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FROM VORTEX LAYERS TO VORTEX SHEETS*

D. BENEDETTO' ano M. PULVIRENTI#

Abstract. This paper shows that the solution of the Birkhoff—-Rott equation for the vortex
sheet can be approximated, for short times, by the solutions of the Euler equation for a thin vortex
layer of vorticity, when its thickness vanishes and its vorticity intensity diverges suitably. The result
is obtained in an analytical setup, and an example seems to indicate that this is indeed necessary.
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1. Statement of the problem. A two-dimensional vortex sheet is a curve in the
plane in which the tangential component of the velocity field is discontinuous. Such
a field is assumed irrotational elsewhere. In other terms, the vorticity is concentrated
in a curve as a delta function. Denoting by y = ¢(z) the equation of the sheet and
n = n(z,t) the vorticity intensity, the general laws of dynamics of incompressible,
nonviscous flows yields the following equations:

(l'la‘) 61:(15((1,‘, t) + (’LL 5x¢)($,t) = ’U(:E,t),
(1.1b) Om(z,t) + 0z(un)(z,t) =0,
where

(e, 82,00 = (*) (0

(1.2) (—(¢(w) - ¢(w’)>
L " dz’ n(z’,t) z
21 J_ oo Tz - 2)? + (4(z) — ¢(2'))?

denotes the velocity field computed on the sheet, and f denotes the Cauchy principal
value integral. Since u is discontinuous on ¢, the expression computed by (1.2) means
that

(13) u(z, §(a,1),) = - ,

where ut and u— denote the upper and lower limits, respectively. The jump discon-
tinuity of u takes the form

1/ n
. =3 {0) 7B
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1042 D. BENEDETTO AND M. PULVIRENTI

From a dynamical point of view, (1.1) expresses the convection of the interface
and the conservation of the vorticity, respectively.

Other parametrizations of the curve y = ¢(z,t) are obviously possible, yielding
similar descriptions. A special and useful parametrization, in terms of the circulation
variable for which (1.1) reduces to a single complex equation, is called the Birkhoff—
Rott equation [1]. However, for future convenience, we prefer to parametrize the
interface in terms of the x variable.

It is well known that the stationary solution ¢ = 0, 7 =const is unstable (Kelvin—
Helmholtz instability). Actually, a small periodic disturbance of wavenumber k& may
grow exponentially in time, as el*lt, which follows by the linear analysis. Due to
this fact, the initial value problem associated with (1.1) is naturally described in
analytical functions spaces, and, in this framework, an existence theorem for short
times can be proved [14]. On the other hand, the formation of singularities, while
evident from numerical simulations, has been analytically obtained in [2], [3], [6],
while the illposedness of the problem in some Sobolev spaces is discussed in [3]
and [7].

The initial value problem associated with (1.1) may be regularized by considering
a small thickness for the vortex sheet. More precisely, consider an initial vorticity
profile of the form

(15) we@,9) = X, (2,0),

where X}, is the characteristic function of the set

(1.6) Ae = {(z,y) ¢ (z) <y < ¢d(2)} .
The sequence of functions ¢Z are chosen in such a way that
¢t -
(1.7) lim ———— =,
(1.8) lim ¢f = ¢
e—0

Under such hypotheses, w. converges locally, in the sense of the weak convergence of
the measures, to the measure

(1.9) w(z,y) = 6(y — ¢(z)) n(z) dz dy.

It is well known that an evolution according to the Euler equation for the initial
value (1.5) can be given globally in time [15]. It is of the form

1
(110) Lu'g(.’l),’y,t) = EXAE(t)(xvy)a

where Ac(t) moves from A, according to the current lines. It is natural to expect that,
for short times, we(z,y,t) converges weakly to

(L.11) 6(y — ¢(,t)) n(=,t) dr dy,
where ¢ and 7 solve (1.1). The aim of the present paper is to give a proof of this fact.
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FROM VORTEX LAYERS TO VORTEX SHEETS 1043

The interest of such a result is twofold. From one side, it provides a rigorous
justification of (1.1) (or, equivalently, of the Birkhoff-Rott equation). From a practical
point of view, it shows that the thin-layer method used to simulate the vortex sheet
dynamics (see [12], [13]) is a convergent algorithm. In this context, we mention that
point-vortex and blob-vortex methods can also be used for approximating the vortex
sheet evolution (see [9], [10]). A convergence proof of these methods is given in [4].

