity process, allowing for the closed-form
determination of the default-adjusted short rate Rt. In fact, it holds

e−RtẼt [Vt+1] = Vt
RMV= [ht(1− Lt) + (1− ht)] e−rtẼt [Vt+1]

Considering annualized rates but periods of “small” length, we have

Rt
RMV= rt + Ltht.

Given the relation among Rt, rt and ht, the model can be further specified by
choosing the underlying processes. Duffie and Singleton consider, inter alia, a mul-
tivariate CIR process that allows an explicit dependence between rt and ht, together
with the assumption of a constant loss given default Lt = L.

rt = δ0 +
3∑
i=1

δiYit

st = γ0 +
2∑
i=1

γiYit

dYt = K (Θ− Yt) dt+ Σ
√
StdWt

where K,Σ ∈ R3×3, Θ ∈ R3
+ and St being a multivariate stochastic process whose

components are defined as weighted sums of Y1t and Y2t. This choice and even more
complex ones (e.g. considering a jump-diffusion process to model st) are considered
by Duffie and Singleton to investigate flexibility and tractability of the DS model
applied to derivatives pricing. However, the same DS framework can be specified
also considering simpler hypotheses, as done in [132] for Solvency 2 application
purposes.

2.2.6 Reduced-form portfolio models of default events: CreditRisk+

and Vasicek models

In this section, two classical credit portfolio models are described: CreditRisk+ and
the Vasicek models. These models, both developed in the 90s, share two relevant
feature:

• rating migration and price variation due to creditworthiness dynamics are not
modeled - the model explicitly describes only the default event;

• the dependence structure is defined by introducing latent variables represent-
ing the market experienced by the modeled debtors.
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The CreditRisk+ model is a portfolio model developed by Credit Suisse First Boston
(CSFB) by Tom Wilde [133] and coworkers, first documented in [134] and later
widely discussed in [135]. It is a model actuarially inspired in the sense that losses
are due only to default events and not to other sources of financial risk, e.g. variation
of the credit standing (the so-called “credit migration” effect). CreditRisk+ can be
classified as a frequency-severity model, cast in a single-period framework, with
the peculiarity that a doubly stochastic process describes the frequency of default
events while loss severity is deterministic. The second hypothesis can be easily
relaxed at the cost of some additional computational burden. However, this issue
can be neglected for what follows.
The structure of dependence of default events is described using a factor model
framework, where factors are unobservable (i.e. latent) stochastic “market” vari-
ables, whose precise financial/actuarial identification is irrelevant since the model
integrates on all possible realizations (“market scenarios”). Therefore, CreditRisk+

can be further classified into the family of factor models and, in particular, into
the sub-family of conditionally independent factor models, since, conditionally on
the values assumed by the factors, defaults are supposed (by the model) to be
independent.
The Vasicek model, disclosed in 2002 [77,80], was initially developed by O.A. Vasicek
between the late 80s and the 90s [75, 76] in his research activity for KMV – the
financial society mentioned in §2.2.1, where also the Moody’s KMV model was
developed from the Merton model. Indeed, the Vasicek model can be considered a
portfolio generalization of the Merton model. However, in the Vasicek model case,
PDs are exogenous parameters while the dynamics of the firms’ creditworthiness is
built by using a latent, systemic variable (the “market” state) that is compatible
with the Merton hypothesis but still does not need any balance sheet information
from the debtors to be calibrated. This feature allows classifying the Vasicek model
into the same sub-family of the CreditRisk+ model. The model is summarized
below, considering the simplifications applied by BSCS [78–80] in developing the
Basel II regulatory framework for the banking system.

Model hypotheses and structure - CreditRisk+

The structure of the model can be summarised as follows. Let N be the number
of different risks in a given portfolio and 1Ii the default indicator function of the
i-th risk (i = 1, . . . , N) over the time horizon (t, T ]. The indicator function 1Ii is a
Bernoulli random variable that takes the value 1 in case of default with probability
qi and the value 0 with probability 1− qi. Thus:

E [1Ii] = qi, cov [1Ii] = qi(1− qi), i = 1, . . . , N.

The “portfolio loss” L over the reference time horizon (t, T ] is then given by:

L =
N∑
i=1

1IiEi, Ei = (EAD)i (LGD)i,

where (EAD)i and (LGD)i are respectively the Exposure At Default and the Loss
Given Default of the i-th risk.
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To ease the semi-analytic computation of the distribution of L, the model intro-
duces a new set of variables Yi, each replacing the corresponding indicator function
1Ii (i = 1, . . . , N). The new variables Yi are supposed to be Poisson-distributed,
conditionally on the value assumed by the market latent variables.
Let K be the number of latent variables and Γ = (Γ1, . . . ,ΓK) the K-dimensional
vector describing the “market”. The latent variables are assumed to be independent
and gamma-distributed, where shape and scale parameters are notated as αk and
βk respectively (k = 1 . . .K). Without loss of generality, it can be further assumed
that µ1 = · · · = µk = 1, so that αk = β−1

k and βk = σ2
k.

Conditionally on Γ, the parameter of the Poisson distribution of Yi is assumed to
be:

pi(Γ) = qi ·
(
ωi0 +

K∑
k=1

ωikΓk

)
,

where the factor loadings ωik are all non-negative and sum up to unity:

K∑
k=0

ωik = 1, ωik ≥ 0, i = 1, . . . , N, k = 0, . . . ,K,

so that qi is the unconditional expected default frequency:

qi = E [pi(Γ)] =
∫ ∞

0
· · ·
∫ ∞

0
pi(Γ) f (Γ) dΓ1 . . . dΓk,

and the identity between the expected values of the original Bernoulli variable 1Ii
and the new Poisson variable Yi is granted, i.e. E [Yi] = E [1Ii] = qi. According to
the above hypothesis, the portfolio loss is now given by LY:

LY =
N∑
i=1

Yi · Ei, where Yi|Γ ∼ Poisson (pi(Γ)) .

In [134] it is shown how to compute the distribution of LY using a recursive method
known as “Panjer recursion”, [107]. The accuracy, stability and possible variants
of the original algorithm are discussed in [135]. Numerical computation of the
distribution by mean of Monte Carlo simulation is also possible and turns out to
be particularly simple. Importance sampling algorithms are also available in the
literature [136].

Model hypotheses and structure - Vasicek model

As anticipated, the Vasicek model is based on the Merton model hypothesis: each
firm’s asset value Vt can be described through a geometric Brownian motion and
the default event occurs when Vt ≤ B, where B is the debt level of the firm.
The signature of the Vasicek model is the assumption that generator of each firm’s
dynamics is correlated with the other generators through the same latent systemic
factor Zt:

dV
(F )
t = µV

(F )
t dt+ σV V

(F )
t dX

(F )
t ,

X
(F )
t =

√
1− ρW (F )

t +√ρZt
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for each considered firm F ∈ N, where dW (F )
t and dZt are independent Wiener

processes. Thus, Zt defines the dependence structure of the model and ρ is the
correlation between the returns of each considered couple of firms F ,F ′.
Similarly to CreditMetrics, the Vasicek model is reduced-form, despite being based
on the structural hypothesis firstly introduced in the Merton model. This is be-
cause the unconditional probability of default pF := Prob (Vt ≤ BF ) is provided
exogenously, implying that

Prob (Vt ≤ BF |Zt) = Prob
(
Xt ≤ Φ−1(pF )

∣∣∣Zt)
= Prob

(√
1− ρW (F )

t +√ρZt ≤ Φ−1(pF )
)

= Prob
(
W

(F )
t ≤

Φ−1(pF )−√ρZt√
1− ρ

)

= Φ
(

Φ−1(pF )−√ρZt√
1− ρ

)
.

Given that Zt ∼ N (0, 1), this result allows to quantify the default probability of F
in a “worst case” scenario of the systemic factor Zt, at a given α confidence level.
This is the case in the Basel II banking regulatory framework, where the unexpected
loss UL of an AFG portfolio16 is calculated as

UL ∝ LGD ·
[
Φ
(

Φ−1(p)−√ρΦ−1(0.999)√
1− ρ

)
− p

]

where α = 0.999 and the proportionality coefficient depends on the risks type (e.g.,
corporate exposures, residential mortgages). Additional hypotheses are considered
regarding the homogeneity of risks: pF = p for each F and the dependence structure
is the same as well since all the risk sources depend on the same risk factor Zt
through the same correlation parameter ρ.

2.2.7 Feasibility of the presented models for C&S applications

In §2.2.1−2.2.6 a selection of credit risk models is presented. The chosen examples
cover all the main modeling approaches typically considered in credit risk theory,
although far from representing (and not aiming to be) an exhaustive list of the
models developed in the field.
Based on the models discussed so far, it is now possible to evaluate to what extent
each one among the considered frameworks fits C&S modeling applications.
Structural approaches a lá Merton are necessarily ruled out. Both the Merton
model and the KMV model are based on stock prices dynamics. However, risky
buyers underlying a credit insurance policy typically belong to the SME segment
and, thus, are likely not to be listed in a stock market. On the other hand, in case
the risky subject is a firm belonging to the large corporate segment, other forms

16The “Asymptotically Fine-Grained Portfolio” (a.k.a. AFGP) hypothesis assumes that a bank
can effectively describe its portfolio of risks as a large (i.e., N → ∞ elements) set of small risks
(i.e., the exposure generated by each risk is approximately equal to the others and tends to zero).
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of protection from counterparty risk are typically available (i.e., financial instead
insurance products, such as CDSs). That said, the case of a listed corporate firm
underlying a credit insurance policy is perfectly possible. However, it is reasonable
to assume that only a small fraction (if any) of the buyers covered by a credit
insurance company fall into this category. In the case of suretyship insurance, the
underlying risk is not necessarily related to credit risk. This makes all the structural
models inadequate to be applied since they explicitly link the probability of a claim
to a default event.
However, among structural models, cross-sectional approaches can effectively quan-
tify the marginal probability of a credit insurance claim that is needed in a reduced-
form portfolio model. Although not being listed in the stock market, the majority
of the risky buyers have some idiosyncratic information available to the insurance
company, that can be considered in a scoring model. Even without an updated
financial statement available, pieces of information such as the number of employ-
ees, years since foundation, and past liquidity crises (e.g., observed by the insurer
through past claims) are usually available to the insurance company and make
a scoring model feasible. Once again, suretyship insurance may be harder to be
modeled by using a cross-sectional approach when the loss event is not related to
insolvency. However, if the suretyship insurance company has a database depth
and rich enough, that kind of technique is applicable in principle. The diffusion of
this kind of approach across C&S company is suggested, inter alia, by the technical
specifications of the second Non-Life Comparative Study (NLCS) [81], promoted
by EIOPA, where C&S insurance S2LoB has been included for the first time. In
template A, EIOPA asks for a segmentation of both credit and suretyship portfolios
considering a 10 notch master’s scale that is in line with the conventions typically
followed in the sector. The classification of risky subjects on the same master scale
largely copes with the application of cross-sectional techniques. It is worth noticing
that this kind of framework needs an “anchor point” probability level to be properly
calibrated. This fact confirms the relevance of estimating “raw” claim frequencies
on risk-homogenous clusters in C&S applications. The problem will be addressed
in the next chapters 3 and 6.
Econometric models as CreditPortfolioView can be considered as well to describe
claim probability in C&S insurance. However, there is a strong requirement to
be satisfied: a set of macroeconomic variables {Xj(t)} must exists, such that
logit (PDi(t)) can be modeled as a linear function of the {Xj(t)} elements, whose
parameters are independent from time. Although perfectly possible in principle, the
existence of such a set seems hardly likely both for a credit insurance portfolio, given
that underlying risks are mainly PMI, and for a suretyship portfolio, considering
that a set {Xj(t)} should exist for each guaranteed loss event type.
Although ratings and rating models can be used in a C&S context, an explicit
representation of rating migrations is not needed in most cases. In fact, neither in
credit insurance nor in suretyship insurance, a decrease in creditworthiness generates
a loss to the insurer, as confirmed by the results reported later in chapter 5. This
kind of model is obviously relevant in the market context where it has been originally
developed (i.e., obligations), where rating migrations imply steep variations of price
and subsequent profit or loss on a bond that can instantly be sold at the market
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price. This is not the case in C&S insurance sector, where both policy pricing and
management actions (when applicable - e.g., credit limit variations) are evaluated
based on the current claim probability associated with the subject. This argument
can be easily extended to the reduced-form models based on Cox processes: in C&S
context, there is no need to explicitly model a future state of a risk source apart
from the binary set claim-generated-or-not, because these are the only two alternate
scenarios that have a different impact on the insurer’s financial statement.
Despite the lack of interest for an explicit representation of creditworthiness dy-
namics, the idea of a latent stochastic process describing the probability-of-claim
dynamics of a risky subject can be relevant to risk management applications (e.g.,
in case the C&S premium risk is measured by an internal model in the Solvency
2 framework). In fact, although not affecting the losses distribution directly, in-
troducing a stochastic probability of claim (i.e. a doubly stochastic process) may
increase the kurtosis of the future losses distribution, leading to a more pruden-
tial estimation of the capital requirement. This implies that latent-factors models,
such as CreditRisk+ and the Vasicek model, perfectly fit the features of C&S line
of business. Being reduced-form models, they are compatible with scoring models,
even when the latters are applied only to some of the covered risk sources.
It is worth noticing that also the doubly stochastic models that provide an explicit
description of the creditworthiness dynamics are applicable. However, their output
is typically redundant for the needs of a C&S insurer. On the other hand, their
calibration is a more demanding task (i.e. a greater amount of information is
required) than the calibration of a latent-factors model.
Based on the considerations above and without pretense of completeness, we choose
to consider the CreditRisk+ model as a tool to model the joint claim probabilities
in a C&S insurance portfolio. The problem of calibrating this model facing the
information limits typical in the C&S context is addressed in chapter 4.

2.3 C&S premium and catastrophe risks in Solvency 2
In the Solvency 2 framework, the quantification of S2LoB 9 unexpected losses origi-
nated by future claims follows the same structure adopted in the Standard Formula
to model every other non-life line of business.

• The premium risk component is quantified as a whole, considering three times
the product of a given volatility parameter σprem, s and a volume measure,
where s is the considered segment number.

• Specific extreme scenarios are considered in the catastrophe risk component.
This module applies to all the non-life LoBs (including C&S) where the pru-
dentiality provided by the premium risk measure is considered insufficient.

• Standard Formula considers a so-called rule-based aggregation approach [122],
where the same rule is used to aggregate S2LoB 9 premium risk and catas-
trophe risk contributions to SCR, as well as the risk contributions originated
from other risk types (e.g. reserve risk) and other non-life LoBs.
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The simplified structure of the Standard Formula does not encompass an explicit
representation of C&S claim probabilities. Frequency and severity components of
C&S future claims are modeled as a whole in premium risk, whose contribution to
SCR is proportional to a volume measure based on premiums volume17.
However, the presence of a man-made catastrophe risk sub-module dedicated to this
LoB sheds light on the EIOPA’s perspective about C&S business.
Indeed, the “Credit and suretyship risk” sub-module18 is composed by two indepen-
dent19 contributions:

• Default risk, that is quantified as the loss arising in case of instantaneous
default of the two largest exposures in Segment 6 of the insurance undertaking,
after the effect of recoverable amounts from reinsurance contracts or SPVs,
given the assumption that the gross loss-given-default associated to the event
is equal to 10%;

• Recession risk, that is quantified as the effect of an instantaneous loss of an
amount that, without deduction of the amounts recoverable from reinsurance
contracts and SPVs, is equal to 100% of the premiums earned by the insurance
undertaking during the following 12 months in Segment 6.

Hence, EIOPA identifies these two types of loss events as not adequately measured
by the standard premium risk capital requirement, despite the high quantile level
considered in Standard Formula20.
Default risk has a plain interpretation as a penalty for the concentration of exposures
on specific subjects, despite their creditworthiness. On the other hand, recession

17Solvency 2 “Commission Delegated Regulation” 2015/35 [37], Chapter V, Section 2, Article
116, paragraph 3 reads: “For all segments set out in Annex II, the volume measure for premium
risk of a particular segment s shall be equal to the following:

V(prem,s) = max
[
Ps;P(last,s)

]
+ FP(existing,s) + FP(future,s)

where:
(a) Ps denotes an estimate of the premiums to be earned by the insurance or reinsurance under-

taking in the segment s during the following 12 months;
(b) P(last,s) denotes the premiums earned by the insurance or reinsurance undertaking in the

segment s during the last 12 months;
(c) FP(existing,s) denotes the expected present value of premiums to be earned by the insurance or

reinsurance undertaking in the segment s after the following 12 months for existing contracts;
(d) FP(future,s) denotes the expected present value of premiums to be earned by the insurance and

reinsurance undertaking in the segment s for contracts where the initial recognition date falls
in the following 12 months but excluding the premiums to be earned during the 12 months
after the initial recognition date.”

C&S insurance (S9LoB 9) is a part of Segment 6 “credit and suretyship insurance and proportional
reinsurance”, together with S2LoB 21.

18See Solvency 2 “Commission Delegated Regulation” 2015/35 [38], Chapter V, Section 2, Article
134: “Credit and suretyship risk sub-module”.

19Default risk capital contribution and recession risk contribution are aggregated by a plain root
sum squared, implying a zero correlation coefficient.

20In the Solvency 2 framework, the SCR contribution originated by each sub-module represents
the 0.995-th quantile of the unexpected losses distribution measured by the sub-module.
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risk has a nontrivial meaning since it has been initially designed as a counter-cyclical
measure.
EIOPA clarifies the original purpose of this submodule in the “Solvency II Calibra-
tion Paper” (see [83], §3.1153 p. 312), where a counter-cyclical dampening mecha-
nism has been introduced - to be abandoned later in the 2015 release of Standard
Formula technical specifications [37]:

“[. . . ] The dampening mechanism is limited to a SCRCAT_recession_ratio_net
of 200% of the net earned premium with a net loss ratio lower than
25% and to a SCRCAT_recession_ratio_net of 100% of the net earned pre-
mium with a net loss ratio higher than 125%. Within the limits the
SCRCAT_recession_ratio_net = 225% minus net loss ratio. This mecha-
nism aims to ensure that at the peak of the cycle (low failure rates),
the SCRCAT_recession_ratio_net shall reach its highest value and C&S un-
dertakings shall be required to have enough own funds to cover a higher
SCR. On the other hand, at the trough of the cycle, SCR will be at
its lowest value, so that own funds will be released. In other words, as
undertakings face harder net claims ratio due to an increase of failure
rates, the SCR decreases.”

However, the original idea of recession risk as a dampening mechanism was aban-
doned in the final version of the Standard Formula. Furthermore, the event type
considered in C&S catastrophe risk is the same as per premium risk. Hence, double-
counting is possible if not prevented in calibration. Indeed, this is the view expressed
by ICISA [99] as an answer to EIOPA’s “second set of advice to the European Com-
mission on specific items in the Solvency II Delegated Regulation” [20]:

“Calibration was done without exclusion of outliers in terms of years
(only outliers in terms of undertakings have been excluded). ICISA
members disagree on the a priori consideration that catastrophe events
are not expected to have a major impact on the results: 2001 and 2008
crises show well that recession events are already part of our history,
leading to a double-counting phenomenon in the standard formula for
the LoB CS. Parameters would have been more adequately calibrated
with an exclusion of these exceptional years already treated in the Cat
recession module of the SF.”

The final decision of EIOPA has been to maintain the Recession Risk sub-module
unaltered after the feedback. Nonetheless, the Premium Risk volatility parameter
associated with Segment 6 has been lowered in the 2019 revision of Solvency II
Delegated Regulation [38].

Regardless of the technical choices made by EIOPA in defining default risk and
recession risk in Standard Formula, the introduction of these two elements highlights
the importance of estimating both the marginal claim probability of highly unlikely
events in C&S LoB (i.e. default risk) and the joint claim probability across the C&S
risks underwritten by the insurance undertaking, the latter needing to be modeled
and calibrated in a way that encompasses systemic crises (i.e. recession risk).
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Chapter 3

Probability estimation of
absorbing events

In Chapter 1, Credit and Suretyship insurance line of business has been introduced.
In Chapter 2, similarities and differences between a credit insurance policy and a
suretyship contract are outlined. In particular, in section 2.1 it is discussed how a
claim covered by a C&S policy - considering either a credit or a suretyship product
- can be represented as an absorbing event. Such an event may be effectively
described by using some of the tools and the methods initially developed to measure
the financial credit risk, as shown in section 2.2.
Now, it is worth recalling the main properties of absorbing events, together with the
classical inference techniques that are commonly applied to estimate their probabil-
ity of occurrence. This is the aim and scope of Chapter 3. The chapter is organized
as follows.

Section 3.1 recalls the concept of absorbing events, together with the basic defini-
tions and results useful in the following.
Section 3.2 introduces the inference problem of measuring the probability of an
absorbing event from historical data. The presented solutions are reached under
the assumption of having access to complete historical information.
In section 3.3, the estimation error that affects the measure of an absorbing event
probability is quantified. This result is then applied in section 3.4, which discusses
how to handle eventual lack of information and approaches the inference problem
with partial access to the historical data. While section 2.2 considers theoretical
results that have been developed for financial applications, in this case a selection
of classical biostatistics techniques is presented. Indeed, human mortality measure-
ment is the context where the methods to infer the probability of absorbing events
were developed when the historical information needed is only partially available.
That is the case also in credit insurance.
Finally, section 3.5 discusses to what extent the techniques presented in the previous
sections come in handy when estimating the probability of a C&S claim. Concepts
and methods introduced in this chapter will be applied in the following chapters
4−6, where the estimation of C&S claim probabilities is investigated.
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3.1 Absorbing events
Loosely speaking, an absorbing event is defined by its possibility to occur once at
most across a given time horizon (t0, T ]. The concept of absorbing event appears
in many contexts and, usually, it is not associated with nice facts. Human death,
bankruptcy, and breach of undertaking are a few relevant examples.
Following the usual notation, let {Ω,F ,Prob} be a probability space, {S,Σ} a
measurable space and {ηt : Ω→ S}t0≤t≤T a stochastic process defined on the state
space S and the time horizon (t0, T ].
The word “absorbing” is taken from the semantics of Markov chains. Indeed, being
ηt a Markov process, a state a ∈ S is absorbing if and only if

Prob (ηt′>t 6= a|ηt = a) = 0

The Markov chain itself is said to be “absorbing” iff every state s ∈ S is connected
with an absorbing state as ∈ A ⊆ S.

∀s ∈ S lim
∆t→+∞

Prob (ηt+∆t ∈ A|ηt = s) = 1

where A ⊆ S is the subset of absorbing states.
Although the “absorbing state” concept is commonly introduced in the Markov
chains context, it is worth noticing that the definition of absorbing state does not
need the memoryless property of Markov chains. In fact, the absorbing state defi-
nition requires only that the probability distribution of ηt depends on ηt− at least.
Indeed, we just want that the process “knows”, in t, whether its state in t− belongs
to A or not, regardless of its memory length.
On these premises, an absorbing event (a, τ) ∈ A× (t0, T ] satisfies the following

(a, τ) : ητ− = s ∈ S \A ∧ ητ = a ∈ A

Namely, an absorbing event is the transition of a stochastic process (not necessarily
a Markovian one) to an absorbing state.
Considering most financial and actuarial applications, including C&S products, we
need to describe a specific absorbing event “a” only - that is the one covered by the
contract. In the remainder of this section, such an event will be named “default”
for the sake of brevity. However, a C&S contract may guarantee a wide variety
of absorbing events, as seen in chapter 1. Hence, the following Bernoulli r.v.’s are
introduced:

dt,t′ := 1I{τ∈(t,t′]},

representing the event “default occurs in (t, t′]”, and

lt := 1I{τ>t},

which stands for the event “default does not occur up to t”, where t0 ≤ t < t′ ≤ T .
Further, let us introduce the following two valuable quantities: the cumulative
default probability

Pt0,t := Prob (τ ≤ t|τ > t0)
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and the hazard rate

ht := lim
t′−t→0+

1
t′−tProb

(
τ ∈ (t, t′]|τ > t

)
.

A relevant implication of the “absorbing event” definition is that Pt0,t can be ex-
pressed as a function of ht.
Indeed, considering the tower rule of expectations, we can write

E
[
dt,t′ |τ > t0

]
= E

[
E
[
dt,t′ |lt

]
|τ > t0

]
= E

[
dt,t′ |lt = 1

]
Prob (lt = 1|τ > t0)

+ E
[
dt,t′ |lt = 0

]︸ ︷︷ ︸
=0

Prob (lt = 0|τ > t0)

It holds E
[
dt,t′ |lt = 0

]
= 0 by definition, since τ is the stopping time of an absorbing

event. Thus we have

E
[
dt,t′ |τ > t0

]
= E

[
dt,t′ |lt = 1

]
Prob (lt = 1|τ > t0) (3.1)

It holds
E
[
dt,t′ |lt = 1

]
= Prob

(
τ ∈ (t, t′]|τ > t

)
(3.2)

by definition of dt,t′ and

E
[
dt,t′ |τ > t0

]
= Pt0,t′ − Pt0,t, (3.3)

Prob (lt = 1|τ > t0) = 1− Pt0,t (3.4)

by definition of absorbing event. Hence, the application of equations (3.2−3.4) to
equation (3.1) leads to

Pt0,t′ − Pt0,t = Prob
(
τ ∈ (t, t′]|τ > t

)
(1− Pt0,t) (3.5)

By multiplying both the sides of the equation above by 1
t′−t , in the limit t′− t→ 0+

we have
∂tPt0,t = ht(1− Pt0,t)

that implies
Pt0,t = 1− exp

(
−
∫ t

t0
hxdx

)
The result above is universally true (i.e. model-free) when considering an absorbing
event. Thus, any well-posed model aiming to describe the temporal evolution of Pt
may be expressed by defining the dynamics of the locally conditioned probability
density ht.
The hazard rate ht can be either a deterministic function of t (e.g. a constant) or
a stochastic process as well.

It is worth introducing the survival function St0,t

St0,t := Prob (τ > t|τ > t0)
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By definition it holds St0,t = 1− Pt0,t, hence

St0,t = exp
(
−
∫ t

t0
hxdx

)
.

This is a noteworthy result, with applications ranging from finance to medicine.
For example, it shows that the risky discount factor v?t0,T and the risk-free discount
factor vt0,T share the same functional form

v?t0,T := E
[
e
−
∫ T
t0
rt+htdt

∣∣∣∣∣Ft0
]

; vt0,T := E
[
e
−
∫ T
t0
rtdt

∣∣∣∣∣Ft0
]
,

where rt is the instantaneous spot risk-free rate.

3.2 Inference under a complete historical information
Now that absorbing events and their probability of occurrence Pt,t′ have been in-
troduced, we need to estimate Pt,t′ based on historical observations to use these
concepts for practical purposes. In this section we discuss how to do it, considering
some convenient assumptions that will be weakened in the next sections 3.3 and
3.4.
When observing a given subject (hereafter referred to as “risk source” or “debtor”),
that may generate a specific absorbing event (e.g. “default”), multiple observations
of that event are forbidden by definition. Hence, we need to observe a set {j} of
indexed risky sources (e.g., a portfolio of risky debtors) in order to collect enough
data to infer the Pt,t′ value with adequate precision.
As a toy example, let us consider a portfolio composed of personal loans, each of
them taken out by a different debtor j ∈ {j}. At the time t, each debtor is paying
the due installments on a regular basis. Thus, the number Lt of “alive” (i.e. not
yet defaulted) debtors up to t is equal to the portfolio size at t:

Lt :=
∑
j∈{j}

l(j)t |Ft = |{j}|

On the other hand, the number of debtors in {j} that will default in (t, t′] is repre-
sented by the r.v.

Dt,t′ :=
∑
j∈{j}

d
(j)
t,t′ |Ft.

After ∆t (e.g. one year), at t′ = t+ ∆t, some debtors are insolvent:

Dt,t′ :=
∑
j∈{j}

d
(j)
t,t′ |Ft′ .

In this context, the empirical default frequency

ft,t′ := Dt,t′

Lt
,
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measured by t′, is an intuitive way to estimate the real-world default probability

Pt0,t0+∆t
:= E

[
dt0,t0+∆t |Ft0

]
over a generic time interval (t0, t0 + ∆t] for any debtor j ∈ {j}, alive by t0. In the
following, we discuss which assumptions are needed to use observed frequency as a
proper estimator of probability (i.e. P̂t,t′ = ft,t′).
First, we introduce a three-time scheme that may be used to describe a typical
real-life absorbing event, in the perspective of an observer that aims to estimate
the event frequency. This scheme will come in handy later, when the frequency
estimation will be affected by censoring events, in section 3.4.

τ0
j : the transition to the absorbing state takes place.

τ1
j : there is a measurable effect of the event occurred in τ0

i .

τ2
j : the observer finds out that the absorbing event occurred.

It is true by definition that
τ0
i ≤ τ1

i ≤ τ2
i

The scheme fits well the considered “loans” toy example. In fact

τ0
j stands for the latent time when the j-th debtor becomes insolvent (e.g. j loses

his job) and thus will not be able to pay the next installment;

τ1
j is the due date of the first unpaid installment (i.e. the first measurable effect

of the absorbing event in the bank’s perspective);

τ2
j is the time when the bank front office notifies to the risk management depart-

ment that j did not pay an installment (i.e. the subject who actually measures
the probability of default associated with that loans portfolio “observes” the
event).

Table 3.1 summarizes this and other examples of absorbing events described by
applying the three-time scheme introduced in this section.
Intuitively, the shorter the time intervals [τ0

j , τ
1
j ] and [τ1

j , τ
2
j ] are, the more likely it

is that nothing happens in the meanwhile, that may forbid the observation in τ2
j of

the absorbing event occurred in τ0
j . The case when information may be lost between

τ0
j and τ2

j is discussed later in section 3.4. On the other hand, in the following, we
assume that every absorbing event is perfectly accessible by the observer.

Assumption 3.1 (Full observability). Each occurred absorbing event is immedi-
ately observed across the whole considered time horizon (t0, t0 + ∆t] where the ob-
servation takes place:

τ0
j = τ1

j = τ2
j =: τj

for each τ0
j ∈ (t0, t0 + ∆t].
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Retail banking:

τ0
j / τ1

j = τ2
j

τ0
j a borrower loses his job;
τ1
j an installment expires;
τ2
j the bank is aware that the borrower is insolvent.

Oncology:

τ0
j ' τ1

j < τ2
j

τ0
j an experimental therapy fails;
τ1
j the patient dies;
τ2
j researchers record the death event.

Suretyship:

τ0
j < τ1

j ' τ2
j

τ0
j a technical issue undermines the timing of a project;
τ1
j the builing is still in progress at the delivery date;
τ2
j the contracting authority notifies the surety.

Trade credit insurance:

τ0
j < τ1

j < τ2
j

τ0
j a risky buyer experiences a liquidity distress;
τ1
j an invoices expires and the buyer is not able to pay;
τ2
j the insured seller notifies the insurer after a first at-

tempt of recovery in bonis.

Table 3.1. Examples of absorbing events described by the three-time scheme introduced
in section 3.2.

Remark 3.1. Assumption 3.1 implies that d(j)
t,t′ is well defined and can be used to

represent the absorbing event associated with the j-th risk source without further
specification. On the other hand, in case assumption 3.1 does not hold, it is neces-
sary to specify which is the time variable belonging to (t, t′] among τ0

j , τ1
j and τ2

j .
Further, in that case, the possibility of absorbing events occurred but not observed
introduces some issues in inferring Pt,t′ from an incomplete set of observations.
These issues will be addressed in section 3.4 and chapter 6.

In the considered toy example, assuming frequent enough installments (e.g. monthly)
and an instantanous access of all the banks departments (i.e. including risk man-
agement - the observer) to the information regarding the unpaid installments, as-
sumption 3.1 holds, as summarized in table 3.1 - case “retail banking”.
Further, we can consider the following two assumptions.

Assumption 3.2 (Identically distributed r.v.’s). Each absorbing event has the same
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probability to take place.

Prob
(
τi ≤ t′|τi > t

)
= Prob

(
τj ≤ t′|τj > t

)
= Pt,t′

for each i, j ∈ {j} s.t. i 6= j.

Assumption 3.3 (Independency). The considered risks are (conditionally) inde-
pendent.

Prob
(
τi ≤ t′ ∧ τj ≤ t′|Ft

)
= Prob

(
τi ≤ t′|Ft

)
Prob

(
τj ≤ t′|Ft

)
for each i, j ∈ {j} s.t. i 6= j.

In the following, ft,t′ is shown to be a proper estimator of Pt,t′ . The set of assump-
tions 3.1−3.3 is progressively weakened, to discuss to what extent the measured
frequency ft,t′ can be used to quantify the probability Pt,t′ .

Proposition 3.1 (ft,t′ as the ML estimator of Pt,t′). Given assumptions 3.1-3.3,
P̂t,t′ = ft,t′ is the maximum likelihood estimator of Pt,t′. Further, P̂t,t′ is unbiased.

Proof. Assumption 3.1 implies that the j-th risk is well represented by the r.v. d(j)
t,t′ .

Hence, assumptions 3.2 and 3.3 imply the following form of the likelihood function
L

L = P
Dt,t′
t,t′

(
1− Pt,t′

)(Lt−Dt,t′ )

It holds
∂Pt,t′ lnL = 0|Pt,t′=P̂t,t′ = 0,

and thus we have
P̂t,t′ = Dt,t′

Lt
= ft,t′ .

For the sake of brevity, the fact that P̂t,t′ is unbiased is shown in the proof of
proposition 3.2, under a subset of the assumptions considered here.

Now, let us remove assumption 3.3: once again, ft,t′ can be used as an estimator of
Pt,t′ , although not being an ML estimator anymore.

Proposition 3.2 (ft,t′ as the MM estimator of Pt,t′). Given assumptions 3.1-3.2,
P̂t,t′ = ft,t′ is a moment-matching estimator of Pt,t′. P̂t,t′ is unbiased.

Proof. As in proposition 3.1, assumption 3.1 implies that the j-th risk is well rep-
resented by the r.v. d(j)

t,t′ .
Hence, assumption 3.2 implies that d(j)

t,t′ ∼ Bernoulli(Pt,t′) ∀j ∈ {j}.
Let us estimate the expectation in t by following a moment-matching approach,
given the information available in t′ > t

E [·|Ft] 7→ 〈·〉MM
t′ := 1

|{j}|
∑
j∈{j}

·|Ft′ ,
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to the first moment
Pt,t′ = E

[
d

(j)
t,t′ |Ft

]
.

Thus we have
P̂t,t′ =

〈
d

(j)
t,t′

〉MM

t′
= 1
|{j}|

∑
j∈{j}

d
(j)
t,t′ |Ft′ = ft,t′ .

Being the sample mean an unbiased estimator of the mean, P̂t,t′ is an unbiased
estimator of Pt,t′ as well.

Finally, let us remove also assumption 3.2: in this case ft,t′ cannot be used as an
estimator of Pt,t′ anymore, since Pt,t′ has a different value for each j ∈ {j}. However,
it is immediate to prove that ft,t′ still represents the average probability of default
across the considered portfolio {j}.

Proposition 3.3 (ft,t′ as the MM estimator of the portfolio EDF). Given as-
sumption 3.1, P̂t,t′ = ft,t′ is a moment-matching estimator of the expected default
frequency 〈Pt,t′〉 of the portfolio {j}. P̂t,t′ is unbiased.

Proof. Assumption 3.1 implies that the i-th risk is well represented by the r.v. d(j)
t,t′ .

Hence it holds d(j)
t,t′ ∼ Bernoulli(P (j)

t,t′ ) ∀j ∈ {j}, where

P
(j)
t,t′ := 〈Pt,t′〉+ δPj

and ∑
j∈{j}

δPj = 0

by definition of 〈Pt,t′〉.
It holds

〈Pt,t′〉 = E

 1
|{j}|

∑
j∈{j}

d
(j)
t,t′ |Ft


Let us apply the moment-matching technique to the first moment:

P̂t,t′ =
〈

1
|{j}|

∑
j∈{j}

d
(j)
t,t′

〉MM

t′

= 1
|{j}|

∑
j∈{j}

1
|{j}|

∑
j∈{j}

d
(j)
t,t′ |Ft′ = ft,t′

The first application of the operator 1
|{j}|

∑
j∈{j} leads to ft,t′ , completing the proof,

while the second application has no effect.

