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In this paper we consider the second eigenfunction of the 
Laplacian with Dirichlet boundary conditions in convex 
domains. If the domain has large eccentricity then the 
eigenfunction has exactly two nondegenerate critical points (of 
course they are one maximum and one minimum). The proof 
uses some estimates proved by Jerison ([13]) and Grieser-
Jerison ([10]) jointly with a topological degree argument. 
Analogous results for higher order eigenfunctions are proved 
in rectangular-like domains considered in [11].
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1. Introduction and main results

Let Ω ⊂ RN , N ≥ 2, be a bounded and smooth domain. Assume that u is a classical 
solution of the following problem
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{
−Δu = f(u) in Ω
u = 0 on ∂Ω,

(1.1)

where f : [0, +∞) → [0, +∞) is a smooth function.
It is known that the shape of the solution u is strongly influenced by the geometry of 

the domain Ω and by the nonlinearity f . In particular a classical problem concerns the 
study of the number of critical points of solutions of problem (1.1).

If u is a positive solution a lot of results can be found in literature. We are going 
to recall some of them. The uniqueness of the critical point can be recovered in any 
dimension and for any locally Lipschitz nonlinearity under symmetry assumptions: this 
is a consequence of the celebrated results [8] if we ask Ω to be convex and symmetric 
with respect to all directions.

Under the only convexity assumption of the domain Ω, the uniqueness of the criti-
cal point can be proved only in special cases. If we consider the torsion problem, i.e. 
f ≡ 1, Makar-Limanov [16] proved uniqueness and nondegeneracy of the critical point 
when N = 2. Moreover he showed that u is quasiconcave, that is all the superlevel sets 
are convex. Then, the same result has been obtained in the case of the first Dirichlet 
eigenfunction in any dimension, namely f(u) = λ1u, see [3,1].

In dimension N = 2, without any symmetry assumption Cabré and Chanillo in [4]
proved that u possesses exactly one nondegenerate maximum point, provided that the 
curvature of the boundary of Ω is strictly positive and u is semi-stable i.e. if for all 
ϕ ∈ C∞

0 (Ω) it holds

∫
Ω

|∇ϕ|2 −
∫
Ω

f ′(u)|ϕ|2 ≥ 0.

The result has been recently extended to domains with nonnegative curvature in [7].
We point out that the convexity assumption can not be dropped, indeed for N = 2, 

for any k ∈ N it is possible to find a smooth “almost convex” domain Ω such that the 
solution of the torsion problem has at least k critical point, see [9] (see also [6] for a 
generalization).

In this paper we are interested in the study of the number of critical points in the 
case of sign-changing solutions. To our knowledge there are no results in the literature. 
So our starting point is the classical problem of the second Dirichlet eigenfunction of the 
Laplacian in dimension N = 2, that is we consider the following eigenvalue problem

{
−Δu = λ2u in Ω ⊂ R2

u = 0 on ∂Ω,
(1.2)

where λ2 is the second eigenvalue of the Laplace operator and u a corresponding eigen-
function. It is known that u must change sign and the geometry and location of its 
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nodal line Λ = {(x, y) ∈ Ω : u(x, y) = 0} has addressed a lot of interest. A longstanding 
conjecture is the following

(C) For which domains Ω ⊂ R2 does the nodal line Λ touch ∂Ω at exactly two points?

In [18] it was conjectured that it happens for any bounded domain and in [17] it was 
proved in convex domains, as conjectured in [20] (for other works about this conjecture, 
see for instance [15,19,2,5]). The conjecture is not true in any domain: in [12] it was 
given an example of a domain with a lot of holes where the nodal line of the second 
eigenfunction does not touch the boundary. In the same paper it was conjectured that (C)
holds in planar simply-connected domains.

Of course the computation of the critical points of eigenfunctions to (1.2) is strongly 
influenced by the geometry of the nodal line. If it is a closed curve contained in Ω we 
expect at least 3 critical points, otherwise 2 is the minimum number. For this reason we 
restrict our interest to the case of convex domains but, even in this case, there are not 
sufficient qualitative information on the eigenfunction. So we have to consider a suitable 
subset of convex domains, namely those with large eccentricity. Let us recall that the 
eccentricity of a planar domain is defined as

ecc(Ω) = diameter Ω
inradius Ω

where inradius Ω is the radius of the largest circle contained in Ω. These domains were 
considered by Jerison ([13]) and Grieser-Jerison ([10]) where the location of the nodal 
line Λ was characterized. In order to state their result we need to normalize the domain 
Ω in an appropriate way. First let us rotate Ω so that its projection on the y-axis has the 
shortest possible length, and then dilate so that this projection has length 1. Denote by 
N the length of the projection of Ω on the x-axis. Then N ≥ 1, and N is essentially the 
diameter of Ω. From now we denote by ΩN a domain satisfying the previous properties 
and accordingly by uN a solution to (1.2) in Ω = ΩN with ΛN its nodal line.

Note that in this setting the domain ΩN is close to the strip (in a suitable way) 
Ω∞ = { (x, y) ∈ R2 : 0 < y < 1 }. We have the following result.

Theorem 1.1 ([10, Theorem 1]). There is an absolute constant C0 such that the width of 
the nodal line ΛN is at most C0/N . In other words, up to translate ΩN , one has

(x, y) ∈ ΛN =⇒ |x| < C0

N
.

This result is our starting point to compute the number of critical points of uN in 
ΩN . We have the following theorem.

Theorem 1.2. For N large enough, uN has exactly two critical points PN , QN ∈ ΩN

(Fig. 1). Moreover PN (say) is a nondegenerate maximum point while QN is a nonde-
generate minimum. Finally |PN |, |QN | → +∞ as N → +∞.
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Fig. 1. A graph of uN for N large.