The plan of the paper is the following. In the §2 we establish and prove our
main result. The proof is based on some estimates, which are proved in §3, where the
convergence result also somehow improved. Finally, in §4 we discuss the nature of the
approximation at time zero. Namely, we conjecture that nonanalytical approximations
of the vortex sheet at time zero could give different solutions of the vortex sheet
equation.

2. The main result. Consider X,, p > 0, the Banach space of all analytic
2m-periodic functions with the norm

“+o00

@1) lollo = 3= el |o(k)]-

k=—o00

Here, as usual, (i denotes the Fourier transform of ¢.

The initial value (¢,n) of the evolution problem (1.1) is assumed in X, x X,.
Moreover, ¢ and 7 are a small perturbation of the flat sheet of uniform vorticity:
n=1+p, [lulp I9ll, < 1.

A vorticity profile of the type (1.5), (1.6), whose support A, is enclosed between
two smooth functions ¢+, generates a velocity field given by

- " (z) (—(y—zl/’)>
(22)  welzy) = (“) @)= 5] / ; z-z

e x_x/)2+(y_yl)2'

The Euler evolution for such a vortex layer reduces to the following equations:

(2.3) 0BE (z,1) + (uF 0:07)(z,t) = v (g, 1),
where
ut N
(2'4) oE (ZE, t) = 115(.'2?, Pe (‘T’ t))
€
Defining the approximate vorticity intensity by
+ _ —_

as a consequence of (2.3), we have that
(2.6a)

1 o (,t) 1 ¢2— (,t)
(e =0 2 [ Cdyueten) )+ 2 [Ty el + o).
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1044 D. BENEDETTO AND M. PULVIRENTI

By virtue of the incompressibility condition, the last term of (2.6a) vanishes, so that

Bene(z,t) = — b, —/ dyue (2, 3)
€ Joz (z,t)

(2.6b) .
==, (navt) [ druclo At (@) + (1= )0 (@0) )

and the continuity equation (1.1b) is recovered in the formal limit ¢ — 0. Actually,
the vorticity intensity 7 is conserved only with respect to the mean velocity. Note that
the integral in the right-hand side of (2.6b) is an average of the velocity of u.. We will
later show that this average converges to %(u+ + u~), and thus the correct limiting
equation is obtained. As we noted in the previous section, the Euler solution for the
initial vortex layer is known to exist globally in time. However, its equivalence with
(2.3) cannot be established for all times. Actually, OA.(t) may lose its smoothness
even if it is assumed at time zero, so that it could be difficult to give a sense to (2.3).
Numerical simulation and analytical considerations seem to indicate this (see [5] and
the references therein). Moreover, dA.(t) could not be described in terms of function
of z after a finite time. In all cases, in view of the asymptotic behavior, we prove that
no smoothness uniform in € is expected to hold after a critical time. In this context, it
is natural to set the initial value problem associated with (2.3) in the scale of Banach
spaces X, for which we need a Cauchy—Kowalevski-type of theorem. The following
theorem is very well known (see, e.g., [8]).

THEOREM 2.1. Let {Xp}p>0 be a scale of Banach spaces satisfying X, C Xp,
|- llp < |l |0 for p < p!, where|| - ||, denotes the norm in X,. Consider the Cauchy
problem

27) 5@=@+Adﬂ@@y

Suppose that there exists po and R > 0 such that F : {£|€ € X, |||l < R} — X, is
a continuous mapping satisfying

[
(28) IF©)l, < C)F2
(2.9) IW@Q—F@MMSCM%¥%M

for all p< o/ < po, &, &1, & € Xy, [€lly, NEtlly, 2]l < R, and C is some positive
constant depending on R. Then, for &o € X,, with ||&ollpe < Ro < R, there exists a
unique continuous solution £(t) € X,, satisfying ||E(t)|l, < R fort € [0, a(po — p)),
with a chosen suitably small.

Remark. A possible choice for a is a = (1/4C)((vVR — V/Ro)?/R).