A bayesian approach leads to the same result: the beta-binomial model, introduced
in the following proposition 3.4, implies again that Pt,t′ can be estimated by the
measurable quantity ft,t′ .

Proposition 3.4 (Beta-binomial model). Let {ti} (i = 1 . . . N + 1) be a partition
of the interval (t, T ] s.t.

ti := t+ (i− 1)∆t, ∆t := T−t
N .
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Let assumptions 3.1-3.3 hold for each subinterval [ti, ti+1] (i = 1 . . . N). The ob-
servable quantity

P̂t,T :=
∑N
i=1 Di∑N
i=1 Li

where

Di := Dti,ti+1 , Li := Lti

is the limit N →∞ of the bayesian estimator for Pt0,t0+∆t, choosing beta distribu-
tion as the prior.

Proof. Let the prior be
P

(0)
∆t
∼ Beta (α0, β0)

where P (0)
∆t

is a short notation for P (0)
ti,ti+∆t

. Assumption 3.2 implies that the i index
can be omitted without loss of generality. Further, assumptions 3.1-3.3 imply that

Di := Dti,ti+1 ∼ Bin
(
Li, P∆t

)
, i = 1 . . . N.

Since beta distribution is the conjugate prior of the binomial distribution, applying
Bayes theorem to the first observation period [t1, t1 + ∆t] we have

Prob
(
P∆t = x|D1,L1

)
= Prob(D1,L1|P∆t=x)Prob(P∆t=x)∫ 1

0 dx′Prob(D1,L1|P∆t=x′)Prob(P∆t=x′)
,

where

Prob
(
D1,L1

∣∣∣P∆t = x
)

=
(

L1
D1

)
xD1 (1− x)L1−D1 ,

Prob (P∆t = x) = xα0 (1− x)β0

B (α0, β0) .

Hence the posterior is

Prob
(
P∆t = x|D1,L1

)
= xα0+D1 (1− x)β0+L1−D1

B
(
α0 + D1, β0 + L1 −D1

)
Iterating the acquisition of information for all the N available observations we have

Prob
(
P∆t = x| {Di,Li}i=1...N

)
= xαN (1− x)βN

B (αN , βN )

where

αN := α0 +
N∑
j=1

Di

βN := β0 +
N∑
j=1

Li −Di



62 3. Probability estimation of absorbing events

Parameter P∆t can be estimated as the average of the beta distribution that consider
all the available information

P̂
(N)
∆t

=
∫ 1

0
x
xαN (1− x)βN
B (αN , βN ) dx = αN

αN + βN
= α0 +

∑N
i=1 Di

β0 +
∑N
i=1 Li

In the limit N → ∞ contributions of α0 and β0 tend to nullify, completing the
proof.

Remark 3.2. Once again, the observed default frequency turns out to be the “nat-
ural” estimator of the default probability.
Indeed

P̂
(N)
∆t
'
∑N
i=1 Di∑N
i=1 Li

=
N∑
i=1

wifti,ti+1

where
wi := Li∑N

i′=1 Li′
.

Namely, we are putting together the information obtained from distinct observation
periods [ti, ti+1] through a weighted average of the corresponding measured frequen-
cies fti,ti+1.

3.3 Estimation errors

Assumptions 3.1−3.3 in section 3.2 decribe an homogenous portfolio {j}, composed
by independent risky buyers j ∈ {j}, and observed across a given period [t, t+ ∆t].
Given any reference date t0, we have seen how the probability Pt0,t0+∆t of observing
the default of a given j-th buyer belonging to {j} onto a ∆t-long holding period
can be estimated equal to the default frequency ft,t+∆t measured across the past
(i.e., t ≤ t0 −∆t) interval (t, t+ ∆t].
This is true if we suppose at least that assumption 3.1 holds, i.e., that the events
occurred in [t, t+ ∆t] were utterly accessible to the observer.
It is worth discussing how to quantify the error that affects the measure of frequency
because this will allow us to estimate the effect of incomplete information later.

Proposition 3.5 (standard error for one-period frequency estimator). Given as-
sumptions 3.1-3.3, the standard error for the estimator P̂t,t′ is

se
[
P̂t,t′

]
= (1− ft,t′)

√
ft,t′

Lt(1−ft,t′)

where (t, t′] is a ∆t-long observation period.

Proof. Assumptions 3.1-3.3 imply that Dt,t′ ∼ Bin
(
Lt, P∆t

)
, where P∆t = Pt,t′ =

Pt0,t0+∆t (for any t0 ∈ R). Hence

Var
[
Dt,t′

]
= LtP∆t (1− P∆t)
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As shown in propositions 3.1 and 3.2, P̂∆t = ft,t′ . Thus, it follows that

se
[
Dt,t′

]
=
√
Ltft,t′

(
1− ft,t′

)
Since Lt is directly observed without any estimation error, it holds that se[P̂∆t ] =
se
[
Dt,t′

]
/Lt.

The survival probability over an interval (t, t′] can be decomposed as the product of
the survival probabilities over an arbitrary partition {ti} (i = 0 . . . N) of the same
interval

St,t′ =
N∏
i=1

Sti−1,ti

If assumption 3.1 holds over (ta, tb], then Sta,tb can be estimated as

Ŝta,tb = 1− fta,tb

Hence we can introduce a distinct estimator of St,t′ for each partition {ti}, consid-
ering the estimator associated to each factor Sti−1,ti separately.

Ŝt,t′ |{ti} =
N∏
i=1

(
1− fti−1,ti

)
It is worth noticing that the equivalence between the estimated quantities

St,t′ =
N∏
i=1

Sti−1,ti

does not imply the equivalence between the estimators Ŝt,t′ and Ŝt,t′ |{ti}.
However, if it is also true that

Ŝt,t′ = Ŝt,t′ |{ti}

their estimation errors are equivalent as well

se
[
Ŝt,t′ |{ti}

]
= constant ∀{ti}

and the choice among the infinitely many Ŝt,t′ |{ti} is indifferent. Indeed, this is the
case, as shown in the following proposition.

Proposition 3.6 (Equivalence between uniperiodal and multiperiodal probabil-
ity estimators). Given assumption 3.1, let {ti} (i = 0 . . . N) be a partition of the
interval (t, t′]

t ≡ t0 < t1 < · · · < tN ≡ t′,

it holds

P̂∆t = ft,t′ = 1−
N∏
i=1

(
1− fti−1,ti

)
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Proof. Let us consider the case N = 2 (i.e. {ti} = {t ≡ t0; t1; t2 ≡ t′}). It holds

1− (1− ft0t1)(1− ft1t2) = 1− L0 −D0

L0

L1 −D1

L1

Assumption 3.1 implies that
Li −Di = Li+1

Applying this result with i = 0 implies

1− (1− ft0t1)(1− ft1t2) = 1− L1 −D1

L0
= 1− L0 − (

=Dt0,t2︷ ︸︸ ︷
D0 + D1)
L0

.

Hence the proposition is verified for the caseN = 2. Given that Dt0,ti−1+Di = Dt0,ti ,
this result can be extended by induction.

Proposition 3.6 shows that uniperiodal and multiperiodal estimators of P∆t are
equivalent, when assumption 3.1 holds. Conversely, assumption 3.1 being not ver-
ified implies that the observed sample {j} is not “closed” during the observation
period (t0, t0 + ∆t].
The set {j} not being closed means that

• New subjects may enter {j} after t0. Hence, assumption 3.1 is violated be-
cause, given i?, t? ∈ (t0, t0 + ∆t) such that

i? ∈ {i} ∀t ≥ [t?, t0 + ∆t] ∧ i? /∈ {i} ∀t ∈ [t0, t?),

the observability of τi? in (t0, t0 + ∆t] depends on the additional condition

τi? ∈ [t?, t0 + ∆t].

• Observed subjects may exit {j} before t0 + ∆t. Hence, assumption 3.1 is vio-
lated because, given i?, t? ∈ (t0, t0 + ∆t) such that

i? /∈ {i} ∀t ≥ [t?, t0 + ∆t] ∧ i? ∈ {i} ∀t ∈ [t0, t?),

the observability of τi? in (t0, t0 + ∆t] depends on the additional condition

τi? ∈ [t0, t?).

The events of migration inside/outside the observed sample {j} are known as
(left/right) censoring events.
The existence of censoring events implies the possibility that

Li −Di 6=Li+1.

Hence, it is possible as well that

(1− ft0t1)(1− ft1t2) =

6=L1︷ ︸︸ ︷
L0 −D0

L0
·

6=L0−D0︷︸︸︷
L1 −D1

L1
6=1− ft0t2 ,
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implying that

se
[
Ŝt,t′ |{tj}

]
︸ ︷︷ ︸

=
∏
j
(1−ftj−1tj )

6= se
[
Ŝt,t′

]
︸ ︷︷ ︸

=1−ft0,t0+∆t

= (1− ft,t′)
√

ft,t′

Lt(1−ft,t′)

The so-called Greenwood formula [90] allows to (approximately) evaluate the esti-
mation error

se
[
Ŝt,t′ |{ti}

]
in a multiperiodal framework where assumption 3.1 is violated. It is worth noticing
that, given the relation St,t′ = 1− Pt,t′ , it holds

se
[
Ŝt,t′ |{ti}

]
= se

[
P̂t,t′ |{ti}

]
∀ {ti}

Hence, the estimation error of a survival probability or the corresponding default
probability is the same.
The following relation is needed to prove the Greenwood formula.

Proposition 3.7 (Greenwood lemma). Given a random variable X, it holds

Var[X]≈ (E[X])2 Var[lnX]

Proof. Let us consider the first order Taylor series of lnX, centered in E[X]

lnX ≈ ln E[X] + (X − E[X]) 1
E[X]

Squaring both sides and taking the expectation gives

E[ln2X] ≈ ln2 E[X] + Var[X]
(E[X])2

that implies the statement.

By proposition 3.7, the Greenwood formula can be introduced and proved.

Proposition 3.8 (Greenwood formula). Let {ti} (i = 0 . . . N) be a partition of the
interval (t, t′]

t ≡ t0 < t1 < · · · < tN ≡ t′,

where the probability of default onto (ti−1, ti] can be estimated as

P̂ti,ti+1 = fi := Di
Li
.

Given assumption 3.3, the standard error of the estimator P̂t,t′ = 1−
∏N−1
i=0 (1− fi)

can be approximately quantified as

se
[
P̂t,t′

]
≈ (1− P̂t,t′)

√√√√N−1∑
i=0

1
Li

fi
1−fi
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Proof. The proposition can be proved by a direct computation:

Var
[
P̂t,t′

]
= Var

[
1− P̂t,t′

]
Prop. 3.7
≈ (1− P̂t,t′)2Var

[
ln(1− P̂t,t′)

]
= (1− P̂t,t′)2Var

[∑
i

ln(1− fi)
]

Hyp. 3.3= (1− P̂t,t′)2∑
i

Var [ln(1− fi)]

Prop. 3.7
≈ (1− P̂t,t′)2∑

i

Var [1− fi]
(1− fi)2

= (1− P̂t,t′)2∑
i

1
Li

fi
(1− fi)

Taking the square root of both sides completes the proof.

To sum up, given the observation period (t, t′], the partition {ti} over the observation
period and the estimator

P̂t,t′ = 1−
∏
i

(1− fi)

we have two possible ways to quantify the estimation error of P̂t,t′ .
Assumption 3.1 implies that

se
[
P̂t,t′

]
= (1− P̂t,t′)

√
1
Lt

P̂t,t′

1−P̂t,t′
,

as shown in propositions 3.5 and 3.6, while assumption 3.3 implies that

se
[
P̂t,t′

]
≈ (1− P̂t,t′)

√√√√N−1∑
i=0

1
Li

fi
1−fi ,

as shown in propositions 3.7 and 3.8.

3.4 Deterministic censoring events in medicine
This section introduces censoring events and their contrast with assumption 3.1, i.e.,
complete observability of absorbing events. The problem of inferring the probability
of a considered absorbing event is addressed once again, this time handling the
lack of information caused by the presence of censoring events. After a practical
introduction to censoring events in §3.4.1, two classical results from biostatistics
are discussed: the Kaplan-Meier estimator is presented in §3.4.2, while the Cutler-
Ederer estimator is described in §3.4.3.
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3.4.1 Censoring events

Let us consider again the process ηt introduced in §3.1. A censoring event is defined
through its “censoring time” τc, such that the absorbing event (a, τ) can be observed
in a left neighbourhood (τ ′c, τc) of τ c, in the limit τ ′c → τ−c , iff it cannot be observed
in the right neighbourhood (τc, τ ′′c ) of τc, in the limit τ ′′c → τ+

c .
In particular, if (a, τ) can be observed in τ = τ+

c , then τc is called a “left censoring
time” while, on the other hand, in case (a, τ) event is not observable in τ = τ+

c ,
then τc is called a “right censoring time”. The symbols τ ` and τ r are introduced to
represent left and right censoring times respectively.

Remark 3.3. An arbitrary number of censoring events can take place in a given
time interval (t, t′], with regards to the observability of the same absorbing event
(a, τ). However, by definition, neither two left nor two right-censoring events can
occur subsequently.

Namely, in the presence of censoring events, the observer cannot measure dt,t′ any-
more. Indeed, it is possible to observe only the variable

d̃t,t′ :=
{

1 τ ∈ (t, t′] \
⋃
j [τ `j , τ rj ],

0 otherwise,

where τ `j > τ rj−1 for each j.
The examples of absorbing event considered in table 3.1 can be affected by the
presence of censoring events. However, censoring events can lead to a different loss
of information, depending on the considered case.
Indeed, in the “retail banking” scheme (figure 3.1), the observer is hardly interested
in right censoring events, although they are possible.

Time

Sample observation period [t, t′]

i-th borrower observation period [ti, t
′
i]

t

ti = t

τ0i

Latent transition to absorbing state

τ1i =τ
2
i

Measurable effect

Event recorded by the observer

t′i = min{τ2i ; t′}

t′

Figure 3.1. Timeline of the “retail banking” case (table 3.1): t = ti – the i-th borrower
begins to pay his installments; τ0

i – the i-th borrower loses his job; τ1
i – the i-th

borrower cannot pay an installment on the due date; τ1
i =τ2

i – the bank knows that the
i-th borrower is insolvent.

The reasons are merely quantitative. In fact, two censoring events are possible:
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τ ri < τ0
i withdrawal due to prepayment – this case is not common enough to be relevant,

compared with the size of the population available to a bank (see, e.g., table
2.1);

τ ri < τ1
i installment expiry after the end of the observation period (t, t′] – in this case,

the last expiry τ r before t′ is a right censoring time. However, in a typical
real-life application installments are frequent enough that their duration (e.g.,
1 month) is small, compared with the observation period length (e.g., 1 year).
In such a case, this effect can be neglected with acceptable error.

Loosely speaking, large population size and frequent payments legitimate to neglect
the right-censoring events in retail banking. Also, left censoring events can be
ignored: considering a population large enough, the bank can afford not to consider
the subjects that get their loans after the beginning t of the observation period. On
the other hand, small populations or long installment durations could increase the
importance of censoring events.

Let us apply the same scheme to the estimation of the survival rate of patients
affected by a specific type of cancer (figure 3.2).

Time

Sample observation period [t, t′]

i-th patient observation period [ti, t
′
i]

t

ti = t

τ0i =τ
1
i

Latent transition to absorbing state

Measurable effect

τ2i

Event recorded by the observer

t′i = min{τ2i ; t′}

t′

Figure 3.2. Timeline of the “oncology” case (table 3.1): t the study begins; t = ti – the
i-th patient is diagnosed and becomes part of the observation sample; τ0

i – the i-th
patient health is irreversely impaired; τ0

i =τ1
i – the i-th patient dies; τ2

i – researchers
record the death of the i-th patient.

As the retail banking case, the observer is aware of the period [ti, t′i] when the i-th
subject is actually observable. In this case, both left and right censoring events
are possible. Further, the observer cannot afford to neglect them, given that the
available population size is usually small. This is the reason why the first tech-
niques [91, 92] to handle the problem of inferring an absorbing event probability
were developed in this context rather than in finance.
Indeed, a left censoring event occurs when the i-th patient is diagnosed after the
beginning t of the study and becomes part of the observation sample (t < τ `i ), as
shown in figure 3.3.
In presence of a left censoring event, ti = τ `i and min{τ1

i ; t′} are available to the
observer, while the health status of the i-th patient in [t, τ `i ) is unknown. This
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Time

Sample observation period [t, t′]

i-th patient observation period [ti, t
′
i]

i-th patient is not observable

t ti

ti ≡ τ`i > t

τ0i =τ
1
i

Latent transition to absorbing state

Measurable effect

τ2i

Event recorded by the observer

t′i = min{τ2i ; t′}

t′

Figure 3.3. Timeline of the “oncology” case (table 3.1, figure 3.2) in presence of a left
censoring event.

affects the estimation of the mortality frequency given the presence of the specific
investigated illness. In fact, it is not possible to establish if and when the illness
started before τ `i .
Moreover, also right censoring events are possible, when a patient is lost to follow-up
(τ ri < τ2

i ) as shown in figure 3.4.

Time

Sample observation period [t, t′]

i-th patient observation period [ti, t
′
i] i-th patient is not observable

t

ti = t t′i ≡ τri < min{τ2i ; t′}

τ0i =τ
1
i

Latent transition to absorbing state

Measurable effect

///τ2i

Event recorded by the observer

t′

Figure 3.4. Timeline of the “oncology” case (table 3.1, figure 3.2) in presence of a right
censoring event. The case τ ri > τ0

i - not represented - is possible as well.

Remark 3.4. In this case, only a single left censoring event and a single right
censoring event can occur per subject. The case of multiple left and right censoring
events per subject is relevant to credit insurance and is discussed in Chapter 6.

3.4.2 The Kaplan-Meyer estimator

Let us consider the possible occurrence of left and right censoring events. In this
case, assumption 3.1 does not hold anymore.
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However, let us assume that the timing of each censoring event is known. Thus,
assumption 3.1 is replaced by the following.

Assumption 3.4 (Fully observed censoring events). An absorbing event generated
in τi by the i-th subject is immediately observable over the whole considered time
interval (t0, t0 + ∆t], provided that the subject is observable in τi, for all i ∈ {i}.

τ0
i ' τ1

i ' τ2
i =: τi

Further, all the censoring times {τ `} and {τ r} in (t0, t0 + ∆t] are known.

Remark 3.5. In principle, each subject can have multiple left/right censoring
events.

Introducing censoring events, we are giving up some information. However, we still
assume to have a perfect, instantaneous knowledge of censoring events, that allows
us to know the exact value of Lt for each t ∈ (t0, t0 + ∆t].
Kaplan and Meier [91] took advantage of this opportune condition, obtaining the
following result.

Proposition 3.9 (Kaplan Meier estimator). Given assumptions 3.2−3.4, an ob-
servation period (t0, t0 + ∆t] and a partition {tj} over (t0, t0 + ∆t], the estimator

P̂ (KM)
∆t

:= 1−
∏
τ∈{τ}

(
1− Dτ-,τ

Lτ-

)

is the ML estimator of P∆t, where {τ} is the set of absorbing event times observed
in (t0, t0 + ∆t].

Proof. Given assumption 3.4, the following arrays are observable

τ̃ := sort
[
{τ} ∪ {τ `} ∪ {τ r}

]
,

τ̃ - := lim
δ→0+ (τ̃1 − δ, τ̃2 − δ, . . . ) ,

where sort[·] is the ascending ordering operator.
At each absorbing or censoring event, we can update the value of Lt by the relation

Lτ̃k = Lτ̃k−1 −Dτ̃ -
k
τ̃
k

+ `τ̃ -
k
τ̃
k
− Rτ̃ -

k
τ̃
k

where `τ̃ -
k
τ̃
k
and Rτ̃ -

k
τ̃
k
are the number of subjects interested by a left or right cen-

soring event in τ̃k, respectively.
In each interval [τ̃k−1, τ̃k), Lt = Lτ̃k−1 is constant by construction.
Given assumption 3.3, we can decompose the survival probability associated with
each i-th subject by using an arbitrary partition of the observation interval. We
choose the partition induced by τ̃ -:

St0,t0+∆t = St0,τ̃ -
1
· Sτ̃ -

1,τ̃
-
2
· . . . · Sτ̃ -

K ,t0+∆t .
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By assumptions 3.2−3.4, the LHS is the likelihood function of the parameter P∆t ,
while the factors at the RHS are likelihood functions that can be maximized sepa-
rately from each other, implying

P̂∆t
:= 1−

∏
k

(
1−

Dτ̃-
k
,τ̃k

Lτ̃-
k

)

However, for each τ̃k s.t. τ̃k /∈ {τ} Dτ̃ -
k
,τ̃
k

= 0, completing the proof.

Applying the Greenwood formula, we are also able to evaluate the standard error
associated with the KM estimator, regardless of the presence of censoring events:

se
[
P̂ (KM)

∆t

]
≈ (1− P̂ (KM)

∆t
)
√ ∑
τ∈{τ}

1
Lτ-

fτ-,τ
1−fτ-,τ

= (1− P̂ (KM)
∆t

)
√√√√ ∑
τ∈{τ}

1
Lτ-

Dτ-,τ
Lτ-−Dτ-,τ

.

3.4.3 The Cutler-Ederer estimator

Cutler and Ederer [92] approached the same problem of estimating the mortality rate
due to cancer by considering a lack of information greater than the one addressed
by Kutler and Ederer. Indeed, their study was based on the so-called life tables,
that is, a standard data set type where censoring and absorbing events are counted
and clustered per occurrence year, without reporting the exact timing per event.
Table 3.2 is the original life table considered in their study.
Unfortunately, as shown in table 3.2, the data available from life tables do not
satisfy neither assumption 3.1 nor assumption 3.4. Hence, to estimate the 5 years
mortality rate based on table 3.2, the following must be taken into account:

• for biological reasons, only observations at the same duration x − t are com-
parable (i.e. the hazard rate is inhomogenous across the first 5 years after
diagnosis);

• only x = 1946, 1947 cohorts have a 5 years observation period;

• the follow up dates per patient are not known.

Since only observations with the same x−t can be clustered together, we can assume
that only right censoring events exist. In fact, each new patient enters the observed
sample at x− t = 0 by construction, regardless of the diagnosis year.
On the other hand, we know only the year in which the right censoring event
occurred per patient - not the exact date. This is in contrast with assumption 3.4
and, thus, the estimation problem is addressed introducing the following assumption
3.5 instead.

Assumption 3.5 (Right-censoring events in life tables). The following holds true
for the data available in life tables:
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Diagnosis
year

Years after
diagnosis

Alive Dead Lost to
follow up

Withdrawn
alive

Cohort Duration 1st day of the

year

during the year during the year during the last

year

x t− x `
x
t Dxt,t+1 Uxt,t+1 Wx

t,t+1

1946 0 9 4 1 0
1946 1 4 0 0 0
1946 2 4 0 0 0
1946 3 4 0 0 0
1946 4 4 0 0 0
1946 5 4 0 0 4
1947 0 18 7 0 0
1947 1 11 0 0 0
1947 2 11 1 0 0
1947 3 10 2 2 0
1947 4 6 0 0 6
1948 0 21 11 0 0
1948 1 10 1 2 0
1948 2 7 0 0 0
1948 3 7 0 0 7
1949 0 34 12 0 0
1949 1 22 3 3 0
1949 2 16 1 0 15
1950 0 19 5 1 0
1950 1 13 1 1 11
1951 0 25 8 2 15

Table 3.2. Original data set considered by Cutler ad Ederer in [92].

(i.) Absorbing events referred to different subjects have the same probability of
occurrence at the same δ := t− x ( i.e., the same number δ of years after the
respective diagnoses).

(ii.) A diagnosis occurred in the x-th year coincides with the beginning of the illness
and with Jan 1st of the x-th year.

(iii.) A patient lost to follow up or withdrawn alive during the t-th year is consid-
ered either as fully observed through the whole year or lost to follow up since
January 1st with the same probability, thus equal to 0.5.

Remark 3.6. Left censoring events are not considered (hyp. 3.5.i-ii) and right
censoring events are simplified (hyp. 3.5.iii) by describing them through a Bernoulli
r.v..

Given 3.5, the effective number Lxt of observable patient belonging to cohort x
through the t-th year is introduced.

Lxt := `
x
t − 1

2

(
Uxt,t+1 + Wx

t,t+1

)
︸ ︷︷ ︸

Rxt,t+1



3.5 Feasibility of the presented methods for C&S applications 73

The associated effective frequency fxt , measured for a cohort/year (x, t) is

fxt :=
Dx
t,t+1

Lxt

Let us consider a specific cohort x (x = 1946, 1947 - the only cohorts complete
through the 5 years period). Hence, considering assumptions 3.2, 3.3, and 3.5 we
have

P̂ x5 = 1−
x+4∏
t=x

(1− fxt ) ; se
[
P̂ x5

]
=
(
1− P̂ x5

)√√√√x+4∑
t=x

1
Lxt

fxt
1−fxt

.

Cutler and Ederer argued that assumption 3.5.i allows to consider complete and
incomplete cohorts together, implying a decreased estimation error:

P̂ (CE)
5 = 1−

4∏
δ=0

(1− fδ) ; se
[
P̂ (CE)

5

]
=
(
1− P̂ (CE)

5

)√√√√ 4∑
δ=0

1
Lδ

fδ
1−fδ

where
fδ := Dδ

Lδ
, Dδ :=

∑
x,t|x-t=δ

Dx
t , Lδ :=

∑
x,t|x-t=δ

Lxt .

In fact, Lxt |x−t=δ ≤ Lδ by construction and assumptions 3.2, 3.3, and 3.5 imply that
E [fδ] = E [fxt |x− t = δ]. Thus, proposition 3.8 leads to

se
[
P̂

(CE)
5

]
se[P̂x5 ] ≈

√∑
δ(Lδ)−1∑
t(Lxt )−1 ≤ 1

In credit risk, cohorts are usually ignored when clustering not-defaulted debtors.
However, the CE estimator comes in handy due to the assumption 3.5.iii, which
leads to the expression

f (CE)
t = Dt,t+1

Lt − 1
2Rt,t+1

Indeed, in 2007, Moody’s analysts disclosed that they chose this approach to handle
withdrawal events in frequency time series [100].

3.5 Feasibility of the presented methods for C&S ap-
plications

In §3.2 some classic inference techniques have been reviewed to estimate the prob-
ability of a given absorbing event assuming that the observer has full access to all
the relevant past events (i.e., Assumption 3.1).
§3.4.2 considers a practical case where Assumption 3.1 is replaced by the weaker As-
sumption 3.4. In fact, in the context investigated by Kaplan and Meyer, censoring
events affect the observation and destroy a part of the information that was consid-
ered to be available in §3.2. However, this fact is mitigated by the complete knowl-
edge of when each censoring event occurred during the observation period. These
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pieces of information enable the maximum likelihood estimation of the frequency
based on the observed absorbing events, taking into account observed censoring
events as well (see Proposition 3.9).
In §3.4.3, the context that the observer experiences when collecting data is further
worsened. Indeed, the timing of occurred censoring events is not known anymore,
but their number per observation period (e.g., per year) is still known. This fact
is formalized in Assumption 3.5. It enables the definition of the Cutler and Ederer
estimator, which is more precise than the “classic” frequency estimator applied to
the same context.
However, the techniques mentioned above do not fit the case that past censoring
events have to be represented as stochastic variables, lacking any measure about
their timing or number of occurrences, that is the case of credit insurance. As
displayed in figures 3.5 and 3.6, and previously discussed in §1.2, the information
available to a credit insurer is diminished by both left and right censoring events that
are not directly measurable by the insurer and, thus, they need to be represented
in terms of random variables, even if occurred in the past.
In fact, the insolvency state of a buyer leads to a measurable loss and, thus, to
a credit insurance claim, only if a covered and unexpired invoice exists such that
its issue date τ `i preceeds the transition to the buyer’s default τ0 and its due date
τ ri follows τ0. Hence, τ `i is a left censoring event (see figure 3.5) and τ ri is a right
censoring event (see figure 3.6) because, if τ0 < τ `i or τ0 > τ ri for each covered
invoice, the absorbing event “default of the i-th buyer” is not observable by the
insurer.
It is worth remarking that the insured seller can detect early warning signs of the
financial distress experienced by a risky buyer better than the insurer due to a direct
business relationship between them. Then, he or she may decide to interrupt that
relationship and to stop issuing more (insured) invoices1. Doing so, the insured
seller creates a right-censoring event that the insurer cannot be aware of (unless the
insured sellers themselves request that credit limit on a given buyer is nullified -
but they have no incentives to do so in most cases). Assuming this ability of the
insured seller, τ0 produces an economic effect only if it is included in the validity
period of an insured invoice and not before the issue date. In fact, if insured sellers
catch early signals that a buyer’s transition to an insolvency state has occurred,
they won’t issue new insured invoices to that buyer.
The credit insurer has no access to the list of issued invoices, implying that this type
of censoring event does not comply with any assumption among 3.1, 3.4, and 3.5.
The issues arising from such incomplete information with regards to the estimation
of the claim probability are presented in further detail and investigated in chapter
6.
On the other hand, censoring events are not possible in suretyship. Hence, there
is no lack of information that may affect the estimation of claim probability. The
beneficiary cannot switch on and off the exposition to the risk generated by the

1It is possible that an insured seller issues to a buyer only invoices that must be paid upfront
(i.e., the credit term is null). By doing so, they can preserve their business relationship without
being exposed to the buyer’s counterparty risk. However, the upfront invoices are excluded from
the insurance coverage.
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Time

Sample observation period [t, t′]

i-th buyer actual observation period [τ`
i , t

′
i]

i-th buyer is not observable

t ≡ ti ///τ `i

τ`i > ti = t

τ0i

Latent transition to absorbing state

τ1i

Measurable effect

τ2i

Event recorded by the observer

t′i = min{τ2i ; t′}

t′

Figure 3.5. Timeline of the “credit insurance” case (table 3.1) in presence of a latent
left-censoring event: t = ti – the policy is activated and a credit limit is granted on the
i-th buyer; τ `i – a covered invoice is issued and the absorbing event is observable (left
censoring event); τ0

i – the i-th buyer defaults; τ1
i – the i-th buyer cannot pay the invoice

by the due date; τ2
i – the insurance company knows that the i-th buyer is insolvent.

Time

Sample observation period [t, t′]

i-th buyer observation period [ti, t
r
i ] i-th buyer is not observable

t

ti = t t′i = τri

τ0i

Latent transition to absorbing state

///τ1i

Measurable effect

///τ2i

Event recorded by the observer

t′

Figure 3.6. Timeline of the “credit insurance” case (table 3.1) in presence of a latent right-
censoring event: t = ti – the policy is activated, a credit limit is granted on the i-th
buyer and a covered invoice is issued instantaneously, enabling the default observability;
τ0
i – the i-th buyer defaults; t′i = τ ri – the early detection of liquidity distress signal
from the buyer leads to the interruption of the business relationship (right censoring
event); τ1

i – the right censoring event prevents the occurrence of measurable losses (i.e.,
no covered invoice expires after τ0); τ2

i – there are no claims notified to the credit
insurance company.

principal during the lifetime of the insurance coverage. Further, the beneficiary has
no incentive to avoid the claim notification if the underlying obligation is violated.
Hence, given a cluster of homogeneous risks, the techniques presented in §3.2 are
perfectly applicable to this class of insurance products.
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Chapter 4

Multivariate probability
estimation through the
CreditRisk+ model

While the development of modern portfolio credit risk models started in the 1980-
1990 decade [114] within the framework of the Basel Accords, it is with the great
credit crisis of 2008 [115] that increasing attention started to be paid to the precise
determination of the structure of dependence among default events. It is well estab-
lished [116] that tails of the distribution of the value of asset/liabilities portfolios
are dominated by the structure of dependence rather than by the other fundamental
components of credit risk (i.e., the marginal probability and the severity associated
with each future default event). The vast research interest in modeling the structure
of dependence resulted in the formalization of the so-called copula theory [117,118].
This “language” was explicitly adopted by the second generation of portfolio credit
models to describe the dependence among loss events [119–121,128].
In this regard, the calibration issues raised by a particular structure of dependence
(or, equivalently, the corresponding copula) can be as important as the choice of
the structure itself. Generally, calibrating the dependence structure of a portfolio
model is a demanding task, given the large number of parameters needed to provide
a realistic description of the modeled dependencies, and considering that, on the
other hand, historical data are usually not numerous enough to fill the sample space
in a way sufficient for a precise estimation of the parameters.
Chapter 2 discussed the main features of the C&S claims, in order to identify a
feasible approch to model their probability. In particular, in §2.2, some classical
models from the credit risk literature were compared, and the CreditRisk+ model
resulted to be especially befitting to describe the future claims arising from a C&S
basket of risks. In this chapter, we address a typical real-life problem: how to
choose the frequency of the historical time series of default used to calibrate the
CreditRisk+ model, in order to provide the most accurate estimation of the structure
of dependence parameters, or, in other words, how the calibration error “scales” with
the time series frequency. The problem is especially relevant for all the cases when
the debtors underlying a credit portfolio are small/medium enterprises. The lack
of market information, such as CDS spread, stock price, or bond yield, forces to
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calibrate the model using a reduced-form approach based on historical cluster data,
such as default rate time series associated with the economic sector of each debtor.
This case is typical in activities such as credit insurance, suretyship, and factoring.
In most cases, publicly available time series have a sampling period ranging from
one to three months (e.g., [112]), while the calibrated CreditRisk+ model is used on
a projection horizon that is at least one year long (e.g., the unwind period required
to quantify a capital requirement both in Solvency 2 and in Basel 3 regulatory
frameworks).
CreditRisk+ [134], disclosed in 1997, belongs to the first generation of portfolio
credit risk models of “actuarial inspiration”. Applications of CreditRisk+ to the
credit insurance sector are documented in the literature well before the 2008 fi-
nancial credit crisis [85, 86], while research activity is still ongoing in the area of
actuarial science [102]. At present, CreditRisk+ is still one of the financial and ac-
tuarial industry standards for the assessment of credit risk in portfolios of financial
loans or credit/suretyship policies.
Despite the vast research activity on this model and its calibration, the issue of
using two different time scales for calibration and projection remains not investi-
gated to date. The research done to date on the calibration of CreditRisk+ [102]
has addressed the issues related to the decomposition of a given covariance matrix
among the time series, which is the final necessary step to complete the calibration
of the model. However, the covariance matrix is obtained by the “classical” esti-
mator, under the assumption that the sampling period of the time series and the
projection horizon are equal.
This chapter shows that calibrating the model at a shorter time scale than the
projection horizon is possible, nontrivial, and convenient. The internal consistency
of the CreditRisk+ assumptions when simultaneously imposed at different time
scales is proven and guarantees that the investigated calibration mode is not ill-
posed. However, the covariance estimator needed to obtain a set of parameters
coherent with a specific projection horizon, using time series with a smaller sampling
period, depends on the two chosen time scales. Indeed the proposed estimator
coincides with the classical one only when calibration and projection time scales are
equal. Finally, we show that calibrating at a smaller time scale than the projection
one provides a more precise estimation of the model parameters. The estimation
error and its dependence on the difference between the two time scales are discussed.
Chapter 4 is organized as follows. In section 4.1 we summarize assumptions and
features of the CreditRisk+ model. The same topic is already discussed above in
§2.2.6. Nonetheless, it is worth recalling it hereinafter to represent the model as a set
of assumptions, that will be generalized in the remainder of this chapter. In section
4.2 we discuss the internal consistency of the model assumptions when imposing
them to be simultaneously true at different time horizons. The calibration of the
model parameters which define the dependence structure is considered in section
4.3, while the different degree of precision of the estimators defined at increasing
time scales is discussed in section 4.4. The techniques introduced in this work are
applied to a real-world case study in section 4.5. The main results are summarized
in section 4.6.
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4.1 The CreditRisk+ model

As stated above in §2.2.6, the structure of the CreditRisk+ model can be summarised
as follows. Let N be the number of different risks in a given portfolio and 1Ii the
default indicator function of the i-th risk (i = 1, . . . , N) over the time horizon (t, T ].
The indicator function 1Ii is a Bernoulli random variable such that

E [1Ii] = qi, var [1Ii] = qi(1− qi), i = 1, . . . , N. (4.1)

The “portfolio loss” L over the reference time horizon (t, T ) is then given by

L =
N∑
i=1

1IiEi (4.2)

where each exposure Ei is supposed to be deterministic.
In order to ease the semi-analytic computation of the distribution of L, the model
introduces a new set of variables Yi, each replacing the corresponding indicator
function 1Ii (i = 1, . . . , N). The new variables Yi are supposed to be Poisson-
distributed, conditionally on the value assumed by the market latent variables.

