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Polyvector fields and polydifferential operators
associated with Lie pairs
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Abstract. We prove that the spaces tot
�
�.ƒ�A_/ ˝R T �poly

�
and tot

�
�.ƒ�A_/ ˝R D�poly

�
associated with a Lie pair .L;A/ each carry an L1 algebra structure canonical up to an L1
isomorphism with the identity map as linear part. These two spaces serve, respectively, as
replacements for the spaces of formal polyvector fields and formal polydifferential operators
on the Lie pair .L;A/. Consequently, both H�CE.A; T

�
poly/ and H�CE.A;D

�
poly/ admit unique

Gerstenhaber algebra structures. Our approach is based on homotopy transfer and the
construction of a Fedosov dg Lie algebroid (i.e. a dg foliation on a Fedosov dg manifold).
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Introduction

The algebraic structures of the spaces of polyvector fields and of polydifferential
operators on a manifold play a crucial role in deformation quantization: Kontsevich’s
famous formality theorem asserts that, for a smooth manifold M , the Hochschild–
Kostant–Rosenberg map extends to an L1 quasi-isomorphism from the dgla of
polyvector fields onM to the dgla of polydifferential operators onM [9,10,13,25,46].
In this paper, we study the algebraic structures of “polyvector fields” and

“polydifferential operators” on Lie pairs. Throughout the paper, we use the symbol k
to denote either of the fields R and C. A Lie algebroid over k is a k-vector bundle
L ! M together with a bundle map %WL ! TM ˝R k called anchor and a Lie
bracket Œ�;�� on the sections of L such that %W�.L/! X.M/˝R k is a morphism
of Lie algebras and

ŒX; f Y � D f ŒX; Y �C %X .f /Y;

for allX; Y 2 �.L/ and f 2 C1.M;k/. By a Lie pair .L;A/, wemean an inclusion
A ,! L of Lie algebroids over a smooth manifoldM .
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��Research partially supported by NSF grants DMS-1406668, DMS-1707545 and DMS-2001599.

https://creativecommons.org/licenses/by/4.0/


644 R. Bandiera, M. Stiénon and P. Xu

Lie pairs arise naturally in a number of classical areas of mathematics such as
Lie theory, complex geometry, foliation theory, and Poisson geometry. A complex
manifold X determines a Lie pair over C: viz. L D TX ˝ C and A D T

0;1
X . A

foliation F on a smooth manifoldM determines a Lie pair overR: viz.L D TM and
A D TF is the integrable distribution onM tangent to the foliation F . A manifold
equipped with an action of a Lie algebra g gives rise to a Lie pair in a natural way
(see [39, Example 5.5] and [30, 33]).
Given a Lie pair .L;A/, the quotientL=A is naturally anA-module [11]. WhenL

is the tangent bundle to a manifoldM and A is an integrable distribution onM , the
infinitesimal A-action on L=A is given by the Bott connection [7].
A Lie pair .L;A/ gives rise to two natural cochain complexes�
tot
�
�.ƒ�A_/˝R T �poly

�
; dBottA

�
and

�
tot
�
�.ƒ�A_/˝RD�poly

�
; dU
A CdH

�
(1)

constructed as follows. Denoting the algebra of smooth functions on the manifoldM
by R, we set

T �poly D

1M
kD�1

T k
poly;

whereT �1polyDR andT k
polyD�.ƒ

kC1.L=A// fork>0. TheBottA-connection onL=A
makes every T k

poly an A-module. We can thus consider the complex of A-modules
with trivial differential

0 T �1poly T 0
poly T 1

poly T 2
poly � � �

0 0 0 0

Its Chevalley–Eilenberg cohomology H�CE.A; T
�
poly/ is the cohomology of the total

cochain complex �
tot
�
�.ƒ�A_/˝R T �poly

�
; dBottA

�
: (2)

Similarly, denoting the universal enveloping algebra of the Lie algebroid L
byU.L/, we set

D�poly D

1M
kD�1

Dk
poly;

whereD�1poly D R;D0
poly D

U.L/
U.L/�.A/

; andDk
poly with k > 1 is the tensor product

D0
poly ˝R � � � ˝R D0

poly

of .kC1/-copies of the leftR-moduleD0
poly. Multiplication inU.L/ from the left by

elements of �.A/ (and R) induces an A-module structure on the quotient U.L/
U.L/�.A/

.
This action of A on D0

poly extends naturally to an action of A on Dk
poly for each

k > 1. In fact, D0
poly is a cocommutative coassociative coalgebra over R whose
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comultiplication�WD0
poly ! D0

poly˝RD0
poly is amorphismofA-modules. Therefore,

the induced Hochschild complex

0 D�1poly D0
poly D1

poly D2
poly � � �

dH dH dH dH

is a complex of A-modules. Its Chevalley–Eilenberg cohomology H�CE.A;D
�
poly/ is

the cohomology of the total cochain complex�
tot
�
�.ƒ�A_/˝R D�poly

�
; dU
A C dH

�
; (3)

where we use the abbreviated symbol dH to denote the operator id˝dH; see
equation (7) for more details.
For instance, for the Lie pair L D TX ˝ C and A D T

0;1
X arising from any

complex manifold X , the cochain complexes (2) and (3) are precisely the Dolbeault
complexes �

�0;�.T �poly.X//;
x@
�
and

�
�0;�.D�poly.X//;

x@C dH
�
;

which are known to carry differential graded Lie algebra (a.k.a. dgla) structures.
The corresponding Chevalley–Eilenberg cohomology groups H�CE.A; T

�
poly/ and

H�CE.A;D
�
poly/ are isomorphic to the sheaf cohomology group H�.X;ƒ�TX / and

the Hochschild cohomology group HH�.X/, respectively.
For a generic Lie pair .L;A/, however, there is no obvious way to upgrade the

cochain complexes (1) to dgla’s (or L1 algebras). Here is an example. The cochain
complex �

tot��F .ƒ
�.TM=TF //; d

Bott
F

�
associatedwith the Lie pair .TM ; TF / encoding a foliationF on a smoothmanifoldM
may be thought of as the space of formal polyvector fields on the leaf space of the
foliation [48, 50], or more precisely, on the differentiable stack [4] presented by the
holonomy groupoid of the foliation F . Similarly, denoting the associative algebra of
differential operators onM by D.M/, the cochain complex�

tot��F
� �O
R

�
D.M/

D.M/��.TF /

��
; dU
A C dH

�
may be thought of as the space of formal polydifferential operators on the leaf space of
the foliation, or more precisely, on the differentiable stack presented by the holonomy
groupoid of the foliation F . Unless the foliation F admits a transversal foliation [12],
there are no obvious dgla (or L1 algebra) structures on these cochain complexes.
On the other hand, both H�CE.A; T

�
poly/ and H�CE.A;D

�
poly/ admit obvious

associative algebra structures – the multiplications in cohomology proceed from
the wedge product in T �poly and the tensor product of left R-modules inD�poly.
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We are thus naturally led to the following central twofold question:

Question. (1) Do the cohomology groups H�CE.A; T
�
poly/ and H�CE.A;D

�
poly/ admit

canonical Gerstenhaber algebra structures?

(2) Do the two cochain complexes�
tot
�
�.ƒ�A_/˝R T �poly

�
; dBottA

�
and

�
tot
�
�.ƒ�A_/˝R D�poly

�
; dU
A C dH

�
associated with a Lie pair .L;A/ admit L1 algebra structures compatible “in a
certain sense” with their respective associative multiplications? If so, are these
L1 structures canonical?