In view of the application of Theorem 2.1 to our purposes, it is convenient to
introduce, from (2.2), the complex velocity field Ue(2) = ue(2) + tve(2), z = z + iy as

+00 T (z+a) y/
Ue(z) = 27rsz /

(2.10) F atily—y)

_ b dy
B 27rif—oo dan€($+a)/o a+i(y—eyme(c+a)—¢: (z+a))
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FROM VORTEX LAYERS TO VORTEX SHEETS 1045

For y = Im z = A¢Z + (1 — Az, we have that

1 [t
Ue(2) = — da (1+ pe(z + a))
(2.11) 27”][—“

1 dy
'/0 a+i(Aat+(1=ANa +eA =791+ pe(z + @)))’

where at = ¢Z(z) — ¢ (z + ) and pe = e — 1.
Consider now the above expression as an operator of ¢+, ¢—, i as independent
functions, forgetting the link expressed by (2.5), as follows:

+oo
Ue[As 1, 6%, 07 ](2) = %][_ da(1+ p(z + a))

(2.12) .

dy
Jo a+i (MG (z,a) + (1= NAg(z,a) +e(A =71 + p(z + )’

where A¢*(z,a) = ¢*(z) — ¢=(z + a). For A =1 and A = 0, such an operator does
not depend on ¢— and ¢t, respectively. Define

’U,g‘ [,u” ¢+] = Re U€ [15 ,U,, ¢+a ¢_]7

v [u, ¢*] = ImUe[1; 1, ¢+, ¢7],

(2.13) ~
Ue [1“'? ¢_] = Re UE[Oa /1'7 ¢+a ¢_]7
ve [, ¢~ ] = Im U [0; p, ¢+, 6],
and
(2'14) FE:E [,U,, ¢i] = _Ug: [,U,, ¢i] 3::45* + "-’esi [,U'a ¢i] ,
1
(215) Gel#,671= =0x () [ dhucimt,67])

where ue[A; p, ¢, ¢~] = Re Ue[\; 1, @1, ¢~]. Consider the Cauchy problem
d

(2.16) 560 = F=(£(t)),  £(0) = &o,
where
¢t Ff(p, ¢t]
(2.17) E=|9o= |, F@&=| Flpe] |.
7 Gelp, ¢, 7]

Note that the above Cauchy problem is not equivalent to that associated with (2.3).
Here we have a third equation (expressing the conservation of the vorticity), which is
considered as independent of the first two. Actually, we are interested in solutions of
(2.16) for which

(2.18) 1+pu=el(¢t—9¢).

The basic technical step in the present paper is summarized in the following proposi-
tion.
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1046 D. BENEDETTO AND M. PULVIRENTI

Proposition 2.1. Suppose that ||u;ll, < , Hang}tﬂp < %, j=1,2. Then there
exists a constant C (independent of A and €) for which

(219) ”UE[’\nu'qusja(p]—]”P < Ca

”UE[/\;/‘1’¢-1'_7 ¢1_] - UE[A; U2, ¢;_’ ¢2_]”P
< C (Me(df = ¢3)llp + (1 = NN10=(87 = d2)llp + llua — p2llp) -

We show the proof of Proposition 2.1 in the next section. We are now in a position
to apply Theorem 2.1. Define

(2.21) €l = ot llo + 1026% 1o + 16~ 1o + 11020~ llo + llullo-

(2.20)

Then inequalities (2.8) and (2.9) are easy consequences of (2.19) and (2.20), provided
that ||0:¢%| and ||p||,» are sufficiently small. In fact, (2.9) follows from (2.19) and
(2.20) via the obvious inequality ||0z9|, < |l9]l/(p' — p). Finally, using the fact
that F(0) = 0 and (2.9), we also obtain (2.8). Therefore, choosing & such that
léollpe < Ro < %, for a given po > 0, we can conclude the existence of an unique
solution £(t) € X,, for t € [0, a(po — p)) solving the integral version of (2.16) and
satisfying the bound [|£(t)]l, < 3.