The proof of the previous theorem is splitted in two parts. In the first one we deduce, 
up to a suitable normalization, the convergence on compact sets of the eigenfunction uN

to the “limit” function u∞(x, y) = A0x sin(πy) where A0 is a nonzero constant. This 
will be done combining some results in [10] and [11]. We stress that the choice of the 
normalization of the eigenfunction uN is not a trivial issue, as already discussed in [13]
and [10].
The second part of the proof involves a topological argument: we introduce the vector 
field T : ΩN ∩

{
x > 1

2
}
→ R2

T (q) = (uyy(q)ux(q) − uxy(q)uy(q), uxx(q)uy(q) − uxy(q)ux(q)),

q ∈ ΩN ∩
{
x > 1

2
}
, which allows to “count” the critical points of uN . It will be proved 

that the vector field T is homotopic to the map I−(x0, y0) with (x0, y0) ∈ ΩN ∩{x > 1
2 }

(the same will be done in ΩN ∩ {x < −1
2 }). This result, jointly with some properties of 

the zeros of the vector field T , will give the uniqueness and nondegeneracy of the critical 
point of uN in the set where uN > 0 and uN < 0 respectively.
All these computations strongly use the convexity of the domain ΩN and the convergence 
of uN to u∞. We stress that, although this convergence is only on compact sets, it will 
be enough to handle the computations in all ΩN .

In the last part of the paper we deal with a particular class of convex domain not in-
cluded in the previous section, which are perturbation of rectangles which still converge 
to the strip. This family of domains has been studied in [11] where they give a full asymp-
totic expansion for the m-th Dirichlet eigenvalue and for the associated eigenfunction 
(see Theorem 5.1).

Let ϕ : [0, 1] → [0, ∞) be a Lipschitz and concave function and for N ∈ [0, ∞)
set

RN :=
{

(x, y) ∈ R2 ∣∣ 0 < y < 1, −ϕ(y) < x < N
}
. (1.3)
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Let um,N ∈ C∞(RN ) be the m-th Dirichlet eigenfunction in RN which solves{
−Δum,N = λm,Num,N in RN

um,N = 0 on ∂RN ,

where λm,N is the m-th eigenvalue. In next theorem we prove the existence of exactly 
m critical points for um,N in RN .

Theorem 1.3. For N large enough, um,N has exactly m nondegenerate critical points in 
the set RN . Moreover all of them are maxima and minima.

Unlike Theorem 1.2, the proof of Theorem 1.3 is much easier and it strongly follows 
by the estimates proved in [11].
The paper is organized as follows: in the next section we recall some notations and 
some results for the second eigenfunction on convex domain with high eccentricity from 
the papers of Jerison and Grieser, Jerison and in the next one we extrapolate the local 
convergence of uN to u∞ (see Proposition 3.1). Section 4 is devoted to the topological 
argument where we perform the computations involving the vector field T and we prove 
Theorem 1.2. Finally, in the last section we investigate the eigenfunctions on convex 
perturbations of long rectangles, proving Theorem 1.3.

2. Preliminary results

In this section we collect some results proved in [13,10] (see also [14] for an overview 
of the problem). As we pointed out in the Introduction, let us rotate ΩN so that its pro-
jection on the y-axis has the shortest possible length, then dilate so that this projection 
has length 1. Denote by N the length of the projection of the domain on the x-axis, then 
N ≥ 1. Hence, we write

ΩN =
{

(x, y) ∈ R2 ∣∣ f1,N (x) < y < f2,N (x), x ∈ (aN , bN )
}
,

where bN − aN = N , 0 ≤ f1,N ≤ f2,N ≤ 1, and the height function of ΩN is hN :=
f2,N − f1,N . We require that

f1,N → 0 and f2,N → 1 in C∞
loc(R) as N → +∞.

By the convexity of ΩN we have that f ′′
1,N ≥ 0 and f ′′

2,N ≤ 0. Our assumptions imply 
that the set ΩN “converges” to the strip

Ω∞ :=
{

(x, y) ∈ R2 ∣∣ 0 < y < 1
}
.

More precisely we have that for all compact sets K ⊂ R2 one has |(ΩNΔΩ∞) ∩K| → 0. 
As we recalled in the Introduction we know that the nodal line
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ΛN := { (x, y) ∈ ΩN | uN (x, y) = 0 },

is close to the straight line {x = 0}, up to a translation (see Theorem 1.1 in the Intro-
duction above). Finally let uN ∈ C∞(ΩN ) be the solution of

{
−Δu = λ2,Nu in ΩN

u = 0 on ∂ΩN ,
(2.1)

and for all (x0, y0) ∈ ΛN∩ΩN we can assume that uN (x0+1, y0) > 0 and uN (x0−1, y0) <
0, that is uN > 0 on the right of the nodal line and uN is negative on the left.

Finally, let LN be the length of the longest interval ILN
⊂ (aN , bN ) such that

hN (x) = f2,N − f1,N ≥ 1 − 1
L2
N

, in ILN
.

The number LN is related to the length of the rectangle contained in ΩN with lowest 
first eigenvalue and it satisfies the following bounds (see [10,14])

N1/3 ≤ LN ≤ N. (2.2)

For future convenience, we introduce for k ∈ R the sets

Ωk
N := { (x, y) ∈ ΩN | −k < x < k } ,

and

Ωk
∞ :=

{
(x, y) ∈ R2 ∣∣ −k < x < k, 0 < y < 1

}
,

where we remember that Ω∞ = R × (0, 1) is the infinite strip of height 1. Since 0 ≤
f1,N ≤ f2,N ≤ 1, we have that the continuous embedding H1

0(ΩN ) ↪→ H1
0 (Ω∞) holds 

true by means of zero extension outside ΩN .
An important step to deduce good estimates for the eigenfunction uN is to choose a 

correct normalization. So let us define ûN as

ûN := LN
uN

||uN ||∞
.

With a little abuse of notation, in the following we will set

ûN = uN .

From the results in [10] we will deduce the following lemma.
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Lemma 2.1. There exists a positive constant C independent of N , such that

|uN (x, y)| ≤ C(1 + |x|), ∀(x, y) ∈ ΩN , (2.3)

and

|uN (±1, 1/2)| ≥ 1
C
. (2.4)

Proof. The first estimate (2.3) is proved in [10, Theorem 4].
To prove (2.4), still recalling [10], define the following function

ũN (x, y) := ψN (x)

√
2

hN (x) sin
(
π
y − f1,N (x)

hN (x)

)
,

where

ψN (x) :=

√
2

hN (x)

f2,N (x)∫
f1,N (x)

sin
(
π
y − f1,N (x)

hN (x)

)
uN (x, y) dy.