To answer this question, we introduce the notion of Fedosov dg Lie algebroid,
we establish a pair of contractions, and we apply the homotopy transfer theorem
of L1 algebras [5, 17, 22] (see also [1, 6, 14–16]). Roughly speaking, given a Lie
pair .L;A/, we construct a geometric object called Fedosov dg Lie algebroid, which
engenders a pair of natural dgla’s whose respective cohomologies carry natural
Gerstenhaber algebra structures. The pair of cochain complexes underlying these
engendered dgla’s are homotopy equivalent (in a style reminiscent of Dolgushev’s
Fedosov resolutions [13]) to the cochain complexes (1) associated with the Lie
pair .L;A/. The latter complexes then inherit L1 structures by homotopy transfer.
Hereunder, we proceed to give a more detailed outline of the construction.
Given a Lie pair .L;A/ and having chosen some additional geometric data, one

can endow the graded manifoldM D LŒ1�˚L=Awith a homological vector fieldQ
encoding the formal geometry of the Lie pair. The resulting dg manifold .M;Q/

is called a Fedosov dg manifold [44]. It turns out that there exists a natural dg
integrable distribution F � TM on .M;Q/. In other words, the tangent dg Lie
algebroid TM !M arising from the Fedosov dg manifold .M;Q/ admits a natural
dg Lie subalgebroid F !M. We call this dg Lie algebroid F !M a Fedosov dg
Lie algebroid.
Lie algebroids being generalizations of tangent bundles, the notions of polyvector

fields and of polydifferential operators admit generalizations to the broader context
of Lie algebroids. The spaces of (generalized) polyvector fields and of (generalized)
polydifferential operators each admit a natural dgla structure and the cohomology of
this dgla is in fact a Gerstenhaber algebra [54, 55]. The notions of polyvector fields
and of polydifferential operators can be extended further in an appropriate sense to the
context of dg Lie algebroids. This yields again a pair of dgla’s whose cohomologies
are Gerstenhaber algebras.
More precisely, in the context of a dg Lie algebroid L ! M, a k-vector field

is a section of the vector bundle ƒkL ! M while a k-differential operator is an
element of .sU.L//˝k , the tensor product (as left C1.M/-modules) of k copies of
the suspended universal enveloping algebra sU.L/.
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It is clear that the differential QW�.L/ ! �.L/, the homological vector field
QWC1.M/! C1.M/, and the Lie bracket on �.L/ encoding the dg Lie algebroid
structure of L!M extend naturally to a degree .C1/ differential

QW�.ƒkC1L/! �.ƒkC1L/

and a Schouten bracket

Œ�;��W�.ƒuC1L/˝ �.ƒvC1L/! �.ƒuCvC1L/I

see Section 2.1 for more details. The resulting triple�
tot˚ �.ƒ�C1L/;Q; Œ�;��

�
is a dgla.
The universal enveloping algebra of a dg Lie algebroidL!M, which is defined

by adapting the construction of the universal enveloping algebra of a Lie algebroid,
is a dg Hopf algebroid U.L/ over the dgca R D C1.M/. For each k > 0, the dg
structure on the dg Lie algebroid L!M determines a differential

QW
�
sU.L/

�˝kC1
!
�
sU.L/

�˝kC1
of degree .C1/. A Hochschild coboundary differential

dHW
�
sU.L/

�˝k
!
�
sU.L/

�˝kC1
and a Gerstenhaber bracket

J�;�KW
�
sU.L/

�˝uC1
˝
�
sU.L/

�˝vC1
!
�
sU.L/

�˝uCv
can be defined explicitly in terms of the dg Hopf algebroid structure. The resulting
triple �

tot˚
�
sU.L/

�˝�C1
;QC dH; J�;�K

�
is a dgla.
The “polyvector fields” and “polydifferential operators” associated with aFedosov

dg Lie algebroid F ! M may be viewed geometrically as polyvector fields and
polydifferential operators tangent to the dg foliation F on the Fedosov dg manifold
.M;Q/. In fact, one can identify the “polyvector fields” .tot˚ �.ƒ�C1F /;Q/ and
“polydifferential operators” .tot˚.sU.F //˝�C1;QC dH/ associated with F !M

to a pair of cochain complexes�
tot.�.ƒ�L_/˝RT�poly/;LQ

�
and

�
tot.�.ƒ�L_/˝RD�poly/; JQCm;�K

�
; (4)

where T�poly denotes the formal polyvector fields andD�poly the formal polydifferential
operators tangent to the fibers of the vector bundle L=A!M .
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The next step and key ingredient of the construction consists in establishing the
following pair of contractions of Dolgushev–Fedosov type:�

tot
�
�.ƒ�A_/˝R T �poly

�
; dBottA

� �
tot
�
�.ƒ�L_/˝R T�poly

�
;LQ

�
; (5)

and�
tot
�
�.ƒ�A_/˝R D�poly

�
; dU
A C dH

� �
tot
�
�.ƒ�L_/˝R D�poly

�
; JQCm;�K

�
:

(6)
Finally, we use the homotopy transfer theorem for L1 algebras [5, 17, 22] (see

also [1, 6, 14–16]) to push the L1 structures carried by the complexes (4) (the r.h.s.
of the contractions (5) and (6)) to the complexes (1) (the l.h.s. of the contractions
(5) and (6)). Furthermore, we prove that the resulting L1 algebra structures on the
complexes (1) are unique up to L1 isomorphisms having the identity map as linear
part and are therefore (essentially) independent of the choice of geometric data made
in the construction of the Fedosov dg Lie algebroid. Moreover, we prove that the two
cochainmaps in the above contractions (5) and (6) are compatible with the associative
algebra structures given by the wedge and cup products respectively.
Finally, combining these facts, we are able to prove the following theorem, which

is the main result of the paper.

Theorem A. Let .L;A/ be a Lie pair.
(1) The cohomology groups H�CE.A; T

�
poly/ and H�CE.A;D

�
poly/ admit canonical

Gerstenhaber algebra structures.
(2a) The spaces tot

�
�.ƒ�A_/˝R T �poly

�
and tot

�
�.ƒ�A_/˝R D�poly

�
admit L1

algebra structures with the operators dBottA and dU
A C dH as their respective

unary brackets.
(2b) These L1 algebra structures are unique up to L1 isomorphisms having the

identity map as linear part.
(2c) The binary brackets are compatible with the associative products (viz. the wedge

product and the cup product respectively) in the sense that the graded Leibniz
rule holds up to homotopy.

The above theorem is a synthesis of Propositions 3.9, 3.24 and 3.26 from this
paper. We remark that, in Theorem A (2c), we only claim what is needed to ensure
that the resulting cohomology groups are Gerstenhaber algebras, but in fact the L1
and associative algebra structures should be compatible in amuch stronger and refined
sense. More precisely, the space of polyvector fields tot

�
�.ƒ�A_/˝R T �poly

�
and

that of polydifferential operators tot
�
�.ƒ�A_/˝R D�poly

�
should both carry much

richer algebraic structures, such as the Ger1 algebras investigated by Tamarkin [46]
or the Br1 algebras studied byWillwacher [53]. In fact, it should again be possible to
construct such structures explicitly via homotopy transfer along Dolgushev–Fedosov
contractions. We will return to this issue in a forthcoming work.
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When the Lie algebroid L arises as the matched sum A ‰ B of a matched pair
.A;B/ of Lie algebroids, i.e. when the short exact sequence

0! A! L! L=A! 0

admits a splitting j WL=A!Lwhose imageB WDj.L=A/ is a Lie subalgebroid ofL,
the L1 algebra structures on

tot
�
�.ƒ�A_/˝R T �poly

�
and tot

�
�.ƒ�A_/˝R D�poly

�
in Theorem A turn out to be dgla’s and admit a much simpler description than in the
case of a generic Lie pair. Indeed, in the case of a matched pair, the dg manifold�
AŒ1�˚ B; dBottA

�
is a dg Lie algebroid over the dg manifold .AŒ1�; dA/ whose

associated cochain complexes of polyvector fields and polydifferential operators are
isomorphic to�
tot�.ƒ�A_˝ƒ�C1B/; dBottA

�
and

�
tot
�
�.ƒ�A_/˝RU.B/˝�C1

�
; dU
A CdH

�
;

respectively, and are therefore naturally dgla’s when endowedwith the usual Schouten
bracket and the usual Gerstenhaber bracket, respectively.

