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We introduce a rigorous and general framework to study systematically self-gravitating elastic materials
within general relativity, and apply it to investigate the existence and viability, including radial stability,
of spherically symmetric elastic stars. We present the mass-radius (M − R) diagram for various families of
models, showing that elasticity contributes to increasing the maximum mass and the compactness up to
≈22%, thus supporting compact stars with mass well above two solar masses. Some of these elastic stars
can reach compactness as high as GM=ðc2RÞ ≈ 0.35 while remaining stable under radial perturbations and
satisfying all energy conditions and subluminal wave propagation, thus being physically realizable models
of stars with a light ring. We provide numerical evidence that radial instability occurs for central densities
larger than that corresponding to the maximum mass, as in the perfect-fluid case. Elasticity may be a key
ingredient to building consistent models of exotic ultracompact objects and black hole mimickers, and can
also be relevant for a more accurate modeling of the interior of neutron stars.
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I. INTRODUCTION

Astronomical compact objects are typically idealized as
self-gravitating (often perfect) fluids, wherein (isotropic)
pressure prevents gravitational collapse. However, while
degenerate fermions behave as a weakly interacting gas at
relatively small densities, nuclear interactions and QCD
effects become crucial inside relativistic stars. Thus, it is
reasonable to expect that the perfect-fluid idealization will
eventually break down, at least to some extent, and that
solid phases of matter may be relevant for astronomical
compact objects. This is indeed the situation in the crust of
a neutron star [1,2], whose fundamental constituents are
largely unknown, especially in the core [3].
A natural generalization of fluid models is to consider

elastic materials [4–8], also studied perturbatively, to
model the crust of a neutron star [1,2]. In this paper,
we introduce a new systematic approach to the problem of
self-gravitating elastic materials in general relativity (GR),
which allows building elastic compact objects in a
simple—yet general—way and assessing their viability
in the strong-gravity regime.
Beside offering a more accurate description of the stellar

interior [9–11], elasticity might play a crucial role in
constructing consistent models of exotic compact objects
and black hole (BH) mimickers within GR and extensions

thereof [12,13]. Under certain hypotheses [12,14],
Buchdhal’s theorem [15] states that self-gravitating, per-
fect-fluid GR solutions satisfy the following bound on the
compactness:M=R ≤ 4=9, whereM is the mass and R is the
radius of the star (henceforth we use G ¼ c ¼ 1 units).
Buchdhal’s theorem assumes that matter is described by a
perfect fluid, and can be extended to mildly anisotropic
fluids for which the radial pressure is larger than the
tangential one [14] (see [16,17] for more general results).
Indeed, compact objects made of strongly anisotropic fluids
(e.g., gravastars [18] and anisotropic stars [19]) can have
higher compactness and a continuous BH limit,M=R → 1=2
[20–23]. However, the viability of such ultracompact models
is questionable, since they either violate some of the energy
conditions [24] or feature superluminal speed of sound or
ad hoc thin shells within the fluid (see [12] for a discussion).
On the other hand, physically realizable models like boson
stars are not significantly more compact than an ordinary
perfect-fluid neutron star in the static case [25].
Since elastic materials feature shears and anisotropies,

it is natural to ask whether full-fledged, physically
realizable models of ultracompact [12] elastic stars can
be built. In this paper we will show that this is the case.
Viable elastic stars can have M=R > 1=3, thus featuring
the same Schwarzschild photon sphere at radial coordinate
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r ¼ 3M, a crucial property to mimic the phenomenology
of BHs [12,13,26,27]. We will also show that elastic stars
can exceed Buchdhal’s bound on the compactness, but
only in their unstable or superluminal branch, at least for
the class of materials under consideration.