Note that ũN (x, y) ∼
√

2 sin(πy)ψN (x) and ψN (x) ∼
√

2
∫ 1
0 sin(πy)uN (x, y) dy if x is 

bounded. Finally, let vN := uN − ũN .
Now, let C > 0 be any positive constant independent from N which may vary in the 

rest of the proof and recall the following estimates. [10, Equation (26)] tells us

|ψN (x)| ≥ C|x|, −2 < x < 2,

and [10, Lemma 5] gives for all (x, y) ∈ Ω2
N

|vN (x, y)|

≤
√

2
hN (x) sin

(
π
y − f1,N (x)

hN (x)

)(
1 + |x|

∣∣∣∣∣log
(√

2
hN (x) sin

(
π
y − f1,N (x)

hN (x)

))∣∣∣∣∣
)
L−3
N

≤ C

L3
N

.

Hence for (x, y) ∈ Ω2
N one has

|uN (x, y)| = |ũN (x, y) + vN (x, y)|

≥
∣∣∣∣∣ψN (x)

√
2

hN (x) sin
(
π
y − f1,N (x)

hN (x)

)∣∣∣∣∣− |vN (x, y)|

≥ |ψN (x)| sin
(
π
y − f1,N (x)

)
− C

3
hN (x) LN
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≥ C|x| sin
(
π
y − f1,N (x)

hN (x)

)
− C

L3
N

.

Finally, since for N → +∞ from (2.2) also LN → +∞, one has (±1, (f1,N (±1) +
f2,N (±1))/2) → (±1, 1/2), and then we have

|uN (±1, 1/2)| = |uN (±1, (f1,N (±1) + f2,N (±1))/2)| + o(1)

≥ C|±1|(1 + o(1)) ≥ C

2 . �
Remark 2.2. From (2.3) one has

‖uN‖L∞(Ωk
∞) ≤ C(1 + k), ∀k ∈ N. (2.5)

The following lemma follows by the standard elliptic regularity theory.

Lemma 2.3. For m ∈ N, f ∈ Hm(Ωk+1
N ), let u ∈ H1(Ωk+1

N ) be a weak solution of{
−Δu = f in Ωk+1

N

u = 0 on ∂Ωk+1
N \ {x = ±(k + 1) } .

Then for δ ∈ (0, 1) it holds

u ∈ Hm+2(Ωk+δ
N ),

with the estimate

‖u‖Hm+2(Ωk+δ
N ) ≤ C

(
‖f‖Hm(Ωk+1

N ) + ‖u‖L2(Ωk+1
N )

)
,

for some C > 0 independent from N .

We point out that the independence from N follows from the convergence of ΩN to 
Ω∞, that is the fact that |(ΩNΔΩ∞) ∩K| → 0, for all compact sets K ⊂ R2.

3. The asymptotic behavior of uN

In this section we study the limiting behavior of the solution uN on compact sets. In 
particular, uN converges to a function which is a solution in the whole strip Ω∞.

Proposition 3.1. Up to renormalize uN , we have that for all multiindices α, with |α| ≤ 2
and fixed k ∈ N, it holds

sup
ΩN∩{−k≤x≤k}

∣∣Dα
(
uN −A0x sin(πy)

)∣∣ = o(1), for N → +∞, (3.1)

for some suitable constant A0 �= 0.
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The proof of the previous proposition is a consequence of the next two lemmas.

Lemma 3.2. We have that there exists u∞ : Ω∞ → R such that for all multiindices α, 
with |α| ≤ 2 and fixed k ∈ N, it holds up to subsequences

sup
ΩN∩{−k≤x≤k}

∣∣Dα
(
uN − u∞

)∣∣ = o(1), for N → +∞, (3.2)

and u∞ solves {
−Δu∞ = π2u∞ in Ω∞

u∞ = 0 for y = 0, 1.

Proof. In the proof of the lemma, convergence will be understood up to subsequences.
Fix k ∈ N. From (2.5) and Lemma 2.3 we have

‖uN‖
H2

(
Ω

k+ 1
2∞

) ≤ C(k),

for some C(k) > 0 and so there exists uk
∞ ∈ H1

(
Ωk+ 1

2∞
)

such that

uN ⇀ uk
∞ weakly in H1

(
Ωk+ 1

2∞
)
.

Let us show that in Ωk+ 1
2∞ we have that −Δuk

∞ = π2uk
∞ in weak sense. Indeed, for all 

ϕ ∈ C∞
0

(
Ωk+ 1

2∞
)

one has

∫
Ω

k+ 1
2∞

∇uk
∞∇ϕ =

∫
Ω

k+ 1
2∞

(∇uk
∞∇ϕ + uk

∞ϕ) −
∫

Ω
k+ 1

2∞

uk
∞ϕ

= lim
N

∫
Ω

k+ 1
2∞

(∇uN∇ϕ + uNϕ) − lim
N

∫
Ω

k+ 1
2∞

uNϕ

= lim
N

∫
Ω

k+ 1
2∞

∇uN∇ϕ

= lim
N

λ2,N

∫
Ω

k+ 1
2∞

uNϕ

= π2
∫

Ω
k+ 1

2∞

uk
∞ϕ.
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Moreover, it is not difficult to see that

uk
∞ = 0, on ∂Ωk+ 1

2∞ \ {x = ±(k + 1
2) } ,

and by Lemma 2.3 we obtain that uk
∞ ∈ C∞

(
Ωk+ 1

3∞
)
.

By (2.4) we deduce that uk
∞ �≡ 0 in Ωk

∞, and from the assumptions on the nodal lines 
of uN one has uk

∞(0, y) = 0 for all y ∈ (0, 1).
Next we show the C2 convergence up to the boundary of Ωk

N . Let us start by fixing a 
point (x, 0) with −k < x < k. From the assumption on ΩN we can define the set

B(N) := ΩN ∩Br(x, 0) = { (x, y) ∈ Br(x, 0) | y > f1,N (x) } ,

for some r > 0 suitably small. Then, from the standard regularity theory we deduce that

∥∥uN − uk
∞
∥∥
C2(B1/2(N)) → 0, for N → +∞,

where B1/2(N) := ΩN ∩Br/2(x, 0). To show C2 convergence in the whole Ωk
∞ it is enough 

to cover the segments (−k, k) × {0} and (−k, k) × {1} with finitely many balls.
Thus we have proved that for all k ∈ N we can find a function uk

∞ ∈ C∞(Ωk
∞) such that 

uN → uk
∞ in C2(Ωk

∞) and uk
∞ solves

{
−Δuk

∞ = π2uk
∞ in Ωk

∞

uk
∞ = 0 for y = 0, 1.