Theorem B. If, in a Lie pair .L;A/, the Lie algebroid L arises as the matched
sum A ‰ B of a matched pair .A;B/ of Lie algebroids – i.e. the short exact
sequence 0 ! A ! L ! L=A ! 0 admits a splitting j WL=A ! L whose
image B WD j.L=A/ is a Lie subalgebroid of L – then the L1 algebra structures of
Theorem A on

tot
�
�.ƒ�A_/˝R T �poly

�
and tot

�
�.ƒ�A_/˝R D�poly

�
are actually dgla’s and are respectively isomorphic to�

tot�.ƒ�A_ ˝ƒ�C1B/; dBottA ; Œ�;��
�

and �
tot
�
�.ƒ�A_/˝R U.B/˝�C1

�
; dU
A C dH; J�;�K

�
;

the dgla’s of polyvector fields and of polydifferential operators arising from the dg
Lie algebroidAŒ1�˚B ! AŒ1�. The isomorphisms are canonical. Furthermore, the
Gerstenhaber algebra structures on the corresponding cohomology groups

H�CE.A; T
�
poly/ and H�CE.A;D

�
poly/

are isomorphic to the canonical Gerstenhaber algebra structures on

H�CE.A;ƒ
�C1B/ and H�CE

�
A;U.B/˝�C1

�
;

respectively.
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Finally, let us recall that the well-known Hochschild–Kostant–Rosenberg map
for ordinary smooth manifolds admits a natural generalization as a morphism
from tot

�
�.ƒ�A_/˝R T �poly

�
to tot

�
�.ƒ�A_/˝R D�poly

�
, which is still a quasi-

isomorphism of cochain complexes and thus induces, on the cohomology level, an
isomorphism from H�CE.A; T

�
poly/ to H�CE.A;D

�
poly/. However, there is a significant

difference compared to the case of ordinary smooth manifolds: the Hochschild–
Kostant–Rosenberg map for Lie pairs does not in general respect the Gerstenhaber
algebra structures on cohomology. Nevertheless, it is always possible to remedy
this defect: the Hochschild–Kostant–Rosenberg morphism must be twisted. Doing
so involves techniques developed by Kontsevich in the proof of his formality
theorem [25]; see also [46]. Indeed, the present paper provides the foundation
for an ulterior paper [31] establishing a formality theorem for Lie pairs and an
ensuing Kontsevich–Duflo type theorem describing the precise relationship between
the Gerstenhaber algebra structures onH�CE.A; T

�
poly/ andH�CE.A;D

�
poly/ revealed in

Theorem A.
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Paris 7 for its hospitality during his sabbatical leave in 2015–2016.

1. Polydifferential operators and polyvector fields for Lie pairs

1.1. Chevalley–Eilenberg cohomology. LetA!M be aLie algebroid. TheChevalley–
Eilenberg cohomologyHk

CE.A;E
�/ in degree k of a complex of leftU.A/-modules

0 E�1 E0 E1 E2 � � �
d d d d

is the total cohomology in degree k of the double complex
:::

:::
:::

�.ƒ0A_/˝R E1 �.ƒ1A_/˝R E1 �.ƒ2A_/˝R E1 � � �

�.ƒ0A_/˝R E0 �.ƒ1A_/˝R E0 �.ƒ2A_/˝R E0 � � �

�.ƒ0A_/˝R E�1 �.ƒ1A_/˝R E�1 �.ƒ2A_/˝R E�1 � � �

id˝d
dE
A

� id˝d
dE
A

id˝d
dE
A

id˝d
dE
A

� id˝d
dE
A

id˝d
dE
A

id˝d
dE
A

� id˝d
dE
A

id˝d
dE
A
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When we say that the above diagram is a double complex, we mean in particular
that each square of the grid commutes. Hence the total cohomology is the cohomology
of the complex � M

pCqD�

�.ƒpA_/˝R Eq; dE
A C id˝d

�
:

Recall that, the degree of the operator d being C1, the usual sign convention for the
tensor product of linear maps in the presence of gradings dictates that�

id˝d
�
.! ˝ e/ D .�1/p! ˝ d.e/; 8! 2 �.ƒpA_/; 8e 2 E�: (7)

1.2. Polydifferential operators. Given a Lie pair .L;A/, letD�1poly denote the alge-
braR of smooth functions on the manifoldM , letD0

poly denote the leftU.A/-module
U.L/

U.L/�.A/
, letDk

poly denote the tensor product

D0
poly ˝R � � � ˝R D0

poly

of .k C 1/ copies of the left R-moduleD0
poly, and set

D�poly D

1M
kD�1

Dk
poly:

SinceD0
poly is a leftU.A/-module andU.A/, as a Hopf algebroid, is endowed with

a comultiplication,Dk
poly is also naturally a leftU.A/-module for each k > �1 [55].

Furthermore, the comultiplication�WU.L/! U.L/˝R U.L/ on the universal
enveloping algebraU.L/ induces a comultiplication

�WD0
poly ! D0

poly ˝R D0
poly

since

�
�
U.L/�.A/

�
� U.L/˝R

�
U.L/�.A/

�
C
�
U.L/�.A/

�
˝R U.L/I

see [29, Sections 2.2 and 2.3].

Lemma 1.1 ([29]). The U.A/-module D0
poly is a cocommutative coassociative co-

algebra over R whose comultiplication

�WD0
poly ! D0

poly ˝R D0
poly

is a morphism of U.A/-modules.

Following [55, equation (98)], introduce the Hochschild differential

dHWD
k�1
poly ! Dk

poly



652 R. Bandiera, M. Stiénon and P. Xu

defined by

dH.u1 ˝ � � � ˝ uk/ D 1˝ u1 ˝ � � � ˝ uk

C

kX
iD1

.�1/iu1˝� � �˝ui�1˝�.ui /˝uiC1˝� � �˝ukC.�1/
kC1u1˝� � �˝uk˝1:

Since the comultiplication �WD0
poly ! D0

poly ˝R D0
poly is cocommutative and co-

associative, dH is a coboundary operator, i.e. d2H D 0. Moreover, since the comulti-
plication � is a morphism ofU.A/-modules, dHWDk�1

poly ! Dk
poly is a morphism of

U.A/-modules. Therefore, the Hochschild complex

0 D�1poly D0
poly D1

poly D2
poly � � �

dH dH dH dH

is a complex ofU.A/-modules.
The Chevalley–Eilenberg cohomology Hk

CE.A;D
�
poly/ in degree k of the Hoch-

schild complex of the pair .L;A/ is the degree k total cohomology of the double
complex

:::
:::

:::

�.ƒ0A_/˝R D1
poly �.ƒ1A_/˝R D1

poly �.ƒ2A_/˝R D1
poly � � �

�.ƒ0A_/˝R D0
poly �.ƒ1A_/˝R D0

poly �.ƒ2A_/˝R D0
poly � � �

�.ƒ0A_/˝R D�1poly �.ƒ1A_/˝R D�1poly �.ƒ2A_/˝R D�1poly � � �

id˝dH
dU
A

� id˝dH
dU
A

id˝dH
dU
A

id˝dH
dU
A

� id˝dH
dU
A

id˝dH
dU
A

id˝dH
dU
A

� id˝dH
dU
A

id˝dH
dU
A

The coboundary operator dU
A W�.ƒ

pA_/˝R D
q
poly ! �.ƒpC1A_/˝R D

q
poly is

defined by

dU
A .! ˝ u0 ˝ � � � ˝ uq/ D .dA!/˝ u0 ˝ � � � ˝ uq

C

rk.A/X
jD1

qX
kD0

.˛j ^ !/˝ u0 ˝ � � � ˝ uk�1 ˝ aj � uk ˝ ukC1 ˝ � � � ˝ uq;

for all ! 2 �.ƒpA_/ and u0; u1; : : : ; uq 2 D0
poly – for q D �1, we simply have

dU
A D dA. Here .ai /i2f1;:::;rg is any local frame of A and .˛j /j2f1;:::;rg is the dual
local frame of A_. In other words, Hk

CE.A;D
�
poly/ is the cohomology of the total

complex �
tot.�.ƒ�A_/˝R D�poly/; d

U
A C dH

�
;

where we use the abbreviated symbol dH to denote the operator id˝dH. See equa-
tion (7) for the sign convention used in the definition of the map id˝dH.
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However, unlike the universal enveloping algebra of a Lie algebroid, D0
poly is in

general not a Hopf algebroid overR – in fact,D0
poly is not even an associative algebra.

Therefore, a priori, the Hochschild cohomology is only a vector space.

Remark 1.2. In general D0
poly D

U.L/
U.L/�.A/

does not admit an associative product.
For a Lie pair .TM ; TF / encoding a foliation F on a smooth manifoldM , Vitagliano
proved that �.ƒ�A_/˝R D0

poly can be thought of as the space of normal differential
operators of the foliation F and admits an A1-algebra structure [49]. For a generic
Lie pair .L;A/, the existence of anA1-algebra structure on �.ƒ�A_/˝RD0

poly was
proved in [43].