However, we have not yet solved the Cauchy problem for (2.3) because the solution
we have interested in must satisfy (2.18). This is an easy consequence of the following
consideration. Note that Theorem 2.1 can be proved by showing the convergence of
the iteration scheme

(2.22) ) = b, En() = b0+ /0 ds Fu(€n-1(s)).

By direct inspection, condition (2.18) is satisfied at level n, provided that it is satisfied
at level n — 1. Since the initial state obeys to such a constraint, we conclude that the
limit does it. Thus the solution of the initial value problem (2.16) coincides with that
of the vortex layer dynamics, provided that

o
o= 1| 9o
Ho

satisfies (2.18).
At this point we can prove our main theorem.
THEOREM 2.2. Let

(223) we(@,9) = = X, (@),
(2.24) Ae = {(z,y)| ¢z (z) < y < ¢ ()}

be an initial family of profiles of vorticity, € € (0,e0). Denote by we(zx,y,t) and A(t)
the corresponding quantities evolved according to the Euler equation.
Suppose also that, initially,

(225)  N€lloo = 162 oo + 10262 lloo + 192 lloo + 182¢% lloo + llzelloo < Ro < g
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FROM VORTEX LAYERS TO VORTEX SHEETS 1047

where

+ _ —
(2.26) pe=me-1, n=%"%

Then (i) there exists a > 0, independent of €, such that
(2:27) Ac(t) = {(z,y) 62 (z,t) <y < ¢ (z,1)}

with ¢Z(-,t) € X, fort € [0, a(po — p)), and ¢Z(z,t) satisfy (2.3).
In addition, the bound

el = 162 1o + 10202 llo + 62 Nl + 18262 Il + llpello < §

holds.
(i) For allt € [0, a(po — p)),

(2.28) limwe(-,t) = w(-, 1),

with

(2:29) w(dz, dy, t) = & (y — ¢(z, 1)) n(z,t) dr dy

and where the limit (2.28) holds in the sense of the weak convergence of the measures.
Moreover, ¢(-,t), n(-,t) € X,, and uniquely solve (in X,) the vortez sheet equations
(L.1) for t € [0, a(po — p))-

Proof. We give a short proof of Theorem 2.2. A constructive proof and additional
considerations is developed in the next section, where the structure of the velocity
field generated by a thin vortex layer is analyzed to prove Proposition 2.1. We first
remark that (i) has already been proved as consequence of Theorem 2.1. To prove
(ii), we first find a sequence {¢$, ,un} C {455*, “e}ee(o,so) converging in X,/ for all
t €[0,a(po—p)), p < ptoox, pe€ Xy Such a sequence exists by standard
compactness arguments, and, by the usual diagonal trick, we can find a single sequence
for all p/ < p. Since 9y =1+ pn = n =1+ pin X, it follows that ¢+ = ¢~ = ¢.

The sequence of measures wy,(dz, dy) = (1/€)X},, (¢) dx dy cannot fail to converge
weakly to the right-hand side of (2.29). The corresponding velocity field un(t) =

V+iA-1lw,, where
-0
L (7%
= (%)

converge locally in L; to the velocity field u.
Obviously, u, satisfies the Euler equation in a weak form, i.e.,

(2.30) <Un, Vf>=0, <up, Bw>+ Y <(un)itn, Sw >=0,
1=1,2

where f and w; are z-periodic smooth test functions of compact support in y and ¢,
and < , > denotes the scalar product in the z, y, t variables. Since |[u.(t)|lco < C,
for t € [0,ap0), we have no problem with the nonlinear term to prove that u also
is a solution of the Euler equation in the weak form (2.30). Finally, since we know
that any weak solution u of the Euler equation, whose vorticity is concentrated on a
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1048 D. BENEDETTO AND M. PULVIRENTI

smooth curve ¢(-,t) with smooth intensity 7(-,t), forces ¢ and 7 to satisfy the vortex
sheet equation (see [14]), we conclude the proof by the uniqueness of the vortex sheet
dynamics in X,. O