By uniqueness of the limit we have uk+1
∞ = uk

∞ in Ωk
∞, and this allows us to define a C2

function in the whole strip Ω∞ given by

u∞(x, y) := uk
∞(x, y), for (x, y) ∈ Ωk

∞,

which is a solution of

{
−Δu∞ = π2u∞ in Ω∞

u∞ = 0 for y = 0, 1.
(3.3)

Moreover, from the corresponding properties of uk
∞, note that u∞(0, y) = 0 for all 

y ∈ (0, 1) and |u∞(±1, 1/2)| > 0. �
To conclude the proof of Proposition 3.1 we must prove that u∞(x, y) = A0x sin(πy)

for some A0 > 0. This is a consequence of the next lemma.
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Lemma 3.3. The functions u(x, y) = Ax sin(πy) are the unique solutions of the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Δu = π2u in Ω∞

u(0, y) = 0 for any y ∈ [0, 1]
u(x, 0) = u(x, 1) = 0 for any x ∈ R

|u(x, y)| ≤ C(1 + |x|) for some constant C > 0,

(3.4)

for any A ∈ R.

Proof. Here we follow [11, Lemma 6]. Let u(x, y) be a solution to (3.4). Then for each 
fixed x its Fourier series is given by

u(x, y) =
∞∑
j=1

Aj(x) sin(jπy),

where

Aj(x) := 2
1∫

0

u(x, t) sin(jπt) dt, (3.5)

that is A1(x) = c1x + d1 and

Aj(x) = cje
−
√

j2−1πx + dje
√

j2−1πx, for j ≥ 2,

with cj , dj ∈ R for all j ≥ 1, see [11, Lemma 6] for more details.
Then we evaluate (3.5) for x = 0 and taking into account that u(0, y) = 0 for all 

y ∈ [0, 1] we have

d1 = A1(0) = 2
1∫

0

u(0, y) sin(πy) dy = 0,

and

cj + dj = Aj(0) = 2
1∫

0

u(0, y) sin(jπy) dy = 0, (3.6)

for j ≥ 2.
By the definition of Aj(x) and since u has growth at most linear we have that dj = 0

for all j ≥ 2. Hence (3.6) implies cj = 0 for all j ≥ 2 and then
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u(x, y) =
∞∑
j=1

Aj(x) sin(jπy) = A1(x) sin(πy)

= (c1x + d1) sin(πy) = c1x sin(πy),

and the claim follows. �
Now we are in the position to give the proof of Proposition 3.1.

Proof of Proposition 3.1. By Lemma 3.2 uN converges up to a subsequence to u∞, let 
us show that u∞(x, y) = A0x sin(πy). First we observe that from inequality (2.3) in 
Lemma 2.1 we know that u∞ has growth at most linear for x → ±∞. Hence Lemma 3.3
applies and so u∞(x, y) = Ax sin(πy). Finally A = A0 = u∞(1, 1/2) > 0. To conclude 
the proof we need to show that, up to renormalize some uN the convergence holds for 
the whole sequence. By contradiction, assume that we can find a subsequence (uNm

)m ⊂
(uN )N not converging to u∞ and C > 0 such that

‖uNm
−A0x sin(πy)‖L∞(ΩNm∩{−k<x<k}) ≥ C.

Now, we can apply Lemma 3.2, and in turn Lemma 3.3, to the sequence (uNm
)m to find 

that, up to subsequences

‖uNm
−A1x sin(πy)‖L∞(ΩNm∩{−k<x<k}) → 0, for m → +∞,

for some A1 > 0. Hence, up to multiply uNm
by A0/A1 we get uNm

→ u∞, a contradic-
tion. �
Remark 3.4. A consequence of (3.1) is that ∇u �= 0 in ΩN ∩ {−1 < x < 1}. Note also 
that by the previous lemmas it is possible to deduce that in ΛN ∩ ∂ΩN there are two 
nondegenerate saddle points. Indeed, from Theorem 1.1 the nodal line is contained in 
ΩN ∩ {−1 < x < 1} and [15, Lemma 1.2] tells us that the two points in ΛN ∩ ∂ΩN are 
critical points. Moreover, setting ΛN ∩ ∂ΩN = { q1, q2 } we have q1 = (o(1), 1 + o(1))
and q2 = (o(1), o(1)) and then from Proposition 3.1, writing qi := (xqi , yqi), we get for 
i = 1, 2

∂xxuN (qi) = ∂xx (A0x sin(πyqi)) + o(1) = 0 + o(1) = o(1),

and similarly one has

∂xyuN (qi) = ∂xy (A0x sin(πyqi)) + o(1)

= A0π cos(πyqi) + o(1) = (−1)iA0π + o(1),

∂yyuN (qi) = ∂yy (A0xqi sin(πyqi)) + o(1) = −A0π
2xqi sin(πyqi) + o(1) = o(1).
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This yields to

detHessu(qi) = o(1) − ((−1)iA0π)2 < 0,

and the claim follows.

4. The topological argument

Up to the end of this section let us write u instead of uN for brevity. Let us recall 
some notations and some results from [4] and [7].

For every θ ∈ [0, π) we write eθ := (cos θ, sin θ) and we set

uθ := 〈∇u, eθ〉 = ∂u

∂eθ
,

Nθ := { p ∈ ΩN | uθ(p) = 0 } (the nodal set of uθ),

Mθ := { p ∈ Nθ | ∇uθ(p) = 0 } (the singular points of uθ).

Let us point out that uθ clearly solves −Δuθ = λ2,Nuθ in ΩN . Moreover, if the set 
{u = c } is smooth then its curvature is given by

K := −
uyyu

2
x − 2uxyuxuy + uxxu

2
y

|∇u|3 .

Consider

Ω′
N := { (x, y) ∈ ΩN | x > 1/2 } .

In the next proposition we recall some properties of the sets Mθ and Nθ in Ω′
N .