There is a natural cup product�
�.ƒkA_/˝R D

p
poly
�
˝
�
�.ƒlA_/˝R D

q
poly
� ^
�! �.ƒkClA_/˝R D

pCqC1
poly (8)

on tot
�
�.ƒ�A_/˝R D�poly

�
defined by

.! ˝ u/ ^ .� ˝ v/ D .�1/l.pC1/.! ^ �/˝ .u˝ v/

for all ! 2 �.ƒkA_/, � 2 �.ƒlA_/, u 2 D
p
poly and v 2 D

q
poly.

The following proposition is easily verified.

Lemma 1.3. For any Lie pair .L;A/, the cochain complex�
tot.�.ƒ�A_/˝R D�poly/; d

U
A C dH

�
;

equipped with the cup product (8), is a dg associative algebra. Therefore, there is an
induced associative algebra structure on the Hochschild cohomology H�CE.A;D

�
poly/.

Remark 1.4. It is natural to expect that the induced associative product on
H�CE.A;D

�
poly/ is graded commutative, as in the case of the usual Hochschild cohom-

ologyH �.D�poly.M/; dH/ associated to a smoothmanifoldM . The cohomology ring
H �.D�poly.M/; dH/ is the cohomology of a subcomplex of the Hochschild cochain
complex C �.C1.M/; C1.M//. Its cup product is graded commutative up to a
homotopy given by the Gerstenhaber pre-Lie bracket [18, Theorem 3]. This pre-Lie
bracket can be defined in terms of the comultiplication and the multiplication on
D0
poly.M/: see equation (21) for the formula in a similar situation. However, this
approach does not work for a Lie pair .L;A/, since D0

poly D
U.L/

U.L/�.A/
does not

admit an associative multiplication, thus the usual proof for graded commutativity
does not extend to our situation. In what follows, we will get around this difficulty
by establishing an isomorphism of associative algebras between H�CE.A;D

�
poly/ and

the Hochschild cohomology of the Fedosov dg Lie algebroid of the Lie pair .L;A/;
see Proposition 3.18 and Proposition 3.24. The graded commutativity of the latter
can be proved the usual way; see Proposition 2.8.



654 R. Bandiera, M. Stiénon and P. Xu

1.3. Polyvector fields. Likewise, given a Lie pair .L;A/, let T �1poly denote the alg-
ebra R of smooth functions on the manifold M and set T k

poly D �.ƒ
kC1.L=A//

for k > 0. Consider T �poly D
L1
kD�1 T k

poly as a complex of U.A/-modules with
trivial differential:

0 T �1poly T 0
poly T 1

poly T 2
poly � � �

0 0 0 0

Its Chevalley–Eilenberg cohomologyHk
CE.A; T

�
poly/ in degree k is the degree k total

cohomology of the double complex

:::
:::

:::

�.ƒ0A_/˝R T 1
poly �.ƒ1A_/˝R T 1

poly �.ƒ2A_/˝R T 1
poly � � �

�.ƒ0A_/˝R T 0
poly �.ƒ1A_/˝R T 0

poly �.ƒ2A_/˝R T 0
poly � � �

�.ƒ0A_/˝R T �1poly �.ƒ1A_/˝R T �1poly �.ƒ2A_/˝R T �1poly � � �

0
dBott
A

0
dBott
A

0
dBott
A

0
dBott
A

0
dBott
A

0
dBott
A

0
dBott
A

0
dBott
A

0
dBott
A

The coboundary operator dBottA W�.ƒ
pA_/ ˝ T

q
poly ! �.ƒpC1A_/ ˝ T

q
poly is

defined by

dBottA .! ˝ b0 ^ � � � ^ bq/ D .dA!/˝ b0 ^ � � � ^ bq

C

rk.A/X
jD1

qX
kD0

.˛j ^ !/˝ b0 ^ � � � ^ bk�1 ^ r
Bott
aj
bk ^ bkC1 ^ � � � ^ bq;

for all ! 2 �.ƒpA_/ and b0; b1; : : : ; bq 2 �.L=A/. Here .ai /i2f1;:::;rg is any local
frame of A and .˛j /j2f1;:::;rg is the dual local frame of A_.
There is a natural wedge product�
�.ƒkA_/˝R T

p
poly
�
˝
�
�.ƒlA_/˝R T

q
poly
� ^
�! �.ƒkClA_/˝R T

pCqC1
poly (9)

on tot
�
�.ƒ�A_/˝R T �poly

�
defined by

.! ˝ u/ ^ .� ˝ v/ D .�1/l.pC1/.! ^ �/˝ .u˝ v/ (10)

for all ! 2 �.ƒkA_/, � 2 �.ƒlA_/, u 2 T
p
poly and v 2 T

q
poly.

We have the following:
Lemma 1.5. For any Lie pair .L;A/, the cochain complex�

tot.�.ƒ�A_/˝R T �poly/; d
Bott
A

�
;

equipped with the wedge product (10), is a dg commutative algebra. Therefore, the
cohomology H�CE.A; T

�
poly/ is a graded commutative algebra.
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2. Fedosov dg Lie algebroids

2.1. Dg Lie algebroids and polyvector fields and polydifferential operators. A
Z-graded manifoldM with base manifoldM is a sheafA of Z-graded commutative
OM -algebras over M such that there exists a Z-graded vector space V , a covering
ofM by open submanifoldsU �M , and a collection of isomorphisms ofC1.U;k/-
algebras

AjU Š C
1.U;k/˝k yS.V

_/;

where yS.V _/ denotes the k-algebra of formal power series on V . Here OM denotes
the sheaf of k-valued C1 functions overM . By C1.M/, we denote the Z-graded
commutative algebra �.M;A/ of global sections of .M;A/. By a dg manifold,
we mean a Z-graded manifold M endowed with a homological vector field, i.e. a
derivationQ of degreeC1 of C1.M/ satisfying ŒQ;Q� D 0.

Example 2.1. Let A ! M be a Lie algebroid over k. Then AŒ1� is a dg manifold
with the Chevalley–Eilenberg differential dCE as homological vector field. According
to Vaı̆ntrob [47], there is a bijection between the Lie algebroid structures on the vector
bundle A!M and the homological vector fields on the Z-graded manifold AŒ1�.

Example 2.2. Let g D
L
i2Z gi be aZ-graded finite dimensional vector space. Then

the graded manifold gŒ1� is a dg manifold, if and only if the graded vector space g
admits a structure of curved L1 algebra.

Below we recall some basic notations regarding dg vector bundles. For details,
see [27, 36, 37, 45]. A dg vector bundle is a vector bundle object in the category of
dg manifolds. Consider a vector bundle object E

�
�!M in the category of Z-graded

manifolds. Its space of sections �.E/ is defined to be the direct sum
L
j2Z �.E/

j ,
where �.E/j consists of the sections of degree j , i.e. the maps l 2 Hom.M;EŒ�j �/

such that .�Œ�j �/ ı l D idM. Here �Œ�j �WEŒ�j �!M is the natural map induced
from � ; see [36, 37] for more details.

Remark 2.3. When E ! M is a dg vector bundle, the homological vector fields
on E and M naturally induce a degree .C1/ operator Q on �.E/, making �.E/
a dg module over C1.M/. Since the space �.E_/ of linear functions on E and
the pullback of C1.M/ via � together generate C1.E/, the converse is also true;
see [38].

Example 2.4. Let .M;Q/ be a dg manifold. The space X.M/ of vector fields
on M (i.e. graded derivations of C1.M/), which can be regarded as the space of
sections �.TM/, is naturally a dg module over the dg algebra .C1.M/;Q/ with
the Lie derivative LQWX.M/ ! X.M/ playing the role of the operator Q. As a
consequence, TM is a dg manifold – the homological vector field on TM is called
the complete lift of Q as well as tangent lift in [38] – and TM ! M is a dg vector
bundle.
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The following lemma is standard [38].

Lemma 2.5. Assume E is a dg vector bundle over the dg manifold .M;Q/.

(1) Then the dual bundle E_ is a dg vector bundle over .M;Q/.

(2) Furthermore, for all k > 1, the exterior tensor power vector bundleƒkE is a dg
vector bundle over .M;Q/.

Here and throughout the paper, we use the shorthand notation ƒkE abusively to
actually denote

�
Sk.EŒ�1�/

�
Œk�.