Assumption 4.1 (CreditRisk+ distributional assumption).
Given a time horizon (t, T ] and a set of N risky debtors, the number Yi of insolvency
events generated by each i-th debtor over (t, T ] is distributed as follows:

Yi ∼ Poisson (pi(Γ)) , pi(Γ) := qi ·
(
ωi0 +

K∑
k=1

ωikΓk

)
(4.3)

where Γ = (Γ1 . . .ΓK) ∈ RK+ is an array of independent r.v.’s such that

Γk ∼ Gamma
(
β−1
k , βk

)
, βk ∈ R+ (4.4)

and the factor loadings ωik are supposed to be all non-negative and to sum up to
unity:

ωik ≥ 0, i = 1, . . . , N, k = 0, . . . ,K,
K∑
k=0

ωik = 1, i = 1, . . . , N. (4.5)

The Γ parameters set {β1 . . . βK} is equivalent to the classical shape-scale param-
eterization {αk, βk} of each Gamma distributed r.v. Γk, after having imposed the
assumption E [Γk] = 1, that is stated in the original formulation of the CreditRisk+

model. Hence, the k-th scale parameter βk is equal to the variance σ2
k of Γk. Given

the independence among Γk’s, the covariance matrix Σ takes the form

Σ := cov [Γ] = diag
(
σ2

1 . . . σ
2
K

)
= diag (β1 . . . βK) (4.6)

Assumption 4.1 implies that qi is the unconditional expected default frequency

qi = E [pi(Γ)] =
∫
RK+

pi(Γ) f (Γ) dΓ1 . . . dΓk, (4.7)
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where

f (x) =
K∏
k=1

xαk−1
k

βαkk Γ(αk)
e−xk/βk , xk ≥ 0, αk, βk > 0, (4.8)

and that the identity between the expected values of the original Bernoulli variable
1Ii and the new Poisson variable Yi is granted:

E [Yi] = E [1Ii] = qi. (4.9)

The portfolio loss is now represented by the r.v. LY

LY =
N∑
i=1

Yi · Ei, where Yi|Γ ∼ Poisson (pi(Γ)) . (4.10)

In [134] the distribution of LY is obtained by using a recursive method, further
described in [107]. The accuracy, stability, and possible variants of the original
algorithm are discussed in [135]. The same distribution can be easily computed
through Monte Carlo simulation due to the availability of a dedicated importance
sampling algorithm in [136].
Notice that, although the distributions of L and LY differ, the expected value of
the portfolio loss is the same E [L] = E [LY].
In the language of copula functions, the structure of dependence implied by (4.3) cor-
responds [122] to a multivariate Clayton copula, i.e. an Archimedean copula where
latent variables are Gamma-distributed (for the relation between Archimedean cop-
ula functions and factor models see, e.g, [128, §2.1]). The copula parameters are the
factor loadings ωik and they can be gathered, taking into account the normalization
condition stated in Assumption 4.1, in an N ×K matrix Ω:

Ω :=

ω11 . . . ω1K
... . . . ...

ωN1 . . . ωNK

 , (4.11)

which is, for typical values of N and K, much smaller than the N ×N covariance
matrix between the default indicators 1I. As shown in [102], it holds

cov [Yi, Yj ] = qi qj

K∑
k=1

ωikωjkσ
2
k + δijqi, (4.12)

where δij is the Kronecker delta. Equation (4.12) allows the calibration of the
factor loadings, and thus of the dependence structure of the CreditRisk+ model,
by matching the observed covariance matrix of historical default time series with
model values. However, since the model is defined in a single-period framework,
with a reference “forecasting” time horizon (t, T ], that is typically of 1 year, i.e.
T = t+ 1, it is not a priori evident how to use historical time series with a different
frequency (e.g. quarterly) in a consistent way, when calibrating the model parame-
ters. Naively, it is reasonable to expect that the larger the information provided by
the historical time series (i.e., the higher the frequency), the better the calibration.
This issue is addressed in the next sections.
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4.2 CreditRisk+ using multiple unwind periods

The original CreditRisk+ formulation, summarized in Assumption 4.1, defines the
model in a uniperiodal framework, where only one time scale T − t is considered.
In this section, we discuss the internal consistency of the model assumption when
imposing it more than once at distinct time scales. In this context, the expression
“internal consistency” means that it is possible and well-posed imposing Assumption
4.1 to be true at two distinct time scales. The same applies also considering a
slightly modified version of the CreditRisk+ framework (i.e., imposing Assumption
4.2, introduced in the following, instead of Assumption 4.1).
Extending the original CreditRisk+ formulation to a multiperiod framework enables
the calibration of the model considering a time scale different from the one chosen
for its application. The results presented in this section are applied in the next
section 4.3 to estimate the elements of the matrix

A := ΩTΣΩ. (4.13)

Estimating A is a fundamental step in order to complete the calibration of the
model. In section 4.3 estimators are defined using historical series sampled with a
period that is not necessarily equal to the projection horizon on which Σ and Ω are
defined. Section 4.4 shows the convenience of choosing a sampling period shorter
than the projection horizon in order to evaluate Â.

4.2.1 The single unwind period case

As discussed in section 4.1, in CreditRisk+ each risk (i.e. debtor) is modeled by
a Poisson distributed r.v. Yi, although the Bernoulli distribution is the natural
choice to represent absorbing events, such as default. Assumption 4.1 is convenient
in terms of analytical tractability since LY distribution can be computed through
a semi-analytical method. However, in order to address the problem of calibrating
CreditRisk+ in a “roll-over” framework, defined by an arbitrary set of time intervals,
it is useful to recover the Bernoulli representation of each debtor by introducing a
new r.v. Ỹi := 1IYi>0.
Both the r.v. Yi and its distribution parameter pi(Γ) can take values larger than
1. This is formally correct, given that Yi ∼ Poisson (pi(Γ)), despite not coping with
the representation of absorbing events, that can occur at most once by definition.
The so-called “Poisson approximation”, introduced by substituting 1Ii with Yi, is
numerically sound as qi approaches to zero - a condition that is well fulfilled in
most real world relevant cases.
Indeed, Assumption 4.1 implies that Ỹi|Γ ∼ Bernoulli(p̃i(Γ)) where the distribution
parameter is

p̃i(Γ) = Prob(Yi > 0|Γ) = 1− exp
[
−qi

(
ωi0 +

K∑
k=1

ωik Γk

)]
. (4.14)

It holds by construction

E
[
Ỹi
]

=
∫
RK+

p̃i(Γ)f(Γ)dΓ1 . . . dΓK . (4.15)
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Computing the integral in (4.15) and then approximating the term exp[−qiω0] with
its second order Taylor series centered at qi = 0 leads to the following result.

Proposition 4.1 (Asymptotic equivalence between Bernoulli and Poisson repre-
sentation of risks).
Let Ỹi := 1IYi>0 where Yi is distributed according to Assumption 4.1. Then

q̃i := E
[
Ỹi
]

= 1− e−qi ωi0
K∏
k=1

(
1 + qi ωikσ

2
k

)−1/σ2
k
. (4.16)

Further,
q̃i = qi +O(q2

i )
qi→0+
−−−−→ qi. (4.17)

Proposition 4.1 implies that E[LYi ] ' E[L
Ỹi

], provided that qi � 1. Moreover,
the same result enables also the exact satisfaction of E [LYi ] = E

[
L
Ỹi

]
, in case the

stochastic parameter p̃i(Γ) is redefined through the substitution qi 7→ q′i, where q′i
verifies the following modified version of (4.16):

E
[
Ỹi(q′i)

]
= 1− e−q′i ωi0

K∏
k=1

(
1 + q′i ωikσ

2
k

)−1/σ2
k = qi = E [Yi] . (4.18)

It is worth noticing that the substitution 1Ii 7→ Yi discussed in section 4.1 implies
the preservation of the expected value E [L] = E [LY ] due to the fact that it is
done before the introduction of the market factors Γ. On the other hand, restoring
the Bernoulli representation of each risk after having introduced the dependence
structure requires the results presented in Proposition 4.1.
Proposition 4.1 legitimates the introduction of a slightly modified version of the
CreditRisk+ model that is asymptotically equivalent to the original one stated in
Assumption 4.1. The equivalence between the two models is further analyzed in the
next sections.

Assumption 4.2 (Modified CreditRisk+ distributional assumption).
Given a time horizon (t, T ] and a set of N risky debtors, the number of insol-
vency events generated by each i-th debtor over (t, T ] is represented by the r.v.
Ỹi ∼ Bernoulli(p̃i(Γ)), where the distribution parameter p̃i(Γ) satisfies (4.14). As-
sumptions on market factors Γ and factor loadings Ω remain the same stated in
Assumption 4.1.

In Assumption 4.2 the linear dependence of the parameters pi(Γ) from the latent
variables has been replaced with a log link function. Thus, the modified version of
CreditRisk+ is also referred to as “exponential” in the following.

4.2.2 The multiple unwind periods case

This section investigates the consequences of imposing the internal consistency of
Assumption 4.1 or Assumption 4.2 at distinct time scales. Assumptions 4.3 and 4.4
are introduced hereinafter, in order to specify the family of parameters that have
to be considered at the distinct time intervals where the model is applied.
The following assumption guarantees the internal consistency at different time scales
of the classical CreditRisk+ model, defined in Assumption 4.1.
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Assumption 4.3 (CreditRisk+ parameters at different time scales).
Let t ≡ t0, t1, . . . , tm ≡ T be a partition of the time interval (t, T ]. Let Assumption
4.1 be satisfied by each j-th interval (tj−1, tj ], where Y (j)

i is the r.v. representing the
i-th risk observed during the j-th interval and the following holds for the associated
set {q(j)

i ; Γ(j); Ω(j)} of parameters and market factors:

q
(j)
i = qi

tj − tj−1
T − t

= constant, (4.19)

Γ(j)
k ∼ Gamma

(
σ−2
k ξ−1

kj
tj−tj−1
T−t , σ2

k ξkj
T−t

tj−tj−1

)
, (4.20)

Ω(j) = Ω, (4.21)

where ξkj ∈ R+.

Further, the following assumption guarantees the internal consistency at different
time scales of the modified version of CreditRisk+ model, introduced in Assumption
4.2.

Assumption 4.4 (Modified CreditRisk+ parameters at different time scales).
Let t ≡ t0, t1, . . . , tm ≡ T be a partition of the time interval (t, T ]. Let Assumption
4.2 be verified by each j-th interval (tj−1, tj ], where Ỹ (j)

i is the r.v. representing the
i-th risk observed during the j-th interval. The associated set {q(j)

i ; Γ(j); Ω(j)} of
parameters and market factors satisfies the same assumptions stated in Assumption
4.3.

Finally, for the sake of simplicity, the additional Assumption 4.5 is introduced, with
regard to the independence among market factors considered at different times.
However, being possible that real-data time series violate Assumption 4.5, this as-
sumption is weakened in the following §4.2.3.

Assumption 4.5 (Non-autocorrelated market factors).
Given Assumption 4.3, let

cov
[
Γ(j)
k ,Γ(j′)

k

]
= δjj′var

[
Γ(j)
k

]
. (4.22)

Considering the assumptions introduced above, we prove that CreditRisk+ is inter-
nally consistent when extended to a roll-over framework.

Theorem 4.1 (Internal consistency of CreditRisk+ in absence of autocorrelation).

Let us consider a set of risks {Yi} (i = 1 . . . N), observed through a time horizon
(t, T ], and an arbitrary partition t ≡ t0, t1, . . . , tm ≡ T of (t, T ], such that As-
sumptions 4.3 (“CreditRisk+ parameters at different time scales”) and 4.5 (“non-
autocorrelated market factors”) are verified with

ξkj = 1 (4.23)

for each k = 1 . . .K and j = 1 . . .m. Then (t, T ] verifies Assumption 4.1 (“CreditRisk+

distributional assumption”) .
The statement above remains true replacing 4.3 with 4.4 (“modified CreditRisk+ pa-
rameters at different time scales”) and Assumption 4.1 with 4.2 (“modified CreditRisk+

distributional assumption”), ceteris paribus.
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The proof of Theorem 4.1 is reported in §A.1.1.
This result shows that extending the CreditRisk+ model to a multiperiod framework
is well-posed.

Remark 4.1. The choice ξjk = 1 implies no loss of generality, since a different
(positive) constant ξjk = c is equivalent to redefine the variances of the market
factors cσ2

k 7→ σ2
k.

4.2.3 Internal consistency and autocorrelation in time series

As shown in section 4.1, the dynamics of each parameter pi is induced by the la-
tent Gamma factors only. Imposing Assumption 4.5 to any (arbitrarily short) time
scale implies that considered time series {Γ(j)

k }j=1,2,... must exhibit zero autocorre-
lation. Hence autocorrelation must be completely absent from the historical default
frequencies too.
However, this requirement could not be satisfied by the observed time series used
in calibrating the model. Indeed, we need to verify that the model can preserve its
internal consistency if autocorrelation has to be considered.
The purpose of this work is to investigate whether it is possible and convenient
to calibrate the CreditRisk+ model at a time scale that copes with the available
historical data (i.e., the sampling period of the historical time series) instead of
using the same time scale needed for projections (usually bigger). Hence, in case it
is not possible to preserve the internal consistency of the model at each arbitrary
time scale, due to the presence of autocorrelation, it is sufficient to ask that it holds
up to the smallest of the two time scales of interest - the historical sampling period
and the projection horizon.
Let us specialize to the constant mesh case tj − tj−1 = (T − t)/m = δm. This
choice copes with a typical real case, where the sampling period δm of the available
historical time series is constant and the considered projection horizon T − t is
a multiple of it. Under these premises, a weakened version of Assumption 4.5 is
introduced.

Assumption 4.6 (Autocorrelated market factors).
Given Assumption 4.3, for each k-th latent variable, considered at the time scale
δm, a time-invariant ACF %xk exists, such that

cov
(
Γ(j)
k ,Γ(j+x)

k

)
= %xkvar

(
Γ(j)
k

)
. (4.24)

Furthermore, the following closure with respect to the addition holds
m∑
j=1

Γ(j)
k ∼ Gamma(αk, βk) (4.25)

for a couple αk, βk of shape and scale parameters.

Assumption 4.6 is considered instead of Assumption 4.5 to state the following al-
ternate version of Theorem 4.1.
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Theorem 4.2 (Internal consistency of CreditRisk+ model in presence of autocor-
relation).
Let us consider a set of risks {Yi} (i = 1 . . . N), observed through a time horizon
(t, T ], and a uniform partition {tj := t+jδm}j=1...m of (t, T ] , such that Assumptions
4.3 (“CreditRisk+ parameters at different time scales”) and 4.6 (“autocorrelated
market factors”) are verified with

ξkj =
[
1 + 2

m−1∑
x=1

%xk

(
1− x

m

)]−1
2

(4.26)

for each k = 1 . . .K and j = 1 . . .m. Then (t, T ] verifies Assumption 4.1 (“CreditRisk+

distributional assumption”).
The statement above remains true replacing 4.3 with 4.4 (“modified CreditRisk+ pa-
rameters at different time scales”) and Assumption 4.1 with 4.2 (“modified CreditRisk+

distributional assumption”), ceteris paribus.

The proof of Theorem 4.2 is reported in §A.1.2.
Assumption 4.6 can be either well-posed or ill-posed, depending on the considered
%xk. The trivial case %xk = 0 for each x ∈ Z copes with Assumption 4.5. Correlated
Gamma variables, as well as the distributional properties of the sum of Gamma
variables, have been intensively studied in the literature, and this is still an active
research field [109,123–125], due to its relevance for information technology. At least
in case of identically distributed Gamma variables - such as Γ(j)

k in our framework
- with ACF obeying to a power-law

%xk = ρ
|x|
k , ρk ∈ (0, 1), (4.27)

the distribution of the sum Γk is known to be approximately Gamma [123], while
more generical cases imply the sum to be distributed differently [124,125]. Moreover,
it is known that partial sums of independent Gamma variables can be used to
generate sequences of (auto)correlated Gamma variables [109].

Remark 4.2. The exponential ACF in eq. (4.27) provides a non-trivial case that
satisfies Assumption 4.6 and, thus, Theorem 4.2. In the following §4.3.4, Theorem
4.2 legitimates the estimation of A in presence of autocorrelated time series. Eq.
(4.27) is then considered in §4.4.3 to investigate numerically the estimators intro-
duced in §4.3.4. However, to date, a general framework is missing to tell whether a
given %xk lets the partial sums

∑
j Γ(j)

k remain (approximately) Gamma distributed,
with the exception of exponential ACFs.

The estimators introduced in §4.3.4 to consider autocorrelation in time series are still
applicable to an inconsistent framework, provided that at least the latent variables
Γk (defined onto the projection horizon) are Gamma distributed and Γ(j)

k satisfy
the mean and variance requirements implied by Assumption 4.6 above.

4.3 Calibration of the structure of dependence
The model is calibrated based on a partition of the risks in H homogeneous sets
ch(t), h = 1, . . . ,H. In this context “homogeneity” means that two risks belonging
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to the same set ch(t) have the same vector of factor loadings ω(h). The sets have
an explicit time dependence since they can change by the occurrence of defaults.
On the contrary, the structure of dependence, defined by ω(h) is supposed to be
time-independent.
Hence, solving the calibration problem requires the evaluation of

• H factor loading vectors {ω(h)}h=1...H , that link each of the homogenous clus-
ters to the K latent variables;

• K volatilities {σk}k=1...K , needed to specify the distribution of each of the
latent variables.

The calibration is achievable by a two-step procedure. Firstly, the matrix A :=
ΩTΣΩ, introduced in section 4.2, is estimated. Then, A is decomposed under the
proper constraints in order to evaluate Ω and Σ separately. This section describes
a method to complete the first step, providing an estimator of A both for the single
and the multiple unwind period cases, with a moment-matching approach that
allows expressing Â as a function of the covariance matrix among the historical
frequencies of default. The second step is addressed later in section 4.5, which
provides an example of calibration using a real data set.
Adopting the standard CreditRisk+ Assumption 4.1, equation (4.12) can be used
to link the covariance matrix among the historical frequencies of default with the
matrix A. In §4.3.1, Â is provided in the case of historical frequencies of default,
sampled with the same tenor of the projection horizon. In §4.3.2, Â is generalized
to the case of historical frequencies of default sampled with an arbitrary tenor.
Furthermore, in §4.3.3, Â is determined under the exponential version of the CreditRisk+

framework, introduced in Assumption 4.2. Thanks to this modified assumption, the
corresponding functional form of Â is simpler than the one obtained in §4.3.2 based
on Assumption 4.1.
Subsections 4.3.2 and 4.3.3 cope with Assumption 4.5, that implies absence of auto-
correlation in time series. The final §4.3.4 uses Assumption 4.6 instead, generalizing
the main results presented in this section to the case where autocorrelation must
be taken into account. In this case, the simpler form of Â obtained in §4.3.3 comes
in handy in the generalization to the non-trivial ACF case.

4.3.1 The single unwind period case

The first case considered is that of a single unwind period (t, T ]. For each set ch(t),
let nh(t) := |ch(t)|, Fh := 1

nh(t)
∑
i∈ch(t) Yi and Gh := 1 − Fh. The expected values

of Fh and Gh are respectively:

qh := E [Fh] =
∑
i∈ch(t) qi

nh(t) , (4.28)

sh := E [Gh] = 1−E [Fh] . (4.29)

Remark 4.3. The slight abuse of notation in (4.28) is done to avoid the introduc-
tion of a new symbol to represent E [Fh]. However, the letters chosen for indexing
risks and cluster (“i” and “h” respectively) are maintained in the following of this
work, clarifying the meaning of the “q” symbol each time it is used.
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For any pair of sets of risks {h, h′}, the covariance between the default frequencies
is:

cov (Fh, Fh′) = E [(Fh −E [Fh]) (Fh′ −E [Fh′ ])]

= 1
nhnh′

E

∑
i∈ch

(Yi − qi)
∑
i′∈ch′

(Yi′ − qi′)


= 1

nhnh′

∑
i∈ch

∑
i′∈ch′

cov (Yi, Yi′) , (4.30)

that, using eq. (4.12), becomes:

cov (Fh, Fh′) = 1
nhnh′

∑
i∈ch

∑
i′∈ch′

(
qiqi′

K∑
k=1

ωikωi′kσ
2
k + δii′qi

)
. (4.31)

Eq. (4.31) shows the relation between the observed covariance of default frequencies
and the factor loadings, describing the structure of dependence of the model.
Moreover, assuming that all risks in a given homogenous set share the same factor
loadings, the above expression simplifies to:

cov (Fh, Fh′) = qhqh′
K∑
k=1

ωhkωh′kσ
2
k + δhh′

qh
nh

(4.32)

Notice that the second term in eq. (4.32) is present only when h = h′, and becomes
quickly negligible as nh grows (since qh < 1).
Eq. (4.32) enables the estimation of A over the same time scale T − t used for
projections:

Âhh′ = 1
qhqh′

[
ˆcov (Fh, Fh′)− δhh′

qh
nh

]
. (4.33)

4.3.2 The multiple unwind period case

Let us consider a set of H time series defined using a constant step δm = (T − t)/m.
As done in section 4.1, each variable introduced in §4.3.1 for the time interval
(t, T ] can be redefined over each of the considered time intervals. Namely, in the
following we use the set of observables quantities {Fh, Gh, qh, sh}, measured either
over (t, T ] or (tj−1, tj = tj−1 +δm] or a generic time interval (t, t′]. For the latter two
cases we introduce the notation {F (j)

h , G
(j)
h , q

(j)
h , s

(j)
h } and {Fh(t, t′), Gh(t, t′), . . . },

respectively. Further, the variables

Fmh := 1−
m∏
j=1

[
1− F (j)

h

]
, (4.34)

Gmh :=
m∏
j=1

G
(j)
h = 1− Fmh (4.35)

are introduced.
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In CreditRisk+, Fh(t, t′) arises from a doubly stochastic process, since each absorb-
ing event is generated conditioned to the latent systematic factors. For the sake
of simplicity, we neglect the idiosyncratic uncertainty brought by each Yi(t, t′). In
fact, for nh(t) large enough, the Bernoulli (or Poisson) r.v.’s contributions to the
variance of Fh(t, t′) are dominated by the contribution of Γ(t, t′). This legitimates
the following assumption.

Assumption 4.7 (Large clusters).
For each cluster ch (h = 1 . . . H) and each time interval (t, t′] ⊆ (t, T ] it holds

var
[
Fh(t, t′)|Γ(t, t′)

]
= 0 .

Then the following holds:

Proposition 4.2 (CreditRisk+ scale-invariance law).
Let us consider a set of risks {Yi} (i = 1 . . . N), observed through a time hori-
zon (ta, tb] and classified into a set of homogenous clusters ch (h = 1 . . . H). Let
Assumptions 4.3 (“CreditRisk+ parameters at different time scales”), 4.5 (“non-
autocorrelated market factors”) and 4.7 (“large clusters”) hold with ξkj = 1 for
each (t, T ] ⊆ (ta, tb] and for each uniform partition t ≡ t0 < t1 < · · · < tm ≡ T of
(t, T ], (m ∈ N∗). Then the couple Fh(t, T ), Fh′(t, T ) satisfies the conservation law

[cov (Fh (t, T ) , Fh′ (t, T )) + sh (t, T ) sh′ (t, T )]
1

T−t = constant. (4.36)

for each pair of clusters ch, ch′ and each (t, T ] ⊆ (ta, tb].

The proof of Proposition 4.2 is reported in §A.1.3.
Proposition 4.2 is one of the main results of this work. It allows to build an estimator
of cov (Fh (t, T ) , Fh′ (t, T )) using default frequencies F (j)

h defined on a different time
scale δm. The dependence upon m of the precision of the covariance estimator is
discussed in §4.4.
Indeed, applying Proposition 4.2 to eq. (4.33), it is possible to calibrate the depen-
dence structure of the CreditRisk+ model, by first determining the elements of the
A matrix as

Ahh′ = 1
qhqh′

[(
cov

(
F

(j)
h , F

(j)
h′

)
+ s

(j)
h s

(j)
h′

)m
− shsh′ − δhh′

qh
nh

]
(4.37)

for any j = 1, . . . ,m, and then decomposing A, thus obtaining a separate estimate
of the

{
Ω,σ2

Γ
}
parameters. The SNMF decomposition can be performed, e.g., by

using the technique described in [102].

4.3.3 The exponential case

In this section the problem of calibrating the dependence structure is addressed
using the exponential form of the model introduced in Assumptions 4.2 and 4.4.
Theorem 4.1 proves that also the exponential form remains consistent when con-
sidering multiple unwind periods. Since now Ỹi variables are used instead of the
corresponding Yi, the frequencies Fh and their complements Gh are replaced by F̃h
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and G̃h, defined by the substitution Yi 7→ Ỹi in Fh and Gh definitions, respectively.
Furthermore, it is convenient to introduce the following

Lh := −qh
q?h

ln G̃h (4.38)

where
q?h := − ln

∑
i∈ch(t) e

−qi

nh(t) . (4.39)

The notation introduced in §4.3.2 for {Fh, Gh, qh, . . . } is extended to the exponential
case as well. Hence, the sets of symbols {F̃h(t, t′), G̃h(t, t′), . . . } and {F̃ (j)

h , G̃
(j)
h , . . . }

are also used. The log link function that relates p̃i and Γ simplifies the form of
the scale invariariance law presented in Proposition 4.2. Indeed, in this case the
following holds.

Proposition 4.3 (Modified CreditRisk+ scale-invariance law).
Let us consider a set of risks {Ỹi} (i = 1 . . . N), observed through a time horizon
(ta, tb] and classified into a set of homogenous clusters ch (h = 1 . . . H). Let As-
sumptions 4.4 (“modified CreditRisk+ parameters at different time scales”), 4.5
(“non-autocorrelated market factors”) and 4.7 (“large clusters”) hold with ξkj = 1
for each (t, T ] ⊆ (ta, tb] and for each uniform partition t ≡ t0 < t1 < · · · < tm ≡ T
of (t, T ], (m ∈ N∗). Then Lh(t, T ), Lh′(t, T ) obey to the conservation law

1
T − t

cov [Lh(t, T ), Lh′(t, T )] = constant (4.40)

for each pair of clusters ch, ch′ and each (t, T ] ⊆ (ta, tb].

The proof of Proposition 4.3 is reported in §A.1.4.
Proposition 4.3 states a conservation law for the modified version of the model, like-
wise Proposition 4.2 in the original (i.e. Poisson-Gamma) CreditRisk+ framework.
The form obtained for the LHS of eq. (4.40) is simpler than the corrisponding LHS
of eq. (4.36). In general, this framework results to be more tractable than the orig-
inal model. This is especially useful when estimating A given a non-trivial ACF, as
shown in the next §4.3.4.
In this case, A can be estimated as

Ahh′ = 1
qhqh′

cov [Lh, Lh′ ] = 1
q?hq

?
h′

cov
[
ln
(
1− F̃h

)
, ln

(
1− F̃h′

)]
(4.41)

where we have neglected the contribution of cov(Ỹi, Ỹi) ∝ 1
nh(t1) ' 0. Definition

(4.38) and Proposition 4.3 imply

Ahh′ = m

q
?(j)
h q

?(j)
h′

cov
[
ln
(
1− F̃ (j)

h

)
, ln

(
1− F̃ (j)

h′

)]
(4.42)

for each j = 1 . . .m.
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4.3.4 Handling autocorrelated time series in calibration

In this section a generalization of estimators in equations (4.37) and (4.42) is pro-
vided, in case Assumption 4.5 has to be replaced with Assumption 4.6 due to the
presence of autocorrelation in time series. We preliminarily report below a second
order approximation that comes in handy to generalize eq. (4.37).

m∏
j=1

E
[
G

(j)
h G

(j)
h′

]
=

m∏
j=1

(
1− q(j)

h − q
(j)
h′ + E

[
F

(j)
h F

(j)
h′

])

= 1−
m∑
j=1

(
q

(j)
h + q

(j)
h′

)
+

m∑
j=1

E
[
F

(j)
h F

(j)
h′

]
(4.43)

+
∑
j<j′

∑
h,h′=1,2

q
(j)
h q

(j′)
h′ + . . .

We now consider again the relation between cov (Fmh, Fmh′) and cov
(
F

(j)
h F

(j)
h′

)
implied by Proposition 4.2, under the presence of autocorrelation for the latent
variables. Unlike in §4.2.2, in this case covariance terms at delay |j− j′| ≥ 1 cannot
be nullified.

cov (Fmh, Fmh′) = E

 m∏
j=1

G
(j)
h G

(j)
h′

− shsh′
= 1−

m∑
j=1

(
q

(j)
h + q

(j)
h′

)
+

∑
j<j′

∑
h,h′=1,2

E
[
F

(j)
h F

(j′)
h′

]
(4.44)

+
m∑
j=1

E
[
F

(j)
h F

(j)
h′

]
− shsh′ + . . .

Replacing eq. (4.43) into eq. (4.44) we have

cov (Fmh, Fmh′) =
m∏
j=1

E
[
G

(j)
h G

(j)
h′

]
+

∑
j<j′

∑
h,h′=1,2

cov
[
F

(j)
h F

(j′)
h′

]
− shsh′ +O3 (4.45)

where O3 is a compact notation for the sum of all the terms of order 3 or greater.
Given that O3

q→0−−−→ 0, the approximation O3 ≈ 0 is numerically sound in practice
and implies the following generalization of Ahh′ in eq. (4.37)

Ahh′ ≈ 1
qhqh′

[(
cov

(
F

(j)
h , F

(j)
h′

)
+ s

(j)
h s

(j)
h′

)m
+AC

(L)
hh′ − shsh′ − δhh′

qh
nh

]
, (4.46)

where the autocorrelation term AC(L) is defined as

AC
(L)
hh′ :=

m−1∑
x=1

(m− x)
(
cov

[
F

(j)
h F

(j+x)
h

]
+ cov

[
F

(j)
h′ F

(j+x)
h′

]
+ 2cov

[
F

(j)
h F

(j+x)
h′

])
.

(4.47)
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This completes the extension of the linear case presented in §4.3.2 to autocorrelated
time series.
The exponential case - introduced in §4.3.3 - turns out to be more tractable, since the
linear structure implied by Proposition 4.3 allows us to avoid approximations similar
to the one applied to extend the linear case above. Indeed only the simplification
implied by Assumption 4.5 must be abandoned, implying

cov [Lh, Lh′ ] = m cov
[
L

(j)
h , L

(j)
h′

]
+
m−1∑
x=1

2(m− x)cov
[
L

(j)
h , L

(j+x)
h′

]
. (4.48)

This is implied by the fact that L(j)
h are still identically distributed for the same h

but not independent. Hence the estimator in eq. (4.42) becomes

Ahh′(t, T ) = m

q
?(j)
h

q
?(j)
h′

cov
[
ln
(
1− F̃ (j)

h

)
, ln

(
1− F̃ (j)

h′

)]
+AC

(E)
hh′ (4.49)

where

AC
(E)
hh′ := 1

q
?(j)
h

q
?(j)
h′

m−1∑
x=1

2(m− x)cov
[
ln
(
1− F̃ (j)

h

)
, ln

(
1− F̃ (j+x)

h′

)]
(4.50)

4.4 The advantage of a short sampling period
Let us consider a ∆t-long projection period and a set of historical time series of
defaults that span a (past) time interval of length n∆t. Typical examples can be
∆t = 1 year and 5 ≤ n ≤ 20. Moreover, let the historical time series be sampled
with a period δm, which is m times smaller than ∆t (i.e. δm := ∆t/m). Considering
∆t = 1 year, realistic assumptions are m = 4 (quarterly time series) or m = 12
(monthly time series). Therefore, the considered time series are defined over m× n
intervals of length δm, defined by a schedule t0, . . . , tm×n.
This section discusses the precision improvement achievable by calibrating the model
on historical default time series with a period smaller than the time horizon on which
the calibrated model is applied. Indeed, the statistical error on the determination
of A depends on m, i.e. on the sampling frequency of the observations, as shown
in §4.4.1. Further, given Assumption 4.7 (“large clusters”), the statistical error can
be written as a closed-form function of m, as σ2

k approaches to zero (k = 1 . . .K).
In the following, the assumption of “small” volatilities is referred to as “Gaussian
regime”, because it implies Γk∼̇N (1, βk) (k = 1 . . .K), as discussed in the proof of
Theorem 4.3.
As in the previous sections 4.2 and 4.3, both the standard CreditRisk+ framework
(Assumptions 4.1 and 4.3) and the modified “exponential” version (Assumptions
4.2 and 4.4) are discussed hereinafter.
In applications where ch’s are scarcely populated or σk’s are not negligible, Theorem
4.3 is not guaranteed to cope with observations. This case is addressed in §4.4.2,
where the robustness of the closed-form expression (4.54) is investigated by Monte
Carlo simulations.
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A numerical approach is maintained in §4.4.3 as well, where the estimation error
of Â at different time scales is measured in presence of autocorrelation, following
the generalization introduced in §4.2.3 and §4.3.4. In this case, the exponential
version of the model comes in handy: indeed, it is observed that the error on the
estimator introduced in (4.46) (i.e. standard CreditRisk+ version) does not decrease
at increasing m, while the opposite is true for the estimator presented in (4.49) (i.e.
exponential CreditRisk+ version).
In section 4.3, the Â estimator has been presented in multiple versions, depending on
the considered model (standard or exponential version of CreditRisk+), the chosen
sampling period δm and the presence or absence of autocorrelation. Thus, it is
worth introducing a compact notation to identify the different versions of Â.
The expressions for Ahh′ presented in (4.37) and (4.46) are addressed as “linear”
estimators (as opposed to “exponential”) in the following. In these cases the symbol
Â

(L,m)
hh′ is used, where L stands for “linear” and m = (T − t)/δm is the ratio between

the projection and calibration time scales.
On the other hand, the expressions for Ahh′ presented in (4.42) and (4.49) are
addressed as “exponential” estimators and so the symbol Â(E,m)

hh′ is used.
For the sake of brevity, when L or E is omitted, Â(m)

hh′ refers to both the cases and,
when m is omitted, Âhh′ refers to the m = 1 case.
The improvement in statistical precision with respect to the estimate with no sub-
sampling, can be quantified by the following ratio:

ε[Â(m)
hh′ ] :=

√√√√√var
[
Â

(m)
hh′

]
var

[
Âhh′

] . (4.51)

Symbol ε(m)
hh′ and its further specifications ε(L,m)

hh′ := ε[Â(L,m)
hh′ ] and ε(E,m)

hh′ can be used
as well. The last short notation that results to be convenient in the following is

c
(Lm)
hh′ := cov

[
F

(j)
h , F

(j)
h′

]
+ s

(j)
h s

(j)
h′ , (4.52)

c
(Em)
hh′ := cov

[
L

(j)
h , L

(j)
h′

]
. (4.53)

where F (j)
h , L(j)

h and s(j)
h (j = 1 . . .m) are i.i.d. variables quantified using a sampling

period δm.

Remark 4.4. The notation “Â” refers to the fact the covariances involved in the
definitions must be replaced with the corresponding sample estimators, when applying
A

(m)
hh′ to historical time series. The same applies to the symbol ĉ.

4.4.1 Precision of Â at different time scales under the Gaussian
regime

The following result quantifies the precision gain of performing CreditRisk+ model
calibration by historical time series available at increasing sampling frequencies. As
anticipated, the precision of the estimated parameters increases as the sampling
period decrease. This result holds under Assumption 4.7, in the limit σ → 0+ and
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considering absence of autocorrelation. The cases where some nh is small (i.e. it
does not verify Assumption 4.7) or where some σk is not negligible are addressed
numerically in the next §4.4.2 - showing that the precision is still increasing as
shorter sampling periods are considered. The introduction of autocorrelation is
addressed in §4.4.3.