Proposition 4.1. We have that for every θ ∈ [0, π),

(i) around any p ∈ (Nθ ∩ Ω′
N ) \Mθ the nodal set Nθ is a smooth curve;

(ii) if p ∈ Mθ∩Ω′
N , then Nθ consists of at least two smooth curves intersecting transver-

sally at p;
(iii) from the domain monotonicity for Dirichlet eigenvalues there is no nonempty do-

main H ⊂ Ω′
N such that ∂H ⊂ Nθ (where the boundary of H is considered as a 

subset of R2);
(iv) if p ∈

(
Nθ∩∂(Ω′

N ∩ΩN )
)
\Mθ by the implicit function theorem one has that around 

p, Nθ is a smooth curve intersecting ∂Ω′
N transversally in p.

Proof. See [4]. �
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The following result tells us that for each θ ∈ [0, π) the nodal set of uθ is a smooth 
curve without self intersection and every critical point of u is nondegenerate.

Proposition 4.2. For N large enough and for every θ ∈ [0, π), the nodal set Nθ of the 
partial derivative uθ is a smooth curve in Ω′

N without self-intersection which hits ∂Ω′
N

exactly at two points. Moreover at any critical point of u in Ω′
N the Hessian matrix has 

rank 2.

Proof. The proof uses Proposition 4.1 jointly with Proposition 3.1.
From the previous points, if we prove that

a) Mθ = ∅ on Nθ ∩ ∂Ω′
N ,

and
b) Nθ ∩ ∂Ω′

N = {p1, p2},
we have the claim. Indeed if a) and b) hold then we cannot have self-intersections of 
Nθ otherwise (iii) of Proposition 4.1 fails. So Mθ = ∅ and this fact jointly with (i) of 
Proposition 4.1 gives the smoothness of Nθ in Ω′

N . In order to prove a) and b) we will 
show that the following scenario holds:

• If θ is far away from 0 and π then Nθ intersect ∂Ω′
N exactly at two points, one of 

them belonging to ∂ΩN and the other on the straight line x = 1
2 .

• If θ is close to 0 and π then Nθ intersect ∂Ω′
N exactly at two points, both belonging 

to the straight line x = 1
2 .

• In both cases Nθ intersect ∂Ω′
N transversely.

Now let us consider the two different situations.

Case 1: a) and b) hold for θ far away from 0 and π.
From the assumptions on ΩN and taking into account that the curvature K is positive, 
there exist δi := δi(N) > 0, with δi → 0 as N → +∞, for i = 1, 2, such that for 
θ ∈ (δ1(N), π − δ2(N)) there exists a unique p1 on ∂ΩN with x > 1/2 such that the 
tangent vector of ∂Ω′

N at p1 is parallel to eθ.
It follows that p1 ∈ Nθ and from K > 0 we get p1 /∈ Mθ. Indeed

uθθ(p1) = utt(p1) = K(p1)uν(p1) �= 0,

where t denotes the unit tangent normal vector, ν the unit exterior vector and uν(p1) �= 0
by the Hopf boundary lemma. Hence p ∈

(
Nθ ∩ ∂(Ω′

N ∩ ΩN )
)
\Mθ and (iv) of Proposi-

tion 4.1 implies that Nθ is a smooth curve intersecting ∂(Ω′
N ∩ ΩN ) transversely in p1.

Next let us show that for θ ∈ (δ1(N), π − δ2(N)) and p = (1/2, y) we have that Nθ is 
a singleton. Taking into account (3.1), one has

0 = uθ = cos θ∂xu + sin θ∂yu

= cos θ∂x (A0x sin(πy)) + sin θ∂y (A0x sin(πy)) + o(1)
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= A0 cos θ sin (πy) + A0
π

2 sin θ cos (πy) + o(1),

if and only if

cot θ = −π

2 cot(πy)(1 + o(1)),

which tells us that, for N sufficiently large, there exists exactly one point p2 = (1/2, yθ)
such that uθ(p2) = 0. Uniqueness of p2 follows from C1 convergence of uθ given by 
Proposition 3.1. Moreover similar computations show that p2 /∈ Mθ, indeed

∂xuθ = cos θ∂xxu + sin θ∂xyu

= cos θ∂xx (A0x sin(πy)) + sin θ∂xy (A0x sin(πy)) + o(1)

= A0π sin θ cos (πy) + o(1) �= 0,

for y �= 1/2 + o(1). If y = 1/2 + o(1) one has

∂yuθ = A0π cos θ cos (πy) −A0
π2

2 sin θ sin(πy) + o(1)

= −A0
π2

2 sin θ + o(1) �= 0.

So Nθ ∩ ∂Ω′
N = {p1, p2} and pi /∈ Mθ for i = 1, 2; hence a) and b) hold for 

θ ∈ (δ1(N), π − δ2(N)).

Case 2: a) and b) hold for θ close to 0 and π.
According to the notations of the previous case let us consider θ ∈ [0, δ1(N)) ∪ (π −
δ2(N), π). So in this case either θ → 0 or θ → π as N → +∞.

Note that here we have that Nθ ∩ ∂ΩN ∩ ∂Ω′
N = ∅ and then we only have to study 

what happens on the straight line x = 1
2 . Moreover, Remark 3.4 implies the existence of 

at least a critical point in Ω′
N and then Nθ ∩ Ω′

N �= ∅. Since there are no intersections 
of Nθ with ΩN ∩ ∂Ω′

N then necessarily Nθ intersects the straight line x = 1
2 , otherwise 

Nθ is a closed curve contained in Ω′
N , a contradiction with iii) in Proposition 4.1.

Next let us study the intersection of Nθ with x = 1
2 . Recalling that u(x, y) ∼

A0x sin(πy) we get that uθ(1/2, y) = 0 if and only if

0 = uθ(1/2, y) = A0 cos θ︸︷︷︸
→±1

sin(πy) + A0

2 sin θ︸︷︷︸
=o(1)

cos(πy) + o(1),

that implies

sin (πy) + o(1) = 0,

and hence we have two solutions y1 = o(1) and y2 = 1 + o(1). Observe that the last 
equation admits exactly two solution by the C1 convergence of uθ to ∂θ (A0x sin(πy)).
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Finally let us show that both points p1 =
( 1

2 , y1
)

and p2 =
( 1

2 , y2
)

do not belong to Mθ. 
Indeed, for N large enough

∂yuθ(p1) = A0

2 π + o(1) �= 0 and ∂yuθ(p2) = −A0

2 π + o(1) �= 0,

which shows that p1, p2 /∈ Mθ and as before the implicit function theorem tells us that if 
x = 1/2 the nodal set Nθ is a smooth curve intersecting transversely the line {x = 1/2}
at p1 and p2. This ends the Case 2.