II. SETUP

We focus on spherical symmetry and study both static
solutions and their dynamical radial perturbations. More
details and models will be given in a companion paper
[28]. In Schwarzschild coordinates, the line element reads
ds2 ¼ −e2αðt;rÞdt2 þ e2βðt;rÞdr2 þ r2dΩ2, where dΩ2 is the
metric of the unit 2-sphere. A spherically symmetric
self-gravitating body is described in terms of the scalars
ðρ; prad; ptan; vÞ satisfying the Einstein equations, where
ρðt; rÞ is the energy density, pradðt; rÞ and ptanðt; rÞ are
the radial and tangential pressures respectively, and
vðt; rÞ is the radial velocity. The 4-velocity of matter
is uμ ¼ ðe−αhvi; v; 0; 0Þ, where hvi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2βv2

p
. The

Einstein equations are closed by postulating equations
of state (EoS) relating the pressures and the density.
Relativistic elasticity is based on a variational principle

wherein the Lagrangian density is covariant under spacetime
diffeomorphisms, and consists of the sum of the rest-frame
energy density for the undeformed material and a (defor-
mation) potential energy density, so that it coincides with the
total energy density ρ measured by an observer at rest with
respect to the material [29,30]. For homogeneous and
isotropic elastic materials and under spherically symmetry,
the Lagrangian is given by [28]

ρ̂ðδ; ηÞ ¼ δðρ0 þ ŵðδ; ηÞÞ; ð1Þ

where the potential energy density (which we will call
the stored energy function, by analogy with the Newtonian
case) is wðt; rÞ ¼ ŵðδðt; rÞ; ηðt; rÞÞ, so that ρðt; rÞ ¼
ρ̂ðδðt; rÞ; ηðt; rÞÞ. Here

δðt; rÞ ¼ nðt; rÞ
n0

; ð2Þ

ηðt; rÞ ¼ 3

r3

Z
r

0

eβðt;uÞhvðt; uÞiδðt; uÞu2du; ð3Þ

where nðt; rÞ is the (conserved) particle number density in
the physical (deformed) state, and n0 > 0 and ρ0 > 0 are
the particle number density and energy density in the
reference material frame, respectively. The reference state
is an idealized state with n ¼ n0, β ¼ 0 (corresponding to
a flat material metric), and v ¼ 0, that is, ðδ; ηÞ ¼ ð1; 1Þ.
The EoS are

p̂radðδ; ηÞ ¼ δ∂δρ̂ðδ; ηÞ − ρ̂ðδ; ηÞ; ð4aÞ

q̂ðδ; ηÞ≡ p̂tanðδ; ηÞ − p̂radðδ; ηÞ ¼
3

2
η∂ηρ̂ðδ; ηÞ: ð4bÞ

Note that the perfect-fluid case is included for any
Lagrangian such that ∂ηρ̂ ¼ 0 (equivalently ∂ηŵ ¼ 0).
The function ŵðδ; ηÞ satisfies the natural reference state

condition, ŵð1; 1Þ ¼ 0 (state of zero energy), i.e.,

ρ̂ð1; 1Þ ¼ ρ0: ð5Þ

The radial and tangential pressures satisfy the reference
state condition

p̂radð1; 1Þ ¼ p̂tanð1; 1Þ ¼ p0: ð6Þ

The reference state is said to be stress-free (prestressed) if
p0 ¼ 0 (p0 ≠ 0). Furthermore, compatibility with linear
elasticity requires

∂δp̂radð1; 1Þ ¼ λþ 2μ; ∂ηp̂radð1; 1Þ ¼ −
4

3
μ; ð7aÞ

∂δp̂tanð1; 1Þ ¼ λ; ∂ηp̂tanð1; 1Þ ¼
2

3
μ; ð7bÞ

where λ, μ are the Lamé parameters.
Restricting to static configurations, the radial velocity

vanishes (v ¼ 0), while ðρ; prad; ptanÞ and α, β are functions
of the areal coordinate r only. In this case the Einstein
equations reduce to the Tolman-Oppenheimer-Volkoff
(TOV) equations