Theorem 4.3 (Estimation errors under Gaussian regime).
Let us consider a set of risks, observed through a time interval (t0, t] and clas-
sified into a set of homogenous clusters ch (h = 1 . . . H). Let Assumption 4.3
(“CreditRisk+ parameters at different time scales”), 4.5 (“non-autocorrelated mar-
ket factors”) and 4.7 (“Large clusters”) hold with ξkj = 1 for a given uniform par-
tition t0 < t1 < · · · < tj < · · · < tm×n ≡ t of (t0, t], (tj − tj−1 = δm; m,n ∈ N∗).
Let Â be the estimate of A needed to calibrate the CreditRisk+ model in order to
project losses over the time horizon (t, T ], such that (t − t0)/(T − t) = n and
(T − t)/(δm) = m. Then the following is true for Â(m)

hh′ :

ε
(m)
hh′

σ→0+
−−−−→

√
n− 1

m · n− 1 (4.54)

Equation 4.54 remains true also considering Assumption 4.4 (“modified CreditRisk+

parameters at different time scales”) instead of Assumption 4.3.

The proof of Theorem 4.3 is reported in §A.1.5.

4.4.2 Beyond the Gaussian approximation: numerical simulations

In this paragraph we verify that both the estimators Â(E,m)
hh′ and Â(L,m)

hh′ are more pre-
cise at increasing m. The closed-form results obtained in the approximate Gaussian
regime, discussed in paragraph 4.4.1, hold when the factor volatilities σΓ are much
less than 1. Increasing σk (k = 1, . . . ,K) the Gaussian approximation becomes less
satisfactory and the difference of precision amongst determinations with different
values of m becomes smaller. However, the error of Â(m)

hh′ remains monotonically
decreasing in m, even far from the Gaussian approximation conditions.
For a numerical illustration, we considered a case study with a two-factors market
(Γk, k = 1, 2). The dynamic of the couple of systemic factors induces the dependence
between two populations of risks, as per the weights reported in Table 4.1. The

Table 4.1. Matrix of weights used for the numerical simulations. The column k = 0
displays the factor loadings associated to the “idiosincratic” term of the dependence
structure, as introduced in Assumption 4.1.

k 0 1 2

ω1k 0.30 0.40 0.30
ω2k 0.50 0.25 0.25

volatilities (σk, k = 1, 2) associated to the factors are chosen according to seven
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different scenarios (indexed by iσ), respectively as

σΓ := 2iσ
(

2.5 · 10−2

5.0 · 10−2

)
, iσ = 0 . . . 6.

For each scenario, the distributions of the estimators Â(E,m)
12 and Â

(L,m)
12 (m =

1 . . . 12) have been determined using 105 simulations of {F1(t, n1), F2(t, n2)} where
t ∈ (t0, t0 + n∆t] (n = 10) and nh (h = 1, 2) is the number of risks belonging to each
cluster. For both estimators the dynamic Fh(t, nh) is that reported in (4.14). All
risks belonging to the same cluster are supposed to have the same unconditioned
intensity of default

qi(t, t+ ∆t) = − 1
∆t

log(0.99), i = 1, . . . , nh, h = 1, 2.

To investigate the additional contribution to the error σ
[
Â12

]
, generated by the

finiteness of each cluster, different values of nh have been considered. In particular,
the number of claims per each elementary temporal step δm = 1/m is extracted
from a binomial distribution with parameter

nh ∈
{

103, 2.5 · 103, 5 · 103, 104, 2.5 · 104, 5 · 104
}
, h = 1, 2.

For simplicity’s sake, it is assumed that each defaulted risk is instantly replaced by
a new risk, keeping the population of each cluster constant in time. Finally, the
case nh =∞ (absence of binomial source of randomness) is also considered.
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1Figure 4.1. Precision gain ε
(m)
12 , as a function of m and iσ. The left and right plots

show the values of ε
[
Â

(E,m)
12

]
and ε

[
Â

(L,m)
12

]
respectively, as a function of m, for each

volatility scenario (iσ = 0, . . . , 6), each depicted with darker to brighter curves, in the
nh =∞ hypothesis. The red curve is the theoretical value of ε

[
Â

(m)
12

]
in the Gaussian

regime.

Figure 4.1 shows the behaviour of ε
[
Â

(m)
12

]
as a function of m, comparing various

choices of σΓ, considering both the exponential (on the left) and linear (on the
right) versions of the model. In this case we are not considering yet the contri-
bution to error due to the finite population (nh = ∞ for each cluster h). Equa-
tion (4.54) (red curve) is almost perfectly verified by the least volatility scenario
(σΓ = (2.5, 5.0) · 10−2). At increasing volatility values (brighter curves), the gain in
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precision obtained at higher m is reduced, as well as the accordance with equation
(4.54).
Since the transformation of ε

[
Â

(m)
12

]
moving away from the Gaussian approximation

(i.e.: increasing |σΓ|) is smooth, estimating A12 withm > 1 remains convenient even
for [σΓ]k & 1, despite the fact that equation (4.54) is not verified anymore.
As mentioned above, comparison between the left and the right panel of figure 4.1
shows that the above argument holds both in the linear and in the exponential case.
This is also verified for all the other results of this paragraph.
Figure 4.2 shows the results obtained with finite portfolio populations. The smallest
size portfolio (nh = 103) is expected to be affected by the largest binomial contri-
bution to the error. This size is considered to be a limiting value for a realistic
case. Nevertheless, even in this case, the additional error due to the finiteness of
the portfolio is not relevant compared with the one generated by σΓ and the results
are very similar to the ones previously shown in figure 4.1.
Figure 4.3 represents the distribution of the estimator Â(m)

12 under a subset of choices
for σΓ and nh, selected amongst all possible combinations. The visual comparison
between E

[
Â

(m)
12

]
(blue “X” symbol) and A12 level (red horizontal line) shows that

Â
(m)
12 is unbiased, both in the linear and in the exponential case (equations (4.37)

and (4.42) respectively). The dispersion around the mean reduces at increasing m,
in agreement with both equation (4.54) and the numerical results in figures 4.1 and
4.2.
Comparing figures 4.2 and 4.3 it turns out that while the number of risks nh does
not play a relevant role (if any) in computing the ratio ε

[
Â

(m)
12

]
, the absolute value

of the standard error σ
[
Â

(m)
12

]
is sensitive to the size of the portfolio.

This fact is confirmed by figure 4.4, where the numerical estimates of σ
[
Â

(m)
12

]
have been arranged as functions of nh at fixed σΓ and m values. As expected, the
standard error is greater when considering smaller nh values, while the dependence
on nh of the error disappears quickly as approaching nh →∞, even for the highest
σΓ values tested.
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1Figure 4.2. ε[Â(E,m)
12 ] and ε[Â(L,m)

12 ] as a function of m, considering increasing iσ (from
darker to brighter curve) and decreasing values of nh (from top to bottom). The red
curve is the theoretical value of ε

[
Â

(m)
12

]
as a function of m in the Gaussian regime. For

σ1, σ2 � 1 the analytical result is perfectly satisfied. However, ε
[
Â

(L,m)
12

]
is shown to

be a decreasing function of m in general. Comparing this result with the nh =∞ case
(figure 4.1), we can state that ε

[
Â

(L,m)
hh′

]
is almost insensitive to nh (h = 1, 2), even for

nh = 103 (the minimum tested value).
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12 ] and σ[Â(L,m)

12 ] as a function of nh. Decreasing m values are consid-
ered from darker to brighter curve, as well as various choices of σΓ.
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4.4.3 Estimation error in presence of autocorrelation

In paragraph 4.4.2 the precision gain at increasing m is measured in absence of au-
tocorrelation. In this paragraph, the same numerical simulations are re-performed
introducing autocorrelation and comparing the results against the theoretical esti-
mation of ε. The effect of autocorrelation on ε is discussed in appendix A.2.
The numerical set up introduced above in paragraph 4.4.2 has been maintained,
with a further hypothesis about ACF. Indeed, we assume that each latent variable
(k = 1, 2) obeys to the following ACF law, discussed in paragraph 4.2.3

%xk = ρ|x|, m = 12

where the considered ρ values are 0.05 and 0.5. For m′ < 12 cases, we have con-
sidered ACF’s resulting for the latent variables time series Γ̃(j′)

k obtained by the
clustering operation

Γ̃(j′)
k ≡ m′

m

∑
j

Γ(j)
k , j = 1 + m

m′ (j
′ − 1) . . . mm′ j

′

given the aforementioned ACF law at 1/m time scale. Since the contribution of
the finite population to the error has been shown to be neglectable in par. 4.4.2,
simulations in presence of autocorrelation have been performed under nh = ∞
hypothesis only.
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Figure 4.5. Precision gain in presence of autocorrelation. ε[Â(E,m)
12 ] (exact - left panels)

and ε[Â(L,m)
12 ] (2nd order approximation - right panels), for each volatility scenario (iσ =

0, . . . , 6, depicted with darker to brighter curves), for ρ = 0.05 (top) and ρ = 0.5
(bottom). The yellow area includes all the values between the maximum (dashed red
line) and the minimum (solid red line) expected from the results of appendix A.2. The
frontier ε = 1 (dotted line) allows to check the presence of a precision gain at m > 1.

Figure 4.5 shows that the estimator Â(E,m)
hh′ remains more precise at increasing m,

even in presence of autocorrelation. The analitycal results obtained in the Gaussian



100 4. Multivariate probability estimation through the CreditRisk+ model

regime (i.e. theoretical superior and inferior estimates of ε - dashed and solid
red lines in figure 4.5), discussed in appendix A.2, are in good agreement with
the numerical results obtained in the considered set up. In fact, all the empirical
measures of ε are included between the two theoretical limits (yellow areas).
Moreover, precision gain at m > 1 is also possible when using the proxy estimator
ε
[
Â

(L,m)
12

]
, introduced in eq. (4.46). However, the approximation introduced in this

case makes the estimator inefficient (i.e. ε > 1) in the majority of the considered
configurations.

4.5 An application to market data
This section provides an example of the calibration technique applied to a real-world
data set.
The calibration technique is applied to a set of historical time series of bad loan
rates supplied by Bank of Italy. “Bad loan” is a subcategory of the wider class
“Non Performing Loan” and it is defined as exposures to debtors that are insolvent
or in substantially similar circumstances [126]. In particular, the chosen data set
is composed by the quarterly historical series TRI30496 (m = 4) over a five year
period (from 1 Gen 2013 to 31 Dec 2017, n = 5, ∆t = 1). The data are publicly
available at [112]. The time series are supplied by customer sector (“Counterpart
institutional sector”) and geographic area (“Registered office of the customer”). The
latter, in the example, is held fixed to a unique value that corresponds to the whole
country (Italy). Tables 4.2 and 4.3 report the definition of the 6 different clusters
and their main features.

Table 4.2. Definition of the clusters h = 1, . . . , 6 used in data set TRI30496.

Cluster index h Sector Code Description

1 600 Consumer households

2 S11 Non-financial companies

3 S12BI7 Financial companies other than
monetary financial institutions

4 S13 General government

5 S14BI4 Producer households

6 S15BI1 Non-profit institutions serving
households and unclassifiable units
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Table 4.3. Main features of the considered historical time series over the period 1 Gen
2013 – 31 Dec 2017. ph (h = 1, . . . , 6) is the yearly average bad loan rate; σh is the
volatility associated to each ph; 〈nh〉 is the average number of borrowers.

h 1 2 3 4 5 6
ph 0.0119 0.0352 0.0255 0.0056 0.0259 0.0088
σh 0.0010 0.0042 0.0023 0.0014 0.0022 0.0010
〈nh〉 269515 407602 3191 5416 132179 4020

By inspection of table 4.3, it is possible to perform a rough estimate of σΓ. Equa-
tion (4.14) implies that the following holds for coefficients of variation CVh (h =
1, . . . ,H ≡ 6):

CVh := σh
ph
'

K∑
k=1

ωhk [σΓ]k

Furthermore, the normalization requirement over the factor loadings ωhk implies

K∑
k=1

ωhk . 1

Hence we can state that 〈CV 〉 := 1
H

∑
hCVh has the same order of magnitude of

1
K

∑
k [σΓ]k. Since 〈CV 〉 ' 0.124, results in paragraph 4.4.2 suggest that this data

set is not far from the Gaussian regime and so there is an appreciable increase of
precision in estimating A(0, 1) with m > 1.

Â(0, 1) is estimated by applying equation (4.42) over a one-year period. The results
obtained for Â(E,m)(0, 1) (m = 1, 4) are reported in table 4.4.

Table 4.4. Values of the matrix Â(E,m)(0, 1) (m = 4 left, m = 1 right) obtained from
the quarterly historical series TRI30496 over the period 1 Gen 2013 − 31 Dec 2017.
Results are expressed in 10−2 units.

0.53 0.28 0.33 0.36 0.41 0.48 0.68 0.40 0.36 1.01 0.56 0.73
0.28 0.59 0.48 0.61 0.43 0.40 0.40 1.50 0.98 1.26 0.87 -0.16
0.33 0.48 0.67 0.52 0.43 0.40 0.36 0.98 0.87 0.78 0.72 0.27
0.36 0.61 0.52 7.80 0.48 0.33 1.01 1.26 0.78 6.50 1.10 0.66
0.41 0.43 0.43 0.48 0.47 0.54 0.56 0.87 0.72 1.10 0.74 0.47
0.48 0.40 0.40 0.33 0.54 1.53 0.73 -0.16 0.27 0.66 0.47 1.35

The elementwise precision gain for m = 4, ε
[
Â(E,4)(0, 1)

]
, obtained under the

Gaussian approximation hypothesis, is shown in table 4.5. This result is obtained
applying definition (4.51) and equation (A.25) both to the cases m = 4 and m = 1.
Eq. (A.25) has been shown to be valid under the Gaussian approximation, discussed
in paragraph 4.4.1.
In this case, the preliminary decomposition of Â(E,4)(0, 1), that would be needed
using the Monte Carlo method discussed in paragraph 4.4.2, is not needed.
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Table 4.5. The matrix of elementwise precision gains ε
[
Â(E,4)(0, 1)

]
associated with the

matrixes reported in table 4.4.

0.36 0.26 0.37 0.41 0.33 0.39
0.26 0.18 0.24 0.30 0.23 0.33
0.37 0.24 0.35 0.43 0.30 0.45
0.41 0.30 0.43 0.55 0.37 0.52
0.33 0.23 0.30 0.37 0.29 0.42
0.39 0.33 0.45 0.52 0.42 0.52

According to equation (4.54), the elements of ε
[
Â(E,4)(0, 1)

]
reported in table 4.5

should be all approximately equal to 0.46, since they should depend only on the
couple m,n (m = 4 and n = 5 in this case). However, in a real world case like the
one considered, the hypothesis of zero autocorrelation is satisfied with a different
precision by each time series ph(t). Furthermore, the estimated covariance matrices
might need to be regularized (indeed the Higham regularization algorithm [127] was
used both for m = 1 and m = 4 series). Hence, a different ratio for each element
(h, h′) = 1, . . . , 6 is justified. Nonetheless, it is worth noticing that all the ratios
reported in table 4.5 have the same order of magnitude of the predicted value 0.46.
Knowledge of the historical number of risky subjects nh(t) for each cluster (h =
1, . . . , 6) at each observation date (t = 1/4, 2/4, . . . , 5) allows to take into account
the binomial contribution to the error σ

[
Â(E,m)(0, 1)

]
, both for m = 4 (quarterly

series) and m = 1 (yearly series), although the finiteness of the population does not
add a relevant contribution to the error, as already observed in paragraph 4.4.2.
Table 4.6 provides Monte Carlo estimation of σ

[
Â(E,m)(0, 1)

]
(m = 1, 4), which

considers also the role of nh(t). Since the values in table 4.6 provide a measure
of the error in the determination of Â(E,m)(0, 1), it turns out that the estimates
reported in table 4.4 are elementwise consistent one with the other.

Table 4.6. Matrixes σ
[
Â(E,m)(0, 1)

]
(m = 4 left, m = 1 right). These are the elementwise

errors of the estimators reported in table 4.4. The results above are expressed in 10−2

units.

0.11 0.12 0.19 0.44 0.11 0.31 0.41 0.25 0.41 1.09 0.24 0.64
0.12 0.20 0.29 0.64 0.13 0.40 0.25 0.86 0.72 1.47 0.50 0.97
0.19 0.29 1.38 1.08 0.21 0.69 0.41 0.72 1.75 2.31 0.49 1.53
0.44 0.64 1.08 5.12 0.49 1.60 1.09 1.47 2.31 9.11 1.20 3.40
0.11 0.13 0.21 0.49 0.13 0.34 0.24 0.50 0.49 1.20 0.29 0.79
0.31 0.40 0.69 1.60 0.34 3.25 0.64 0.97 1.53 3.40 0.79 4.65

The Monte Carlo estimation of σ
[
Â(E,m)(0, 1)

]
, as done in paragraph 4.4.2, requires

the a priori knowledge of the true dependence structure W,σΓ. Since this is a case
study, we do not have an a priori parameterization of the calibrated model. Hence,
we have used Ŵ , σ̂Γ estimated from Â(E,4)(0, 1) instead, as a proxy of the “true”
model parameters. The computation of Ŵ , σ̂Γ from Â(E,4)(0, 1) is discussed below.
In order to complete the CreditRisk+ calibration, we have to decompose Â and find
the factor loadings matrix Ŵ together with the vector of systemic factors variances
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σ̂2
Γ. To do so, we use the Symmetric Non negative Matrix Factorization (SNMF),

an iterative numerical method to search an approximate decomposition of Â which
satisfies the requirements of the CreditRisk+ model over Ŵ (i.e. all elements ωhk >
0 and

∑
k ωhk = 1). The application of SNMF to CreditRisk+ is discussed in detail

in [102]. In the following, we give evidence only of the implementation details
necessary to address this case study.
Being an iterative method, SNMF requires an initial choice of matrixes

Û0 := ŴU Σ̂1/2,

V̂0 := Σ̂1/2ŴV ,

such that Â = Û0V̂0. It is not required that Û0 = V̂ T
0 , nor all the elements of Û0

and V̂0 have to be positive. We set Û0, V̂0 from the eigenvalues decomposition of
Â(E,4)(0, 1).

For the considered data set, the eigenvalues decomposition returned the set of eigen-
values and eigenvectors reported in table 4.7.

Table 4.7. Set of eigenvalues σ̃k and eigenvectors ω̃k obtained by the eigenvalues decom-
position of Â(E,4)(0, 1), as reported in Table 4.4.

ω̃k k=1 k=2 k=3 k=4 k=5 k=6
0.06 -0.34 0.13 0.84 0.00 0.39
0.10 -0.33 0.43 -0.38 -0.65 0.36
0.09 -0.36 0.52 -0.26 0.72 0.06
0.98 0.17 -0.07 0.01 0.01 0.00
0.08 -0.38 0.22 0.19 -0.22 -0.84
0.07 -0.68 -0.69 -0.20 0.06 0.07

σ̃2
k 0.08 0.02 0.01 2.9 10−3 1.4 10−3 0.3 10−3

We use the ω̃, σ̃ notation to address the quantities over which the normalization
requirement of CreditRisk+ has not been imposed yet.
Since more than the 95% of variance is explained by the first three eigenvectors, we
reduced the dimensionality of the latent variables vector to be K = 3. Hence we
define

Û0 = [ω̃1, ω̃2, ω̃3] · diag(σ̃1, σ̃2, σ̃3)

=


1.80 5.29 1.15
2.78 5.18 3.71
2.51 5.58 4.46

27.79 −2.65 −0.57
2.33 5.88 1.93
2.07 10.58 −5.96

 · 10−2

and V̂0 = ÛT0 . In general, SNMF aims to minimize iteratively the cost function∣∣∣Â− Û V̂ ∣∣∣2 + α
∣∣∣Û − V̂ T

∣∣∣2
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where | · | is the Frobenious norm, eventually weighted, and α is a free parameter
to weight the asymmetry penality term. In our case the classical Frobenious norm
is used (e.g. uniformly weighted). Application of SNMF to our case takes the form

V̂s+1 = max
{

0, V̂s ◦
ÛTs Â+ α(V̂s − ÛTs )
ÛTs ÛsV̂s + ε1{K×M}

}
(4.55)

Ûs+1 = max
{

0, Ûs ◦
ÂV̂ T

s + α(Ûs − V̂ T
s )

ÛsV̂sV̂ T
s + ε1{M×K}

}
(4.56)

where “◦” is the Hadamard product and ε � 1 is the iteration step. In our case
ε = 10−6 and α = 1.5 · 10−2. Further details on the method, such as the so called
“balancing step” – that we have implemented – and the proof of equations (4.55)
and (4.56) are available in [102]. The application of SNMF method, together with
the normalization constraint over the factor loadings, leads to the result reported
in table 4.8.

Table 4.8. The complete set of parameters Ŵ , σ̂2
Γ necessary to specify the depen-

dence structure in CreditRisk+ model, obtained by the eigenvalues decomposition of
Â(E,4)(0, 1), as reported in Table 4.4.

k 0 1 2 3
ω1k 0.67 0.04 0.29 0.00
ω2k 0.07 0.07 0.27 0.59
ω3k 0.00 0.06 0.28 0.66
ω4k 0.13 0.87 0.00 0.00
ω5k 0.63 0.06 0.31 0.00
ω6k 0.29 0.04 0.67 0.00
σ2
k 0.103 0.031 0.010

The set of parameters resulting from the calibration process described above is sup-
ported by a reasonable economic interpretation. Indeed, factor loadings associated
with the “general government” sector (h = 4) are completely distinct from the ones
of the other sectors (i.e. this is the only sector mainly depending on the k = 1
factor): this fact copes with the different nature of the public entities from the ones
belonging to the other considered sectors. Furthermore, “companies” (h = 2, 3)
share approximately the same dependence structure. The same applies when con-
sidering “households” (h = 1, 5). Finally, the “institutions serving households”
sector (h = 6) shares the same latent factor (k = 2) but shows a different bal-
ance between idiosyncratic and systemic factor loadings compared to “households”,
that is coherent with the nature of a sector strongly linked to “households” sectors,
despite not being completely equivalent.
Results in table 4.8 have been used to quantify the estimation errors reported in
table 4.6.

4.6 Summary
In this chapter we have investigated how to calibrate the dependence structure of
the CreditRisk+ model, when the sampling period δm of the (available) default rate
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time series is different from ∆t – the length of the future time interval chosen for
the projections.
To address this topic, it has preliminary been shown that CreditRisk+ remains
self-consistent when the underlying distributional hypothesis is imposed to be si-
multaneously true at different time scales (theorem 4.1). The model self-consistency
has been proved to be roboust against the introduction of autocorrelation, depend-
ing on the considered ACF form (theorem 4.2).
Successively, the problem has been approched in terms of moment matching, pro-
viding two (approximately) equivalent formulations for estimating the covariance
matrix A amongst the systemic factors of the model (theorems 4.2 and 4.3). The
choice between the two estimators of A, provided in equations (4.37) and (4.42),
depends on the functional form (linear or exponential) that links the probability
of claim/default and the latent variables. Both the estimators are explicitly de-
pendent from the ratio ∆t/δm, allowing for the calibration of the model at a time
scale which is different from the one that is intended to be used for applying the
calibrated model. Both the estimators have been generalized in order to be applied
to autocorrelated time series in equations (4.46) and (4.49), although only the latter
(i.e. exponential case) is an exact result, while for the linear case a second order
approximation has been adopted.
Furthermore, it has been shown that calibrating the model on a shorter time scale
than the projection horizon is convenient in terms of reduced estimate error on Â.
Analytical expressions for the error are provided in the Gaussian regime (i.e.: small
variances of the latent variables) by theorem 4.3, while the case of increasing vari-
ance has been investigated numerically, confirming that in general the precision of
the calibration is higher when historical data with shorter tenor are employed. It
has been verified that the convenience of calibrating the model at short time scales
remains also in presence of autocorrelation, although this is guaranteed only in the
exponential framework, where an exact correction term is available.
Finally, the proposed techniques are shown to be numerically sound when applied
to a real, publicly available, data set of Italian bad loan rates.
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Chapter 5

Unsustainability risk of bid
bonds in public tenders

This chapter analyzes the case when the conversion of a bid bond to the correspond-
ing performance bond turns out to be “unsustainable” to the surety, implying the
generation of a claim.
The topic has been formerly introduced in §2.1 (item vi. - “insensitivity to credit-
worthiness dynamics”) as the only possible exception to the general rule that a C&S
claim cannot be originated by the worsening of a risky subject’s credit standing.
Considering a realistic setup, in the following it is shown that the bidders’ credit-
worthiness dynamics is a negligible threat to the sustainabiliy of a public tender
process. On the other hand, a poor choice of the starting price by the procuring
entity plays a major role in leading to unsustainable tender outcomes. Further, the
chapter discusses how a well-designed risk appetite framework may prevent these
situations at all.
Sustainability is a complex and evolving concept that may include, inter alia, eco-
nomic and financial considerations, environmental and social impacts, political and
legal aspects [137]. In public works, sustainability must be considered in its broad-
est meaning since all the aspects are relevant to the public entity that requires the
execution of a project and the citizens who benefit from its fulfillment. However,
also in this context, economic sustainability remains necessary to enable all the
other possible forms of sustainability. Unfair pricing of the project implies a waste
of public resources (when too high) or may result in a poor - or even missed - ex-
ecution (when too low). Both cases have a negative impact, at least from a social
perspective but possibly also environmentally, depending on the specific situation.
Typically, the cost of a public construction project is determined by a tender pro-
moted by the procuring entity. Nowadays, each country disciplines bid mecha-
nisms underlying public tenders by a complex regulatory framework that guaran-
tees fairness among participants and financial protection to the procuring entities.
The leading economies share the main features of respective public bid laws (see,
e.g., [10–12, 138]). In particular, a system of guarantees is usually mandatory and
involves insurance companies and financial institutions as sureties [3, 43, 44]. As
discussed in §1.3, each participant to a public tender must underwrite a bid bond
to take part in the tender. The bid bond guarantees that the contract winner will
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satisfy all the requirements needed to become the contractor, including acquiring a
performance bond. The values of the contract and the related performance bond
are subjected to stochastic variations during the bidding process due to the tender
rules. Hence, when the bid bond is issued, the surety has to consider the riskiness
of the guaranteed participant concerning these variations and the sustainability of
issuing a subsequent performance bond in case the bidder wins the contract.

There is a negative dependency between the final value of the contract and
the notional value of the performance bond. This is because the public procuring
entity wants to be protected against the performance risk of the winning contractor.
Intuitively, the lower is the final performance cost, the higher is the probability
of poor performance or other breaches of contract. Thus, the need for financial
protection of the public entity increases accordingly. The final notional value of the
performance bond may be too high for the risk appetite of the surety who has issued
the bid bond of the winning bidder, significantly if the bidder’s creditworthiness
has worsened during the tender process. If no other surety is available to issue the
performance bond, the bid bond generates a claim. The surety who has issued it
has to indemnify the procuring entity on behalf of the contractor, who cannot be
awarded the contract.

During the last two decades, the increasing need for developing and improving
public infrastructures in many countries has renewed the research interest on var-
ious financial, economic, and legal topics related to the construction industry. In
particular, the attention to risk management tools and techniques in public works
and large private projects has considerably increased, leading to an intense research
activity [23–25,33]. In this context, surety bonds have been investigated mainly em-
pirically, with particular reference to performance bonds and to the benefits they
produce in terms of risk mitigation. In these years, performance bonds have also
been investigated with regards to their legal sustainability, depending on the spe-
cific regulatory framework of a considered country [13–15]. E.g., in countries where
these instruments have been introduced recently, it is worth considering the moral
hazard of beneficiaries who abuse their right to call on the surety guarantees. The
relevance of the problem has been assessed, and possible improvements to specific
national laws are presented in [13, 14]. Surety bonds have been investigated from
an actuarial perspective as well, addressing both the problems of pricing them and
measuring their mitigation effect on the underlying performance risk [26, 27]. Re-
sults obtained in [26] imply that surety companies can help to mitigate the problem
of contractors going bankrupt by their ability to perform a preliminary screening.
Further, in [27] it is shown that contractors with a better standing are more likely
to win the tender if sureties apply a risk-adjusted price to the performance bond.
However, to date, the literature has focused only on investigating the performance
risk and the likelihood that the winning contractor defaults during the execution of
the public works.
As stated above, this chapter investigates the case that the tender process may lead
to an unsustainable outcome (i.e., the performance bond is not issued, and the ten-
der process has to be reopened). This is relevant since the inefficiency of the tender
process implies costs for all the subjects involved: the bidders, the sureties, and the
public entity. Italian bid law [46–48] is considered to specify the tender mechanisms
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(e.g., the functional form that links the contract pricing and the notional value of
the performance bond). A risk appetite framework is proposed to model the be-
havior of the sureties who support the bidders, based on the Solvency II regulatory
framework [36–38].
The background information considered in the following is provided in §1.3, that
introduces the business and legal context of the investigated problem. The main
features of the suretyship insurance business are reported therein, with a focus on
the bid bond and the performance bond insurance products. Further, the Italian
bidding law for public works is summarized in §1.3.1.
The chapter is organized as follows. Section 5.1 models the sustainability of the
tender outcome both for the bidders and the sureties. The Solvency II Standard
Formula elements needed to design the surety’s risk appetite framework are in-
troduced, and the bidder’s behavior is modeled considering their appetite for a
minimum profit. Section 5.2 addresses the investigated problem. After introduc-
ing the distributional assumptions needed, we measure the probability of inefficient
outcomes of public tenders through numerical simulations. The main results are
summarized in Section 5.3.

5.1 Sustainability of a bid bond
In this section, the risk-adjusted economic sustainability of a bid bond is investi-
gated. §5.1.1 presents the bidder’s perspective, while the risk appetite of the surety
is discussed in §5.1.2. The procuring entity is protected by the mechanism described
in §1.3.1, which rules the whole bidding process. In particular, equation (1.3.1) fixes
the notional value of the performance bond to cope with the performance risk of
the winning bid. However, the tender process is sustainable for the procuring entity
only if it leads to a sustainable outcome for both the contractor and the surety,
such that the tender has not to reopen. Hence the sustainability conditions of all
the subjects involved in the tender process are discussed in the following, explicitly
or not.

5.1.1 The bidder’s perspective

Let us assume that C is the contractor’s cost to fulfill the principal obligation (e.g.,
the construction of public infrastructures). Inflation effects on the price of raw
materials are negligible through the period (t0, t1] when the tender takes place.
Further, all the bidders are supposed to have access to the same liquid market to
get the needed workforce, materials, and instruments. Thus, C is supposed to be
equal to all the competitors and independent from time. We can safely assume that
C also includes a minimum target profit required by each contractor’s stakeholders.
Its value remains (approximately) the same for all the bidders, even considering this
additional contribution.

In a bidder’s perspective, V1 has both natural upper and lower bounds. The
upper bound V 1 := V0 > V1 holds true by construction, while the lower bound

V 1 := C + πP ≤ V1 (5.1)
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is the amount needed by the bidder to cover the expected costs, the target profit, and
the risk-adjusted price πP (d01) of the performance bond. Filtered at t1, the surety
is assumed to price the performance bond according to a typical non-life actuarial
pricing form [28, 29], that accounts for expected losses, costs, and a prudential
loading needed to compensate the surety’s risk aversion, the latter also being the
surety’s profit. Hence, the price πP obeys to the equation

πP = p12LPNP + (r + s)πP , (5.2)

where p12 is the breach/default probability of the contractor over the execution
period (t1, t2] and, thus, p12LPNP is the expected loss contribution. Indeed, LP ∈
(0, 1] is the loss-given-default mitigation coefficient. It considers both the expected
recovery of the surety from the contractor after the claim and the possible re-
duction of NP at the claim time due to the partial fulfillment of the guaranteed
obligation. The term rπP is the compensation for the risk aversion of the surety’s
stakeholders, where r scales as the cost-of-capital rate. The contract’s price πP is
approximately proportional to the contract’s contribution to the solvency capital
requirement (SCR) needed by the insurer to guarantee its solvency in the Solvency
II Standard Formula framework. Also the surety’s costs are assumed to be pro-
portional to πP and are taken into account by the cost ratio s term. The discount
contribution of non-zero risk-free interest rates is neglected. As discussed in §1.3.1,
it holds

NP = αP (d01)V1, (5.3)
where also V1 = d01V0 is dependent on d01. Hence, the risk-adjusted price of the
performance bond is

πP (d01) = p12LP
1− r − sαP (d01)d01V0 (5.4)

The price πB of the bid bond follows the same structure and assumptions (see
Remark 5.2 below).

Equations (5.1) and (5.4) imply that the public tender is sustainable for the
winner of the tender, only if the inequality[

1− p12LP
1−r−sαP (d01)

]
d01 ≥

C

V0
(5.5)

is verified. It is worth noticing that d01 is deterministic in the bidder’s perpective,
since it is a bidder’s decision. On the other hand, p12 and r are unknown to the bid-
der, but a non-binding offer from the surety market is usually available on request,
letting the bidder to consider the provisional price

π̂P = p̂12LP
1−r−sNP (d̂01) (5.6)

where p̂12 is the bidder’s probability of default in (t1, t2] estimated by the surety
conditioned to the information available in t0, and d̂01 represents the expected value
of d01 under the same filtration Ft0 . Hence, the boundaries V 1 and V 1 imply the
determination of a compact interval where the contractor’s choice of d01 in t0 is
rational

C + π̂P
V0

≤ d01 ≤ 1 (5.7)
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Condition (5.7) confirms two intuitive facts. First, the least risky bidder can afford
to offer the greatest decrease of the starting price V0, implying that the better is
the creditworthiness, the higher is the probability of winning the tender. Second,
the lower is the ratio C/V0, the smaller is the minimum sustainable d01 value.

Remark 5.1. LHS of inequality (5.7) is a special case of inequality (5.5), condi-
tioned to the information available in t0. Even if each bidder behaves rationally,
placing a bid d01(t0) in the interval defined in condition (5.7), in t1 it is still possi-
ble that the winner of the tender is awarded with a not sustainable contract, because
satisfying (5.7) in t0 does not imply that (5.5) will be fulfilled in t1. This uncer-
tainty motivates the existence of prudential bids, that are greater than the minimum
rational level C+π̂P

V0
.

Remark 5.2. The cost πB of the bid bond is negligible in the framework introduced
above. In fact, it holds πB � πP , because αB � αP (see §1.3.1) and t1−t0 � t2−t1.
Further, the bid bond generates a claim only if the insured bidder defaults and is
the winner of the tender. Hence, assuming to know the number N of participants
involved in the tender process and considering approximately equal probabilities of
being awarded among participants, the price of the bid bond can be written as

πB = 1
N

p01LB
1− r − sαBV0. (5.8)

under the same assumptions considered for πP in equation (5.4). As discussed
above, the probabilities of winning are not uniform among the bidders, but such
precise information is not available to a surety that guarantees just one of them
in most cases. In general, considering the respective durations of bid bonds and
performance bonds, and the 1/N factor as well, it holds

1
N p01 � p12, (5.9)

that strengthens the validity of πB � πP .
The bid bond prices should be regarded more as “generic” expenses of the contrac-

tor than costs related to specific tenders, given that each contractor has to allocate
a share of economic resources to participate in tenders, to win a part of them at
most.

5.1.2 The surety’s perspective

The subject who acts as the surety may be either a bank or an insurance company
operating in the suretyship insurance line of business. We consider the latter case in
the following, assuming that the Solvency II framework regulates the surety. This
assumption copes with the investigated problem (i.e., the sustainability of bid bonds
in Italy - a country where Solvency II is applied to the insurance market).

According to the Solvency II Directive [36] (Article 44), each insurer must define
a set of rules, known as Risk Appetite Framework (also RAF), that aims to limit
the capital absorption level below a given fraction of the own funds. This concept
is then implemented in the Italian insurance law as well [30]. Since the RAF should
discipline the business strategy and the management actions, the problem of the
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efficient capital allocation among the insurer’s lines of business has been widely
investigated in the actuarial literature (see, e.g., [31, 32] and references therein).