Hence we proved a) and b) for all θ ∈ [0, π).

Finally at any critical point of u we have that the Hessian matrix is nondegenerate 
otherwise we deduce that there exists θ such that Mθ �= ∅ contradicting a). �

For u solution of (2.1), consider the vector field T : Ω′
N → R2 given by

T (q) := (uyy(q)ux(q) − uxy(q)uy(q), uxx(q)uy(q) − uxy(q)ux(q)), q ∈ Ω′
N .

By the smoothness of u we have that T is of class C1. In next lemmas we recall some 
important properties of the vector field T , proved in [7].

Lemma 4.3 ([7, Lemma 2]). If q ∈ Ω′
N is such that T (q) = 0 then either

q is a critical point for u,

or

detHess
(
u(q)

)
= 0 and for cos θ = ux(q)√

u2
x(q) + u2

y(q)
we have that q ∈ Mθ.

From now if q is an isolated zero of T , for r > 0 small enough, we denote by ind(T, q) :=
deg

(
T, B(q, r), 0

)
where deg denotes the standard Brower degree.

Lemma 4.4 ([7, Lemma 3]). Let q ∈ Ω′
N be such that T (q) = 0. Then we have that

(i) if q is a nondegenerate critical point for u, then ind(T, q) = 1;
(ii) if q is a singular point belonging to Mθ for some θ ∈ [0, π) and it is a nondegenerate 

critical point for uθ then ind(T, q) = −1.

Next corollary was proved in [7, Corollary 1] but we prefer to repeat here the proof.

Corollary 4.5 ([7, Corollary 1]). Let D ⊂ Ω′
N be such that Mθ ∩D = ∅ for all θ ∈ [0, π)

and 0 /∈ T (∂D). If deg(D, T, 0) = 1, then u has exactly one critical point in D which is 
a maximum with negative definite Hessian.
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Proof. Since 0 /∈ T (∂D) the degree of T is well posed. Moreover since Mθ ∩D = ∅ we 
have no singular points and moreover all critical points are nondegenerate. So we have 
finitely many critical points and

1 = deg(D,T,0) =
∑

q∈{ critical points of u }
ind(T, q) =  { critical points of u } ,

which gives the claim. �
Next we prove the uniqueness of critical point in Ω′

N .

Proposition 4.6. For N large enough uN has exactly one critical point in the set Ω′
N . In 

particular it is a nondegenerate maximum point.

Proof. We want to apply Corollary 4.5. First of all note that T �= 0 on ∂Ω′
N . Indeed, in 

∂Ω′
N ∩ ∂ΩN , T = 0 implies

−|∇u|3K = uyyu
2
x − 2uxyuxuy + uxxu

2
y

= ux (uyyux − uxyuy) + uy (uxxuxy − uxyux) = 0,

a contradiction with the Hopf boundary lemma and the assumption K > 0 on ∂ΩN .
On the other hand, for p = (1/2, y), using (3.1), we have

uxuyy − uyuxy = ∂x (A0x sin(πy)) ∂yy (A0x sin(πy)) +

− ∂y (A0x sin(πy)) ∂xy (A0x sin(πy)) + o(1)

= −A2
0π

2

2 (1 + o(1)), (4.1)

and then T �= 0.
So the degree of T is well defined and if for p0 :=

(
1, 1

2
)

the homotopy

H : [0, 1] × Ω′
N → R2

(t, q) �→ tT (q) + (1 − t)(q − p0),

is admissible then we deduce

deg(Ω′
N , T,0) = deg(Ω′

N , I − p0,0) = 1.

Assume, by contradiction, that the homotopy H is not admissible. Hence, there exist 
τ ∈ [0, 1] and q := (xq, yq) ∈ ∂Ω′

N such that H(τ, q) = 0, i.e.{
τ(uyy(q)ux(q) − uxy(q)uy(q)) = (τ − 1)(xq − 1)
τ(u (q)u (q) − u (q)u (q)) = (τ − 1)(y − 1/2).

(4.2)

xx y xy x q
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Then, multiplying the first equation by ux(q), the second by uy(q) and summing we get

−τK(q)|∇u(q)|3 = (τ − 1)[(xq − 1)ux(q) + (yq − 1/2)uy(q)]. (4.3)

We want to show that (4.3) leads to a contradiction. First assume that q ∈ ∂Ω′
N ∩ ∂ΩN .

For (x, y) ∈ ∂Ω′
N ∩ ∂ΩN denote by ν = (νx, νy) the unit normal exterior vector at q

(consider ν as the exterior normal to ∂ΩN if xq = 1/2). Using that Ω′
N is star-shaped 

with respect to p0 and the Hopf boundary lemma we have

(xq − 1)ux(q) + (yq − 1/2)uy(q) = uν(q)[(xq − 1)νx + (yq − 1/2)νy] < 0.

Since K > 0 on ∂Ω′
N ∩ ∂ΩN , from (4.3) we get a contradiction. It follows that q /∈

∂Ω′
N ∩ ∂ΩN and then q = (1/2, yq). From (4.1) and the first line of (4.2) we get

−A2
0π

2

2 τ(1 + o(1)) = (τ − 1)(1/2 − 1) = 1 − τ

2 ,

again a contradiction.
So deg(Ω′

N , T, 0) = 1 and by Corollary 4.5 we get that there exists exactly one critical 
point in Ω′

N : a maximum with negative definite Hessian. �
Similarly we can prove the following proposition.

Proposition 4.7. For N big enough, uN has exactly one critical point in the set {(x, y) ∈
ΩN |x < −1/2}. In particular, it is a nondegenerate minimum point.

Finally the proof of Theorem 1.2 easily follows.

Proof of Theorem 1.2. The proof follows from Remark 3.4, Proposition 4.6 and Propo-
sition 4.7. Observe that by the local convergence of uN to the function u∞(x, y) =
A0x sin(πy) we get that |PN |, |QN | → +∞. �
5. Convex perturbations of rectangles: proof of Theorem 1.3

We start recalling the asymptotic expansion of uN,m given in [11].