Roughly speaking, in the layer dynamics, ¢ and ¢; slip in the opposite direction.
In the vortex sheet equation, ¢ moves convected by the mean field %(u+ + u-).
However, defining in the limit situation ¢+ and ¢~ as the profiles convected by u+t
and u—, the continuity of the normal component of the velocity implies that ¢t =
¢~ = ¢. On the other hand, it is absolutely essential that the mean field appears in
the continuity equation for 7. This shows why the limits hold and explains why we
find it convenient to consider three equations in the approximating problem (2.16).
As we see in the next section, this remark is essential for a more explicit evaluation
of convergence. On the other hand, if a Lagrangian representation of ¢ were chosen,
then we would note that the Lagrangian points would be moving in opposite directions,
depending on whether they were on the upper or lower interface. This would pose a
problem in what is meant by convergence. By using a Eulerian reference frame, we

avoid this problem. A modified Eulerian frame was used in numerical calculations by
Baker and Shelley [13].

3. Technicalities and additional comments.
Proof of Proposition 2.1. Denote 9(z) = A¢t(z) + (1 — Ao~ (), for fixed X €
[0,1], and Ay = ¥(z) — ¢¥(z + ). From (2.12),

(3.1)
Ue(z) =Ue [N p, 91, 07 (2)
_ 1 +o0o 1 d7
“smif A Orntere) [ e
=_1—_ +c><>da (l—l-p(ac-l-oc))/l Lo}
2mi] o 0 (atie(r—7)) (1+i Ul ulera))

oo

:% (=i)n Xn: (’l‘)][+oo da (1+ p(z + @)

n=0 =0 -
/1 1 (B! (O = 7)o + @)t
0 (a+ie(A—7)"t!

Note that the last principal value symbol applies only for the term n = 0. Henceforth,
we often skip this symbol, being evident from the context when the integrals must be
understood in the sense of Cauchy principal value.

The last step in (3.1) is justified by the inequality

(3.2) ‘A¢+dk—wu@+a)

at+ie(A—7)

Indeed, the left-hand side of (3.2) is bounded by
(3.3) l 1”‘ < g

provided that [|0;¢%||, < 7 and |lu|, < 1.

This content downloaded from
2.236.189.25 on Sun, 22 May 2022 13:36:07 UTC
All use subject to https://about.jstor.org/terms



FROM VORTEX LAYERS TO VORTEX SHEETS 1049

Taking the Fourier transform of (3.1),

(3.4)
it 1 > n n l n—l1
=YY (1) X (@FRm L) [T i)
n=0 =0 . h . ji=1 m=1
T
l n—l1
EQ=-M"" . i .
etha 1 — etri eisma
/ / (a+ie(h—7)"! ]I:Il( )1];_:-[1
1 & o l . n—l
w2 () X @RmInie) T ien
0 TirSm? j= m=
" h+3" 7’_7‘+SX: s;j=k !
+O<> n—l l piTo
(z)l/dtl /dtz/dv/ cQ-0) et
(a+zs()\ 7))
where
l n—l1
(3.5) T=Y riti+ Y sm+h
7j=1 m=1

Denoting by I the last integral in the right-hand side of (3.4), we have that
(3.6)
!

+°° mt (@+ieh =) (=ie(A — =t
I— Z()/ (e (A=) 1 (a+ie(A=17)) (—ie(A =) oiTa

(@+ier—y)"*

b=0
.myn—b
—27”2 () )=t (e(A = 7)" " sgn(T) X (T - (A —7) < 0) E;Tl emelTI A=A,
after having used the formula
+oo eiTa 1
(3.7) /_oo do e = sgn(T) X (T - 5<0)( 1)' (iT)" " e-ITIl€l,

and we denote by X (T - £ < 0) the characteristic function of the set {T' - £ < 0}.
Inserting (3.6) in (3.4), we finally have that

co n l
=22 () Z R
n=0 (=0 h+zhr:1%n ok b=0

l n—l 1 1 1
3-8 . Y rrA ATA Asm 1...
(3.8) ((1+u>(h>jlz]l 39 J)mrzllm )/0 dt /odtl/O dy

-sgn(T) X (T-(A—7) <0) (_EB(Ab_;'Y’_be_em ;A—7|) )
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1050 D. BENEDETTO AND M. PULVIRENTI

The above quantity can now be easily estimated as

(3.9)
o n l n—l
cil<XY(7) X 2 |a | I [des)] IT 1aea.
n=0 1=0 h+zh;:{|’_%l;j=k j=1 m=1
Finally,
(3.10)

2 & - I+
eIl ZZ( )||1+u||,, (200:1,) Iullp™ = 1 v
=01=0

— (20021, + llull,)

This achieves the first part of Proposition 2.1.