However, this work focuses on the sustainability of a specific suretyship contract.
Hence, our interest in a surety’s RAF is limited to the subset of rules that may
limit the surety’s risk appetite against Premium Risk and the related Catastrophe
Man-Made Risk in the Solvency II Standard Formula framework. On the other
hand, the maximum acceptable amount of capital absorbed by the Suretyship line
of business is assumed to be fixed. Let us consider a (sub)portfolio composed of
suretyship policies only. According to the Solvency II Standard Formula [37, 38],
such a portfolio exposes the insurer to three risk components of the Underwriting
Risk, briefly summarized below:

i. The Premium Risk, whose Solvency Capital Requirement (SCR) is measured
as

SCRPr := 3σPrVPr,
VPr := max{PNext;PLast}+ FPExisting + FPFuture;

(5.10)

where PLast and PNext are the premiums earned in the last 12 months and
the premiums to be earned in the next 12 months respectively, FPExisting
and FPFuture are the expected present value of the premiums to be earned
after the following 12 months for existing contracts and for contracts whose
initial recognition date falls in the following 12 months1 respectively, and
σPr = 19% is the coefficient of variation associated to this sub-module of
risk by the European regulator. The geographical diversification factor is
not considered in equation (5.10), since we are considering risks arising from
Italian contractors only. The effect of reinsurance is ignored as well, for this
risk component and the next two listed below.

ii. The Catastrophe Recession Risk, whose Solvency Capital Requirement (SCR)
is measured as

SCRRec := PNext (5.11)

iii. The Catastrophe Default Risk, whose Solvency Capital Requirement (SCR) is
measured as

SCRDef := lgd(LE1 + LE2) (5.12)

where LEi (i = 1, 2) are the first and the second largest exposures in the
considered portfolio lgd = 10% is a loss-given-default coefficient fixed by the
European regulator.

The Standard Formula aggregation rule for the risk components listed above is

SCRUdw =
(
SCR2

Pr + 2ρSCRPrSCRCat + SCR2
Cat

)1
2 ,

SCRCat =
(
SCR2

Def + SCR2
Rec

)1
2 ,

(5.13)

where ρ = 25% and SCRUdw is the Underwriting Risk measure under the assumption
that all the risk components different from i.− iii. are null, as futher specified in the

1For future contracts, premiums earned during the first 12 months after the initial recognition
date are excluded from FPFuture contribution to volume measure.



5.1 Sustainability of a bid bond 113

following Remark 5.3. It is worth recalling that additional elements of the Standard
Formula framework defined for the C&S Line of Business are available in §2.3.

Remark 5.3. Equation (5.13) measures only a part of the SCRUdw that each sure-
tyship insurance company has necessarily to cover. In particular, the Reserve Risk
sub-module has been ignored, since the study reported in this chapter is focused on
the growth of Premium Risk due to newly underwritten contracts, that is directly
related to the sustainability of the new policies.

This simplification can be interpreted either as the assumption of instantaneous
indemnifications ( i.e., the surety opens and immediately closes the reserve provision
associated with each claim, keeping the Reserve Risk negligible) or as the assumption
that the surety’s RAF disciplines the Reserve Risk capital requirement separately
from the Premium and Catastrophe risks. Indeed, the latter assumption is more
likely than the first one.

Lapse Risk is ignored since it is not considered relevant to this line of business.

Loosely speaking, in this context the risk measure SCRUdw scales approximately
with the size of the future earned premiums that, according to equations (5.4) and
(5.8), are proportional to the notional exposures (NB = αBV0 or NP = αPV1 in
case of bid bonds or performance bonds, respectively) of each bond underwritten
and to the corresponding claim probabilities ( 1

N p01 or p02 respectively). Further,
both NB and NP are proportional to the initial value V0 of the contract and the
performance bond exposure NP has also a non-linear positive dependence on d01,
as shown in equations (1.3.1) and (5.3).
For the sake of simplicity, let us consider a stable or expanding business, so that

max{PNext;PLast} = PNext. (5.14)

The simplification introduced in equation (5.14) implies that equation (5.13) can
be rewritten as follows

SCRUdw =
√

9σ2
Pr(P + F )2 + 6ρσPr(P + F )

√
D2 + P 2 +D2 + P 2 (5.15)

where we use the compact notation D := SCRDef and P := PNext. Equation (5.15)
allows to estimate the marginal contribution δSCRUdw to the capital requirement
originated by a newly underwritten policy

δSCRUdw(P, F,D) = SCRUdw(P + δP, F + δF,D)− SCRUdw(P, F,D)

= CP δP + CF δF + . . . ,

(5.16)
where

CP := 1
SCRUdw(P, F,D)

[
9σ2

Pr(P + F ) + 3ρσPr
D2 + P 2 + P (P + F )√

D2 + P 2
+ P

]
,(5.17)

CF := 1
SCRUdw(P, F,D)

[
9σ2

Pr(P + F ) + 3ρσPr
√
D2 + P 2

]
, (5.18)

δP is the new policy’s contribution to PNext, and δF is the new policy’s contribution
to FPExisting +FPFuture. D is assumed to be constant, that is generally true, unless
the new policy’s exposure exceeds LE2 in equation (5.12).
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The premium accrual is linear in time, although the risk generated by the policy
decreases as a non-linear function of the time-to-maturity. Hence it holds

δP = πmin{T−t,1}
T−t0 ,

δF = πmax{T−t−1,0}
T−t0 ,

(5.19)

where π is the bond premium, t is the observation date, t0 and T are the recog-
nition date and the maturity date of the bond, respectively. Abrupt variations of
SCRUdw may occur in case an insured bidder wins a tender and the surety issues the
performance bond as needed. In this case, the bid bond premium πB, is replaced
by the corresponding performance bond premium πP � πB (see Remark 5.2). The
surety’s RAF should aim to prevent that the exposure “jumps” associated with
the conversions of bid bonds into performance bonds may lead to a breach of the
established SCRUdw threshold level.

Many policy underwriters are simultaneously and independently operating on
behalf of the surety. Hence, the contribution of each issued bond to SCRUdw cannot
be taken into account instantaneously. In a realistic situation, SCRUdw is likely
to be updated quarterly or twice a year, while new policies are issued daily or
weekly. Hence, the surety may choose to maintain SCRUdw at a safe distance from
a threshold SCRUdw by defining a maximum acceptable δSCRUdw caused by each
newly underwritten policy. Equations (5.4), (5.8), (5.16), and (5.19) imply that
the maximum acceptable exposure Ep of a new policy scales as p−1, where p is the
claim probability of the policy. Namely, it holds

Ep = δSCRUdw

CP
min{T−t,1}

T−t0 + CF
max{T−t−1,0}

T−t0

1− r − s
L

p−1, (5.20)

where δSCRUdw is the maximum acceptable variation of SCRUdw due to the new
risk. CP and FP depend on the last updated values of SCRUdw, P , F , and D.
Terms beyond the first order in equation (5.16) are assumed to be negligible.

Two concerns should be addressed before using equation (5.20) to define a (sim-
plified) surety RAF. First, if the contract is a bid bond, the case the contractor wins
the tender and, thus, a performance bond is needed must be considered. This issue
is addressed later in Definition 5.2. Further, sureties want to limit their concen-
tration of exposure against each contractor. Thus, a penalty term due to existing
exposures that the same contractor generates should be considered.

To address the latter issue, the threshold δSCRUdw is lowered by the first-order
contribution to SCRUdw of the policies already underwritten by the same contrac-
tor. Applying equation (5.16) once again, we have the new threshold

δSCRi := max

0, δSCRUdw − CP
∑
j∈{i}t

δPij − CF
∑
j∈{i}t

δFij

 (5.21)

where {i}t is the sub-portfolio of policies existing in t and underwritten before t by
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the i-th contractor, and

δPij = πij
min{T (ij)−t,1}
T (ij)−t(ij)0

,

δFij = πij
max{T (ij)−t−1,0}

T (ij)−t(ij)0

(5.22)

are the contributions to P and F of the j-th policy in {i}, given the same notation
used in equation (5.19). It is worth noticing that the new threshold can be equal
to zero, in case the concentration level on the i-th contractor has already exceeded
the surety’s risk appetite.

To handle the first concern on equation (5.20), the surety’s RAF can be defined
as follows.

Definition 5.1 (Backward-looking Surety’s RAF). The RAF is specified by the
function Ψ : (0, 1) → R+, defined as follows. Ψ(piJ) is the maximum increment of
exposure δEi that the surety is allowed to guarantee against the i-th risky contractor
(|{i}t| = J − 1), by issuing the new iJ-th bond whose claim probability is equal to
piJ . Ψ : piJ 7→ δEi has the form

Ψ(piJ) = δSCRi
CP

min{T (iJ)−t,1}
T (iJ)−t(iJ)

0
+ CF

max{T (iJ)−t−1,0}
T (iJ)−t(iJ)

0

1− r − s
L

p−1
iJ , (5.23)

Thus, the surety refuses to underwrite each J-th contract such that δEiJ > Ψ(piJ).

The RAF in Definition 5.1 is backward-looking in the sense that the acceptance
or rejection of a given contract depends only on the contribution of the contract
to the last SCR measured. As anticipated, Definition 5.1 does not offer solution to
the first issued raised above (i.e.: bid bonds which cope with Definition 5.1 may
lead to performance bonds that exceed the frontier defined in equation (5.23) in the
future). Definition 5.2 handles also this issue.

Definition 5.2 (Forward-looking Surety’s RAF). The RAF is specified by the cou-
ple {Ψ(·); pΨ}. The function Ψ : (0, 1) → R+ defines the maximum increment of
exposure δEi that the surety is allowed to guarantee against the i-th risky contractor
(|{i}t| = J − 1), by issuing the new iJ-th bond whose claim probability is equal to
piJ . Ψ : piJ 7→ δEi has the form stated in equation (5.23). The tolerance pΨ ∈ (0, 1)
is the maximum admissible probability that a risk underwritten in t implies a breach
of the boundary {pi′j′ , δEi′} at some t′ > t for all i′, j′. Namely, the iJ-th bond can
be underwritten in t only if

P
[
Ψ
(
pi′j′(t′)

)
< Ei′(t′)

∣∣Ft] < pΨ ∀t′ > t, i′, j′ ∈ N. (5.24)

where P is real-world probability measure available to the surety. A bond that satisfies
both conditions (5.23) and (5.24) by t is sustainable in the surety’s perspective.

The Solvency II Standard Formula is based on some simplifying assumptions
that also affect equation (5.23).

First, premiums as a volume measure establish a link between the riskiness of
each risk source (i.e. the contractor in this case) and the capital requirement.
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However, in case the premium rate is fixed at the issuing date t0, it is related to
the contractor’s standing at t0, but it may not be representative of the contractor’s
riskiness when SCRUdw is evaluated.

Further, the fraction of premium to be earned by the surety decreases linearly
over time. Hence, the negative dependence between risk and residual time-to-
maturity is taken into account. However, the non-linear decreasing of risk by time
- as shown, e.g., in equation (5.6) - is replaced by a linear dependency.

Despite these limitations, the Standard Formula represents a breakeven point
between simplicity and effectiveness. Being an established standard in the Euro-
pean insurance industry, it is worth considering it when defining the RAF used to
investigate the sustainability of a given bid bond. Internal model approaches are
possible as well and are not affected by the limitations mentioned above. However,
in this chapter, we are interested in investigating possible paradoxes arising in a
standard context. Hence we chose to use the Standard Formula exclusively.

Definition 5.1 introduces a maximum exposure-at-risk Ei per contractor, im-
plicitly. The value of Ei depends on the standing of the i-th contractor and the
remaining time-to-maturity of each underwritten contract, in agreement with intu-
ition. On the other hand, Definition 5.2 also forbids less trivial cases.

A bid bond that satisfies condition (5.23) in t0 may still not comply with con-
dition (5.24), in case it holds

P
[

Ψ−1 (EiJ+1(t1)) < piJ+1(t1)
∣∣∣F

t
(iJ)
0

]
> pΨ, (5.25)

where the bid bond is the J-th policy underwritten with the i-th contractor and the
subsequent performance bond (in case the contractor wins the tender) is the J + 1
policy.

It is worth noticing that equation (5.24) implies restrictions stronger than the
one stated in equation (5.25). Let us consider the iJ-th bid bond mentioned above,
assuming that it satisfies condition (5.23) and does not have the problem in equation
(5.25). Evenu in such a case, the bond could still not satisfy condition (5.24) due
to portfolio issues. In fact, when the number of simultaneously active bid bonds is
large enough, the probability that one of them results in a future performance bond
not compliant with condition (5.23) exceeds pΨ, even if the last underwritten bid
bond complies with the RAF when considered stand-alone.

The “global” sustainability of a bid bond (i.e. in the context of the surety’s
portfolio of underwritten bonds) is addressed in the next §5.2 numerically.

5.2 Measuring and managing the unsustainability sce-
narios in public tenders

This section addresses the sustainability issues introduced in §5.1 by implementing
the surety’s RAF proposed in Definitions 5.1 and 5.2. A model is introduced in
§5.2.1 to simulate the tenders. Each simulation considers three alternate versions of
the surety: without a RAF, adopting a backward-looking RAF as per Definition 5.1,
and adopting a forward-looking RAF as per Definition 5.2. The results obtained by
the Monte Carlo simulations are presented in §5.2.2, §5.2.3, and §5.2.4, respectively.
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5.2.1 Simulation of tenders in a surety’s perspective

In the following, the model employed to simulate the tenders of public works is de-
scribed. The model aims to highlight that unsustainable requests for a performance
bond are possible when considering realistic dynamics of default (or breach) prob-
abilities associated with each bidder. Further, the model is employed to investigate
the effectiveness of the RAF strategies implemented by the surety.

A realistic model of the Italian public works market should include some aspects
not considered in the following, such as the actual number of tenders per year where
the considered surety guarantees at least a bidder and the distribution of the public
works costs C. However, data needed to calibrate such a model are non publicly
available, and the model itself would not fit better for out purpose than the toy
model introduced here.

Let us consider a discrete-time framework where the elementary time step δt is
a quarter long. We consider a surety with access to 103 public tenders per quarter,
issuing a bid bond to at least a participant per tender since there is no need to
simulate tenders where the considered surety has no business. We assume that the
initial price of each tender is a uniform r.v.

V0 ∼ Unif[C, 150%C]. (5.26)

Both the boundaries minV0 and max V0 are admitted to represent a possible mis-
judgment of the procuring entity. In fact, V0 = C leaves no room to lower the initial
price or to aim for an extra profit, implying that no bidder is joining the tender.
Further, in case V0 = 150%C, equation (1.3.1) implies that EP /EB can reach a
value of 45 and above, increasing the probability that the required performance
bond violates equation (5.23) and, thus, that sureties reject the (unsustainable)
winner’s request for a performance bond.

Thus, it is natural assuming a positive dependency between V0/C and the num-
ber of potential bidders Ñ interested in joining the tender. We choose the form Ñ =⌊
100

(
eV0/C−1 − 1

)⌉
that implies a realistic range Ñ ∈ {0 = NV0=C , . . . , NV0=1.5·C =

65}. However, the N ≤ Ñ constructors who actually join the tender are the ones
able to make a bid according to the condition (5.7), depending on the values of π̂P
and V0.

The surety can issue more than a bid bond per tender (up to N), increasing the
probability that one among its insured bidders wins the contract and is required to
underwrite the corresponding performance bond. However, considering the compe-
tition in the surety market, we assume that the number of bidders n joining the
same tender and insured by the same surety is distributed as a shifted Poisson r.v..
Namely, ñ− 1 ∼ Pois(λB) where λB = 0.1 and n = min{ñ;N}.

The parameter αB is assumed to be distributed as a categorical r.v. with prob-
ability mass function

f(αB) =


0.2, αB ∈ {1%; 3%; 4%};
0.4, αB = 2%;
0.0, otherwise.

(5.27)

where the mode is fixed at 2%, as anticipated in §1.3.1.
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To estimate claim probabilities and their dynamics, we consider historical time
series of performing (“PL”) and non-performing loans (“NPL”) [126], publicly avail-
able from the Bank of Italy [112]. This choice is justified by the assumption that
the claim probability of a contractor is completely correlated to its creditworthiness.
This is true in the extreme case of bankruptcy, which implies the contractor’s inabil-
ity to be operating. In general, it is a fair approximation, although other elements of
technical nature (e.g., unforeseen geological features of the building location) may
contribute to the performance risk in specific cases.

Time series PLt and NPLt are quarterly available by ATECO 2007 economic
sector (i.e., our data are restricted to the “constructors” sector), size of loan s
(3 clusters) and geographical location g of the Italian debtor (5 clusters). Hence,
dynamics of claim probability can be specified by considering 15 bivariate time series
{PLt; NPLt}sg, where PLt is the number of performing loans at the first day of the
t-th quarter, while NPLt is the number of loans become past due during the t-th
quarter.

Since we need to represent a significant number of contractors by introduc-
ing a parsimonious number of parameters, we choose to apply the CreditRisk+

model [133, 134] to describe the dependence structure among the claims and the
marginal volatility of each cluster probability of default. The CreditRisk+ model
defines the dependence among defaults (or other absorbing events, such as breaches
of contracts) through an array of latent market factors Γ ∈ RK+ where Γk ∼
Gamma(σ−2

k , σ2
k), (k = 1, . . . ,K). It holds E[Γk] = 1 and Var[Γk] = σ2

k by con-
struction. The market factors alter the parameter’s value of the r.v. Yi(t, t′), that
represents the occurence of a claim generated by the i-th contractors in the time
interval (t, t′]. In its original formulation, the model [134] is defined in a single-time-
scale framework and Yi∼̇Pois(pi), where

pi(Γ) := qi ·
(
ωi0 +

K∑
k=1

ωikΓk

)
(5.28)

and the factor loadings ωik are supposed to be all non-negative and to sum up to
unity:

ωik ≥ 0, i = 1, . . . , N, k = 0, . . . ,K,
K∑
k=0

ωik = 1, i = 1, . . . , N. (5.29)

We consider the model’s generalization discussed in chapter 4 and [103], which is also
proposed for applications to Credit insurance [104]. The advantage of this choice
is the possibility to calibrate the model by using the quarterly time series available
and using it to estimate both the bid bond claim probabilities p01(t, h(i)) and the
corresponding performance bond claim probabilities p12(t, h(i)), where h = 1, . . . , 15
labels the cluster of the i-th bidder.

We assume that each bid bond has a 3 months coverage period on the interval
(t = t0, t1 = t + δt], while each performance bond has a 5 year coverage period on
the interval (t1, t1 +20δt]. This simplification is a part of the toy framework that we
are defining since public works duration depends on each project’s features and size.
However, it is numerically sound since a tender process takes a few months to close,
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while a public works project typically lasts a few years. Hence, a two-time-scales
parameterization is needed to price both the bid and the performance bond.

As discussed in §2.2.6, §4, and [103], the claim event in CreditRisk+ framework
can be modeled as Yi(t, t′) ∼ Bernoulli(pi(t, t′)), where the parameter pi has an
exponential dependency on the latent factors. Namely, under our set of assumptions
it holds

p01(t0, h) = 1− exp
[
−qh

(
ωh0 +

K∑
k=1

ωhkΓk(t0)
)]

, (5.30)

p12(t1, h) = 1− exp
[
−20qh

(
ωh0 + 1

20

19∑
τ=0

K∑
k=1

ωhkΓk(t1 + τ δt)
)]

, (5.31)

where τ ∈ N is the index used to label each quarter. Further, assuming that the
surety has developed an internal rating model such that reliable estimates of

{Γ(t) : t = t0, . . . , t0 + 19δt} |Ft0 ,

we can represent the possible fluctuations in performance bond pricing by consid-
ering p̂12 = p12 (t0, h(i)) = p12 (t1 − δt, h(i)), while the (correct) estimate p12, that
allows the computation of πP , shall not be available until t = t1.

Let us consider the time series {PLt; NPLt}sg available in [112], from 1st quarter
of 2016 to 1st quarter of 2021, to calibrate the CreditRisk+ model. The generalized
covariance estimator introduced in equation (4.37), the decomposition technique
introduced in [102], and the standard regularization technique described in [127]
return the result in table 5.1.

Remark 5.4. Claims are not simulated in our setting, although the CreditRisk+

framework is explicitly designed to do it. In fact, they are not relevant to the part
of the surety’s RAF addressed in this analysis. Occurred claims affect mainly the
reserve provision and the Reserve Risk capital requirement. On the other hand, they
may lead to a slight decrease of SCRCat or SCRPr, since claims generated by surety-
ship insurance products are absorbing events. Each policy may generate one claim
at most during the coverage period, implying the zeroing of both the corresponding
exposure and future premiums (if any).

The framework is completed by associating each i-th bidder to its h(i)-th cluster.
This is achieved by modeling the position of the public works underlying each tender
as a categorical random variable. The probability associated with each g-th area
(g = 1, . . . , 5) is proportional to the number of performing borrowers belonging to
that area observed in the construction sector by the 1st quarter of 2021. That is
equivalent to assume a correspondence between demand and offer in this economic
sector (i.e., the presence of many constructors implies a relevant number of public
tenders and vice versa). Assuming that all the bidders belong to the same area where
the public works must be executed, their distribution among the three loan classes
is modeled in a similar way, considering a categorical variable per geographical
area g, where probabilities are proportional to the number of performing borrowers
observed in the cluster sg (s = 1, 2, 3), conditioned to g.
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s g h qh k = 0 1 2 3 4 5

1 North-West 1 0.0050

ωhk =



0.516 0.246 0.025 0 0.212 0
1 South 2 0.0095 0.473 0.220 0.019 0.216 0 0.072
1 Islands 3 0.0098 0.559 0.231 0 0.210 0 0
1 North-East 4 0.0040 0.658 0.254 0.088 0 0 0
1 Center 5 0.0079 0.026 0.234 0.070 0.432 0 0.238
2 North-West 6 0.0079 0.509 0.228 0 0.028 0.235 0
2 South 7 0.0137 0.651 0.292 0.057 0 0 0
2 Islands 8 0.0158 0.455 0.266 0 0.036 0.237 0.005
2 North-East 9 0.0073 0.628 0.281 0.086 0.006 0 0
2 Center 10 0.0126 0.590 0.281 0.057 0.016 0 0.056
3 North-West 11 0.0130 0.091 0.235 0 0.134 0.443 0.096
3 South 12 0.0147 0.467 0.236 0.048 0 0.127 0.122
3 Islands 13 0.0185 0.619 0.333 0 0 0 0.049
3 North-East 14 0.0134 0.611 0.265 0.050 0 0.068 0.005
3 Center 15 0.0178 0.325 0.251 0.099 0 0 0.326

σ2
k = 2.417 0.157 0.052 0.049 0.044

Table 5.1. The complete set of parameters Ω̂, σ̂2
Γ necessary to specify the dependence

structure in CreditRisk+ model applied to the Italian “Constructors” economic sector.

It is worth recalling that the public works tenders in Italy can be classified as
first-price, sealed descending bid auctions2. The bid domain is compact, and the
winner is the author of the lowest bid in a set of non-identically distributed bids.
Hence, we cannot use the Fisher-Tippett-Gnedenko theorem [141, 142], which is
commonly applied to model the distribution of the winning bid in the ascending
bid auctions (see, e.g., the recent paper [143], where a Weibull distribution is con-
sidered). Thus, we need to determine the winning bid numerically, considering that
each rational bidder chooses its d01 according to condition (5.7).

A non-uniform distribution is assumed over each i-th domain, to take into ac-
count the appetite of each bidder for obtaining the contract. Namely, it holds

d01V0 − C − π̂P (i)
V0 − C − π̂P (i) ∼ Beta(α, β) (5.32)

where multiple specifications have been tested for the parameters set (α, β)as rep-
resented in figure 5.1: mode[pdf(d01)] tends to (C + π̂P )/V0 at increasing bidder’s
appetite for winning the tender, while it tends to V0 at increasing appetite for profit.
However, no relevant effect of the (α, β) choice is observed on the results presented
in §5.2.2-5.2.5. Hence, only the choice (α, β) ≡ (1.80, 7.20) is considered in figures
5.2-5.5.

2For complete classification of auctions and a deep theoretical discussion, see, e.g., [139] and
[140].
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Figure 5.1. Different behaviors of the bidders modeled by alternative parameterizations of
the Beta distribution in equation (5.32). Left panel: α = 1.80, β = 7.20. Central panel:
α = 0.80, β = 3.20. Right panel: α = 1.16, β = 1.16.

The winner of each tender is the lowest simulated bid per tender/scenario. The
bidders are indexed in simulations (i = 1, . . . , N). Doing so, the case when the
winning bidder is among the ones guaranteed by the considered surety is explicitly
represented.

5.2.2 Dynamics of the capital requirement without taking manage-
ment actions

Let us consider a suretyship insurance company that operates as a surety in the
framework introduced in §5.2.1. The surety is supposed to start operating in t = 0.
It is worth recalling that the duration of a bid bond is established to be equal to
three months, while each performance bond is assumed to expire after five years.
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Figure 5.2. Dynamics of SCRUdw(t). Left panel: example of Monte Carlo simulation
(single scenario), where the horizontal dashed line represent the SCRUdw threshold that
is fixed in the RAF, while red dots corresponds to the simulated breaches of SCRUdw(t)
above the SCRUdw level. Red columns at 0 level (right y-axis scale) represent the count
of rejected performance bonds per quarter (zero since no management action is taken).
Right panel: simulated distribution of SCRUdw(t) (103 Monte Carlo scenarios). The
median (solid line), 0.25− 0.75 quantiles (orange area), and 0.01− 0.99 quantiles (grey
area) are plotted. Red columns at 0 level (right y-axis scale) represent the average
number of rejected performance bonds per quarter.
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Thus, as expected, the surety SCRUdw - as defined in equation (5.15) - reaches an
equilibrium after five years, considering a stable flow (on average) of new contracts
per year (figure 5.2).

Without loss of generality, we choose SCRUdw = 0.7C, that is below the equi-
librium level SCRUdw(t > 5) ≈ 0.75C obtained numerically. The surety is supposed
to increase its sales volume until its risk appetite level is reached. Then, a risk ap-
petite framework is introduced to discipline the underwriting process, as discussed
in §5.1.2. Hence, in a liquid market, a surety with a higher risk appetite or a larger
amount of available own funds than the one considered in our simulations would
reach the same equilibrium state at a different SCRUdw level.

5.2.3 Dynamics of the capital requirement adopting a backward-
looking RAF

In §5.2.2 the surety has reached an equilibrium state that is slightly above its
risk appetite level. Thus, a RAF is needed to prevent the occurrence of breaches
SCRUdw(t) > SCRUdw. The same simulations presented in figure 5.2 are re-
performed, applying the management actions implied by Definition 5.1, ceteris
paribus.

The level δSCRUdw is needed to specify Ψ(·). It has to be as high as possible
to refuse the minimum number of contracts per unit of time, conditioned to avoid
breaches or, at least, make them improbable enough according to the surety’s risk
appetite. In the example we chose

δSCRUdw(t) = max
{

0; min
{
SCRUdw − SCRUdw(t− δt); δSCRUdw

[
Φ−1
πP

(0.95)|Ft
]}}

where ΦπP (·) is the cumulative distribution function of the performance bond prices
πP and δSCRUdw [·|Ft] is the marginal contribution of a given contract underwritten
in t to SCRUdw. δSCRUdw is evaluated by applying the linear approximation stated
in equation (5.16).

Namely, when the last measure SCRUdw(t− δt) done until t is far enough from
the threshold SCRUdw, we aim not to reject more than 5% of the performance
bond requested by the insured bidders who win their respective tenders. In case
the distance SCRUdw − SCRUdw(t − δt) approaches zero or negative values, the
RAF constraint become stronger up to block the acquisition of new contracts at all,
until an acceptable SCRUdw level is restored. Figure 5.3 shows the effectiveness of
this approach. Breaches are observable in tail scenarios, almost only in the region
(t ' 5) where the SCR regime is changing from expansion to equilibrium. The small
number of breaches and the RAF’s reaction implies a fraction of performance bonds
rejected slightly above the 5% target level.
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Figure 5.3. Dynamics of SCRUdw(t), given the notation introduced in figure 5.2. RAF
introduced in Definition 5.1 is applied to estabilish the management actions taken.

5.2.4 Dynamics of the capital requirement adopting a forward-
looking RAF

As discussed above, the surety should avoid the rejection of a performance bond as
much as possible. This case opens the possibility that the tender must be reopened
if no other surety is willing to issue the performance bond instead of the surety
that has issued the bid bond to the winning contractor. Further, in a market where
sureties are comparable, the rejection of a request by a company implies that the
other companies in the same market are likely to do the same, leading to a claim
generated by the bid bond.

Hence, it is worth addressing this issue by implementing the forward-looking
RAF introduced in Definition 5.2. It is not necessary to establish pΨ explicitly. The
probability that a performance bond generates a breach is an increasing function
of V0/C. Loosely speaking, a higher starting price implies that the winning bid -
always close to C - corresponds to a greater discount 1 − d01. Thus, a higher αP
can be expected as well, increasing the probability of a breach δSCRUdw.

Even without knowing the analytical form of the dependencies described above,
the qualitative picture is enough to implement the constraint (5.24) as

Φ−1
V0/C

(0.75) >
(
V0
C

)
k

(5.33)

where ΦV0/C(·) is the cumulative distribution function of V0
C and

(
V0
C

)
k
is the ratio

observed in the k-th tender. The percentile 0.75 has been chosen numerically, with
the aim of minimizing both the number of rejected performance bond requests and
the frequency of SCR breaches. Bid bonds that do no cope with equation (5.33)
are rejected, preventing a possible unsustainable request for a performance bond
(in case the bidder wins).
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Figure 5.4. Dynamics of SCRUdw(t), given the notation introduced in figure 5.2. RAF
introduced in Definition 5.2 is applied to estabilish the management actions taken.

Given the additional constraint, we can weaken the other introduced in §5.2.3,
passing from 0.95 to 0.99 (i.e., we aim to reject up to 1% of performance bonds,
to limit both the claims arising from the corresponding bid bonds and the surety’s
reputational risk). Results are exposed in figure 5.4, where the number of rejected
performance bonds decreases.

5.2.5 The role of the procuring entity

As shown in §5.2.4, a surety that implements a forward-looking RAF can prevent
the majority of unsustainable tender outcomes, avoiding rejecting performance bond
requests from the winners and the possible subsequent need for reopening the tender.

However, unsustainability issues originate from a poor choice of starting price by
the public procuring entity. Left panel of figure 5.5 shows how a starting price near
the breakeven level (i.e. V0 ' C) disincentives constructors to join the bid, due to
the constraints introduced in condition (5.7). It is worth noticing that this result is
independent of the assumption made about the dependency Ñ(V0). A tender that
does not attract participants is clearly unsustainable from an economic perspective.
The resources invested in promoting it are wasted, and the public works cannot
be executed. Further, also the opposite case (i.e. V0 � C) implies the economic
unsustainability of the tender, as the tender outcome implies NP /NB � 1 and,
thus, an excessive risk for the surety (i.e. an unsustainable cost for the winning
bidder or the inability to underwrite the - mandatory - performance bond). The
right panel of figure 5.5 shows the results of our simulations in this perspective: the
fraction of requests for a performance bond rejected by given surety increases from
≈ 0% to ≈ 50% as V0 passes from ≈ 1.25C to ≈ 1.45C.

Remark 5.5. Figure 5.5 shows that the tender is almost surely sustainable, de-
pending on the procuring entity’s proper choice of the V0 value. This fact implies
that the case πP � π̂P due to the worsening of a bidder’s creditworthiness during
the tender process has a negligible impact. The numerical evidence copes with the
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intuition: since the tender lasts a few months, a relevant change in a bidder’s credit
standing is unlikely during such a short period.
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Figure 5.5. Sustainability as a function of the starting price V0 Left panel: fraction
of constructors who can afford to make a bid, as the starting price approaches the
breakeven level C (dashed line: average; orange area: confidence interval within ± 1
Standard Deviation; grey area: confidence level within 0.01-0.99 quantiles). Right panel:
fraction of concluded tenders whose requested performance bond is not rejected by the
surety (average level) at increasing starting prices.

5.3 Summary
This chapter highlights the existence of an economic unsustainability risk for the
tenders that award public works contracts, as suggested above in §2.1. The Italian
bidding law and the Solvency II regulatory framework are explicitly considered
to model the behavior of the three subjects involved in the tender process: the
procuring entities, the bidders, the sureties. Numerical simulations show that this
risk can be mitigated and prevented by the proper choices of both the surety and
the procuring entity.

In §5.1 sustainability conditions are stated for both the bidders and the sureties.
In particular, sureties can protect their SCR target levels by applying a RAF, as
requested by the Solvency II Directive. In §5.1.2 we propose two simplified RAFs,
both based on the linearization of the Solvency II Standard Formula. The first one
(i.e., “backward-looking” - Definition 5.1) aims only to protect the surety’s SCR
level, regardless the effects on the tender process. A boundary (p;Ep = Kp−1)
is shown to separate sustainable new exposures E ≤ Ep from the unsustainable
ones (E > Ep), depending on the default probability p associated to the considered
contractor. A closed-form expression for K is provided from the Standard Formula
prescription to evaluate the Non-life Underwriting risk module for the S2LoB 9 -
Credit & Suretyship Insurance. We show that the sureties can protect both them-
selves and the tender process by applying a “forward-looking” RAF, like the one
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proposed in Definition 5.2. A numerical comparison among the two RAFs is pre-
sented in §5.2.3 and §5.2.4, showing that the latter can actually protect all the three
subjects involved in the tender process.

While the surety can mitigate the unsustainability risk, the public procuring
entity can prevent it by establishing an acceptable starting price for the tender.
Our simulations suggest that V0/C ∈ [1.05, 1.25] is the most sustainable choice in
a realistic setting, where the Italian constructors’ default probability is modeled by
applying the CreditRisk+ framework to recent historical data.

The framework proposed in this chapter can be further investigated and im-
proved in future studies. In particular, the Standard Formula approach can be
replaced by a Partial Internal Model to define the two RAFs. The specific fea-
tures of other regulatory frameworks diverse from the Italian bidding law may be
investigated as well, provided that historical information to calibrate the model
is publicly available for each considered country. Further, two limitations of this
study are reported in the following. They can be addressed in further studies as
well. First, both the procuring entity and the surety are assumed to perform error-
free estimates. The procuring entity could actually choose V0 poorly because of
a bad strategy or the error affecting its C measure. The surety may perform a
poor estimate of p12 as well, implying the missed identification of an unsustainable
tender outcome due to a mistaken πP evaluation. A second limitation of the study
arises from the simplifications made in simulating the solvency balance sheet of the
surety. Our model could consider a dynamical reserve risk and a non-zero mar-
ket risk (generated by the surety’s assets) in addition to premium and catastrophe
risk components to provide a more realistic representation. Although future studies
can adequately address these limitations, it is worth noticing that our simplified
framework is consistent with the features that the considered system should have
according to [26, 27], as summarized in the chapter’s introduction. These limita-
tions do not diminish the practical conclusions of the study about the strategies
that the surety and the procuring entity can implement to mitigate the investigated
unsustainability risk - namely, the adoption of the RAF introduced in Definition
5.2 and the choice of V0/C ∈ [1.05, 1.25], respectively.

Finally, the results reported in this chapter support the conclusions of chapter
2. In fact, considering the setup outlined above in §5.2.1, the numerical evidence
reported in §§5.2.2−5.2.5 suggests that the main cause of unsustainable tender
outcomes - and related claims as well - is the tender pricing misspecification, as
highlighted in Remark 5.5. On the other hand, in the extreme case of a “blind”
procuring entity (as assumed in equation (5.26) in our numerical framework), the
contribution to bid bond claim probability due to unsustainability can be almost
fully prevented by a surety who follows a proper underwriting strategy, as shown in
§5.2.4.