Theorem 5.1 ([11, Theorem 1]). There is a number a := a(ϕ) ∈ [0, maxϕ] such that for 
each m ∈ N the m-th Dirichlet eigenvalue of RN (see (1.3)) satisfies

λm,N = π2 + m2π2

(N + a(ϕ))2 + O(N−5), N → ∞.

In particular, the eigenvalues λ1,N , . . . , λm,N of RN are simple for N sufficiently large. 
The suitably rescaled eigenfunction um,N satisfies, for all multiindices α,
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sup
x>3 logN
0<y<1

|Dα (um,N (x, y) − vm(x, y))| = O(N−3), (5.1)

where

vm(x, y) := sin
(
mπ

x + a(ϕ)
N + a(ϕ)

)
sin (πy) ,

and

sup
x≤3 logN
0<y<1

|um,N (x, y)| = O(N−1 logN).

We prove Theorem 1.3 for m = 2, the general case is a simple generalization as will be 
clear from the proof, see also Remark 5.3. We write uN = u2,N and v = v2 for brevity.

For future convenience let us set

xN := 1
2(N + a) − a,

x+
N := 1

4(N + a) − a,

x−
N := 3

4(N + a) − a,

x′
N := 1

12(N + a) − a.

Proposition 5.2. For N big enough, the eigenfunction uN has exactly one nondegenerate 
maximum point and one nondegenerate minimum point in the set RN ∩ {x > 3 logN}.

Proof. From (5.1) easily follows that uN has a maximum point close to (x+
N , 1/2) and a 

minimum point close to (x−
N , 1/2). To show that they are the only ones and are nonde-

generate, let p := (xp, yp) ∈ RN ∩ {x > 3 logN} be a critical point for uN .
Then (5.1) implies that there exist a continuous and decreasing function h : (0, +∞) →

(0, +∞) such that limN→+∞ h(N) = 0 and one of the following occurs

p ∈ Bh(N)(x+
N , 1/2), (5.2)

p ∈ Bh(N)(x−
N , 1/2), (5.3)

p ∈ Bh(N)(xN , 0) ∩ ΩN , (5.4)

p ∈ Bh(N)(xN , 1) ∩ ΩN , (5.5)

p ∈ Bh(N)(N, 0) ∩ ΩN , (5.6)

p ∈ Bh(N)(N, 1) ∩ ΩN . (5.7)

Assume (5.2), then from (5.1) one has
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∂xxuN (p) = ∂xxv(p) + O(N−3)

= − 4π2

(N + a)2 sin(π/2) sin(π/2)(1 + o(1)) = − 4π2

(N + a)2 (1 + o(1)),

and similarly

∂xyuN (p) = o(N−1) and ∂yyuN (p) = −π2(1 + o(1)).

Hence p is a nondegenerate maximum point. Moreover, we can find r > 0 independent 
from N such that the following homotopy

H : [0, 1] ×Br(x+
N , 1/2) → R2

(t, q) �→ t∇uN (q) + (1 − t)∇v(q),

is admissible for N big enough. Then

deg(Br(x+
N , 1/2),∇uN ,0) = deg(Br(x+

N , 1/2),∇v,0) = 1,

shows that there is exactly one critical point satisfying (5.2). If we assume (5.3), by 
similar computations, we obtain the existence of exactly one nondegenerate minimum 
point in Bh(N)(x−

N , 1/2).
Now assume (5.4) i.e. p ∈ Bh(N)(xN , 0) ∩RN . Then the same computation as before 

tell us that p is a nondegenerate saddle point, indeed one has

∂xxuN (p) = o(N−2), ∂xyuN (p) = − 2π2

N + a
(1 + o(1)), ∂yyuN (p) = o(1). (5.8)

Now, if ΛN := {(x, y) ∈ RN |uN (x, y) = 0} is the nodal line of uN , let pN := (x̃N , 0) ∈
∂RN ∩ ΛN . Since RN is convex we know from [2, Theorem 1] that ΛN intersects ∂RN

transversally at pN . In particular ∂yuN (pN ) = 0 and then pN is a critical point for 
u and (5.8) shows that it is a nondegenerate saddle point. Since both p and pN are 
nondegenerate we can find g(N) ∈ (0, h(N)) such that p ∈ Bh(N)(xN , 0) \Bg(N)(xN , 0), 
and for r > 0 suitably small and N big enough, since in every critical point in ωN :=
Br(xN , 0) \Bg(N)(xN , 0) ∩ ΩN one has

detHessuN = −
(

2π2

N + a

)2

(1 + o(1)) < 0,

thanks to (5.8), and since at least p belongs to ωN it follows deg(ωN , ∇uN , 0) ≤ −1 and 
then

−1 ≥ deg(ωN ,∇uN ,0) = deg(ωN ,∇v,0) = 0,
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a contradiction.
The same argument shows that (5.5), (5.6) and (5.7) cannot occur and the proof is 

complete. �
Remark 5.3. In case m > 2, [2, Theorem 1] still ensures that the nodal line intersects 
the boundary ∂RN transversally at 2m different points

Proposition 5.4. For N big enough, uN has no critical point in the set

R′
N := { (x, y) ∈ RN | x < x′

N } .

Proof. Let us point out that, from the estimate (5.1) and since x′
N < xN , it follows uN >

0 in R′
N . By the domain monotonicity for Dirichlet eigenvalues one has λ1(R′

N ) > λ2,N
and then the operator −Δ − λ2,N satisfies the maximum principle in R′

N . From (5.1)
one has for all y ∈ (0, 1)

∂xuN (x′
N , y) = 2π

N + a
cos(π/6) sin (πy) (1 + o(1)) ≥ 0.

Therefore, ∂xuN ≥ 0 on ∂R′
N and then the maximum principle gives ∂xuN > 0 on 

R′
N . �

Proof of Theorem 1.3. The proof is an obvious consequence of Proposition 5.2 and 
Proposition 5.4. �
References

[1] A. Acker, L.E. Payne, G. Philippin, On the convexity of level lines of the fundamental mode in 
the clamped membrane problem, and the existence of convex solutions in a related free boundary 
problem, Z. Angew. Math. Phys. 32 (6) (1981) 683–694.

[2] G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex 
domains, Comment. Math. Helv. 69 (1) (1994) 142–154.