The Lipschitz estimate follows the same lines. Fixed u, we take a variation with
respect to . We have that

(3.11) »
1 (oo} ) n -
BU.(0) =g (0" (7) >
+o0 1
[ aa ((1 +ua+a)) [ dy (A = Aya) () (A)'

Q=) um + aynt
(a+ie(A—7)"tt ‘

Proceeding as above, we obtain that
(3.12)
n

5T (k —mZ( "Z(Tll)gzl

=0

l-p-1
'(( ) (h1) (¢1 1!)2) hz)hzﬂmfh @) [I rive(rs)

Jj=1
n—l o ' +oo /\ ’)’)) e
.jl;[lu(s])(—z)l /M - dh / dy / QW(A WHET )

/ .
where ' means that we are summing over all

hl, h2, qiy, -y qpy T1y *** 5y Tl—p—1, 81, *** , Sn—|
such that hy +h2 + > ¢; + Y rj+ > s; =k, and

l-p—-1

(3.13) T= h1+t1h2+2t]qg+ Z t17'1+231
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FROM VORTEX LAYERS TO VORTEX SHEETS 1051

Evaluating the integral in the right-and side of (3.12) as before, we finally get that
16Ul , <11+ pllp 1102 (w1 — 92)ll,

-1
55> ( ) S lowt el ™
(3.14) n=01=0 p=0 -
sal+ulp oo vl 23 (1) g

n=0 [=0

=C ||1 + pllp |0z (%1 — ¥2) || ps

where we have used ||u|lp, [|8z%1llp, |8z%2]l, < 3. Variations with respect to p can
be dealt in the same way. O

We now want to investigate more explicitly the convergence € — 0. The field U,
acting on the upper boundary of the layer takes the form (recall (2.12) with A =1)

+oo
U, 8\@) =5 f do ((1 T ulz + a))
(3.15) oo

7 & )
o a+i(d(z)—dx+a)+e(l-7)(1+pu+a))/’

We consider Ue[u, #] a complex operator of u and ¢ (note that ¢ refers to the upper
boundary, while the lower boundary is given by the expression ¢ — (1 + u)).
The limit field is given by (see (1.2))

+oo T+«
(3.16) Ulp, ¢l(z) = % ]i dor—— it&;ﬁ(_ ;;(m)+ Q)

Obviously, U™ does not converge to U as € — 0 (for fixed u and ¢). What is expected
to be true is that

(3.17) lim U [, ¢)(x) = U [, ¢](2),
where
(3.18) Utu, ¢)(z) = Ulu, 9] + 371, ¢](),

and J is the jump discontinuity of the sheet in the point x. This can be seen by either
using classical arguments in potential theory or by looking at the Fourier transforms.
From (3.8),

T O

n=0 [=0 h,rj,8m:
h+3" ri+3° sj=k
— l ~ n_l 1
(3.19) - A+ p)(h) H r; o(r5) H a(sm) /0 dty - -
j=1 m=1

Lo TN _m,
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1052 D. BENEDETTO AND M. PULVIRENTI
The sum of the terms corresponding tol =n, b=11is
e — n -~
S <(1+u)(h)H7’j¢(7’j)
n=0 =1

= h,’l‘j
(3.20) Rt ¥ Ty =k

1 1 1
/ dtlm/ dtn/ dyX (T <0) e—5|T|’Y) )
0 0 0

Using the identity
(3.21) —X (T <0) = 3sgn(T) — 3

in expression (3.20) for ¢ = 0, we realize that the term 1sgn(T) gives the Fourier
transform of Uy, ], while the contribution % leads to %J . Namely, the identities

oo 1
Ul ¢l(k) = _(-1)» Y (1+u(hH (r5)
n=0 h,rj: =1
(3.22) h+3 =k

1 /1 /1 n
~ dty--- dtpsgn | h + rit;
9 o 0 ]zz:l 7%

and
fe%s) l

(3.23a) T gl == (-1n > @T+wh) [[rsé0s)
n=0 h,r,: Jj=1

h+z ’I‘j=k

follow rather straightforwardly from the analysis developed up to this point, and by
the definition