dprad

dr
¼ 2

r
ðptan − pradÞ − ðprad þ ρÞ dα

dr
; ð8Þ

dα
dr

¼ e2β

r

�
m
r
þ 4πr2prad

�
; ð9Þ

where e−2βðrÞ ¼ 1 − 2mðrÞ
r , αðrÞ is the relativistic gravita-

tional potential, and mðrÞ ¼ 4π
R
r
0 ρðuÞu2du is the Misner-

Sharp mass.
In terms of the variables ðδðrÞ; ηðrÞ; mðrÞÞ, the TOV

equations become a closed first-order system,

∂δp̂rad
dδ
dr

¼ 3

r
∂ηp̂radðη − eβδÞ þ 2

r
q̂

− ðp̂rad þ ρ̂Þ e
2β

r

�
m
r
þ 4πr2p̂rad

�
; ð10aÞ

dη
dr

¼ −
3

r
ðη − eβδÞ; dm

dr
¼ 4πr2ρ̂; ð10bÞ

supplemented by (1) and the EoS (4). In the Newtonian
limit we recover the results of [31,32]. For regular solutions
we have limr→0þ δðrÞ ¼ δc and limr→0þ eβðrÞ ¼ 1, implying
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limr→0þ ηðrÞ ¼ δc. Regularity at the origin imposes
pradð0Þ ¼ ptanð0Þ, which in turn implies

q̂ðδ; δÞ ¼ 0 for all δ > 0: ð11Þ

III. MATERIAL MODELS

The above formalism is general for any given set of
functions ðρ; prad; ptanÞ satisfying Eqs. (5), (6), (7), and
(11). Here we focus on elastic constitutive functions that are
continuous deformations of relativistic polytropes (other
examples are given in [28]). The simplest model is

ρ̂ðδ; ηÞ ¼ ð1 − κnÞρ0δþ κnρ0δ1þ
1
n þ ερ0ðδ − ηÞ2; ð12Þ

which contains three dimensionless parameters κ, n and ε.
For ε ¼ 0 we have a perfect fluid with a polytropic EoS
with polytropic index n and reference state pressure p0 ¼
κρ0 > 0. The first Lamé parameter is λ ¼ κρ0ð1þ 1

nÞ − ερ0,
and the shear modulus is μ ¼ 3

2
ερ0, which implies ε ≥ 0.

The Newtonian limit of the previous quadratic model
leads to equations of motion which are invariant under
homologous transformations [33] only for n ¼ 1. It is
possible to generalize this stored energy function to one
that leads to Newtonian equations of motion which are
invariant under homologous transformations for a general
polytropic index n [28]:

ŵðδ; ηÞ ¼ w0 þ η
1
n

�
w1 þ w2

�
δ

η

�
−1

þ w3

�
δ

η

�1
s
�
; ð13Þ

where w0 ≡ −nκρ0, w1 ≡ ðn−sÞð1þnÞ
n ρ0κ − 2sρ0ε, w2≡

ðs−nÞ
ð1þsÞn ρ0κ þ 2s

1þs ρ0ε, w3 ≡ ð1þnÞs2
ð1þsÞn ρ0κ þ 2s2

1þs ρ0ε. Here s

can be interpreted as the shear index; when s ¼ n and
ε ¼ 0 we recover the usual relativistic polytropes (see
also [34,35] for similar stored energy functions in the
Newtonian setting). The Lamé parameters are the same as

in the quadratic model (12), and in fact the two models
coincide when s ¼ n ¼ 1.
When the model is stress-free, p0 ¼ 0 and the reference

state ðδ; ηÞ ¼ ð1; 1Þ is uniquely defined. However, pre-
stressed models (such as the ones we are considering) do
not have a preferred reference state. In this case a different
reference state, compressed or expanded with respect to
the original reference state, provides an equivalent
description of the material, moving from the parameters
ðρ0; κ; εÞ to new parameters ðρ̃0; κ̃; ε̃Þ. The choice of
reference state is thus akin to a gauge choice [28].
It can be shown that in the fluid case p̂rad ¼ p̂tan ¼