[3] H.J. Brascamp, E.H. Lieb, Some inequalities for Gaussian measures and the long-range order of the 
one-dimensional plasma, in: M. Loss, M.B. Ruskai (Eds.), Inequalities, Selecta of Elliott H. Lieb, 
Springer-Verlag, Berlin, 2002, pp. 403–416, with a preface and commentaries.

[4] X. Cabré, S. Chanillo, Stable solutions of semilinear elliptic problems in convex domains, Sel. Math. 
New Ser. 4 (1) (1998) 1–10.

[5] L. Damascelli, On the nodal set of the second eigenfunction of the Laplacian in symmetric domains 
in RN , Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (3) (2000) 
175–181.

[6] F. De Regibus, M. Grossi, On the number of critical points of stable solutions in bounded strip-like 
domains, J. Differ. Equ. 306 (2022) 1–27, https://doi .org /10 .1016 /j .jde .2021 .10 .028.

[7] F. De Regibus, M. Grossi, D. Mukherjee, Uniqueness of the critical point for semi-stable solutions 
in R2, Calc. Var. Partial Differ. Equ. 60 (1) (2021) 25.

[8] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, 
Commun. Math. Phys. 68 (3) (1979) 209–243.

[9] F. Gladiali, M. Grossi, On the number of critical points of solutions of semilinear equations in R2, 
Am. J. Math. (2022), in press.

[10] D. Grieser, D. Jerison, Asymptotics of the first nodal line of a convex domain, Invent. Math. 125 (2) 
(1996) 197–219.

http://refhub.elsevier.com/S0022-1236(22)00116-1/bibD2A57DC1D883FD21FB9951699DF71CC7s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibD2A57DC1D883FD21FB9951699DF71CC7s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibD2A57DC1D883FD21FB9951699DF71CC7s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib0CC175B9C0F1B6A831C399E269772661s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib0CC175B9C0F1B6A831C399E269772661s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibE8116BFB3468F908B00DBEA85F69074Fs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibE8116BFB3468F908B00DBEA85F69074Fs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibE8116BFB3468F908B00DBEA85F69074Fs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibE0323A9039ADD2978BF5B49550572C7Cs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibE0323A9039ADD2978BF5B49550572C7Cs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib5CA2AA845C8CD5ACE6B016841F100D82s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib5CA2AA845C8CD5ACE6B016841F100D82s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib5CA2AA845C8CD5ACE6B016841F100D82s1
https://doi.org/10.1016/j.jde.2021.10.028
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibEB62C9B3F211E864EF49097B917B4C92s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibEB62C9B3F211E864EF49097B917B4C92s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibC6254A9C8D96A0715D809C3428561717s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibC6254A9C8D96A0715D809C3428561717s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib0BA069AC1D6758883496E18882A105B7s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib0BA069AC1D6758883496E18882A105B7s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibA4783D7D58BB43BEB6895637BC346670s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibA4783D7D58BB43BEB6895637BC346670s1


22 F. De Regibus, M. Grossi / Journal of Functional Analysis 283 (2022) 109496
[11] D. Grieser, D. Jerison, Asymptotics of eigenfunctions on plane domains, Pac. J. Math. 240 (1) 
(2009) 109–133.

[12] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, The nodal line of the second eigen-
function of the Laplacian in R2 can be closed, Duke Math. J. 90 (3) (1997) 631–640.

[13] D. Jerison, The diameter of the first nodal line of a convex domain, Ann. Math. (2) 141 (1) (1995) 
1–33.

[14] D. Jerison, Eigenfunctions and harmonic functions in convex and concave domains, in: Proceedings 
of the International Congress of Mathematicians, vol. 1, 2, Zürich, 1994, Birkhäuser, Basel, 1995, 
pp. 1108–1117.

[15] C.S. Lin, On the second eigenfunctions of the Laplacian in R2, Commun. Math. Phys. 111 (2) (1987) 
161–166.

[16] L.G. Makar-Limanov, The solution of the Dirichlet problem for the equation Δu = −1 in a convex 
region, Mat. Zametki 9 (1971) 89–92.

[17] A.D. Melas, On the nodal line of the second eigenfunction of the Laplacian in R2, J. Differ. Geom. 
35 (1) (1992) 255–263.

[18] L.E. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9 (1967) 453–488.
[19] L.E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys. 

24 (1973) 721–729.
[20] S.T. Yau, Problem section, in: Seminar on Differential Geometry, in: Ann. of Math. Stud., vol. 102, 

Princeton Univ. Press, Princeton, N.J., 1982, pp. 669–706.

http://refhub.elsevier.com/S0022-1236(22)00116-1/bibDF1DD3A5906FFC53013BF5ED20D7070Ds1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibDF1DD3A5906FFC53013BF5ED20D7070Ds1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib98EEBACA129D78ED56642CF50F0369E1s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib98EEBACA129D78ED56642CF50F0369E1s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib363B122C528F54DF4A0446B6BAB05515s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib363B122C528F54DF4A0446B6BAB05515s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib843ECA7556234D9C90EAE1FC0F1E2939s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib843ECA7556234D9C90EAE1FC0F1E2939s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib843ECA7556234D9C90EAE1FC0F1E2939s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibBEC25675775E9E0A0D783A5018B463E3s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibBEC25675775E9E0A0D783A5018B463E3s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib9830E1F81F623B33106ACC186B93374Es1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib9830E1F81F623B33106ACC186B93374Es1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib6F8F57715090DA2632453988D9A1501Bs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib6F8F57715090DA2632453988D9A1501Bs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bib4FCA08D95657D01FC80CD5C19D894A18s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibE529A9CEA4A728EB9C5828B13B22844Cs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibE529A9CEA4A728EB9C5828B13B22844Cs1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibD74600E380DBF727F67113FD71669D88s1
http://refhub.elsevier.com/S0022-1236(22)00116-1/bibD74600E380DBF727F67113FD71669D88s1

	On the number of critical points of the second eigenfunction of the Laplacian in convex planar domains
	1 Introduction and main results
	2 Preliminary results
	3 The asymptotic behavior of uN
	4 The topological argument
	5 Convex perturbations of rectangles: proof of Theorem 1.3
	References