Proof. By assumption, �.E/ is a dg module over .C1.M/;Q/ with degree .C1/
differential QW�.E/ ! �.E/. Define a degree .C1/ operator QW�.E_/ ! �.E_/

by
hQ.�/jli D Q h�jli � .�1/j�j h�jQ.l/i

for all homogeneous � 2 �.E_/ and l 2 �.E/. It is simple to see that this operator
makes �.E_/ into a dg module over .C1.M/;Q/.
Similarly, �.ƒkE/ is a dg module over .C1.M/;Q/ with the degree .C1/

differential QW�.ƒkE/! �.ƒkE/ defined by

Q.l1 ^ � � � ^ lk/ D

kX
iD1

.�1/jl1jC���Cjli�1jl1 ^ � � � ^Q.li / ^ � � � ^ lk (11)

for all homogeneous l1; : : : ; lk 2 �.E/.
The conclusion thus follows.

A dg Lie algebroid is a Lie algebroid object in the category of dg manifolds.
Equivalently, a dg Lie algebroid is a dg vector bundle L ! M endowed with a
Z-graded Lie algebroid structure satisfying the compatibility condition

ŒdL;Q� D 0; (12)

where dL is the Chevalley–Eilenberg differential

dLW�.ƒ
�L_/! �.ƒ�C1L_/ (13)

of the Lie algebroid L!M, Q is the differential (of internal degree .C1/)

QW�.ƒ�L_/! �.ƒ�L_/ (14)

induced by the dg vector bundle structure on L! M (see Lemma 2.5), and Œ�;��
denotes the commutator. For more details, we refer the reader to [36, 37], where dg
Lie algebroids are calledQ-algebroids.
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Example 2.6. As in Example 2.4, let .M;Q/ be a dg manifold. In addition to
being a dg vector bundle, TM ! M is also a Lie algebroid. In this case, the
Chevalley–Eilenberg differential (13) is the de Rham differential

dDRW�
�.M/! ��C1.M/;

while the internal differential (14) is the Lie derivative

LQW�
�.M/! ��.M/:

Since ŒdDR;LQ� D 0, it follows that TM is indeed a dg Lie algebroid.
For an ordinary Z-graded Lie algebroid, one can speak about “polyvector

fields” and “polydifferential operators” on the Lie algebroid. For a dg Lie
algebroid, the dg structure will induce degree (+1) differentials on “polyvector
fields” and “polydifferential operators”. For instance, the “polyvector fields”
and “polydifferential operators” for the tangent dg Lie algebroid TM of a dg
manifold .M;Q/ as in Example 2.6 are, respectively, the polyvector fields and
the polydifferential operators onM, while the induced degree (+1) differentials are
LQ and JQ;�K, respectively. Here J�;�K stands for the Gerstenhaber bracket on
the polydifferential operators ofM.
More precisely, a k-vector field on a dg Lie algebroid L ! M is a section of

the vector bundle ƒkL ! M. Since L ! M is a dg vector bundle, according to
Lemma 2.5, we have a degree .C1/ differential QW�.ƒkC1L/ ! �.ƒkC1L/; see
equation (11). On the other hand, the Lie algebroid structure onL yields a Schouten
bracket

Œ�;��W�.ƒuC1L/˝ �.ƒvC1L/! �.ƒuCvC1L/:

For n 2 Z, we set

totn˚ �.ƒ
�C1L/ D

M
pCqDn

p;q2Z; q>�1

�
�.ƒqC1L/

�p
;

where .�.ƒqC1L//p denotes the subspace of�.ƒqC1L/ consisting of homogeneous
elements of degree p C q.
Proposition 2.7. Let L be a dg Lie algebroid over M.
(1) When endowed with the differential Q, the wedge product, and the Schouten

bracket, the space of ‘polyvector fields’ tot˚ �.ƒ�C1L/ is a differential Gersten-
haber algebra1, whence a dgla.

(2) When endowed with the wedge product and the Schouten bracket, the cohomology
H�

�
tot˚ �.ƒ�C1L/;Q

�
is a Gerstenhaber algebra.

1Here and in the sequel, by a differential Gerstenhaber algebra, we mean a Gerstenhaber algebra
equipped with a degree .C1/ differential, which is a derivation of both the associative multiplication and
the Lie bracket. Such structures were called strongly differential Gerstenhaber algebras in [26, 54].
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Similarly, a k-differential operator for a Lie algebroid L is an element of
sU.L/˝k , the tensor product (as leftC1.M/-modules) of k copies of the suspended
universal enveloping algebra sU.L/. Recall that the universal enveloping algebra
U.L/ of a Z-graded Lie algebroid L!M with anchor %WL! TM is the quotient
of the (reduced) tensor algebra

1M
nD1

�
R˚ �.L/

�˝n (15)

of the k-moduleR˚ �.L/ by the two-sided ideal generated by the elements of the
following four types:

X ˝ Y � .�1/jX jjY jY ˝X � ŒX; Y �; f ˝X � fX;

X ˝ g � .�1/jgjjX jg ˝X � %X .g/; f ˝ g � fg (16)

for all homogeneous X; Y 2 �.L/ and f; g 2 R. As previously, the symbol R

denotes C1.M/.
The universal enveloping algebraU.L/ is a coalgebra over R [55]. Its comulti-

plication
�WU.L/! U.L/˝R U.L/

is anR-linear map of degree 0 characterized by the identities

�.1/ D 1˝ 1I

�.b/ D 1˝ b C b ˝ 1; 8b 2 �.L/I

�.u � v/ D �.u/ ��.v/; 8u; v 2 U.L/;

where the symbol � denotes the multiplication in U.L/. We refer the reader to [55]
for the precise meaning of (the r.h.s. of) the last equation above. More explicitly, we
have

�.b1b2 � � � bn/ D 1˝ .b1b2 � � � bn/

C

n�1X
pD1

X
�2S

n�p
p

˙.b�.1/ � � � b�.p//˝ .b�.pC1/ � � � b�.n//C .b1b2 � � � bn/˝ 1; (17)

where ˙ denotes the Koszul sign of the .p; n � p/-shuffle2 � of the n-tuple of
homogeneous elements b1; : : : ; bn of �.L/.
Now assume thatL!M is a dg Lie algebroid. The differentialQW�.L/!�.L/

and the homological vector field QWC1.M/ ! C1.M/ induce a differential of

2A .p; q/-shuffle is a permutation� 2 SpCq of the set f1; 2; : : : ; pCqg satisfying�.1/ < �.2/ <
� � � < �.p/ and �.p C 1/ < �.p C 2/ < � � � < �.p C q/. The subset of SpCq consisting of all
.p; q/-shuffles is denoted Sqp .
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degree .C1/ on the (reduced) tensor algebra (15) byway of the Leibniz rule. From the
compatibility condition (12), it is simple to see that the two-sided ideal generated by
the elements (16) is stable under this induced differential on the universal enveloping
algebra

QWU.L/! U.L/;

which we denote by the same symbol Q by abuse of notation. This differential is
compatible with both the algebra and coalgebra structures on U.L/ so that U.L/

is a dg Hopf algebroid over the dga R D C1.M/. As a consequence, we obtain a
differential

QW sU.L/˝kC1 ! sU.L/˝kC1

of degree .C1/ for each k>�1. Here sU.L/˝0DsR and sU.L/˝kC1 (with k>0)
denotes the tensor product sU.L/˝R � � � ˝R sU.L/ of .k C 1/-copies of the left
R-module sU.L/.
A Hochschild coboundary differential

dHW sU.L/
˝k
! sU.L/˝kC1 (18)

and Gerstenhaber bracket

J�;�KW sU.L/˝pC1 ˝ sU.L/˝qC1 ! sU.L/˝pCqC1 (19)

can be defined by the following explicit algebraic identities:

dH.u1 ˝ � � � ˝ uk/ D .˙/1˝ u1 ˝ � � � ˝ uk

C

kX
iD1

.˙/u1 ˝ � � � ˝ y�.ui /˝ � � � ˝ uk C .˙/u1 ˝ � � � ˝ uk ˝ 1

and
J�; K D � ?  � .˙/ ? �; (20)

where � ?  2 sU.L/˝pCqC1 is defined by

� ?  D

pX
kD0

.˙/u0 ˝ � � � ˝ uk�1 ˝ .y�
quk/ �  ˝ ukC1 ˝ � � � ˝ up (21)

if � D u0 ˇ u1 ˇ � � � ˇ up for some homogeneous u0; u1; : : : ; up 2 sU.L/ and
 2 sU.L/˝qC1. We refer the reader to [55] for the precise meaning of the product
.y�quk/ �  in sU.L/˝qC1 appearing in the last equation above. Here,

y�W sU.L/! sU.L/˝R sU.L/

is the map induced by the comultiplication � onU.L/.
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Finally, the tensor algebra of sU.L/ overR carries an obvious cup product

sU.L/˝p ˝ sU.L/˝q
^
�! sU.L/˝pCq; (22)

the tensor product overR itself:

� ^  D � ˝  :

For n 2 Z, we set

totn˚ sU.L/
˝�C1

D

M
pCqDn;

p;q2Z; q>�1

�
sU.L/˝qC1

�pCq
;

where .sU.L/˝qC1/pCq denotes the subspace of sU.L/˝qC1 consisting of elements
of degree p C q.
Proposition 2.8. Let L be a dg Lie algebroid over M.
(1) When endowed with the differential QC dH and the Gerstenhaber bracket (19),
tot˚ sU.L/˝�C1 is a dgla.