κρ0δ
1þ1

n ¼ Kσ̂1þ1
n, where σ̂ is the baryon density and

K ¼ κð1 − κnÞ−nþ1
n ρ

−1
n

0 . The latter quantity is in fact invariant
under renormalization of the reference state. Moreover,
changing K only changes the mass scale of equilibrium
configuration, and does not affect the value of dimensionless
ratios such as the compactness. Another invariant quantity
under renormalization is

E ¼ ε

κ

�
κ

1 − κn

�
1−n

or E ¼ ε

κ
; ð14Þ

in the case of model (12) or model (13), respectively.

IV. EQUILIBRIUM CONFIGURATIONS

The equations (10) for the stellar structure should be
solved by requiring regularity of the functions at the center
of the star. The solutions form a one-parameter family in
terms of δc, or, equivalently, of the central density
ρð0Þ ¼ ρ̂ðδc; δcÞ ¼ ρc. The radius R of the star is defined
by the condition pradðRÞ ¼ 0, whereas ρðRÞ and ptanðRÞ do
not need to vanish. Due to Birkhoff’s theorem, the metric
at r > R (where ρ ¼ prad ¼ ptan ¼ 0) is the standard
Schwarzschild metric with mðRÞ ¼ M and αðrÞ ¼ −βðrÞ.
Within GR, physically viable matter fields should satisfy

the following energy conditions [24]:

SEC∶ ρþ prad þ 2ptan ≥ 0; ρþ prad ≥ 0; ρþ ptan ≥ 0;

WEC∶ ρ ≥ 0; ρþ prad ≥ 0; ρþ ptan ≥ 0;

NEC∶ ρþ prad ≥ 0; ρþ ptan ≥ 0;

DEC∶ ρ ≥ jpradj; ρ ≥ jptanj;

for the strong, weak, null, and dominant energy condition,
respectively. Some further restrictions come from requiring
causal wave propagation within the material. The squared
speeds of elastic longitudinal and transverse waves in the
radial direction are given by [6,28]

c2Lðδ; ηÞ ¼
δ∂δp̂rad

ρ̂þ p̂rad
; ð15Þ

c2Tðδ; ηÞ ¼
p̂tan − p̂rad

ðρ̂þ p̂tanÞð1 − δ2=η2Þ ; ð16Þ
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whereas in the tangential direction they are

c̃2Lðδ; ηÞ ¼
δ∂δp̂tan þ 3η∂ηp̂tan

ρ̂þ p̂tan
; ð17Þ

c̃2Tðδ; ηÞ ¼
p̂rad − p̂tan

ðρ̂þ p̂radÞð1 − η2=δ2Þ : ð18Þ

Due to spherical symmetry, there is a single transverse
mode in both the radial and tangential directions, which
vanishes in the perfect-fluid case, since p̂tan ¼ p̂rad. Over-
all, causality requires 0 ≤ c2L;T ≤ 1, and 0 ≤ c̃2L;T ≤ 1.
Figure 1 shows the M − R diagram for some represen-

tative examples of the aforementioned elastic models. Larger
values of E and of s − n increase the maximum mass and
maximum compactness of a star. In particular, a one-
parameter deformation of the n ¼ 1=2 polytrope (left panel)
supports configurations with a light ring (R < 3M) and
exceeding the Buchdahl’s limit (R < 9M=4). However, a
relevant question is whether the equilibrium configurations
satisfy the various constraints imposed by the subluminality
of wave propagation in the radial and tangential directions.
Solid (dashed) parts of each curve in Fig. 1 correspond to
subluminality (superluminality). Depending on the model,
the transition can occur before or after the maximum mass,
which corresponds to the heaviest stable configuration under
radial perturbations, as discussed below. In general, as the
central density increases, some wave speeds (predominantly
c̃L, i.e., the speed of longitudinal waves along the tangential
direction) become superluminal within the star, as shown in
Fig. 2 for a configuration that is almost marginally causal.
These viability requirements set an upper bound on the
maximum mass and compactness of physically realizable
equilibrium solutions. Additionally, we find that all sub-
luminal and stable solutions satisfy all the energy conditions.