In this picture, there is no evidence of non-negligible contribution to the claim
probabilities coming from a realistic bidders’ creditworthiness volatility, as the one
simulated considering parameters in Table 5.1. Hence, the conclusions reported in
§2.2.7 are confirmed: the choice to model C&S claim probabilities without modeling
any explicit creditworthiness dynamics seems appropriate.
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Chapter 6

Information asymmetry in
Credit Insurance

Estimating the frequency and probability associated with the occurrence of absorb-
ing events is a central issue in finance, medicine and actuarial science [90–94,98,100].
Human death, bankruptcy, and breach of undertaking are relevant examples.
Over the past century, frequency estimation has also been addressed in cases where
only incomplete information is available. This type of problem highlights the limits
of the classical frequency estimator, that is, the maximum likelihood estimator for
the Bernoulli distribution parameter. The seminal papers of Kaplan and Meier
[91] and Cutler and Ederer [92] introduced two frequency estimators designed to
handle data incompleteness to a certain extent. Both were developed to measure the
human mortality rate, given right-censoring events, that is, when some individuals
belonging to an observed sample cease to be observable before the end of a given
measurement period [101]. Hence, the observer cannot establish their state (dead
or alive) at the end of the period. These results are among the foundations of the
contemporary methods [93–97] used to process historical data on human mortality
and related topics.
The Cutler–Ederer estimator has also been applied in finance due to its simplicity
and flexibility [98, 100] to measure the default frequency observed for a population
of risky debtors, and is still in use. The classical frequency estimator is commonly
used to measure default frequency [102,107,108], given the complete availability of
the information needed in most cases of financial interest.
Credit insurance modeling also requires the estimation of default frequencies because
the underlying risk covered by a policy is the credit risk generated by a pool of
debtors [39,40,85–87]. However, the insurer does not know if and when each debtor
receives goods or services from the insured against a delayed payment. Moreover,
the payment maturity is unknown unless the debtor is insolvent at the due date and
the insured seller notifies the insurer of the claim. Hence, credit insurers cannot
distinguish between the time when they can “observe” a default event because of an
existing commercial credit that could not be paid at the due date or the time when
a default of the same debtor would not affect them (i.e., it would be “unobservable”)
because the insured seller is not exposed. In the latter case, the seller could stop
providing goods or services to the debtor, implying no further exposition of the
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insurer to the debtor’s default risk. Therefore, multiple left- and right-censoring
events occur during the coverage period: each debtor goes from being observable
to being not observable and vice versa, depending on the unknown (i.e., stochastic)
behavior of the insured seller.
This chapter addresses the problem of estimating the default frequency of a pool of
risky debtors from a credit insurance company’s perspective. As the main frequency
estimators in the literature are inadequate for this purpose, a new parametric esti-
mator is proposed.
Improved estimation of default probabilities brings relevant benefits to credit insur-
ance companies. First, credit insurers have the right to reduce or cancel previously
granted coverages. Nonetheless, taking the right management actions requires iden-
tifying which clusters of covered debtors are the most likely to generate losses in the
future. The censoring events mentioned above may impair this ability, and the pro-
posed estimation technique can overcome this issue. Further, the precision of the
claim probability estimation affects policy pricing and provisioning dramatically.
These are two core activities to any insurance company and are well-known to drive
the profitability of an insurance business. Finally, a credit insurance company can
benefit from precise default probabilities estimation also from a regulatory perspec-
tive. In the Solvency 2 framework, high precision default probabilities are needed
to develop an internal model to measure Credit&Suretyship underwriting risk, as
the European supervisory authority EIOPA compares the forward-looking estimates
with the realized losses across several years for each authorized Credit&Suretyship
internal model [81].
The remainder of this chapter is organized as follows. Section 6.1 introduces the
problem that a credit insurer has to handle when estimating claim and default fre-
quency. Section 6.2 presents a model describing the insured seller’s behavior. This
section also addresses the calibration of the proposed model and develops a new
default frequency estimator as a function of the model parameters. Section 6.3 nu-
merically tests the model against real-world historical default frequencies, showing
the possibility of precisely estimating the “true” number of defaults, including those
not observed by the insurer. Section 6.4 summarizes the main results and draws
conclusions.

6.1 Information available to insurers in trade credit in-
surance

This section introduces the information asymmetry in credit insurance between the
insurers and the insured, together with its consequences regarding claim frequency
estimation.
§6.1.1 shows how credit insurers experience an important lack of information that
does not allow the direct estimation of the exact number of insolvency/default
events occurring for a basket of risky debtors. A consistent estimation of insolvency
frequency is possible by applying a dedicated estimation method to compensate for
the bias introduced by the poor quality of the available information. The following
sections propose and apply this method.



6.1 Information available to insurers in trade credit insurance 129

§6.1.2 discusses the application of the principal frequency estimators available in the
statistics literature, showing they are not suitable in the credit insurance context.
It is worth recalling that §1.2.1 outlines the main features of a credit insurance
policy, introducing the main elements of credit insurance relevant to this research
problem and the proposed solution. Moreover, §§3.2−3.4 introduce the three classic
frequency estimators considered in §6.1.2.

6.1.1 Counting default events in a homogenous set of buyers

This section and the next §6.1.2 introduce the research problem: the insurer’s un-
derestimation of the default frequency for a homogeneous population of risky buyers
due to the behavior of the insured sellers. Under the framework presented in §1.2.1,
an insured seller can potentially detect early warning signs of a buyer’s default be-
cause their ongoing business relationship provides reliable and updated information
about the buyer’s creditworthiness (e.g., the payment behavior of the buyer regard-
ing previous invoices). Considering buyers belonging to the small and medium-sized
enterprise (SME) segment, for which publicly available information is scarce, the
seller may evaluate the likelihood of a buyer’s default better than the insurer. If
the buyer’s debt payable to the seller is zero when the buyer’s credit standing wors-
ens, the seller could decide against issuing new invoices. Thus, the buyer’s default
does not lead to a claim; hence, the insurer cannot observe it, despite a credit limit
granted for the defaulted buyer. This is an immediate advantage for the insurer;
however, it can also induce the insurer to underestimate the default probability of
comparable buyers.
As previously noted, the analysis considers buyers in the SME segment, whose
default probability must be estimated by measuring the default frequency for a
cluster of comparable risks. Three preliminary specifications are worth considering
before introducing the definitions and assumptions needed to address this problem.

• Absorbing events. Although a buyer that misses a payment is not necessarily
insolvent, we only consider default events because the temporary liquidity
crisis of the buyer is supposed to end with a full recovery of expired debt. If
a claim has been notified to the insurer, the recovery notification will follow,
enabling the distinction of that claim from those generated by actual default
events. The buyer’s financial distress may also cause a temporary interruption
of its business relationship with the seller, thus preventing the insurer from
observing a claim. However, a buyer’s temporary distress does not affect
the quality of the default frequency estimated by the insurer in both cases.
Thus, from the insurer’s perspective, only the missed payments associated
with absorbing events are worth considering.

• Recurrence of sellers. In principle, the same insurer can serve multiple sellers
who trade with the same buyer. This situation would increase the probability
of observing at least one claim if the buyer defaults; otherwise, all insured
sellers should interrupt their business relationships with the buyer before the
default event. However, it is only reasonable to expect the relevant recurrence
of insured sellers over the same buyer if the buyer is a large company that
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needs goods or services from many distinct (insured) providers, such that at
least some are served by the same credit insurance company. That is, such a
buyer is likely to belong to the corporate segment. As we consider only the
SME segment, we can safely assume that each risky buyer is brought to the
credit insurer by only one seller, apart from a negligible number of exceptions.

• Need for an unbiased estimation. As previously observed, avoiding a claim is
an advantage for the insurer. In a perfectly stationary framework, estimating
the fraction of latent default events is unnecessary, as they remain constant
over time. However, given the common need to model the dynamics of default
probabilities, it is necessary to separate them from the effects of the sellers’
behavior over the default time series available to the insurer. This situation is
further discussed in §§6.3.3-6.3.5, which provide some numerical applications.

Let us consider a credit insurance company (CIC) that protects an insured seller
(ISE) against losses from a given pool of buyers {b}. Let bj ∈ {b} be the j-th buyer
of the pool. We assume that the CIC has granted a credit limit to the ISE against
losses from bj . Let [tj , Tj ] be the validity period of the credit limit, which implies
that the ISE is indemnified by the CIC for the overdue invoices issued in [tj , Tj ],
provided the exposition over bj does not exceed the approved credit limit. However,
as the research problem refers to how to estimate the expected default frequency
of buyers belonging to a homogenous subset {b′} ⊆ {b}, neither the amount of the
credit limit nor the ISE exposure on bj are relevant. The same applies to any other
amount normally involved in a credit policy life-cycle (e.g., the taxable amount of
each insured invoice).
The ISE may issue an arbitrary number of invoices to bj during [tj , Tj ]. Each invoice
can be identified by double index jk, where index k = 1 . . .Kj is used to sort the
invoices issued to the j-th buyer in chronological order. In this context, the jk-th
invoice is described by three subsequent instants: issue date t0jk, due date t1jk, and
end of the extension period t2jk, where t0jk < t1jk < t2jk. If the jk-th invoice is overdue
at t1jk, the ISE can wait until t2jk before notifying the CIC of the claim. The extra
time can be used to fully recover the outstanding credit from bj . After t2jk, even if
the k-th invoice issued to the j-th buyer is still overdue, the ISE loses the right to
notify the claim to the CIC.
An explicit notation is also introduced for the waiting time between two subsequent
invoices:

∆0
jk := t0jk − t0jk−1, (6.1)

and for the durations
∆x
jk := txjk − tx−1

jk , x = 1, 2, (6.2)

where ∆1
jk and ∆2

jk are the “credit term” and “extension period” of the k-th issued
invoice, respectively. Extension period ∆2 is defined in the policy form and is usually
equal for all insured invoices; hence, ∆2

jk = ∆2. The credit term can be different
for each invoice, as established by the ISE for the jk-th invoice at t0jk. However, the
jk-th invoice is guaranteed by the CIC only if 0 < ∆1

jk ≤ ∆1 holds, where ∆1 is the
maximum credit term established in the policy form. It thus holds that ∆x

jk > 0
(x = 0, 1, 2) by construction.
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Figure 6.1. Example of credit insurance coverage. Three invoices are issued to the j-th
buyer of a credit risk policy during the credit limit validity period. In this example,
neither the period when the default of bj can generate a claim or the period when the
claim can be notified are connected intervals.

The example in Figure 6.1 displays a set of invoices issued to the same buyer. As
previously discussed, given a credit limit validity period [tj , Tj ], claims can occur
over interval [tj , Tj + ∆1] and can be notified until Tj + ∆1 + ∆2.
By construction, a claim occurs only if:

∃k ≤ Kj s.t. τj ≤ t1jk, (6.3)

where τj is the default time of bj . An invoice can somewhat be overdue only if the
buyer becomes insolvent before the due date. When the jk-th invoice generates a
claim and it is submitted, t0jk and t1jk are reported to the CIC. Otherwise, a paid
invoice remains unsubmitted even after Tj , unless the CIC inspects the entire ISE
turnover.
Let ISE detect a criticality when the default of bj occurs at τj , implying the inter-
ruption of their commercial relationship. The following assumption then follows

Assumption 6.1 (Supply disruption in case of default). Let τj be the time when
bj transitions to an absorbing default state. Thus,

@k ≤ Kj s.t. τj ≤ t0jk.

That is, in the case of a default, the insurer receives a claim only if at least one
invoice has already been issued before τj . Assumption 6.1 implies that the default
of bj can be observed by the CIC only if:

τj ∈ Oj :=
Kj⋃
k=1

(
t0jk, t

1
jk

]
, (6.4)
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where Oj is a disjoint union of intervals, whose positions and lengths are stochastic
for the CIC. The following is the estimation problem to address in this context:
the number of default events D̂t,t′ occurring in a given period (t, t′] and observed
by CIC is likely to be less than the actual number, Dt,t′ , of all default events that
occurred in the same period. In fact, it holds by construction that:

Dt,t′ :=
∑

j:bj∈{b}
1I{τj∈(t,t′]} ≥

∑
j:bj∈{b}

1I{τj∈(t,t′]∩Oj} =: D̂t,t′ . (6.5)

Furthermore, the CIC can receive a claim notification only in ∪Kjk=1(t1jk, t2jk], implying
a delay in the observation of the default event. However, given that t0jk, t1jk of the
defaulted invoice are always notified to the CIC together with the claim occurrence,
t2jk and ∆2 are not relevant to what follows.

6.1.2 Classical frequency estimators and the credit insurance prob-
lem

Given a sample {b} ofNt buyers not defaulted in t, each being observed in (t,min{τj , t′}],
where j = 1 . . . Nt if each default event is directly observable, default frequency ft,t′
over a given interval (t, t′] can be estimated as:

f̂t,t′ := Dt,t′

Nt
, (6.6)

which is the maximum likelihood estimator of the Bernoulli distribution parameter,
given a set of independent and identically distributed (IID) realizations. However,
as discussed in §6.1.1, Dt,t′ is not directly available to the CIC. Hence, the form of
the “classical” Bernoulli estimator is not applicable here because of the bias implied
by Equation (6.5):

ft,t′ = E
[
f̂t,t′

]
> E

[
f̂CIC
t,t′

]
, f̂CIC

t,t′ := D̂t,t′

Nt
. (6.7)

Assume Ns (s ∈ (t, t′]) may change because the subjects cease to be observable
(right-censoring events or “losses”) or become observable (left-censoring events) at
some {s1, s2, . . . } ⊂ (t, t′]. As we are introducing new causes to explain the Ns

variations over time, other than default events, the value Nt at the beginning of
the observation period does not consider these variations adequately. Kaplan and
Meier [91] introduced a nonparametric estimator designed to address this problem:

f̂KM
t,t′ := 1−

∏
τ−∈{τ}

(
1− Nτ− −Dτ

Nτ−

)
, (6.8)

where {τ} ⊂ (t, t′] is the set of default times observed in considered period (t, t′] and
Dτ is the number of default events observed in τ . This estimator can be applied
only if the observer knows the set of time values {τ} when at least one default occurs
and the number of (left)right-censoring events occurring between two subsequent
elements of {τ} to compute Nτ− . Unfortunately, neither requirement is met for
credit insurance. The CIC does not observe the “true” default time, τj , but only
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the nearest t1jk following it (the due date of the first overdue invoice). Moreover,
left- and right-censoring events depend on the policyholder behavior regarding the
invoices issued to bj . As discussed in §1.2.1 and §6.1.1, this information is generally
not available to the CIC.
When the exact timing of right-censoring events or default events occurring in period
(t, t′] is available, the nonparametric estimator introduced by Cutler and Ederer [92]
can be considered:

f̂CE
t,t′ := Dt,t′

Nt′ +Dt,t′ + 1
2Rt,t′

= Dt,t′

Nt − 1
2Rt,t′

, (6.9)

where Rt,t′ is the number of right-censoring events occurring in (t, t′]. Hence, each
subject that exits from the sample before t′ is approximately counted as observed
until t + 1

2(t′ − t). Once again, the requirements for applying this estimator do
not correspond with the information available to the CIC. It is, thus, necessary
to assume that only right-censoring events occur in (t, t′], and their number, Rt,t′ ,
is a posteriori known in t′. As discussed, the observability of each bj is affected
by multiple stochastic left- and right-censoring events and their number remains
unknown to the insurer, even after Tj .
Hence, the lack of relevant information in credit insurance does not allow for infer-
ring default frequency ft,t′ by applying one of the “classical” estimators developed
for this purpose. However, although the f̂CIC

t,t′ introduced in Equation (6.7) is a
biased estimator of ft,t′ , it is also an unbiased estimator of the claims frequency
that the CIC experiences under a given unknown invoice distribution (i.e., an un-
known “average” ISE behavior). This situation explains when it is appropriate to
use the Bernoulli estimator in credit insurance modeling, as is the case in the recent
research by [102–104]. Assuming that the latent ISE behavior can be represented
by a stationary distribution, there is no reason to identify and compensate bias
E[f̂CE

t,t′ ] − ft,t′ , given that CICs are more interested in measuring their own claim
frequency instead of the latent ft,t′ , which includes unobserved default events.
However, the ISE behavior experienced by the CIC may change over time due to
the evolution of either the credit insurance demand (e.g., an increasing number of
policyholders belonging to an economic sector that was formerly rare among ISEs)
or the credit insurer selection criteria (e.g., a decreasing number of policyholders
belonging to a cluster considered too risky during a certain time interval). In this
case, it is possible to infer ft,t′ and the bias due to the invoice distribution separately
for a correct forecast of the claim probability.
Section 6.2 introduces a method to achieve the unbiased inference of ft,t′ using the
information available to the credit insurer. Section 6.3 discusses numerical exam-
ples of the stationary versus the evolving policyholder behavior and the possible
estimation of the hidden Dt,t′ using the estimator proposed in this chapter.

6.2 Behavioral model for the policyholder and estima-
tion of latent default events

As discussed in §6.1.2, classical frequency estimators are not suitable for measuring
the default frequency from the information available to a credit insurer because of
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stochastic left- and right-censoring events.
The Kaplan–Meier and Cutler–Ederer estimators handle the presence of censoring
events by partitioning the time interval and decreasing the effective number of
observed subjects, respectively. Both strategies are conditioned by the availability
of some information on timing or, at least, the number of censoring events occurring
during the considered time interval. Given the lack of this kind of information
experienced by the credit insurer, this section introduces a new estimator, which
addresses the problem by increasing the number of observed default events. Namely,

f̃t,t′ := D̃t,t′ (π)
Nt

=
1

P̃ (π)D̂t,t′

Nt
, (6.10)

where P̃ := Prob(τj ∈ Oj |Ftj ) is the probability of observing a credit insurance
claim conditioned to the buyer’s default. Hence, D̃t,t′ is an estimate of the actual
(latent) number of default events Dt,t′ , whereas D̂t,t′ ≤ D̃t,t′ is the number of
observed default events (i.e., number of claims). The policyholder’s behavior can
be described by the model introduced in §6.2.1, which is completely specified by
parameter set π.
The estimation of P̃ is addressed in §6.2.2. The theorem proven in §6.2.2.1 pro-
vides nonparametric expressions for the lower and upper bound of P̃ . In §6.2.2.2,
the corresponding parametric expressions are developed from the distributional as-
sumptions introduced in §6.2.1. Finally, §6.2.3 describes a calibration method for
estimating π̂.

6.2.1 Definitions and assumptions

Let us consider buyer bj to be a risk underlying a credit risk policy. Assume the
CIC grants a positive credit limit to the ISE against the default of bj and let [tj , Tj ]
be the credit limit validity period. Following the notation introduced in §6.1.1, this
section introduces a set of assumptions to describe the covered invoices and provides
the distributions of the issue dates {t0j1, t0j2, . . . } and due dates {t1j1, t1j2, . . . }.
When the k-th invoice is issued, k-th issue date t0jk and k-th credit term ∆1

jk are si-
multaneously fixed by the ISE, despite being unknown to the CIC. Hence, a stochas-
tic bivariate process is introduced.(

t0jk,∆1
jk

)
k∈N

, (6.11)

using the conventional value
(
t0j0 ≡ tj ,∆1

j0 ≡ 0
)
for k = 0.

The filtration associated to the process is written as:

Fjk := σ
(
t0jk′ ,∆1

jk′

∣∣∣ k′ ≤ k) ; Fj := (Fjk)k∈N . (6.12)

The distributions needed to fully specify this process are introduced in Assumptions
6.4 and 6.5. However, it is useful to introduce two basic features of this process.
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Assumption 6.2 (Markovianity). The process defined in (6.11) is a stationary
Markov chain, namely:

Prob
(
t0jk,∆1

jk

∣∣∣ t0j0,∆1
j0, . . . , t

0
jk−1,∆1

jk−1

)
= Prob

(
t0jk,∆1

jk

∣∣∣ t0jk−1,∆1
jk−1

)
Prob

(
t0jk+1,∆1

jk+1

∣∣∣ t0jk,∆1
jk

)
= Prob

(
t0jk,∆1

jk

∣∣∣ t0jk−1,∆1
jk−1

)
holds for each k ∈ N∗.
Moreover, (∆1

jk)k∈N∗ are assumed to be IID random variables, whereas only the
distribution of t0jk depends on the realization of

(
t0jk−1,∆1

jk−1

)
.

The issue date of a new invoice to the j-th buyer may depend on when the last
invoice to the same buyer has expired (been paid). The buyer may decide to order
a new supply of goods or services only after paying for the previous order. Al-
ternatively, the seller may require receiving all outstanding credit from the debtor
before satisfying new orders. Moreover, the timing of the new buyer’s order may
only be related to the buyer’s needs, regardless of the debt situation. However,
the buyer–seller decision on the timing of a new invoice issue is unlikely to depend
on issues older than the last issue. Hence, we observe that (t0jk,∆1

jk) depends on
(t0jk−1,∆1

jk−1), which can at most imply Assumption 6.2.
Assumption 6.1 can be equivalently reformulated as:

Probjk
(
t > t0jk+1 |t > τj

)
= 0, (6.13)

where notation Probjk(a|b) represents the probability associated with event a, con-
ditioned to b, and filtered at time t0jk. However, we also introduce the following

Assumption 6.3 (ongoing business relationships). Provided bj continues to be
solvent and granted by a credit limit, the ISE will almost certainly keep providing
goods or services:

lim
t→∞

Probjk
(
t > t0jk+1

∣∣∣t < τj ∧ (t0jk, t] ⊆ [tj , Tj ]
)

= 1.

It is thus reasonable to assume that the existence of a credit limit on bj implies an
ongoing commercial relationship between the ISE and bj .

6.2.1.1 Distributional assumptions

The following two assumptions are introduced to specify the probability density
functions of t0jk and ∆1

jk, respectively. Let

ρxjk|k′ (t) dt := Probjk
(
txjk = t

)
(6.14)

ρ∆x
jk|k′ (t) dt := Probjk

(
∆1
jk = t

)
, (6.15)

where x = 0, 1. Assumptions 6.4 and 6.5 are then used to determine the joint
distribution of issue dates t0jk (k = 1 . . .Kj).
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Credit terms ∆1
jk are defined over the interval

(
0,∆1

j

]
. However, in practice, ∆1

jk is
likely to belong to a discrete and finite subset of its domain. The due date is typi-
cally settled after an integer number of quarters, months, or, less commonly, weeks
after the issue date. Hence, the effective domain of ∆1

jk is {d1, 2d1, . . . , N∆d
1 ≡

∆1} ⊂
(
0,∆1], where d1 is equivalent to a quarter, month, or week. The associated

probability distribution is also discrete, as described by the following assumption.

Assumption 6.4 (Credit term distribution). Credit terms ∆1
jk are IID categorical

random variables, distributed according to the probability density function:

ρ∆1
jk|k′ (u) =

N∆∑
n=1

wnδ (t− un) k > k′, (6.16)

where N∆ = ∆1/d1 is an integer, un := nd1 and
∑N∆
n=1wn = 1, where wn > 0

(n = 1 . . . N∆).

The temporal distribution of issue dates depends on the commercial relationship
between the policyholder and buyer. A gamma distribution is a natural choice for
modeling waiting times [110] and can be considered in this context. Assumption 6.5
introduces a three-parameter gamma distribution considering a location parameter
to better represent the possible dependence of t0jk on t1jk−1.

Assumption 6.5 (Issue date distribution). The k-th issue date is distributed as a
gamma random variable

ρ0
jk|k−1 (v) =


1

Γ(Kk)θKk [v − γk]Kk−1 exp
(
−v−γk

θ

)
v ≥ γk,

0 otherwise.
, (6.17)

where γk is a location parameter that depends on both the issue date and the credit
term of the previous (i.e., k − 1-th) invoice:

γk := t0jk−1 + ξ1∆1
jk−1, (6.18)

and Kk is a shape parameter that depends on the credit term of the previous invoice.

Kk :=
ξ2∆1

jk−1
θ

. (6.19)

However, scale parameter θ is assumed to be fixed at a constant value for all con-
sidered invoices. The same applies to ξ1, ξ2. The distribution is fully specified by
the knowledge of (ξ1, ξ2, θ).

It is worth noting that Equation (6.18) in Assumption 6.5 introduces a dependence
of the k-th location parameter γk on credit term ∆1

jk−1 of the previously issued (k-
1)-th invoice. This introduction is required to represent business relationships where
a service is provided on demand, without considering whether the previous service
has already been paid for, as well as business relationships where there is a rigid
alternation of services and payments. The flexibility provided by this assumption
is further discussed in §6.2.1.2.
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Assumption 6.5 states, inter alia, that the probability density function of variable
t0jk can be represented as a function of difference t0jk − t0jk−1. Hence, it holds by
definition that:

t0jk = t0j0 +
k∑

κ=1
∆0
jκ. (6.20)

Equation (6.20) implies that, given the filtration Fjk−1, ∆0
jk is gamma distributed

with the same scale and shape parameters of t0jk but a different location parameter:

γ′k := ξ1∆1
jk−1. (6.21)

Given that gamma variables with the same θ scale are closed under the “+” opera-
tion, Equation (6.20) allows writing densities ρ0

jk|k′ (·) and ρ
∆0
jk|k′ (·), (k

′ < k). Given
the same functional form for ρ0

jk|k−1 (·), the shape and location parameters are:

Kk|k′ = ξ2
θ

k−1∑
κ=k′

∆1
jκ (6.22)

γk|k′ = t0jk′ + ξ1

k−1∑
κ=k′

∆1
jκ, (6.23)

where we adopt the same convention, t0j0 ≡ tj , chosen for the process defined
in Equation (6.11). Mathai and Moschopoulos [109] determined the multivariate
gamma density function associated with the joint probability of random variables
(RV), which can be expressed as the partial sums of gamma-distributed RV with
the same scale parameter. Since their results fit perfectly in our context, they are
stated without modifying anything but the semantics of the considered variables;
thus, Assumption 6.5 can be considered without being rewritten.

Theorem 6.1 (Mathai–Moschopoulos multivariate gamma). Let us consider k ∈ N
invoices, whose issue dates t0j :=

(
t0j1, . . . , t

0
jk

)
are conditionally distributed accord-

ing to Assumption 6.5. Therefore, ρMM (·) is the joint probability density func-
tion conditional on Fj0, to the realization of corresponding credit terms ∆1

j :=(
∆1
j1, . . . ,∆1

jk

)
.

ρMM

(
t0j

∣∣∣ θ,∆1
j ,Fj0

)
:= (6.24)

(t0j1 − t0j0)K1−1

θ
∑k

κ=1Kκ
∏k
κ=1 Γ (Kκ)

[
k∏

κ=2

(
t0jκ − t0jκ−1 − γ′κ

)Kκ−1
]
e−
(
t0jk−γk|0

)
/θ

, where θ := (θ,K1, . . . ,Kk, γ′1, . . . , γ′k) is the parameter array and

γk|0 = t0j0 +
k∑

κ=1
γ′κ (6.25)

by construction.
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Moreover, covariance matrix Σ0
j of t0j has the following form:

Σ0
j =


σ2

1 σ2
1 . . . σ2

1
σ2

1 σ2
1 + σ2

2 . . . σ2
1 + σ2

2
...

...
...

σ2
1 σ2

1 + σ2
2 . . . σ2

1 + · · ·+ σ2
k

 , (6.26)

where σ2
κ = Kκθ2.

Assumptions 6.2, 6.4, and 6.5, together with Theorem 6.1, outline a behavioral
model for the commercial relationship between the insured and buyers. The number
of shape and location parameters Kk and the γk, associated with each k-th invoice,
may be arbitrarily large, depending on the number of invoices issued over period
[tj , Tj ]. However, the model is parsimonious because the only parameters to be
calibrated are

π := (ξ1, ξ2, θ, w) ∈ R3
+ × [0, 1]N∆ . (6.27)

Triplet {Kk, γk, θ} (needed to define the probability density associated with each
t0jk) is determined as a function of {ξ1, ξ2, θ} and realized couple t0jk−1,∆1

jk−1, as
stated in Assumption 6.5.

6.2.1.2 Model flexibility

Despite the low dimensionality of π, the model can represent a variety of commer-
cial relationship types between the policyholder and a given risky buyer. Table
6.1 shows four examples of the possible π choices, each representing a common
type of commercial relationship. The corresponding panel in Figure 6.2 shows the
realization of process (t0jk,∆1

jk), generated by using the chosen parameterization.
A regular supply (case a) can be represented by ξ2 � 1. A small ξ2 value

combined to a constant credit term induces the almost deterministic issuing of
subsequent invoices (i.e., the one just after the expiry of the former). The further
specification ξ1 = 1 implies a continuous trade between the seller and the buyer:

E
[
t0jk

]
& t1jk−1, σ

[
t0jk

]
� 1. (6.28)

Case ξ1 ξ2 θ w

a) 1.000 0.001 0.500 (0.00, 0.00, 0.00, 1.00)

b) 5.000 0.001 0.500 (0.00, 1.00, 0.00, 0.00)

c) 0.000 1.714 0.800 (0.00, 0.00, 0.50, 0.50)

d) 0.000 1.000 0.050 (0.25, 0.00, 0.00, 0.75)

Table 6.1. Parameter choice for the examples shown in Figure 6.2, given d1 = 1
12 .
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0.0 0.5 1.0 1.5 2.0

t [years]

a

b

c

d

Figure 6.2. Examples of insured issuing behaviors described in §6.2.1.2: a)
regular/continuous; b) regular/seasonal; c) irregular; and d) a possible intermediate
case. Each arc represents interval [t0jk, t1jk] associated with a given invoice. The upward
arrows represent the issue dates t0jk and the downward arrows the corresponding due
dates. The examples are obtained by using Assumptions 6.4 and 6.5 with different
parameters choices - detailed in table 6.1.

A greater ξ1 value leads to seasonal trade (case b), with the expected interval be-
tween two subsequent invoices being much longer than the credit term:

E
[
t0jk − t0jk−1

]
' E

[
t0jk+1 − t0jk

]
� ∆1

j , σ
[
t0jk

]
� 1. (6.29)

However, if the supply of goods or services is completely aperiodic (case c), ξ1 = 0
allows the next invoice to be issued immediately after the previous one. Moreover,
if the credit term is fixed to a constant value, ∆1

j , for all considered invoices, choice
ξ2 = θ

∆1
j
provides a shape parameter K = 1, imposing the mode of the distribution

to be equal to t0jk−1. This behavior can be approximated even in the case of random
credit terms by replacing the fixed value of ∆1

jk−1 with its average value. In this
case, it holds that:

mode
[
t0jk

]
& t0jk−1, σ

[
t0jk

]
' θ

1
2 . (6.30)

Intermediate cases (e.g., case d) can be effectively represented by choosing ξ1 = 0
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and ξ2 = 1, which implies that:

E
[
t0jk

]
= t1jk−1, σ

[
t0jk

]
= θ

1
2 , (6.31)

allowing for issue times both before and after the due date of the previous invoice,
with the dispersion controlled by scale parameter θ.

6.2.2 Application to the inference problem in credit insurance

This section shows how the model introduced in §6.2.1 can be used to infer P̃ in
Equation (6.10). In §6.2.2.1, the expressions for the upper and lower bound of P̃ are
provided, without applying the distributional assumptions introduced in §6.2.1.1.
Assumptions 6.4 and 6.5 are employed in §6.2.2.2 to quantify P̃ (π).

6.2.2.1 Nonparametric estimation of P̃

The results in this section and the next consider the expected values of ∆0
jk, ∆1

jk,
and their functions. Index k can be used in expected values without loss of gener-
ality because all couples ∆0

jk,∆1
jk are assumed to be identically distributed, given

Assumption 6.2.
In the following equation, for a compact notation, we write: Ek[·] := E[·|Fjk].

Theorem 6.2 (Nonparametric upper and lower bounds of P̃ .). Given a j-th buyer
underlying a credit insurance policy, and considering Assumptions 6.1-6.3 in limit
Tj − tj →∞, it holds that:

P̃inf ≤ P̃ ≤ P̃sup,

where

P̃inf :=
Ek−1

[
min{∆0

jk+1,∆1
jk}
]

Ek−1
[
∆0
jk+1

]
P̃sup := P̃inf +

Ek−1
[
max{0,∆1

jk −∆0
jk+1 −∆1

jk+1}
]

Ek−1
[
∆0
jk+1

] .

Proof. Assumption 6.1 implies that the default of the j-th buyer can generate
a claim that becomes observable only if τj ∈ Oj , which is introduced in Equation
(6.4). Hence, the probability of observing a claim conditioned to the presence of a
default event is:

P̃ = E0

[
µ (Oj)
Tj − tj

]
,

where µ (·) is the standard Lebesgue measure of the considered interval.
Assumption 6.3 allows for partitioning the credit limit validity period as follows:

lim
Tj→∞

(tj , Tj ] ≡ lim
Kj→∞

Kj⋃
k=1

(t0jk, t0jk+1],
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given that t0j0 = tj . Hence,

P̃ = lim
Kj→∞

E0

 µ
(⋃Kj

k=1(t0jk, t1jk]
)

∑Kj
k=1 µ

(
(t0jk, t0jk+1]

)
 .

Assumption 6.2 implies that:

Kj∑
k=1

µ
(
(t0kj , t0jk+1]

) Kj→∞−−−−→ KjEk−1
[
∆0
jk+1

]
.

Hence,

P̃ = lim
Kj→∞

E0
[
µ
(⋃Kj

k=1(t0jk, t1jk]
)]

KjEk−1
[
∆0
jk+1

] .

Moreover,

µ

 Kj⋃
k=1

(t0jk, t1jk]

 =
Kj∑
k=1

µ
(t0jk, t1jk]

−µ
 Kj⋃
k′>k

(t0jk, t1jk] ∩ (t0jk′ , t1jk′ ]


≥

Kj∑
k=1

µ
(t0jk, t1jk]

−µ
 Kj⋃
k′>k

(t0jk, t1jk] ∩ (t0jk′ ,∞)

 .
Since it holds that t0j1 ≤ t0j2 ≤ . . . , it follows that:

µ

 Kj⋃
k=1

(t0jk, t1jk]

 ≥
Kj∑
k=1

[
µ
(
(t0jk, t1jk]

)
−µ

(
(t0jk, t1jk] ∩ (t0jk+1,∞)

)]

=
Kj∑
k=1

µ
(
(t0jk, t1jk] \ (t0jk+1,∞)

)

=
Kj∑
k=1

min{∆0
jk+1,∆1

jk}.

We can apply Assumption 6.2 once again, implying that:

Kj∑
k=1

min{∆0
jk+1,∆1

jk}
Kj→∞−−−−→ KjEk−1

[
min{∆0

jk+1,∆1
jk}
]
.

Therefore, we have:

P̃ ≥
Ek−1

[
min{∆0

jk+1,∆1
jk}
]

Ek−1
[
∆0
jk

] ,

thereby completing the proof of the first inequality in the theorem.
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The remaining inequality can be derived, considering that it holds that:

µ

 Kj⋃
k=1

(t0jk, t1jk]

 =
Kj∑
k=1

µ
(t0jk, t1jk]

−µ
 Kj⋃
k′>k

(t0jk, t1jk] ∩ (t0jk′ , t1jk′ ]


≤

Kj∑
k=1

[
µ
(
(t0jk, t1jk]

)
−µ

(
(t0jk, t1jk] ∩ (t0jk+1, t

1
jk+1]

)]

=
Kj∑
k=1

µ
(
(t0jk, t1jk] \ (t0jk+1, t

1
jk+1]

)
.

Although t0jk ≤ t0jk+1 by construction, it is possible that t1jk > t1jk+1. Hence,
Kj∑
k=1

µ
(
(t0jk, t1jk] \ (t0jk+1, t

1
jk+1]

)
=

Kj∑
k=1

[
min{∆0

jk+1,∆1
jk}+ (t1jk − t1jk+1)+

]
,

thus completing the proof.

6.2.2.2 Parametric estimation of P̃

The following result allows using the model introduced in Assumptions 6.1-6.5 to
easily compute the lower and upper bounds of P̃ , given the nonparametric expres-
sions in Theorem 6.2. The expressions for P̃inf(π) and P̃sup(π), provided by the
theorem below, only require the computation of gamma and incomplete gamma
functions, whose numerical implementations are widely available. Hence, although
gamma and incomplete gamma functions are usually classified as special functions,
they can also be classified as somewhat “well-known” functions. Therefore, the
expressions provided in the theorem are claimed to be “closed-form”.
Theorem 6.3 (Parametric upper and lower bounds of P̃ ). Given a j-th buyer
underlying a credit insurance policy, and considering Assumptions 6.1-6.5 in limit
Tj − tj →∞, it holds that

P̃inf(π) ≤ P̃ ≤ P̃sup(π)

P̃inf(π), and P̃sup(π) are two closed-form functions of model parameters π.