(2) When endowed with the cup product (i.e. the tensor product ˝R) and the
Gerstenhaber bracket, the Hochschild cohomology

H�
�
tot˚ sU.L/˝�C1;QC dH

�
is a Gerstenhaber algebra.

Proof. This can be proved directly by adapting the ordinary Hochschild cohomology
theory of associative algebras [18]. Since U.L/ is a dg Hopf algebroid over R,
all relevant formulae in [18] concerning the algebraic structures on the Hochschild
cochain complex of an associative algebras hold in our context, with the differential
beingQCdH, and the pre-Lie bracket and the cup product being given, respectively,
by equation (21) and equation (22). We leave the details to the reader.

Remark 2.9. Contrary to Proposition 2.7, here tot˚ sU.L/˝�C1 is not a differential
Gerstenhaber algebra, for the Lie bracket and the associative multiplication are only
compatible up to homotopy. Likewise, the associative multiplication is graded
commutative on the cohomology level, for the cup product on cochains is graded
commutative only up to homotopy. This is reminiscent of the ordinary Hochschild
cohomology theory of associative algebras; see [18].

2.2. Fedosov dg manifolds. In this section, we recall the basic construction of
Fedosov dg manifolds of a Lie pair. For details, see [44].
Let .L;A/ be a Lie pair. We use the symbols B to denote the quotient vector

bundle L=A and r to denote its rank.
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Consider the endomorphism ı of the vector bundle ƒ�L_ ˝ ySB_ defined by

ı.! ˝ �J / D

rX
mD1

�
q>.�m/ ^ !

�
˝ Jm �

J�em ;

for all ! 2 ƒL_ and J 2 Nr . Here f�kgrkD1 denotes an arbitrary local frame for the
vector bundleB_, the symbol q> denotes the vector bundlemorphism q>WB_ ! L_

dual to the quotient morphism qWL ! B , the symbol em denotes the multi-index
.0; : : : ; 0; 1; 0; : : : ; 0/ having its single nonzero entry in the m-th position, and

�J D �1 ˇ � � � ˇ �1›
J1 factors

ˇ �2 ˇ � � � ˇ �2›
J2 factors

ˇ � � � ˇ �r ˇ � � � ˇ �r›
Jr factors

if J D .J1; J2; : : : ; Jr/.
The operator ı is a derivation of degreeC1 of the bundle of graded commutative

algebras ƒ�L_ ˝ ySB_ and satisfies ı2 D 0. The resulting cochain complex

� � � ƒn�1L_ ˝ ySB_ ƒnL_ ˝ ySB_ ƒnC1L_ ˝ ySB_ � � �
ı ı

admits a contraction onto the complex with trivial differential

� � � ƒn�1A_ ƒnA_ ƒnC1A_ � � �
0 0

Indeed, for every choice of splitting i ı pC j ı q D idL of the short exact sequence

0 A L B 0
i

p

q

j

(23)

and its dual
0 B_ L_ A_ 0

q>

j>

i>

p>

;

the chain maps
� Wƒ�L_ ˝ ySB_ ! ƒ�A_

and
� Wƒ�A_ ! ƒ�L_ ˝ ySB_;

respectively, defined by

�.! ˝ �J / D

(
i>.!/ if jJ j D 0;
0 otherwise,

(24)

for all ! 2 ƒ�.L_/, and
�.˛/ D p>.˛/˝ 1;



662 R. Bandiera, M. Stiénon and P. Xu

for all ˛ 2 ƒ�.A_/, satisfy

�� D id and id��� D hı C ıh;

where the homotopy operator

hWƒ�L_ ˝ ySB_ ! ƒ��1L_ ˝ ySB_

is defined by

h.! ˝ �J / D

(
1

vCjJ j

Pr
kD1.�j.@k/!/˝ �

JCek if v > 1;
0 if v D 0

for all ! 2 p>.ƒuA_/˝ q>.ƒvB_/. Here f@kgrkD1 denotes the local frame for B
dual to f�kgrkD1. Notice that h� D 0, �h D 0, and h2 D 0, i.e. the triple of
maps .�; �; h/ make up a contraction of ƒ�L_ ˝ ySB_ onto ƒ�A_. We remark that
the operator h is not a derivation of the algebra �.ƒ�L_ ˝ ySB_/. However, the
contraction .�; �; h/ is compatible with the graded commutative algebra structures
on �.ƒ�L_ ˝ ySB_/ and �.ƒ�A_/ in the following sense:
Lemma 2.10. The triple .�; �; h/ is a semi-full algebra contraction (see Defini-
tion A.2) of �.ƒ�L_˝ ySB_/ onto �.ƒ�A_/. Furthermore, � and � are morphisms
of graded algebras.

Proof. The fact that � and � are algebra morphisms follows directly from the defini-
tions. Moreover, the last four identities in Definition A.2 follow at once from the fact
that � is an algebra morphism (and the identities �h D 0 and �� D id). Denoting
by � the product on �.ƒ�L_ ˝ ySB_/, the remaining identities to prove are (recall
that � is graded commutative)

h�.h˝ h/ D 0; h�.h˝ �/ D 0; h�.� ˝ �/ D 0:

To prove these, we introduce a second operator of degree .�1/

�Wƒ�L_ ˝ ySB_ ! ƒ��1L_ ˝ ySB_

defined by

�.! ˝ �J / D

rX
kD1

.�j.@k/!/˝ �
JCek (25)

for all ! 2 ƒ�.L_/. Notice the similarity with the definition of h. It is easy to check
that � is an algebra derivation and ker.�/ D ker.h/. Using these two facts, we see
that

h2 D 0 ) �h D 0 ) ��.h˝ h/ D �.�˝ idC id˝�/.h˝ h/ D 0
) h�.h˝ h/ D 0:

The remaining identities are proved in a similar way.
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The notions ofL-connection onB extending theBottA-connection and of torsion-
free L-connection on B were defined in [11, 29]. A torsion-free L-connection on B
is necessarily an extension of the Bott A-connection [29, Lemma 5.2]. According
to [44, Lemma 4.5], an L-connection r on B is torsion-free if and only if

ıdrL C d
r
L ı D 0:

Theorem 2.11 ([44, Proposition 4.6]). Let .L;A/be a Lie pair with quotientBDL=A.
We interpret the sections of the bundle L_˝ ySB_˝B as derivations of the algebra
�.ƒ�L_˝ ySB_/ in the natural way. Given a splitting of the short exact sequence (23)
and a torsion-free L-connection r on B , there exists a unique derivation

Xr 2 �.L_ ˝ yS>2B_ ˝ B/;

satisfying .h˝ idB/.Xr/ D 0 and such that the derivation

QW�.ƒ�L_ ˝ ySB_/! �.ƒ�C1L_ ˝ ySB_/

defined by
Q D �ı C drL CX

r (26)

satisfies Q2 D 0.
As a consequence,

�
M D LŒ1� ˚ B;Q D �ı C drL C X

r
�
is a dg manifold,

which we call a Fedosov dg manifold associated with the Lie pair .L;A/. The
Fedosov dg manifold .M;Q/ of Theorem 2.11 was also obtained independently by
Batakidis–Voglaire [3] in the case of matched pairs.
Remark 2.12. The Kapranov dg manifold AŒ1� ˚ L=A introduced in [29] is a dg
submanifold of the Fedosov dg manifold .LŒ1�˚ L=A;Q/.
In order to study the dependence of the above construction on the involved choices,

it is useful to review a different description of the Fedosov dg manifold, which can
also be found in [44]. As shown in [28, 29] (see also [44, §3.4]), the choice of a
splitting j WB ! L of the short exact sequence 0 ! A ! L ! B ! 0 and of an
L-connection r on B determines a Poincaré–Birkhoff–Witt isomorphism of filtered
C1.M/-coalgebras (PBW map in short)

pbwW�.SB/!
U.L/

U.L/�.A/
: (27)