1+40:¢
+(0:02

In fact, expanding the exponential in the right-hand side of (3.20), we find that

(3.23b) J= =+ Py =~ W

1
—10z0

(3.24) U+, 8] - SI|, < C—

for p < g/, assuming that p and ¢ € X, with ||ul,, 06|l < 5. If n—b > 0, the
right-hand side of (3.19) can be estimated analogously. Finally,

€

(3.25) U+ 81 = U [ 1, < O

Consider now the field Ue[A; u, ¢+, ¢~] given by (2.12) and assume it a functional
of ¢ = ¢+ and p only (¢~ being recovered by the relation ¢— = ¢+ — (1 + p)).
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The averaged field

(3.26) Uum¢%=AtﬂUH&m¢¢—sﬂ+uH

is that field appearing in the approximated continuity equation
(3.27) Ocpte + 0z ((1 4 pe)ReUclp, ¢]) = 0.

We now want to exploit the limit ¢ — 0 for U,. It is not surprising that the jump

here disappears. In fact, expanding as before, U.[u, ¢](k), and, computing for € = 0
the sum of the terms corresponding to I =n, b =1, we find that

Sk o PIC DS ((m)(h) _HTJ‘ é(r5)
(3.28) " A .

-/oldt1'--/Oldtn/old’y/old)\sgn(T)X(T()\—'y)<0)).

Finally, using the identity

1 1
(3.29) / dy / drsgn(T) X (T(A =) < 0) = %sgn(T),
0 0
we arrive easily at the estimate
— €
(3.30) 014,61 = Vel gl < 0.

Before approaching the convergence problem, we first realize that (1.1a) can be rewrit-
ten as

(331) 6t¢ +ut [IJ', ¢] 6z¢ = U+[H» ¢]a

where Ut = ut 4+ iv+. In fact, the jump discontinuity is directed along the tangent
to ¢ (see (3.23b)), so it does not change the time variation of the shape of ¢.

Subtracting now the evolution equation for ¢F (2.3) to that for ¢ (2.31) and
(3.27) to the continuity equation (1.1b), we obtain

O(¢ — ¢F) =utu, ] 0z(¢ — ¢)
+ (u p, 9] — ut[u, ¢]) O
(3.32) + (ud (e, 63 — ud [, ¢]) Bogd
+ (vt [, @] — v [, ¢])
+ (v [, 8] — v (e, 83))

at(,U‘ - ll's) =0, ((/1'5 - N) ﬂe[ﬂea ¢:])
(3.33) + 85 ((1+ p) (Tepe, 9] — Te[p, 9]))
+ 0z (1 + p) (Te [, @] — ul, 9)) -
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1054 D. BENEDETTO AND M. PULVIRENTI
Define
(3.34) e(p,t) = |l — o llp + 10(8 — &)l + e — prello-

We want to obtain an integral inequality for £.(p, t), and, to do this, we must estimate
the p-norm of the right-hand side of (3.23) and its first derivative, and the p-norm
of the right-hand side of (3.33). We do not do it in detail, but limit ourselves to
considering

(335) U+[/L, ¢] - ’U;_ [,U,, ¢]
and
(3.36) By (1 + p) (Te[pe, 93] — Ue[u, 4]))

only. All the other term can be dealt with analogously. We first observe that according
to Theorem 2.1, setting p(s) = po — s/a, the p(s)-norms of uc(s), ¢ (s), u(s), #(s) are
estimated by a constant for s < apg. For a positive small § > 0, con51der t < a(po—9),
s<t, p<p(s)<p(s)—8, where p(s) = 3 (po + p— 6 — s/a). We replace po by po — &
to take advantage of the a priori estimate to bound singular terms. In fact, we have,
from (3.25), that

o+, 8] = 0 s @1l + 102 (0+1, 6] — v s ) I,
1
(3.37) < o7 =5 (O + 10+l 8] = v [, o)