P̃inf(π) = 1
ξ1 + ξ2

+ θ
(ξ1+ξ2)w·u

∑
n

wn
Γ (Kk+1)γ

(
max{0,un(1−ξ1)}

θ ,Kk+1 + 1
)

− 1−ξ1
(ξ1+ξ2)w·u

∑
n

wnun
Γ (Kk+1)γ

(
max{0,un(1−ξ1)}

θ ,Kk+1
)
,

P̃sup(π) = P̃inf(π)

+ 1
(ξ1+ξ2)w·u

∑
nň

wnwň
Γ (Kk+1) [un(1− ξ1)− uň]γ

(
max{0,un(1−ξ1)−uň}

θ ,Kk+1
)

− θ
(ξ1+ξ2)w·u

∑
nň

wnwň
Γ (Kk+1)γ

(
max{0,un(1−ξ1)−uň}

θ ,Kk+1 + 1
)
,

where γ(·,K) is the lower incomplete gamma function with shape parameters K, and
Γ(·) is the ordinary gamma function.
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Proof. The proof comprises a direct application of Assumptions 6.4 and 6.5 to
the statement of Theorem 6.2. It holds that:

Ek−1
[
∆0
jk+1

]
=
∑
n

wn

∫ +∞

t0
jk

+ξ1un
dvρΓ

(
v − t0jk − ξ1un|Kk+1, θ

) (
v − t0jk

)
,

where ρΓ(·| . . . ) is the probability density function (PDF) of a gamma-distributed
RV, given a couple of shape and scale parameters. Substitution yn := v− t0jk− ξ1un
implies that:

Ek−1
[
∆0
jk+1

]
=

∑
n

wn

∫
R+
dynρΓ (yn|Kk+1, θ) (yn + ξ1un)

= (ξ1 + ξ2)w · u.

Furthermore, given the notation above, we have:

Ek−1
[
min{∆0

jk+1,∆1
jk}
]

=
∑
n

wn

∫
R+
dynρΓ (yn|Kk+1, θ) min{un, yn + ξ1un}

=
∑
n

wn

[∫ max{0,u′n}

0
. . . (yn + ξ1un)︸ ︷︷ ︸
yn≤u′n

+
∫ +∞

max{0,u′n}
. . . un

]
︸ ︷︷ ︸

yn>u′n

=
∑
n

wn

[
un +

∫ max{0,u′n}

0
. . . [yn − un(1− ξ1)]

]
,

where u′n := un(1− ξ1). Moreover, we omit dynρΓ (yn|Kk+1, θ) ≡ . . . for a compact
notation. Hence,

Ek−1
[
min{∆0

jk+1,∆1
jk}
]

=

w · u+ 1
Γ(Kk+1)

∑
n

wn
[
θγ
(

max{0,u′n}
θ ,Kk+1 + 1

)
− u′nγ

(
max{0,u′n}

θ ,Kk+1
)]
,

thus calling for proving the expression of P̃inf.
Therefore, to prove the expression of P̃sup, we must apply Assumptions 6.4 and 6.5
to the additional term to be considered, as per Theorem 6.2:

Ek−1
[
max{0,∆1

jk −∆1
jk+1 −∆0

jk+1}
]

=
∑
nň

wnwň

∫
R+
. . .max{0, un(1− ξ1)− uň − yn}

=
∑
nň

wnwň

∫ max{0,u′′nň}

0
. . . (u′′nň − yn),

where ň is the auxiliary index used to express the PDF of ∆1
jk+1 and u′′nň := un(1−

ξ1)− uň. Hence,

Ek−1
[
max{0,∆1

jk −∆1
jk+1 −∆0

jk+1}
]

= 1
Γ(Kk+1)

∑
nň

wnwň
[
u′′nňγ

(max{0,u′′nň}
θ ,Kk+1

)
− θγ

(max{0,u′′nň}
θ ,Kk+1 + 1

)]
,
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completing the proof.

Theorem 6.3 provides closed-form expressions for the upper and lower bounds of
P̃ . However, we require an effective value of P̃ (π) ∈ [P̃inf(π), P̃sup(π)] to estimate
D̃t,t′(π) as per Equation (6.10).
Although the correct choice depends on the π value, the following generally holds
for a realistic setup, such as the examples in Table 6.1 and Figure 6.2.

P̃ (π) ' P̃inf(π) (6.32)

Theorem 6.3 implies that positive contributions to δP̃ := P̃sup(π)− P̃inf(π) are pos-
sible only if ∆1

jk+1 < ∆1
jk and ∆0

jk < ∆1
jk. The joint probability of these two

conditions can be reasonably expected to be “small”, implying that δP̃ ' 0.

Remark 6.1 (Weakening Assumption 6.1). Assumption 6.1 can be easily weakened,
thereby preserving the results of Theorems 6.2 and 6.3. It is possible to introduce a
probability Pobs < 1 associated with the capability of the ISE to detect the default of bj
and interrupt their business relationship instantaneously. Therefore, the probability
that the CIC receives a claim in case of default becomes P̃ ′ = P̃Pobs + 1 − Pobs,
implying that limPobs→0 D̂t,t′ = Dt,t′, ceteris paribus.

6.2.3 Model calibration

Let us consider a set of debtors, j = 1 . . . J . For each j-th debtor, a set of past
invoices, κj = 1 . . .Kj , issued from the same ISE is available. Data from multiple
sellers may also be used simultaneously in the calibration, provided they are ho-
mogenous regarding the commercial relationships with their buyers. However, this
case is supposedly rare and, hence, negligible as stated in §1.2.1. For each kj-th
invoice, set {t0jkj ,∆

1
jkj
} is known. Information about ∆2

jk is also available but is
irrelevant to our scope.
For each j-th debtor, we consider only invoices kj ≥ 2 because we must use the
value of ∆1

jkj−1 in the calibration process, which is not available for kj = 1.
In the following, we omit the explicit dependence of the invoice index on the debtor
index for a compact notation (i.e., kj ≡ k).
∆0
jk (j = 1 . . . J , kj = 2 . . .Kj) are distributed as:

∆0
jk ∼ Gamma

(
Kk, θ, γ′k

)
, (6.33)

where the shape, scale, and location parameters are defined above, given Assump-
tion 6.5 and Equation (6.21). Theorem 6.1 implies that the likelihood associated
with the joint observation of a historical data set {∆0

jk,∆1
jk−1} is:

L =
∏
jk

(∆0
jk − γ′k)Kk−1

θKkΓ(Kk)
exp

(
−

∆0
jk − γ′k
θ

)
. (6.34)

For a compact notation, let us consider operator

〈·〉 :=
∑J
j=1

∑Kj
k=2 ·∑J

j=1(Kj − 1)
. (6.35)



6.2 Behavioral model for the policyholder and estimation of latent default
events 145

Without considering normalization coefficient
(∑J

j=1Kj − 1
)−1

, the log-likelihood
can be written as:

lnL =
〈

(Kκ − 1) ln
(
∆0
jκ − γ′κ

)
−Kκ ln θ −

∆0
jκ − γ′κ
θ

− ln Γ (Kκ)
〉
. (6.36)

Recalling that Kk is a function of θ, let us simplify it by considering alternate
parameterization ξ′2 := ξ2/θ as follows: condition

∂θ lnL|(ξ1,ξ′2,θ)≡(ξ̂1,ξ̂′2,θ̂)
=
〈∆0

jk〉 − ξ̂1〈∆1
jk−1〉

θ̂2
−
ξ̂′2〈∆1

jk−1〉
θ̂

= 0 (6.37)

implies

θ̂ =
〈∆0

jk〉 − ξ̂1〈∆1
jk−1〉

ξ̂′2〈∆1
jk−1〉

. (6.38)

Nullifying the other two components, (∂ξ1 , ∂ξ′2), of the gradient and substituting
Equation (6.38), we have:

0 =
〈∆1

jk−1〉
θ̂

−
〈

ξ̂′2∆1
jk−1 − 1

∆0
jk − ξ̂1∆1

jk−1
∆1
jk−1

〉
, (6.39)

which can be rewritten as:

ξ̂′2 =

〈
∆1
jk−1

∆0
jk
−ξ̂1∆1

jk−1

〉
〈

(∆1
jk−1)2

∆0
jk
−ξ̂1∆1

jk−1

〉
− 〈∆1

jk−1〉
2

〈∆0
jk
〉−ξ̂1〈∆1

jk−1〉

, (6.40)

allowing for an explicit estimation of ξ′2 as a function of ξ1 and

0 =
〈

∆1
jk−1 ln

(
∆0
jk − ξ̂1∆1

jk−1

θ̂

)
−∆1

jk−1ψ(ξ̂′2∆1
jk−1)

〉
, (6.41)

where ψ(·) denotes the digamma function. Equation (6.41), together with Equation
(6.38), imply that:〈

∆1
jk−1

[
ψ
(
ξ̂′2∆1

jk−1

)
− ln

(
ξ̂′2〈∆1

jk−1〉
)]〉

=
〈

∆1
jk−1 ln

(
∆0
jk−ξ̂1∆1

jk−1
〈∆0

jk
〉−ξ̂1〈∆1

jk−1〉

)〉
.

(6.42)
Equation (6.42) is a generalization of the framework of the classical maximum likeli-
hood estimator of the shape parameter for a gamma distribution without a location
parameter. In the standard case, with ξ1 = 0, the condition to be solved is:

ψ(ξ̂′2)− ln ξ̂′2 =
〈

ln ∆0
jk

〉
− ln

〈
∆0
jk

〉
, (6.43)

which is known to be numerically well-behaved.
Ideally, the inference problem of estimating ξ1, ξ′2, and θ can be solved by using the
nonlinear system of Equations (6.40) and (6.42). As shown above, these equations
are obtained by imposing ∇ lnL = 0 to maximize the log-likelihood.
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Hence, it is useful to check the numerical behavior of the gradient components
evaluated at the “true” parameters (ξ?1 , ξ

′?
2 , θ

?) to which estimators (ξ̂1, ξ̂2, θ̂) must
converge. This can be achieved by simulating a significant number of scenarios for
an invoice dataset {∆0

jk,∆1
jk} generated as per chosen parameter set (ξ?1 , ξ

′?
2 , θ

?).
The same parameter values can be substituted in Equations (6.37), (6.39), and
(6.41), together with the dataset generated in each scenario. The ideal distribution
of each gradient component should have a small variance and a mean value as close
as possible to zero, where (ξ?1 , ξ

′?
2 , θ

?) is the local maximum of the likelihood function
by construction.
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Figure 6.3. Numerical density distribution of the ∇ lnL components. A set of 5.000
Monte Carlo scenarios are considered (100 buyers × 5 years periods for each scenario).
Scenarios are simulated using the parameterization “c” in Table 6.1.

An example of the numerical distributions obtained is shown in Figure 6.3, consid-
ering the parameterization “c” in Table 6.1.
Generally, ∂ξ1 lnL (panel i) is highly unstable, which is related to stochastic terms
(∆0

jk−ξ1∆1
jk−1)−1. In fact, among considered cases a–d, this issue is less important

only in case d because θ? � 1 increases the relative weight of the other contributions
to ∂ξ1 lnL|θ? . However, the ∂ξ′2 and ∂θ components (panels ii and iii, respectively)
are stable across the considered scenarios, despite not being completely free of bias.
This situation also holds true for Equation (6.42). Therefore, it can be used for the
ξ̂′2 quantification with an acceptable error.
Equation (6.41) implies that ∆0

jk − ξ1∆1
jk−1 > 0 for each observed pair (∆0

jk,∆1
jk).

Furthermore, because ∆0
jk ≥ 0, we have ξ1 > 0. These two conditions provide a
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range for ξ1, defining a unidimensional optimization problem to be solved numeri-
cally to compute (ξ̂1, ξ̂

′
2, θ̂) :

ξ̂1 = argmax
ξ1

L
(
ξ1, ξ̂

′
2, θ̂
)

(6.44)

s.t.


0 ≤ ξ1 ≤ min

jk

{
∆0
jk

∆1
jk−1

}
ξ̂′2 = Ξ (ξ1)
θ̂ = Θ

(
ξ1, ξ̂

′
2

) ,

where functions Ξ (ξ1) and Θ (ξ1, ξ
′
2) are defined in Equations (6.42) and (6.38),

respectively.
Alternatively, Ξ(·) and Θ(·) can be defined through a moment-matching approach.
Assumptions 6.4 and 6.5 provide a closed-form expression for each of the first two
centered moments Ek−1

[
∆0
jk

]
and σ2

k−1

[
∆0
jk

]
, implying that

ξ̂2 = 〈∆0
jk〉

〈∆1
jk−1〉

− ξ̂1, (6.45)

θ̂ = 〈(∆0
jk)2〉−〈∆0

jk〉
2

〈∆1
jk−1〉

1
ξ̂2
. (6.46)

Equation (6.46) is an alternate choice for Θ(·) with respect to equation (6.38). Fur-
ther, a different Ξ(·) form can be derived by considering equations (6.45) and (6.46),
instead of equation (6.42). As discussed in §6.3.2, the two alternate specifications
for the couple Θ(·),Ξ(·) return estimates whose errors are comparable to each other.
Problem (6.44) can be approached numerically using a gradient-free method to
explore the

[
0,minjk

{
∆0
jk/∆1

jk−1

}]
interval.

Another possible way to estimate (ξ1, ξ2, θ) is a “pure” moment-matching approach
instead of maximizing the likelihood function L(ξ1, ξ

′
2, θ). In this case, (ξ̂1, ξ̂2, θ̂) can

be fully specified by introducing the estimator

ξ̂1 := min
jk

{
∆0
jk

∆1
jk−1

}
(6.47)

and applying equations (6.45) and (6.46) directly.
Assumption 6.2 allows for calibrating w = (w1, . . . , wN∆) separately, which is re-
quired in Assumption 6.4. Considering the normalization condition imposed on w,
we can write the log-likelihood as:

lnL (w) = m1 ln

1−
N∆∑
n=2

wn

+
N∆∑
n=2

mn lnwn, (6.48)

where mn is the number of observed invoices whose credit term is equal to nd1. It
holds that

∑
nmn =

∑
jKj . The resulting maximum likelihood estimator is:

ŵ =
(

m1∑
j
Kj
. . .

mN∆∑
j
Kj

)
. (6.49)

Equations (6.44) and (6.49) allow calibrating the model defined by Assumptions
6.1-6.5. Calibration returns π̂ enable the estimation of D̃t,t′ as per Theorem 6.3 and
the subsequent approximation provided in Equation (6.32).
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6.3 Numerical application
This section applies the model presented in Section 6.2 to a realistic context. As
a result, it demonstrates that the calibrated model can infer a latent time series
Dt of default events from series D̂t observed by the CIC. Therefore, we employ the
notation:

Dt := Dt,t+δt , (6.50)

given that t ∈ {t} := {t0, t1 = t0 + δt, . . . , ti = t0 + iδt, . . . } and a dynamic set {b}t
of the risky buyer, such that:

{b}t := {bj : [tj , Tj ] ⊇ (t, t+ δt]}. (6.51)

Latent time series Dt is “realistic”; thus, it is Monte Carlo simulated using pub-
licly available Italian quarterly bad loans rates [108,112], measured by the Bank of
Italy. A corresponding time series D̂t′ available to the CIC is generated, assuming
that each policyholder can be classified into one of the four behavior profiles (a–d)
introduced in §6.2.1.2.
Each t ∈ {t} has a corresponding element in t′ ∈ {t′}, such that t = t′− 1

2w ·u. The
presence of a positive credit term implies the existence of a stochastic lag between
the actual default event, which contributes to Dt, and the observed due date of the
expired invoice, which contributes to D̂t′ .
The model is, thus, applied, leading to:

D̃t = D̂t′

〈P̃ 〉t′
' D̂t′

1
|{b}t′ |

∑
j∈{b}t′ P̃inf(πj)

, (6.52)

where πj is the parameter set associated with the behavior-type (a–d) that copes
with the business relationship between each bj and the corresponding ISE. This
model verifies that the a posteriori estimate D̃t reproduces the latent a priori true
series Dt, even when the variation of {b}t′ over time produces an observable D̂t′

that may be uncorrelated or anticorrelated with Dt.
§6.3.1 describes the numerical setup adopted in the simulations. §6.3.2 reports a
comparison among the calibration tecniques introduced in §6.2.3, based on the setup
presented in §6.3.1. In §6.3.3, D̃t, D̂t′ , and D̃t are compared to simulate a “static”
{b}t′ , where πj = π for each j. In §6.3.4, the same comparison is performed in the
presence of a dynamic {b}t′ , allowing for the variation of 〈P̃ 〉t′ over time. Finally,
§6.3.5 provides an example where the investigated technique comes in handy in a
real-life context.

6.3.1 Simulation of claims from historical time series

Latent time series Dt is generated using Italian quarterly bad loan rates, rt, calcu-
lated based on the number of borrowers [112]. The considered data cube is publicly
available from the Bank of Italy. The data were filtered to consider nonfinancial
enterprises over the period between January 2007 and December 2017. rt is evalu-
ated by applying Equation (6.6) on a quarterly basis. Default events are generated
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by the corresponding deseasonalized daily hazard rates:

ht′ = S3

(
{t},

{
−
t+3∑
s=t

ln(1− rs)
}
, t′
)

(6.53)

where {t} is the quarterly schedule over the considered period, and S3 is a cubic
spline interpolator employed to make the instantaneous hazard rate available with a
daily sampling frequency. Therefore, default times τj are generated from cumulative
distribution function P (t ≥ τ |Ft′) = 1 − exp(− 1

365
∑t
s=t′ hs), and time series Dt is

produced for each Monte Carlo scenario.
Further, to simulate D̂t, we generate a set of invoices for each buyer × scenario, as
per the distribution defined in Assumptions 6.4 and 6.5 and one of the parameters
sets discussed in §6.2.1.2. A stochastic uniform shift is applied to each scenario
(t0jk,∆1

jk)jkt, considering that the CIC does not know the timing of the first invoice
issued after tj . The simulated invoices, together with Assumption 6.1, allow for the
selection of default events τj ∈ {τ : ∃k s.t. τ ∈ [t0jk, t1jk]} to be observable to the
CIC as claims. Transformation τj 7→ min{t1jk : t1jk ≥ τj} is applied to the selected
events to compute the claim timing. Hence, D̂t is generated.
The results discussed in §6.3.3 and §6.3.4 are obtained by considering 1000 scenarios
and 5000 buyers. The latter is “small” relative to the typical size of a realistic credit
insurance portfolio, suggesting that the proposed estimation method remains stable
even after partitioning a given portfolio into homogenous risk clusters.
However, the next subsection 6.3.2 highlights the robustness of the calibration pro-
cess under far more severe conditions (i.e., 50 buyers and “wrong” distributional
assumptions), leading to a fairly low estimation error even in these cases.

6.3.2 Calibration of model’s parameters from historical time series

§6.2.3 introduces three possible approaches to the problem of estimating the pa-
rameters set (ξ1, ξ2, θ), briefly summarized in the following. The three approaches
are labelled as “MLML”, “MLMM”, and “MMMM” for the sake of brevity.

MLML: a “pure” maximum likelihood approach, defined by Problem (6.44), and
equations (6.42) and (6.38). Namely, auxiliary functions Ξ(ξ1) and Θ(ξ1, ξ

′
2) are

defined by nullifying the likelihood’s gradient.
MLMM : a “mixed” maximum likelihood and moment-matching approach, where
Problem (6.44) is specified through equations (6.45) and (6.46). Indeed, while
parameters are still found by maximizing the likelihood value, auxiliary functions
Ξ(ξ1, θ) and Θ(ξ2) are chosen by following a moment-matching criterion.
MMMM : a “pure” moment-matching approach, where equations (6.45) and (6.46)
are completed by equation (6.47), instead of being applied to Problem (6.44). No
numerical optimization is required in this case, implying (almost) zero computa-
tional cost.

The three techniques are used to process a simulated historical data set, generated
by applying real data and methods described in §6.3.1. As anticipated in §6.3.1,
calibration has been performed in two stressed setups to verify and compare the
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robustness of these three methods. Further details on the calibration outcomes are
available in appendix B.3.

6.3.2.1 Calibration in presence of small populations

Table 6.2 shows the results obtained by processing only 50 business relationships
in calibration. Each technique is applied to the four behavioral types a-d intro-
duced in §6.2.1.2. MLML, MLMM, and MMMM replicate the true values of (ξ1, ξ2, θ)
with a reasonable degree of approximation, although the population considered is
extremely small in comparison with a realistic case. Further, the results displayed
for parameters’ estimation are almost equivalent among the considered techniques.
Table 6.2 does not display ŵ for brevity, as their errors are negligible. On the other
hand, P̃ is shown, as it is the quantity of interest to practical applications.

Value Estimate (expected value ± standard error)

a MLML MLMM MMMM

ξ1 1.00 · 100 (1.00± 0.00) · 100 (1.00± 0.00) · 100 (1.00± 0.00) · 100

ξ2 1.00 · 10−3 (8.52± 9.81) · 10−4 (8.52± 9.81) · 10−4 (8.52± 9.81) · 10−4

θ 5.00 · 10−1 (2.44± 3.07) · 10−1 (2.44± 3.07) · 10−1 (2.44± 3.07) · 10−1

P̃ 9.99 · 10−1 (9.99± 0.01) · 10−1 (9.99± 0.01) · 10−1 (9.99± 0.01) · 10−1

b MLML MLMM MMMM

ξ1 5.00 · 100 (4.35± 1.69) · 100 (5.00± 0.00) · 100 (5.00± 0.00) · 100

ξ2 1.00 · 10−3 (6.51±16.89)·10−1 (1.27± 3.45) · 10−3 (1.27± 3.45) · 10−3

θ 5.00 · 10−1 (9.68±28.86)·10−2 (9.68±28.86)·10−2 (9.68±28.86)·10−2

P̃ 2.00 · 10−1 (2.00± 0.00) · 10−1 (2.00± 0.00) · 10−1 (2.00± 0.00) · 10−1

c MLML MLMM MMMM

ξ1 0.00 · 100 (3.08± 5.22) · 10−5 (3.08± 5.22) · 10−5 (3.15± 5.20) · 10−5

ξ2 1.71 · 100 (1.58± 0.06) · 100 (1.58± 0.06) · 100 (1.58± 0.06) · 100

θ 8.00 · 10−1 (7.31± 0.67) · 10−1 (7.36± 0.53) · 10−1 (7.36± 0.53) · 10−1

P̃ 4.16 · 10−1 (4.13± 0.16) · 10−1 (4.12± 0.13) · 10−1 (4.12± 0.13) · 10−1

d MLML MLMM MMMM

ξ1 0.00 · 100 (1.76± 1.20) · 10−2 (1.76± 1.20) · 10−2 (1.99± 1.07) · 10−2

ξ2 1.00 · 100 (9.78± 0.14) · 10−1 (9.78± 0.14) · 10−1 (9.75± 0.14) · 10−1

θ 5.00 · 10−2 (8.96± 1.55) · 10−2 (9.50± 0.32) · 10−2 (9.52± 0.32) · 10−2

P̃ 8.37 · 10−1 (7.79± 0.25) · 10−1 (7.72± 0.09) · 10−1 (7.70± 0.08) · 10−1

Table 6.2. Parameters’ estimates for the behavioral types a-d defined in §6.2.1.2, given his-
torical data from 50 buyers observed over 10 years. Data are simulated as per the setup
described in §6.3.1, allowing for a comparison between true and estimated parameters.
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6.3.2.2 Calibration under a violation of the distributional assumptions

As discussed in §6.2.1.1, assumptions 6.4 and 6.5 are “natural” choices in our frame-
work.
The waiting time between two subsequent observations is exponentially distributed
if the occurrence rate is constant through time. The chosen location-scale Gamma
distribution (i.e., assumption 6.5) is a flexible generalization, that allows to consider
any reasonable non-uniform occurrence rate in a realistic setup.
Further, the categorical distribution considered in assumption 6.4 is the most flexible
choice to describe a realistic business context, where time is usually discretized in
weeks, months, or quarters.
The categorical distribution can approximate any “actual” credit term distribution,
provided that d1 is chosen small enough. On the other hand, it is worth verifying
that assumption 6.5 is robust against distributional misspecifications, as the Gamma
distribution could not be able to fit well any possible density profile. It holds
∆0
jk ∈ R+ by definition, excluding any distribution defined outside this domain.

However, it is perfectly possible choosing RV’s defined in R+ which are poorly
fitted by a Gamma distribution. Multimodal density profiles do not cope with a
Gamma probability density function, especially when considering a low number of
well-spaced modes. The opposite case of many near modes can be approximated as
a whole by widening the volatility of a given unimodal distribution.
Under these premises and without claim to completeness, we suppose that ∆0

jk is
distributed according to a bimodal Gamma mixture. Thus, the model is unable to
infer the actual density associated with ∆0

jk, since assumption 6.5 excludes mul-
timodal densities. However, the calibration may still lead to a practical result,
depending on the quality of the P̃ estimate. Namely, although π in equation (6.27)
does not suffice to describe the considered mixture, it can still return an estimate
of P̃ that is adequate to practical purposes.
We consider the behavioral type c, whose location parameter is nullified through
the choice ξ1 = 0 (see table 6.1). The following mixture is defined based on type c
parameterization:

ρ0
jk|k−1 (v|πc, δξ1) := 1

2

[
ρ0
jk|k−1

(
v
∣∣∣0, ξ(c)

2 , θ(c)
)

+ ρ0
jk|k−1

(
v
∣∣∣δξ1, ξ

(c)
2 , θ(c)

)]
(6.54)

where ρ0
jk|k−1 (v) is defined in equation (6.17). Namely, equation (6.54) introduces

an equally weighted mixture between the probability density associated with ∆0
jk in

case c and the density of the shifted RV ∆0
jk+δξ1∆1

jk−1. Hence, the resulting distri-
bution is bimodal, where the average distance between the two modes is δξ1〈∆1

jk−1〉.
In the limit δξ1 → 0, the mixture degenerates into the location-scale distribution
introduced in assumption 6.5, while the two densities in equations (6.17) and (6.54)
cannot approximate each other at increasing δξ1.
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c P̃ Estimate (expected value ± standard error)

δξ1 NP MLML MLMM MMMM

0.0 0.42± 0.01 0.41± 0.01 0.41± 0.01 0.41± 0.01
0.1 0.42± 0.01 0.41± 0.01 0.41± 0.01 0.41± 0.01
0.2 0.42± 0.01 0.41± 0.01 0.41± 0.01 0.41± 0.01
0.5 0.42± 0.01 0.40± 0.01 0.40± 0.01 0.40± 0.01
1.0 0.40± 0.01 0.38± 0.01 0.38± 0.01 0.38± 0.01
2.0 0.32± 0.01 0.33± 0.01 0.34± 0.01 0.34± 0.01
5.0 0.21± 0.00 0.23± 0.01 0.24± 0.01 0.24± 0.01

Table 6.3. P̃ estimates for the behavioral type c defined in §6.2.1.2, given historical data
from 100 buyers observed over 10 years. Data are simulated as per the setup described
in §6.3.1, allowing for a comparison between true and estimated parameters. “NP”
stands for the nonparametric method introduced in Theorem 6.2.

Results in table 6.3 cope with the intuition. In fact, a greater distance between the
two modes of the mixture implies a lesser frequency of issued invoices. Thus, P̃ is
expected to decrease at increasing δξ1 values. The nonparametric estimation “NP”
of P̃ is considered as a reference, since no distributional assumption is required
in Theorem 6.2. Table 6.3 shows that parametric methods are robust against a
violation of assumption 6.5, returning results comparable with the ones obtained
by the nonparametric estimator.

6.3.3 Inference of the latent default time series in the stationary
portfolio case

Let us consider a homogenous, static portfolio that needs a set of parameters π to
be represented across the entire considered time horizon. In this case, Equation
(6.52) implies that Dt can be simply inferred from D̂t by a scale transformation and
a time shift.
Figures 6.4 and 6.5 show that the inferred variable D̃t fits the latent variable Dt

adequately for the behavioral types (a-d) introduced in §6.2.1.2. Furthermore, the
approximation P̃sup(πj) − P̃inf(πj) ' 0 (discussed in §6.2.2.2) results are yet to be
numerically verified. The distance between Dt and D̂t is intuitively larger when
considering a lower average density of the issued invoices (i.e., compare Figures 6.2
and 6.4).
Figure 6.5 also suggests that the stability of D̃t can be improved by adopting a
short-term moving average.
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Figure 6.4. Expected values of the latent number of default events Dt (black, dotted
line); number of observed claims D̂t (red, dashed line); and inferred number of default
events D̃t (green, solid line). Panels a-d correspond to the examples in Table 6.1 and
Figure 6.2. The gray and red dashed areas represent the standard errors around the
expectations for Dt and D̂t, respectively.

0 2 4 6 8 10

0
20

40
60

d
ef
au

lt
ev
en
ts a

0 2 4 6 8 10

0
20

40
6
0 b

0 2 4 6 8 10

0
20

40
60

t [years]

d
ef
au

lt
ev
en
ts c

0 2 4 6 8 10

0
20

4
0

60

t [years]

d

Figure 6.5. Single scenario example of the latent number of default events Dt (black,
dotted line); number of observed claims D̂t (red, dashed line); and inferred number of
default events D̃t (green lines). The dashed green line represents the simple application
of the estimator introduced in Equation (6.52), while the solid green line plots the
moving average of the same quantity over three subsequent observations. Panels a–d
correspond to the examples in Table 6.1 and Figure 6.2.
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6.3.4 Inference of the latent default time series in the dynamic
portfolio case

The dynamic composition of the CIC liabilities is considered, together with the Dt

dynamics already considered in §6.3.3. Let us assume that the CIC has already
calibrated the model with different π̂ values that depend on a given classification
of possible commercial relationship types. This clustering operation should be per-
formed based on the categorical variables available to the CIC when granting a new
credit limit (e.g., economic sectors of both the seller and the buyer). Hence, the CIC
associates each new credit limit (i.e., each new couple seller/buyer) to the proper
cluster c and, thus, to the proper parameter set π̂c.
Given these premises, the CIC can update 〈P̃ 〉t in Equation (6.52) instantaneously,
as the risk composition evolves. This update is relevant for practical purposes. A
dynamic risk composition can lower the correlation between D̂t and Dt. Hence,
by applying a predictive macroeconomic model to D̂t, distorted forecasts may be
obtained. Macroeconomic variables explanatory to Dt are not explanatory to Dt −
D̂t, which is affected only by the policyholder behavior.
However, D̃t estimates Dt, thus eliminating the bias arising from latent processes
(t0jk,∆1

jk)jkt.
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Figure 6.6. Two examples of inference of Dt, given a dynamic composition of the under-
lying portfolio. The top panels follow the conventions used in Figure 6.4. The bottom
panels represent the temporal evolution of the portfolio composition in the two cases.
Letters a-d are the types of business relationships introduced in §6.2.1.2.

Figure 6.6 displays two examples of how a time-dependent risk composition can
induce a nonlinear map from Dt to D̂t. It is worth noting that the considered
portfolios evolve smoothly regarding the composition of behavioral types. Hence,
the presence of a strong and irregular variation among the behavioral types (a-d)
is not necessary to observe a significant decrease in the correlation between Dt and
D̂t. However, even when considering a dynamic portfolio, such as in the examples
reported in this section, D̃t allows for estimating Dt with a high degree of accuracy.
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6.3.5 A simplified case study

In the following, the utility of the presented technique is illustrated by a toy case
study. Let us consider a CIC whose ISEs belong only to the economic sectors
“H.49.41 - Agricolture: growing of non-perennial crops” and “A.01.10 - Freight trans-
port by road”, where we are following the ATECO sectors classification [111]. We
assume that the two sectors may be associated to the behavioral types b (seasonal)
and d (irregular/frequent), respectively. Further, let the covered buyers belong to
the economic sectors “C.10.00 - Manifacture of food products” and “I.56.00 - Food
and beverage service activities”, inter alia.
As a working example, the CIC experiences the situation summarized in table 6.4.

Cluster Economic sector True values Past experience Present situation

ID ISE Buyer p P̃ N E[D̂] σ[D̂] N ′ (requests)

i. A.01.10 C.10.00 0.031 0.200 1,000 6.2 2.5 1,000
ii. A.01.10 I.56.00 0.037 0.200 1,000 7.4 2.7 1,000
iii. H.49.41 C.10.00 0.031 0.837 100 2.6 1.6 1,000

Table 6.4. Information available to the CIC. The default probabilities pC.10.00 and pI.56.00

are inferred from data publicly available in [113].

The CIC aims to reject the riskiest credit limit requests and must decide based on its
own past experience. Cluster “iii” is the riskiest one. However, the observed number
of claims D̂ is distributed as Binomial(N, p · P̃ ). In the example, the probability
that CIC fails to identify the riskiest cluster based on the observed claim frequencies
f̂ = D̂/N is approximately equal to 11%, that is,

Prob
(
f̂iii = max{f̂i; f̂ii; f̂iii}

)
≈ 89%. (6.55)

Let us assume that 100 past business relationships are available both for ISEs be-
longing to A.01.10 and H.49.41 sectors. Thus, the CIC can apply the behavioral
model to estimate the claim frequency associated to cluster iii as

f̃iii := P̃H.49.41
P̃A.01.10

f̂i. (6.56)

Doing so, the probability of identifying the actual riskiest sector becomes

Prob
(
f̃iii = max{f̂i; f̂ii, f̃iii}

)
≈ 97%, (6.57)

where the estimation errors of P̃A.01.10 and P̃H.49.41 are considered. Namely, the
misjudgement probability is just equal to 3% by using the model, instead of 11%.

6.4 Summary
This chapter introduces a method to handle the lack of information that a CIC
faces when estimating the default frequency of a homogenous set of risky buyers
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based on its own claims database. This method comprises a behavioral model and
a parametric estimator.
The model presented in §6.2.1 describes the time distribution of the invoices issued
by an ISE to a buyer. Since the insurer can observe a default event only through the
expired invoices that generate a claim, the invoice distribution reduces the number of
observed default events over a given period relative to the actual number of default
events in the same period. A calibration technique to infer the model parameters
is provided in §6.2.3 and tested in §6.3.2. The model is parsimonious, although
it is possible to represent various behavioral patterns through different parameter
choices.
The parametric estimator based on the model parameters produces an accurate
estimation of the latent true number of claims, thereby allowing for a precise de-
fault frequency estimation. A closed-form expression for the parametric estimator
is explicitly derived. Hence, the computational cost of this estimator is negligi-
ble. Furthermore, a nonparametric version of the estimator is also provided to suit
distributional assumptions that may differ from that chosen to define the model.
However, the parametric estimator shows to be robust against distributional mis-
specifications.
The estimator is applied to data simulated from a historical time series of default
frequencies. The considered series has a nontrivial shape, which is transformed by
stochastic censoring events generated by policyholder behavior. However, the esti-
mator results are effective in inferring the latent time series of default events from
the available time series of claims, even when the dynamics of the underwritten risk
composition (in terms of policyholders behavior) induces a nonlinear transformation
from the series of latent events to that of observable events. Therefore, the contri-
butions of the business relationships and latent default rates can be separated, and
the default rate dynamics can be further modeled and forecasted without distortion
by the CIC.
Hence, the presented technique enables the precise estimation of point-in-time de-
fault probabilities and the corresponding forward-looking claim probabilities in
trade credit insurance. Applications range from pricing to risk management un-
der the Solvency 2 framework to financial reporting under the IFRS framework.
There is also scope to develop a specific severity model for credit insurance based
on the distributional assumptions introduced in this chapter to describe the ISE’s
behavior, implying the existence of a natural interdependence between the frequency
and severity of claims. This problem can be addressed in future studies.
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Chapter 7

Concluding Remarks

In the following, we summarize the structure of this thesis and the new results
obtained.
The central topic of our study is the claim event in C&S insurance and its occur-
rence probability. C&S is a peculiar insurance line of business, resembling more
specific banking products than the majority of the other non-life insurance lines.
The remarkable similarities between C&S products and the banking sector have
incentivized a certain lack of attention to this type of insurance by the scientific
community.
On the one hand, this deficiency in the literature may be justified by the fact
that part of the classic credit risk theory and tools developed for the banking and
financial sector can be effectively applied to manage credit insurance and suretyship
products to some extent. On the other hand, the similarities among these two
sectors have lessened the study of their differences, which are nonetheless worth
being investigated and addressed with dedicated tools.
The differences between C&S insurance and the most similar banking products
imply reduced information available to the insurer to infer the claims probabilities.
Hence, the thesis proposes two new estimators to quantify C&S claims probabilities
based on a poor or incomplete data set.
The first estimator allows calibrating the parameters underlying the CreditRisk+ de-
pendence structure with higher precision than the standard calibration techniques.
This result is obtained by generalizing the CreditRisk+ assumptions to a multi-
period framework and is relevant to the investigated topic, as the CreditRisk+

model is shown to describe well the joint probabilities of the claims arising from a
set of C&S policies.
The second estimator handles the information asymmetry between the insurer and
the insured in credit insurance. In fact, the classic frequency estimators are biased
or not applicable to credit insurance claim frequency due to such an asymmetry.
The lack of information is modeled as a collection of stochastic censoring events
whose distribution and effects on the claim probability estimation are quantified by
a behavioral model developed in this work.
A third research line developed in this thesis regards a particular class of claims in
suretyship insurance. It is shown that a properly designed risk appetite framework
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can completely prevent this type of claim. Further, we numerically verified that
the creditworthiness dynamics of the underlying risky subjects does not play a
relevant role in the origination of those claims. This fact supports the choice of the
CreditRisk+ model as a tool to infer the joint probabilities of future C&S claim
events.
The chapter is organized as follows. §7.1 summarizes the content of the first three
chapters, where the investigated topic and the related literature are analyzed. §7.2
briefly recall the content of the second half of this thesis, where the research results
are presented. Finally, §7.3 displays the lines of research that this work leaves open
and that the candidate intends to develop in the next steps of his research activity.