In all models under consideration, the Buchdahl limit is
exceeded only for radially unstable or superluminal con-
figurations. On the other hand, we found physically realiz-
able ultracompact configurations (R < 3M) for both models
(12) and (13) with n ¼ 1=2, although the second case
requires a fine tuning of the parameters and the compactness
never exceeds M=R ¼ 1=3 by more than 1% [28].
For the simple quadratic model (12) with n ¼ 1=2, we

find stable and causal configurations with compactness as

FIG. 1. Mass-radius diagram for the quadratic elastic model (12) with n ¼ 1=2 and K ¼ 6 × 104 M4
⊙ (left) and for the two-parameter

elastic model (13) with n ¼ 1 and K ¼ 160 M2
⊙ (right). Solid (dashed) curves correspond to configurations with subluminal

(superluminal) wave propagation. For some regions of the parameter space (cf. green curve of the left panel) there are configurations
below the maximum mass featuring a photon sphere (R < 3M) and subluminal wave propagation.

FIG. 2. Sound speeds (upper panel) and density and pressure
profiles (bottom panel) for the quadratic elastic model with
n ¼ 1=2, K ¼ 6 × 104 M4

⊙. We compare the perfect-fluid case
(E ¼ 0, dashed lines) with an elastic configuration with E ¼
10−1 (solid lines). The latter configuration features a light ring
(M=R ≈ 0.35) and the wave speeds are always subluminal.
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large as M=R ≈ 0.35, which is reached for E ¼ Oð10−1Þ.
Interestingly, in this case the shear modulus is
approximately

μ ≈ 7 × 1026
�

ρ0
1011 g=cm3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

105M4
⊙

s �
E
0.1

�
erg=cm3;

ð19Þ

which is in the typical range of values for lattice models
describing the neutron star crust [1].

V. RADIAL STABILITY

Linear radial perturbations of relativistic elastic balls have
been treated in [36] using a Lagrangian approach. In [28] we
use our new Eulerian definition for spherically symmetric
elastic bodies and linearize the Einstein equations around the
static background, also including perturbations of a (possibly
nonflat) material metric. The main perturbation variables are
ζðt; rÞ≡ r2e−αξ and χðt; rÞ ¼ −eβþ2αðpradÞL, where ξ is the
usual radial displacement in the perturbed configuration and
ðpradÞL is the Lagrangian perturbation of the radial pressure.
Making the ansatz ζðt; rÞ ¼ eiωtζðrÞ, χðt; rÞ ¼ eiωtχðrÞ
leads to an eigenvalue problem for the system of first-order
ordinary differential equations

δ∂δp̂rad
dζ
dr

¼ −
3

r
η∂ηp̂radζ þ e−ð3αþβÞr2χ; ð20aÞ

δ∂δp̂rad
dχ
dr

¼ 3

r
η∂ηp̂radχ − ½Q1 þQ2ω

2�ζ; ð20bÞ

where

Q1 ¼
e3αþβ

r2

�
4

r2
ðδ∂δq̂− q̂Þ2þδ∂δp̂rad

�
2

r2
q̂−

6

r2
η∂ηq̂

−
4

r
dprad

dr
þ
�
6

r
q̂−

dprad

dr

�
dα
dr

−8πðρ̂þ p̂radÞe2βp̂rad

��
;

ð21aÞ

Q2 ¼
eαþ3β

r2
δ∂δp̂radðρ̂þ p̂radÞ; ð21bÞ

subject to the standard boundary conditions [37]
limr→0þ

ζ
r ¼ 0 and limr→R χ ¼ 0.