<505 (=)

and, from definition (3.26) and estimates of the type (3.30),
”a:v ((1 + /1') (He[ﬂe, d’:_] - ﬁe[/‘a ¢])) ”P
“E€[/‘E, :] - EE[/" ¢]”p(s)

“ps)—p
3.38 C
( ) S == p(s) (”ax(d’ o Npts) + e = prello(s) + €110z — ﬂs)”p(s))
¢ eC 1

(H@x(¢ 3 los) + It = pellogsy) +

~ () —p p(s) = p B(s) — p(s)’
In conclusion, all terms we must estimate can be bounded either by

eC 1 eC

(3.39) o(s) — p B(s) — p(s) < 6(p(s) — p)
or by
(3.40) e

p(s) —
Thus, for p < po— 6 and t < a(po — 6 — p),

(341) &l t) S&(p0)+ 5 / ds ——— ()_ e / ____P(s%p),
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FROM VORTEX LAYERS TO VORTEX SHEETS 1055

We now proceed as in the proof of Theorem 2.1. Setting

t
3.42 M = sup ,t (1 — ——) ,
( ) ‘ 0<p<po—6 &elpt) a(po — p)
t€[0, a(po—6—p))
we get that
eC t
,t) <&(p,0)+a—In {1+ ————
(pt) <600) +a%pn (14 -t
(3.43) 1

+C M. tds ,
ey ca——

and, evaluating the last integral, we finally obtain that

eC

6

from which M, — 0 as € — 0, provided that a is small enough.

We note that we have convergence in X, for ¢t < a(po — p), since § is arbitrary.
However, the constant a appearing here could be smaller than the first choice of
a after Theorem 2.1. Since we are, presumably, still far from the critical time in
which singularities can occur, a more accurate analysis of the constants is not very
meaningful.

M < 65(,00,0) +a + CaMsa

4. Concluding remarks. The convergence result that we have discussed in the
previous sections works in spaces of analytical functions. The following question arises
quite naturally. Even assuming that ¢, n € X,, for some po at time zero, if we is any
sequence of vorticity profiles weakly converging to n(z) §(y — ¢(x)) at time zero, does
we(t) converge to n(z,t) 6(y — ¢(z,t)), for small positive ¢, where n(-,t) and ¢(-,t)
solve the vortex sheet equation?

We conjecture that the answer is no. The reason lies in the following example.
Consider the flat sheet of constant intensity ¢ = 0, n = 1. This is the only analytical
solution of the initial value problem. Suppose that we approximate the sheet by

(1) oF = j:g if € (—o0,—a(e)]U]0,+o00),
¢ =0 if z € (—a(e),0).

Obviously, we — w(z,y) dzdy = 6(y) dz dy in the sense of weak convergence of mea-

sures for all a(e) — 0. Now compute the vertical component of the velocity field at
the origin. We have that

1 [*® 5 x 1 [ €
— d L dzarctg ( —
27e Jy m/_% @ x? 4 y? m-:/o :ca,rcg(h)

ate)
1 € 1

= ——/ d€ arctg (—) .
™ 0 2

From this expression, it follows that, when a(e)/e — const, the field is not vanishing
and it may even diverge when a(g)/e — oo. This indicates that hardly to the flat sheet

(4.2)
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1056 D. BENEDETTO AND M. PULVIRENTI

in this case. These kinds of pathologies are perhaps related to the existence of many,
piecewise analytic, solutions to the vortex sheet equation. In particular, two-branched
vortex sheets are studied in [11].

A physically reasonable way to choose a solution among the very many arising
in the context of the vortex sheet dynamics is to study the vanishing viscosity limit
for such a problem. It is natural to conjecture that the analytic solution is the only
stable with respect to viscous perturbations.

Note added in proof. Before Theorem 2.1 of this paper, it is stated that we
expect appearance of singularities in a finite time of boundary. The referee informed
us that, in the recent paper [J.-Y. Chemin, Compte Rendu Academie Sciences, 312
(1991), pp. 803-806], the regularity of the boundary of a vortex patch has been proved
globally in time.

Acknowledgments. We thank P. Marcati and A. Arosio for useful conversa-
tions. Special thanks are due to G. Benfatto for having spent much time helping us
to approach the problem and for illuminating suggestions. We also thank the referee
for the above note.
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