7.1 Analysis of the topic and the related literature
The main features of credit insurance and suretyship products have been presented
in chapter 1, where an essential background is also provided about the history and
current market development of this insurance line. These products’ features are
then analyzed in chapter 2 to identify a feasible modeling approach, with particular
reference to the estimation of the claim probabilities. The first step to shorten the
list of techniques available from banking and finance models was to outline the claim
event in this line of business.
As discussed in §2.1, a C&S claim is an absorbing event generated by the breach of an
obligation (either financial or not). The worsening of the risky subject’s “standing”
(i.e., creditworthiness, reputation, or performance capability in a broader sense)
is almost never the direct cause of a claim, with the only possible exception of
the conversion from a bid bond to a performance bond in the suretyship case.
Nonetheless, the macroeconomic context where the risky subjects operate may affect
the claim probabilities of comparable subjects in a similar way.
Hence, in §2.2.7, the CreditRisk+ model is identified as a feasible choice to describe
the joint distribution of future C&S claim events, both for credit insurance and
suretyship products. The model allows generating joint absorbing events (i.e., de-
fault events, according to the semantics of the original version). The claim intensity
dynamics is not considered, as the model is defined in an uniperiodal framework,
and the claims are independent. However, the claim probabilities associated with
the underlying risky subjects are modeled jointly. Their dependence structure is
defined through a set of latent market factors and a matrix of factor loadings that
model the effect of the macroeconomic or market state on each of the risk sources.
It is worth noticing that there is no claim to completeness in this choice. Although
the CreditRisk+ model appears to be an excellent choice to describe the joint distri-
bution of claims in C&S, it is certainly not the only possible. For example, among
the models described in §2.2, also the Vasicek model and the scoring systems appear
to be feasible - the latter to some extent, depending on the information available.
In chapter 3, some classic results are introduced with regards to inferring the prob-
ability of an absorbing event. The case of incomplete information is also considered,
recalling the inference theory developed in the oncology context to handle censor-
ing events, such as the withdrawal. The tools introduced in §§3.2−3.4 are then
considered for being applied to estimate marginal C&S claim probabilities. In §3.5
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it is discussed how the proposed techniques are not sufficient to address credit in-
surance, where stochastic censoring events impair observability of claims. On the
other hand, information to estimate probability can be considered complete in sure-
tyship, despite being reasonable to expect a poor data set considering the generally
low level of the claim probability.

7.2 Original results
Three research problems are posed in the analysis displayed in chapters 4−6.
The first one is related to the general scarcity of data that affects C&S insurance
companies, unlike banks and other financial institutions. The CreditRisk+ model
appears to be a proper choice for our purposes, once calibrated. However, we have
to keep in mind that the model is designed to be calibrated and applied considering
a single time scale, but its natural applications both in banking and in insurance
contexts require that the time scale needed is equal to one year. This is a “long”
sampling period to calibrate a model with a non-parsimonious dependence structure,
where many parameters have to be specified. A one-year-long sampling period may
significantly reduce the number of observations available in a frequencies time series,
implying greater estimation errors. The problem is addressed in chapter 4, where
the model is generalized to a multi-period framework and weakly autocorrelated
time series are admitted, resulting in the possibility to calibrate the model onto a
time scale different from the one used in simulations. It is shown that the estimation
error reduces as the calibration time scale shortens, with particular reference to the
estimation of the dependence structure parameters. The original results reported
in the chapter have been published in Mathematics1 in July 2021 [103] and as a
part of the book Mathematical and Statistical Methods for Actuarial Sciences and
Finance - eMAF 2020 [104] in December 2021.
The second problem regards the possibility that a bidder’s creditworthiness dynam-
ics plays a significant role in the claim probability of a bid bond. In chapter 5,
the case of Italian public tenders is investigated, considering the actual PD volatil-
ity of Italian constructors, based on the non-performing loans time series publicly
available from the Bank of Italy statistical database. The numerical analysis of
the bidding mechanisms highlights how a poor starting price choice plays a major
role in the failure of a tender process. This error is due to the procuring entity
that promotes the public works underlying the tender and is utterly unrelated to
the participants’ creditworthiness. Moreover, it is shown how a relatively simple
risk appetite framework lets the sureties prevent almost all the bid bond claims,
except for those originated by the bidder’s default. Hence, the assumption to ne-
glect the creditworthiness dynamics appears to be fully justified when modeling the
claim probability in C&S insurance. The original results reported in the chapter
have been published in Mathematics in September 2021 [105]. The paper has been
selected as “feature paper” by the Editor.
The third and last problem addressed in this thesis originates from the inadequacy
of the classic frequency estimators in the presence of censoring events when consid-

1ANVUR recognises Mathematics among the “Area 1” - Mathematics and Informatics eligible
journals.
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ering them for credit insurance applications. The information asymmetry between
the insured seller and the credit insurance company generates stochastic censoring
events that are not tractable by using the methods presented in chapter 3. Hence,
chapter 6 proposes a behavioral model designed to fit any sounding business rela-
tionship in terms of the temporal distribution of issued invoices. The behavioral
model enables the introduction of a new frequency estimator both in parametric
and nonparametric forms. Such an estimator can compensate for the bias caused
by the stochastic censoring events, enabling a proper inference of claim probability
in credit insurance. The original results reported in the chapter have been published
in JORS2 in February 2022 [106].

Appendix C reports information regarding the source code developed to produced
the results mentioned above.

7.3 Further developements
C&S claim probability is broad, complex, and scarcely explored to date. Hence,
this work has no claim to completeness, either on the research problems that have
been investigated or on the methods that we chose or developed to address them.
Many other issues related to the ones discussed are worth further investigation in
the future. This section briefly summarizes the candidate’s intentions with regards
to the topics that he intends to address in the next steps of his research work.

• Credit insurance. The study reported in chapter 6 considers a key feature of
credit insurance (i.e., the information asymmetry existing between the insurer
and the insured). However, it neglects at least another feature that affects the
frequency of observed claims, namely, the insurer’s right to nullify previously
granted credit limits. This management action has a non-trivial effect on the
claim generation process because already issued invoices may still lead to a
claim. However, this is a relevant element of risk mitigation to credit insur-
ers, especially combined with an effective scoring system, frequently updated.
How do the scoring system, the credit limits cancelation, and the information
asymmetry relate? The candidate intends to address this question in future
works. The complexity of this topic can be even increased when considering
the hindrance that the insurer withstands in the presence of a grace period
(see §1.2.1.1) or similar contractual clauses that impair the management ac-
tions on credit limits. Finally, a further area worth being investigated is how
to model the joint effect of all the elements mentioned above on the severy
of a claim before the application of mitigation clauses, recovery actions, and
reinsurance (i.e., namely, the exposure at default probability distribution).

• Suretyship. The study reported in chapter 5 analyses part of the mechanisms
that originate a claim from a bid bond policy. This analysis could be im-
proved by simulating a complete Solvency 2 risk profile representation of the

2The Journal of the Operational Research Society is ANVUR A-rated for “Area 13” -economics
and statistics. ANVUR also recognises JORS among the “Area 1” - Mathematics and Informatics
eligible journals.
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surety, including missing elements, such as market and reserve risks. Further,
the stochastic duration of performance bonds - reported in §1.3 - could be
considered in the framework, provided that a reliable data source is publicly
available to address this specific topic. Finally, an area worthy of being inves-
tigated is the heterogeneity of loss event types guaranteed by the suretyship
insurance and their different degree of dependence with the credit risk of the
principal. This is implicitly considered by choice of a latent factors model,
such as the CreditRisk+ model. Nonetheless, the candidate plans a detailed
and systematic analysis of the existing relations among suretyship loss event
types and credit risk in his future research activity.

• Modeling generalizations. The study reported in chapter 4 considers a specific
model among the broader set of models that are feasible to describe the joint
probability of claim occurrences in a portfolio of C&S policies. The model’s
assumptions are generalized to a multi-period framework, and it is shown that
such an extension of the original model implies an improvement in calibrating
the underlying dependence structure when a poor data set is available, as is
often the case in C&S insurance. It is legitimate to ask whether one could
formally identify the broadest class of models that cope with the features of a
C&S claim, as listed in §2.1. Further, assuming this task to be well-posed and
achievable and considering the subset of uniperiodal models only, it would be
interesting to attempt a generalization of the results introduced in chapter
4. It is worth noticing that part of the theorems reported in §§4.2−4.3 need
the closure property of the gamma distribution to be proved. Hence a strict
generalization of the same results to other models would not be possible,
as they assume different underlying distributions. However, the candidate is
planning to investigate to what extent a “weak” generalization of these results
is feasible.

• Different applications. The estimator developed in chapter 6 is an abstract
result, both in its parametric and nonparametric forms. The underlying as-
sumptions are developed based on a description of what happens among the
credit insurer, the insured seller, and the underlying buyer when a credit limit
is granted on the buyer. Nonetheless, the same assumptions could fit similar
problems well (i.e., estimating the probability of observing a specific absorbing
event given the presence of stochastic censoring events) in different contexts,
such as oncology and epidemiology. As discussed in chapter 3, the exchange of
techniques between credit risk and medical statistics is quite common, given
the similarities between death and default in a modeling perspective. The
candidate hopes that theorems 6.2 and 6.3 may also prove useful for some ap-
plications to medical sciences and intends to investigate this possibility deeply.

Finally, the software implementations of the techniques proposed in this thesis are
subject to future improvements both in terms of efficiency and algorithms - the latter
with particular reference to the cases where the numerical search of a (sub)optimal
solution is required to implement the method.





163

Appendix A

Proofs and details supporting
results in chapter 4

This appendix reports some calculations regarding the analyitical results stated in
chapter 4.

A.1 Proofs of propositions and theorems
This section presents the proofs of theorems and propositions discussed in chapter
4.

A.1.1 Proof of Theorem 4.1

Proof. Firstly, the statement is proven considering Assumptions 4.3 and 4.1.
Assumption 4.3 implies by construction that {Y (j)

i }j=1...m is a set of Poisson r.v.’s,
which are mutually independent, conditionally on the realization of {Γ(j)}j=1...m .
Poisson distribution is closed with respect to addition. Hence

m∑
j=1

Y
(j)
i |Γ

(j) ∼ Poisson(piΣ), (A.1)

where the distribution parameter is

piΣ =
m∑
j=1

qi
tj−tj−1
T−t︸ ︷︷ ︸
q
(j)
i

(
ωi0 +

K∑
k=1

ωikΓ
(j)
k

)
. (A.2)

Eq. (4.20) in Assumption 4.3, the choice ξkj = 1 and the scaling property of Gamma
distribution imply that

tj−tj−1
T−t Γ(j)

k ∼ Gamma
(
σ−2
k

tj−tj−1
T−t , σ2

k

)
(A.3)

Furthermore, Assumption 4.5 and the fact that independent Gamma r.v.’s with the
same scale parameter are closed with respect to addition imply that

m∑
j=1

tj−tj−1
T−t Γ(j)

k ∼ Gamma
(
σ−2
k , σ2

k

)
. (A.4)
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Hence
∑m
j=1

tj−tj−1
T−t Γ(j)

k ≡ Γk and so
∑m
j=1 Y

(j)
i ≡ Yi. This implies that (t, T ] verifies

Assumption 4.1.
The proof above can be extended to the exponential case - i.e. when considering
Assumptions 4.4 and 4.2 instead of Assumptions 4.3 and 4.1. The form of parameter
piΣ in (A.2) can be obtained also can be obtained also from Assumption 4.4. In
fact, the substitution Y (j)

i 7→ Ỹ
(j)
i implies that Ỹi ∼ Bernoulli(p̃i) where

ln (1− p̃i) = ln
m∏
j=1

(
1− p̃(j)

i

)
=

m∑
j=1

qi
tj−tj−1
T−t

(
ωi0 +

K∑
k=1

ωikΓ
(j)
k

)
. (A.5)

Considering eq. (A.5) instead of (A.2), the proof presented above holds for the Ỹi
representation of risks, ceteris paribus, implying that (t, T ] verifies Assumption 4.2.

A.1.2 Proof of Theorem 4.2

Proof. The same arguments that lead to (A.2) or to (A.5) in proof of Theorem 4.1
are still valid in this case. Hence, it suffices to prove that mean and variance of the
latent variable

Γ′k :=
m∑
j=1

tj − tj−1
T − t

Γ(j)
k = 1

m

m∑
j=1

Γ(j)
k

remain consistent with CreditRisk+ requirements, stated in Assumption 4.1. It
holds E[Γ′k] = 1, since E[Γ(j)

k ] = 1. Moreover, the coefficient ξjk compensates the
bias introduced in var [Γ′k] by the fact that Γ(j)

k (j = 1 . . .m) are autocorrelated
according to the ACF %xk:

var

 m∑
j=1

Γ(j)
k

 =
m∑
j=1

var
[
Γ(j)
k

]
+

m∑
j=1

∑
j′ 6=j

cov
[
Γ(j)
k ,Γ(j′)

k

]

= var
[
Γ(1)
k

](
m+ 2

m−1∑
x=1

(m− x) %xk

)
︸ ︷︷ ︸

mξ−2
kj

which implies var [Γ′k] = σ2
k directly.

The fact that Γ′k is Gamma distributed is imposed in Assumption 4.6, implying that
Γ′k ≡ Γk and so that Assumption 4.1 is satisfied.

A.1.3 Proof of Proposition 4.2

Proof. Given a time interval (t, T ] ⊆ (ta, tb] and a uniform partition (j = 1 . . .m)
over (t, T ], Assumptions 4.3 and 4.5 imply that (t, T ] verifies Assumption 4.1 by
Theorem 4.1. Assumption 4.7 guarantees the convergence of Fh to E[Fh|Γ] and of
F

(j)
h to E[F (j)

h |Γ(j)], where we recall that Fh = Fh(t, T ).
For any interval (t, T ] ⊆ (ta, tb] and any pair of clusters ch, ch′ , definitions (4.34),
(4.35) and Assumption 4.5 imply that the covariance between Fmh and Fmh′ is given
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by

cov (Fmh, Fmh′) =
m∏
j=1

[
cov

(
F

(j)
h F

(j)
h′

)
+ s

(j)
h s

(j)
h′

]
− shsh′ (A.6)

Since all the considered subintervals (tj−1, tj ] have the same length δm = tj − tj−1,
the frequencies F (j)

h are i.i.d., so that the above expression simplifies to:

cov (Fmh, Fmh′) + shsh′ =
[
cov

(
F

(j)
h , F

(j)
h′

)
+ s

(j)
h s

(j)
h′

]m
(A.7)

for any j = 1, . . . ,m.
Each cluster ch is supposed to be homogenous by definition: i.e. ω(i) = ω(h) for
each risk Yi ∈ ch. Hence, distributional Assumptions 4.1 and 4.3 imply that both
Fh

nh(t)→∞−−−−−−→ E[Fh|Γ] and F (j)
h

nh(tj)→∞−−−−−−→ E[F (j)
h |Γ(j)] are sample estimators of the

parameters ph(Γ) := qh(ωh0 +
∑
k ωhkΓk) and p(j)

h (Γ(j)) respectively, leading to the
equivalence relation

Fmh = Fh = q̂h

(
ωh0 +

K∑
k=1

ωhkΓk

)
, (A.8)

therefore both Fmh(t, T ) and Fh(t, T ) are estimators of the default frequency for
the (t, T ] interval. Thus, eq. (A.7) can be rewritten as:

cov (Fh, Fh′) + shsh′ =
[
cov

(
F

(j)
h , F

(j)
h′

)
+ s

(j)
h s

(j)
h′

]m
(A.9)

and, since m = (T − t)/δm,

[cov (Fh, Fh′) + shsh′ ]1/(T−t) =
[
cov

(
F

(j)
h , F

(j)
h′

)
+ s

(j)
h s

(j)
h′

]1/δm
. (A.10)

To complete the proof, let (t, T ] and (t′, T ′] be two sub-intervals of (ta, tb], such that
(T − t)/(T ′ − t′) ∈ Q. Hence, GCD{T − t;T ′ − t′} =: δ ∈ R+ exists. δ can be used
as the mesh to define two uniform partitions over the two considered intervals.
Given these partitions, (A.10) can be applied both to T − t and to T ′− t′ leading to

[cov (Fh(t, T ), Fh′(t, T )) + sh(t, T )sh′(t, T )]1/(T−t) =[
cov

(
Fh(t′, T ′), Fh′(t′, T ′)

)
+ sh(t′, T ′)sh′(t′, T ′)

]1/(T ′−t′)
and completing the proof. The requirement (T − t)/(T ′ − t′) ∈ Q can be easily
weakened by the convergence of finite continued fractions with an increasing number
of terms, until the desired degree of precision is reached.

A.1.4 Proof of Proposition 4.3

Proof. Given a time interval (t, T ] ⊆ (ta, tb] and a uniform partition (j = 1 . . .m)
over (t, T ], Assumptions 4.4 and 4.5 imply that (t, T ] verifies Assumption 4.2 by
Theorem 4.1.
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Assumption 4.7 guarantees the convergence of Lh to E[Lh|Γ], where we recall that
Lh = Lh(t, T ). Furthermore, it holds by definition that E[Lh|Γ] = ph(Γ), where the
notation ph has been introduced in the proof of Proposition 4.2.
The same apply to L(j)

h (j = 1 . . .m) for each uniform partition of (t, T ] considered:
indeed, Assumption 4.7 implies L(j)

h → E[L(j)
h |Γ

(j)] = p
(j)
h (Γ).

Since ph(Γ) =
∑m
j=1 p

(j)
h (Γ(j)) and given that the partition is uniform, it holds

Lh = mL
(j)
h for each j = 1 . . .m. Since m := (T − t)/δm, we have

1
T − t

Lh = 1
δm
L

(j)
h (A.11)

Assumption 4.5 and eq. (A.11) imply that

1
T − t

cov[Lh, Lh′ ] = 1
δm

cov[L(j)
h , L

(j)
h′ ] (A.12)

for each considered pair of clusters ch, ch′ . The proof is completed by the same
argument used in proof of Proposition 4.2, after eq. (A.10).

A.1.5 Proof of Theorem 4.3

Proof. Assumptions 4.3, 4.5 and ξkj = 1 imply Assumption 4.1 by Theorem 4.1.
The same theorem implies Assumption 4.2 in case Assumption 4.4 is considered
instead of Assumption 4.3, ceteris paribus. Furthermore, Assumptions 4.3, 4.5, 4.7
and ξkj = 1 imply that

Â
(L,m)
hh′ = 1

qhqh′

[(
ĉ

(Lm)
hh′

)m
− shsh′ − δhh′

qh
nh

]
(A.13)

by Proposition 4.2, for any j = 1 . . .m and h, h′ = 1 . . . H. Analogously, considering
Assumption 4.4 instead of Assumption 4.3, it holds

Â
(E,m)
hh′ = m

qhqh′
ĉ

(Em)
hh′ (A.14)

by Proposition 4.3, for any j = 1 . . .m and h, h′ = 1 . . . H.
The next step of the proof is showing that Γk∼̇N (1, βk) in the limit σk → 0+. In
fact, both Assumptions 4.3 and 4.4 state that

Γ(j)
k ∼ Γ

(
1

mβk
,mβk

)
, E

[
Γ(j)
k

]
= 1, var

[
Γ(j)
k

]
= mβk, j = 1, . . . ,m.

Hence their probability densities dFk(x) satisfy the following:

dFk(x) ∝ x(mβk)−1−1 exp
(
−(mβk)−1x

)
dx (A.15)

Since it holds (mβk)−1 − 1 σk→0+
−−−−→ (mβk)−1, we have

lim
σk→0+

dFk(x) ∝ exp
( ln x− x

mβk

)
dx. (A.16)
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By introducing the auxiliary variable x′ := x− 1 and replacing ln(1 + x′) with the
first three terms of its Maclaurin series, relation (A.16) can be equivalently written
as

lim
σk→0+

dFk
(
x(x′)

)
∝ exp

(
− x′2

2mβk

)
dx′ (A.17)

In the limit σk = βk → 0+, eq. (A.17) implies that

Γ(j)
k ∼ N

(
µ = 1, σ2 = mβk

)
. (A.18)

Hence it holds that each F (j)
h is normally distributed, with variancemσ2

h := m
∑
k ωhkβk

- when considering the linear case (i.e. Assumptions 4.1 and 4.3). Analogously, also
each L(j)

h is normally distributed in the exponential case (i.e. Assumptions 4.2 and
4.4).
Considering the market factors - as well as the historical observations of default
frequency - as normal random variables is relevant to prove the theorem, since it
implies that the covariance matrix estimators ĉ(Lm) and ĉ(Em) are Wishart dis-
tributed. Hence the variance associated to a given matrix element is

var
[
ĉ

(m)
hh′

]
= m2

m · n− 1
(
ρ2
hh′ + 1

)
σ2
hσ

2
h′ (A.19)

in both linear and exponential cases. In the exponential case eq. (A.19) is equivalent
to the following

var
[
ĉ

(Em)
hh′

]
= 1
m · n− 1

[(
c

(Em)
hh′

)2
+ c

(Em)
hh c

(Em)
h′h′

]
(A.20)

while the same is not true in the linear case. Given equation (A.19), it is possible
to prove equation (4.54) separately in the two cases.
Proof in the linear case. Proposition 4.2 implies
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ĉ

(Lm)
hh′

)m]
= 1

(qhqh′)2

[(
E
[(

ĉ
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In the limit σ → 0+ the binomial above can be replaced with its leading term.
Hence
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ĉ

(Lm)
hh′

])2(m−1)
(A.22)

By applying equation (A.19) we have
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Â

(L,m)
hh′

]
= 1

(qhqh′)2
m2

m · n− 1
(
ρ2
hh′ + 1

)
σ2
hσ

2
h′

(
c

(Lm)
hh′

)2(m−1)

= 1
(qhqh′)2

1
m · n− 1

ρ2
hh′ + 1
ρ2
hh′

(
c

(Lm)
hh′ − s

(j)
h s

(j)
h′

)2 (
c

(Lm)
hh′

)2(m−1)
(A.23)



168 A. Proofs and details supporting results in chapter 4

Applying Proposition 4.2 once again we have
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and thus the ratio var
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Â

(L,m)
hh′

]
/var

[
Â
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verifies equation (4.54), completing

the proof for the linear case.
Proof in the exponential case. Equation (A.20) and Proposition 4.3 imply
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The latter implies that in case m = 1 we have
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Hence, the ratio var
[
Â

(E,m)
hh′

]
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verifies equation (4.54), completing the

proof for the exponential case.

A.2 Covariance estimation error in presence of auto-
correlation

In this section a generalization of equation (4.54) is provided, considering the pres-
ence of autocorrelation. Only the exponential case is discussed, because a closed
form for Â(E,m)

hh′ is still available when autocorrelation has to be considered - while
only a second order approximation has been computed for the linear case Â(L,m)

hh′ .
A comparison between equations (4.41) and (4.49) allows us to generalize Proposi-
tion 4.3.
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It holds by definition
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Hence, Assumption 4.6 implies
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Furthermore, applying equation (A.19), it follows that
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Equation (A.29) leads to another version of equation (A.27)
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From eq. (4.49) we have
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Equation (A.33) implies that var
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]
depends on the correlation matrix %(ĉ)
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among the considered covariance estimators xĉ(Em)
hh′ (x = 0, 1, . . . ), as shown below

by choosing an equivalent expression for the RHS:
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(ĉ)
xx′ xshh′ x′shh′ (A.34)

where
xshh′ := (2− δ0x)(1− x

m)(var
[
xĉ
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In case the covariance estimators are independent from each other (i.e. %(ĉ)
xx′ = δxx′),

an inferior limit to the considered variance is obtained
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Equation (A.31) can be substituted into eq. (A.34). Hence, RHS of inequality
(A.36) becomes
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where the notation cv [·] stands for the coefficient of variation.
(c(Em)
hh′ )2 and var

[
ĉ

(Em)
hh′

]
can be expressed by using equation (A.32). Hence eq.

(A.36) can be used to estimate an inferior limit to ε
[
Â

(E,m)
hh′

]
in the gaussian regime.

A superior limit for the same quantity can be computed as well, imposing %(ĉ)
xx′ = 1

for each considered x, x′.

Remark A.1. Equation (A.34) does not converge to (A.25) in the limit %xk → 0⇒
x%̃hh′ → 0. This copes with the fact that assuming %xk = 0 in eq. (A.25) implies a
lesser error than measuring it.
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Appendix B

Calibration of the behavioral
model proposed in chapter 6

This appendix reports and comments samples of the R source codes developed in
this work, with specific reference to the behavioral model introduced in chapter
6 and its calibration. §B.1 provides an insight on the simulation of the insured
sellers’ behavior. This part of the engine is briefly described in §6.3.1, and enables
the testing activity reported in §6.3.2 on the calibration techniques proposed in
§6.2.3. The next §B.2 discloses the numerical investigation done to achieve the
result displayed in figure 6.3. This is relevant step in the developement of the
proposed approach to the model calibration, as it highlights the numerical instability
of equation (6.40). Finally, §B.3 reports the source code actually used in calibrating
the behavioral model.

B.1 Simulating the business relationships
The R code below reproduces results shown in figure 6.2. Namely, the code generates
a single scenario in a Monte Carlo simulation of a given business relationship.

1 param = data.frame(xi1 = c(1.000, 5.000, 0.000, 0.000),
2 xi2 = c(0.001, 0.001, 1.714, 1.000),
3 theta = c(0.500, 0.500, 0.800, 0.050),
4 w1 = c(0.000, 0.000, 0.000, 0.250),
5 w2 = c(0.000, 1.000, 0.000, 0.000),
6 w3 = c(0.000, 0.000, 0.500, 0.000),
7 w4 = c(1.000, 0.000, 0.500, 0.750),
8 d1 = array(1/12,dim=4))
9

10 CASE_ID = NA # 1-Periodic; 2-Seasonal, 3-Irregular; 4-Intermediate
11 cw = NA
12 xi2_prime = NA
13 # distribution of delta1
14 rdelta1 <- function(d1_ = param$d1[CASE_ID], cw_ = cw) {
15 return( d1_*which.max(runif(1)<=cw) )
16 }
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17 # (conditioned) distribution of t0 and delta0
18 rt0delta0 <- function(t0_previous,
19 delta1_previous,
20 xi1_ = param$xi1[CASE_ID],
21 xi2_prime_ = xi2_prime,
22 theta_ = param$theta[CASE_ID]) {
23 delta0 = xi1_*delta1_previous +
24 rgamma(1,
25 shape = xi2_prime_*delta1_previous,
26 scale = theta_)
27 t0 = t0_previous + delta0
28 return(c(t0,delta0))
29 }
30 # generate pseudo-historical invoices
31 HORIZON = 2 # observation period (years)
32 EXAMPLES = length(param$xi1) # number of examples
33 invoice = data.frame(t0 = double(),
34 t1 = double(),
35 delta0 = double(),
36 delta1 = double())
37 invoices = rep(list(invoice), EXAMPLES)
38 set.seed(1)
39 for(j in 1:EXAMPLES) {
40 CASE_ID = j
41 cw = cumsum(param[CASE_ID,4:7])
42 xi2_prime = param$xi2[CASE_ID]/param$theta[CASE_ID]
43 aus_invoice <- runif(1)*0.1 #initial delta0 and t0
44 aus_invoice <- c(aus_invoice, aus_invoice, rdelta1())
45 k=1
46 while(aus_invoice[1] < HORIZON) {
47 invoices[[j]] <- rbind(invoices[[j]], data.frame(t0 = aus_invoice[1],
48 t1 = aus_invoice[1]+aus_invoice[3],
49 delta0 = aus_invoice[2],
50 delta1 = aus_invoice[3]))
51 aus_invoice <- rt0delta0(invoices[[j]]$t0[k],
52 invoices[[j]]$delta1[k])
53 aus_invoice <- c(aus_invoice, rdelta1())
54 k=k+1
55 }
56 }

B.2 Stability of ∇ lnL
This section displays the source code used to generate the results in figure 6.3.
First, a set of 5.000 scenarios is generated by using a code similar to the one shown
in paragraph B.1, choosing CASE_ID= 3 and HORIZON= 5.
Then, the following measures out_consistency are taken across the scenarios (SET-
TING= 5000 and NBUYERS= 100).

1 for(s in 1:SETTING) {
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2 Delta0 = c()
3 Delta1 = c()
4 for(b in 1:NBUYERS) {
5 Delta0 <- c( Delta0, invoices_settings[[s]][[b]]$delta0[-1] )
6 Delta1 <- c( Delta1,

invoices_settings[[s]][[b]]$delta1[-length(invoices_settings[[2]][[b]]$delta1)]
)

7 }
8 Delta0_m <- mean(Delta0)
9 Delta1_m <- mean(Delta1)

10 # panel (i)
11 out_consistency$test_dxi1[s] <- grad_d_xi1(param$theta[CASE_ID],
12 param$xi1[CASE_ID],
13 xi2_prime,
14 Delta0, Delta1,
15 Delta0_m, Delta1_m)
16 # panel (ii)
17 out_consistency$test_dx2prime[s] <- grad_d_xi2prime(param$theta[CASE_ID],
18 param$xi1[CASE_ID],
19 xi2_prime,
20 Delta0, Delta1,
21 Delta0_m, Delta1_m)
22 # panel (iii)
23 out_consistency$test_dtheta[s] <- grad_d_theta(param$theta[CASE_ID],
24 param$xi1[CASE_ID],
25 xi2_prime,
26 Delta0, Delta1,
27 Delta0_m, Delta1_m)
28 }

where the functions used above are defined as follows

1 grad_d_xi1 <- function(theta, xi1, xi2prime,
2 Delta0, Delta1,
3 Delta0_m, Delta1_m) {
4 return(
5 Delta1_m/theta -
6 mean( Delta1 * (xi2prime*Delta1-1) / (Delta0-xi1*Delta1))
7 )
8 }
9 grad_d_xi2prime <- function(theta, xi1, xi2prime,

10 Delta0, Delta1,
11 Delta0_m, Delta1_m) {
12 return(
13 mean(Delta1 *
14 ( log(((Delta0-xi1*Delta1))/theta)
15 -digamma(xi2prime*Delta1))
16 )
17 )
18 }
19 grad_d_theta <- function(theta, xi1, xi2prime,
20 Delta0, Delta1,
21 Delta0_m, Delta1_m) {
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22 return(
23 mean(xi2prime*Delta1-(Delta0-xi1*Delta1)/theta)
24 )
25 }

B.3 Results of numerical optimization
This section displays the numerical outcomes of the three calibration methods in-
troduced in §§6.2.3 and summarized in §6.3.2. The following graphical evidence
confirms the results shown in table 6.2 (i.e., the 50 buyers case). Indeed, the phe-
nomenologies exhibited by the three methods MLML, MLMM, and MMMM across
the scenarios are comparable to each other.
However, a further information emerges from the plots. In certain cases, a contri-
bution to the error and the bias of the resulting estimates is due to the existence of
alternative solutions of (ξ?1 , ξ?2 , θ?) that still leads to reproduce P̃ with a adequate
level of approximation and is able to “explain” a specific scenario data set in terms
of likelihood or moment-matching.
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Figure B.1. Calibration outcomes for the behavioral types a − d introduced in §6.2.1.2,
considering the MLML technique over 500 scenarios. The red vertical line represents the
true parameter’s value, while the blue line is the average of the simulated estimations.
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Figure B.2. Calibration outcomes for the behavioral types a − d introduced in §6.2.1.2,
considering the MLMM technique over 500 scenarios. The red vertical line represents the
true parameter’s value, while the blue line is the average of the simulated estimations.
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Figure B.3. Calibration outcomes for the behavioral types a − d introduced in §6.2.1.2,
considering the MMMM technique over 500 scenarios. The red vertical line represents
the true parameter’s value, while the blue line is the average of the simulated estima-
tions.
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Appendix C

Generic comments on
simulations

Each of chapters 4, 5, and 6 addresses a specific research problem related to the
central topic investigated in this work. Chapters 4 and 6 report both analytical
and numerical results, the latter being needed to test the presented techniques and
assess their fitness in increasingly realistic cases, where the assumptions made to
obtain the analytical results are weakened. Further, the main results in chapter 5
are obtained only by numerical investigation.
Estimation and risk management techniques proposed in this work are tested against
simulated data sets to check their capability of reconstructing and handling a priori
known information. Hence, each numerical experiment performed in the previous
chapters comprises two phases: data generation and processing. The generation
phase has a relevant computational cost. Indeed, an actual database typically con-
tains granular information: each elementary “object” (e.g., buyer, contractor, policy,
bid, invoice, claim) is simulated and recorded separately, together with the data set
needed to characterize it. A different granular data set must be produced for each
Monte Carlo scenario, requiring a large amount of computational time. One can
achieve a partial time saving if the scenarios are recorded instead of being simu-
lated multiple times to be applied in testing and comparing different techniques.
However, the drawbacks of this possibility (i.e., extensive memory usage and time
required for writing/reading operations) limit its application.
Hence, the most effective optimization of computational time and memory can be
achieved by choosing the proper number of scenarios N . The choice of N must
consider the stability and significance of the results - which grow with N itself - and
the computational cost. The optimal N value depends (mainly) on the simulated
model, the measured quantity, and the maximum acceptable level of numerical error.
Thus, it is necessary to perform an empirical analysis to choose a suboptimal N for
each simulation.
In this work, the number of scenarios N per simulation has been selected as follows

i. given a fixed seed, N is increased until the results stabilize;

ii. following the single-seed stabilization, alternative seeds are tested with the
same N ;
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iii. if the results obtained in step ii. remain stable up to the desired precision, N
is confirmed. Otherwise, it is increased further.

Three to five alternative seeds have been considered for each simulation. The chosen
N ranges from 105, when computing A(m)

12 in §§4.4.2-4.4.3, to 103, when assessing
the effectiveness of the proposed risk appetite framework in §§5.2.2-5.2.4. Namely,
Monte Carlo simulations exhibit the slowest convergence when computing the co-
variance estimator and its error among the considered quantities. This fact is not
surprising, as the estimation of covariance is generally affected by an error greater
than the one that affects the estimation of a marginal probability.
The code used in this work has been developed entirely by the candidate in R
language. Although R offers many packages dedicated to numerical simulation and
statistical analysis purposes, the code developed in this work relies mainly on the
basic functions to maximize the user’s control over the computation. Exceptions to
this choice are the packages used to handle the output and the package “pracma”,
which implements the incomplete Gamma function needed in chapter 6.
Simulations have been performed on three different computers to distribute the
computational effort and as a mitigation factor against the reproducibility risks
that may arise when a specific computer is the only source of a numerical result.
All the computers employed in the numerical investigation were based on Intel 64-bit
architecture.
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