As a representative example, in Fig. 3 we show the
eigenvalues ω2 obtained numerically for model (12) as a
function of the mass for n ¼ 1=2 and a range of values of E.
Within numerical accuracy, the zero crossing corresponds
to the point of the maximum mass. We found the same
result in all models under investigation [28]. Based on this
numerical evidence, we conclude that elastic stars beyond
the maximum-mass configuration are radially unstable, as
in the perfect-fluid case [37].

VI. DISCUSSION

Anisotropies are ubiquitous in physical systems and seem
also to be a key ingredient to built solutions for ultracompact
self-gravitating objects. However, introducing anisotropies
in GR is often based on ad hoc models which might also
suffer from violation of the energy conditions or super-
luminal wave propagation. We presented a general frame-
work to build pathology-free relativistic compact objects
containing elastic materials.
All elastic relativistic configurations that we have con-

structed have ptan ≥ prad within the star. Interestingly, this
condition violates the mild-anisotropy assumption of the
Buchdahl’s theorem [14], and in fact elasticity allows for
compact objects which can exceed the Buchdahl limit,
M=R > 4=9. However, in all models we have explored this
limit is reached only in the branch that is unstable against
radial perturbations. In addition to radial stability, we
advocate the importance of checking the (nontrivial) viabil-
ity of the matter fields for anisotropic configurations, in
particular all causality conditions for wave propagation.
While these requirements limit the maximum mass and
compactness of elastic stars, we showed that it is never-
theless possible to obtain physically realizable ultracompact
configurations featuring a light ring. Elastic stars are one of
the few GR models of ultracompact objects that satisfy all
the above viability requirements and come from a first-
principles Lagrangian approach. The only other known
example in the static case are quark stars [14,38–40] that,
however, require strange matter.
Due to the photon sphere, nonradial perturbations of

ultracompact elastic stars can feature gravitational wave
echoes [41–43], as in the quark star case [14,38–40].

FIG. 3. Squared frequency eigenvalues for the radial stability
analysis of elastic stars in the quadratic model (12) with n ¼ 1=2
and different values of E as a function of the mass or of the
compactness (see inset). Solid (dashed) lines correspond to stable
(unstable) configurations with ω2 > 0 (ω2 < 0). In all cases the
zero crossing corresponds to the maximum mass within numeri-
cal accuracy.
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Horizonless compact objects with an unstable light ring
feature a second, stable, inner photon sphere, which might be
prone to nonlinear instabilities [26,44,45]. Investigating this
problem in detail was so far hampered by the lack of
physically realizable and first-principle solutions, but it can
be done within our framework. Indeed, by solving the null
geodesic equations we have confirmed that ultracompact
elastic stars do feature a stable light ring.
Elasticity tends to support more massive and compact

configurations. For the models at hand the maximum
mass can increase up to ≈22% relative to the perfect-fluid
case while the material remains physically realizable.
Interestingly, this suggests that static neutron star models,
that can reach M ≈ 2 M⊙ in the perfect-fluid case, could
potentially be as massive as M ≈ 2.5 M⊙ when elasticity
is included, without violating any physical requirement.
Such heavy neutron stars would be compatible with the
exotic secondary object of the gravitational wave event
GW190814 [46]. Furthermore, more compact configura-
tions would tend to have smaller tidal deformability. Thus,
stiff EoS that are in tension with the relatively small tidal
deformability measured by GW170817 [47] could evade
those bounds when elasticity is included.
Further natural applications of our framework include

considering: (i) other models of elastic materials, including
nonflat reference material metrics; (ii) consistent multilayer

solutions, e.g., made of a perfect-fluid interior and an outer
elastic crust [1,2,48], or deformations of piecewise polytropes
[49] that approximate tabulated, nuclear-physics-based EoS;
(iii) models that deform generic barotropic fluids beyond
the polytropic EoS. We will report on these applications
elsewhere [28]. Finally, we focused here on spherical
symmetry but our approach can be extended to less sym-
metric configurations. In particular, future work will also
focus on rotating and (possibly tidally) deformed [48] elastic
solutions.
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