SinceU.L/�.A/ is a left ideal of the algebraU.L/, there is a natural left�.L/-action
on the quotient U.L/

U.L/�.A/
, and an induced flat L-connection r on SB:

r
 
l
.s/ D pbw�1.l � pbw.s// (28)

for all l 2 �.L/ and s 2 �.SB/. Moreover, for every l 2 �.L/, the covariant
derivative r 

l
is a coderivation of the C1.M/-coalgebra �.SB/.
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Dualizing, we obtain an L-connection on yS.B_/, which we continue to denote
by r . Furthermore, for every l 2 �.L/ the covariant derivative r 

l
is a derivation

of the C1.M/-algebra �. yS.B_//. Finally, this latter fact implies that the induced
Chevalley–Eilenberg differential

dr
 

L W�.ƒ
�L_ ˝ yS.B_//! �.ƒ�C1L_ ˝ yS.B_// (29)

is a derivation of the algebra �.ƒ�L_ ˝ yS.B_//, and can thus be regarded as a
homological vector field on the graded manifold LŒ1�˚ B . One of the main results
of [44] is the following theorem.
Theorem 2.13 ([44, Theorem 4.7]). Given a Lie pair .L;A/, together with a splitting
of the short exact sequence 0! A! L! B ! 0 and a torsion-free L-connection
on B , the dg manifold .LŒ1� ˚ B; dr

 

L / constructed above and the dg manifold
.LŒ1� ˚ B;Q/ constructed via the Fedosov iteration in Theorem 2.11 coincide,
i.e. dr L D Q.
The Fedosov dg manifolds obtained from different choices of a splitting and a

connection are isomorphic to one another. The isomorphism can be made explicit
via the associated PBW maps. This shall be needed in Section 3.3, where we will
establish the uniqueness claim (2b) of Theorem A from the introduction.
We consider two different choices j1;r1 and j2;r2 of a splitting B ! L and a

torsion-free L-connection on B as before; the two induced homological vector fields
Q1 andQ2 onLŒ1�˚B; and the two induced Poincaré–Birkhoff–Witt isomorphisms
pbw1 and pbw2. The composition of the latter

 WD pbw�11 ı pbw2W�.SB/! �.SB/

is an automorphism of the C1.M/-coalgebra �.SB/ intertwining the two induced
L-module structures. Likewise, the dual map  _W�. yS.B_// ! �. yS.B_// is
an automorphism of the C1.M/-algebra �. yS.B_// intertwining the two induced
L-module structures. Finally, it follows immediately that

id˝ _W
�
�.ƒ�L_ ˝ yS.B_//;Q1

�
!
�
�.ƒ�L_ ˝ yS.B_//;Q2

�
is an isomorphism of dg manifolds .LŒ1�˚ B;Q2/! .LŒ1�˚ B;Q1/.

2.3. Fedosov dg Lie algebroids. Let .L;A/ be a Lie pair over a base manifoldM .
Given a splitting j WB ! L of the short exact sequence of vector bundles

0! A! L! B ! 0

and a torsion-free L-connection r on B , one constructs a Fedosov dg manifold
.M;Q/, whereM D LŒ1�˚ B , as in Theorem 2.11.
Let R D C1.M/. Let F ! M denote the pullback of the vector bundle

B ! M through the surjective submersionM ! M . It is a graded vector bundle
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whose total space F is the graded manifold with baseM associated with the graded
vector bundle LŒ1�˚B˚B !M . Its space of sections �.F !M/ is canonically
identified with

C1.M/˝R �.B/ Š �.ƒ
�L_ ˝ yS.B_/˝ B/:

It is naturally a vector subbundle of TM !M; the inclusion �.F !M/ ,! X.M/

takes the section .�˝ �J /˝ @k 2 C1.M/˝R �.B/ of the vector bundle F !M

to the derivation �˝ �M 7! � ^ �˝Mk�
MCJ�ek of C1.M/.

Alternatively, denote by TverB ! B the formal vertical tangent bundle of the
vector bundle B !M , which consists of all formal vertical tangent vectors of B . Its
space of sectionsXver.B/ WD �.BITverB/ is naturally isomorphic to �. yS.B_/˝B/.
Indeed, TverB is a double vector bundle [32], which is isomorphic toB˚B . Consider
the projection prWM D LŒ1�˚B ! B . ThenF is isomorphic to the pullback bundle
pr� TverB .
Proposition 2.14. The subbundle F � TM is a dg integrable distribution (or a dg
foliation) of the dg manifold .M;Q/, i.e. F is a dg Lie subalgebroid of the tangent
dg Lie algebroid TM !M.

Proof. It is simple to see that F ! M is a Lie subalgebroid of TM ! M. Hence
it suffices to show that F admits a dg manifold structure such that F ! M is a dg
subbundle of TM !M – the compatibility condition (12) holds automatically since
TM ! M is a dg Lie algebroid (see Example 2.6). According to Remark 2.3, it
suffices to prove that �.MIF / is a dg submodule of �.MITM/ over .C1.M/;Q/.
It is clear that

�.MIF / Š �.ƒ�L_/˝R Xver.B/:

From equation (26), it follows that �.ƒ�L_/ ˝R Xver.B/ is stable under the
Lie derivative LQ. Therefore, �.MIF / is a dg submodule of �.MITM/ over
.C1.M/;Q/.

Any dg Lie algebroid constructed in this manner is called a Fedosov dg Lie
algebroid associated with the Lie pair .L;A/.
Next, we will identify the space of polyvector fields on the Fedosov dg Lie

algebroid F overM.
Set

T k
poly D �.ƒ

kC1B/ (30)

and let Tkpoly denote �.BIƒkC1TverB/, the space of formal vertical .k C 1/-vector
fields on B . It is clear that

Tkpoly Š �.
yS.B_//˝R T k

poly (31)

and

�.MIƒkC1F / Š �.ƒ�L_/˝R Tkpoly Š �.ƒ
�L_ ˝ ySB_/˝R T k

poly:
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Since F is a dg Lie subalgebroid of TM, the subspace

�.MIƒkC1F / Š �.ƒ�L_ ˝ ySB_/˝R T k
poly

of the space T kpoly.M/ of .kC 1/-vector fields onM D LŒ1�˚B is stable underLQ,
we obtain a cochain complex

� � � �.ƒuL_ ˝ ySB_/˝R T k
poly �.ƒuC1L_ ˝ ySB_/˝R T k

poly � � �
LQ

for each k > �1.
Applying Proposition 2.7 to the Fedosov dg Lie algebroid F ! M, we obtain

the following
Proposition 2.15. The total complex�

tot
�
�.ƒ�L_ ˝ ySB_/˝R T �poly

�
;LQ

�
admits a differential Gerstenhaber algebra, whence a dgla structure.
Finally, we consider the space of polydifferential operators on the Fedosov dg Lie

algebroid F overM.
LetDk

poly denote the space of formal vertical .kC 1/-differential operators on the
vector bundle B and set

D�poly D

1M
kD�1

Dk
poly:

There exists a canonical isomorphism

�. yS.B_/˝ S.B/˝ � � � ˝ S.B/�
kC1 factors

/ Dk
poly:

'

Š
(32)

In terms of local dual frames f�igiD1;:::;r and f@j gjD1;:::;r for B_ and B ,
respectively, and the corresponding local frames f�I gI2Nr and f@J gJ2Nr for yS.B_/
and S.B/, respectively, the isomorphism ' sends

�I ˝ @J0 ˝ � � � ˝ @Jk 2 �.
yS.B_/˝ S.B/˝ � � � ˝ S.B/�

kC1 factors

/

to the .k C 1/-differential operator

�. yS.B_//˝kC1 3 �I0 ˝ � � � ˝ �Ik 7�! �I � @J0.�
I0/ � � � @Jk .�

Ik / 2 �. yS.B_//:

The algebra C1.LŒ1�˚ B/ is a module over its subalgebra

�.ƒ�L/ Š �.ƒ�L_ ˝ S0.B_//:
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The subspace of D�poly.LŒ1� ˚ B/ comprised of all �.ƒ�L_/-multilinear polydif-
ferential operators is easily identified to tot

�
�.ƒ�L_/˝R D�poly

�
. It is simple to

see that the universal enveloping algebra U.F / of the dg Lie algebroid F ! M is
naturally identified with �.ƒ�L_/˝R D0

poly, which is a dg Hopf algebroid over

R D C1.M/ Š �.ƒ�L_ ˝ ySB_/:

Moreover,U.F / is a dg Hopf subalgebroid ofD0
poly.LŒ1�˚ B/. Notice that

sU.F /˝kC1 Š �.ƒ�L_/˝R Dk
poly: (33)

Since F is a dg Lie subalgebroid of TM, the subspace

tot˚ sU.F /�C1 Š tot
�
�.ƒ�L_/˝R D�poly

�
ofD�poly.M/ is stable under the Hochschild coboundary operator JQCm;�K. Here
m D 1˝ 1 is the element of sU.F /˝2 arising from the multiplication of C1.M/.
The Lie bracket (19) and the cup product (22) on tot˚ sU.F /�C1 carry over to

a �.ƒ�L_/-linear Lie bracket and cup product on tot
�
�.ƒ�L_/˝R D�poly

�
through

the identification (33).
Applying Proposition 2.8 to the Fedosov dg Lie algebroid F ! M, we obtain

the following
Proposition 2.16. (1) The triple

�
tot
�
�.ƒ�L_/˝RD�poly

�
; JQCm;�K; J�;�K

�
is

a dgla.
(2) The cohomology group H�

�
tot
�
�.ƒ�L_/ ˝R D�poly

�
; JQ C m;�K

�
equipped

with the induced Lie bracket and cup product is a Gerstenhaber algebra.

3. L1 algebra structures

In this section, we endow the spaces of polyvector fields and polydifferential operators
of a Lie pair (see Section 1) with L1 algebra structures, which are canonical up to
L1 isomorphism.

3.1. Dolgushev–Fedosov contraction and L1 algebra structure on the space of
polyvector fields of a Lie pair. The following lemma is straightforward.
Lemma 3.1. The subspace �.ƒ�L_/˝R Tkpoly of the space T kpoly.LŒ1�˚ B/ of
.k C 1/-vector fields on LŒ1�˚ B is stable under Lı .
Also, note that the following diagram commutes:

�.ƒiL_/˝R Tkpoly �.ƒiC1L_/˝R Tkpoly

�.ƒiL_ ˝ yS.B_//˝R T k
poly �.ƒiC1L_ ˝ yS.B_//˝R T k

poly:

Lı

Š Š

ı˝id
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Since the vector field ı onLŒ1�˚B is homological, we obtain the cochain complex

� � � �.ƒiL_/˝R Tkpoly �.ƒiC1L_/˝R Tkpoly � � �
L�ı

which admits the descending filtration

Fm D

rk.L/M
iD0

�.ƒiL_ ˝ yS>m�iB_/˝R T k
poly:

We shall denote by �\, �\ and h\ the maps defined by the following commutative
diagrams (where � , � , and h are the maps introduced in Section 2.2)

�.ƒiL_/˝R Tkpoly

�.ƒiA_/˝R T k
poly;

�.ƒiL_ ˝ ySB_/˝R T k
poly

�\

Š

�˝id

(34)

�.ƒiL_/˝R Tkpoly

�.ƒiA_/˝R T k
poly

�.ƒiL_ ˝ ySB_/˝R T k
poly;

Š

�\

�˝id

�.ƒiL_/˝R Tkpoly �.ƒi�1L_/˝R Tkpoly

�.ƒiL_ ˝ yS.B_//˝R T k
poly �.ƒi�1L_ ˝ yS.B_//˝R T k

poly:

h\

Š Š

h˝id

(35)



Polyvector fields and polydifferential operators associated with Lie pairs 669

Adapting the proof of [44, Proposition 4.3], we obtain:
Proposition 3.2. The complex

�
�.ƒ�L_/˝R Tkpoly;L�ı

�
contracts onto�

�.ƒ�A_/˝R T k
poly; 0

�
:

More precisely, we have the filtered contraction

� � � �.ƒn�1L_/˝R Tkpoly �.ƒnL_/˝R Tkpoly �.ƒnC1L_/˝R Tkpoly � � �

� � � �.ƒn�1A_/˝R T kpoly �.ƒnA_/˝R T kpoly �.ƒnC1A_/˝R T kpoly � � �

� � � �.ƒn�1L_/˝R Tkpoly �.ƒnL_/˝R Tkpoly �.ƒnC1L_/˝R Tkpoly � � � ;

�\

L�ı

�\

L�ı

h\

�\

h\�\

0

�\

0

�\

L�ı L�ı

where �\, �\ and h\ are defined by the above commutative diagrams (34)–(35).
Lemma 3.3. The contraction .�\; �\; h\/ in Proposition 3.2 is a semi-full algebra
contraction – on both sides, the associative multiplication is the wedge product.
Moreover, the maps �\ and �\ preserve the wedge products.

Proof. This follows immediately from the definitions and the corresponding
statements for .�; �; h/; see Lemma 2.10.

Consider the homological vector fieldQ onLŒ1�˚B introduced in Theorem 2.11:

Q D �ı C � with � D drL CX
r and Xr 2 �.L_ ˝ yS>2.B_/˝ B/:

Proposition 3.4. There exists a contraction�
tot
�
�.ƒ�A_/˝R T �poly

�
; dBottA

� �
tot
�
�.ƒ�L_/˝R T�poly

�
;LQ

�M�\

�\

Mh\ :

(36)
More precisely, for every k > �1, we have the (filtered) contraction

� � � �.ƒn�1L_/˝R Tkpoly �.ƒnL_/˝R Tkpoly �.ƒnC1L_/˝R Tkpoly � � �

� � � �.ƒn�1A_/˝R T kpoly �.ƒnA_/˝R T kpoly �.ƒnC1A_/˝R T kpoly � � �

� � � �.ƒn�1L_/˝R Tkpoly �.ƒnL_/˝R Tkpoly �.ƒnC1L_/˝R Tkpoly � � �

�\

LQ

�\

LQ

Mh\

�\

Mh\
M�\

dBottA

M�\

dBottA

M�\

LQ LQ

where
Mh\ D

1X
lD0

.h\L�/
lh\ and M�\ D

1X
lD0

.h\L�/
l�\: (37)

Moreover, the cochain maps M�\ and �\ intertwine the wedge products on their domain
and codomain.
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As an immediate consequence of Proposition 3.4, by considering the bigradings
on both sides of (36), we obtain the following:
Corollary 3.5. For every k > �1, we have a contraction

�
�.ƒ�A_/˝R T k

poly; d
Bott
A

� �
�.ƒ�L_/˝R Tkpoly;LQ

�M�\

�\

Mh\ :

The case k D �1 was established in [44, Proposition 5.4].
The proof of Proposition 3.4 requires the following technical results.

Lemma 3.6. Let pr0 denote the canonical projection yS.B_/˝B� S0.B_/˝B .
For all a 2 �.A/ and j 2 f1; : : : ; rg, we have

pr0
�
Œr a ; @j �

�
D r

Bott
a .@j /:

Recall that f@j gjD1;:::;r is a local frame for the vector subbundle B Š S0.B_/˝B
of yS.B_/˝B . Here we think of @j as a local section of yS.B_/˝B . The sections of
the vector bundle yS.B_/˝B may be interpreted as fiberwise formal vertical vector
fields on B – they act as derivations of the algebra �. yS.B_// of fiberwise formal
functions on B in a natural fashion.

Proof. We have seen that, for all a 2 �.A/, the operator r a is a derivation of
�. yS.B_//, which stabilizes the filtration �. yS>n.B_//. Therefore, there exist local
sections �M

k
of A_ such that

r
 
a�k D

X
M2Nr

0

jM j>1

�a�
M
k � �

M :

Here, f�kgrkD1 denotes the local frame for B
_ dual to f@j grjD1. It follows that r

 
a

may be regarded as a section of yS>1.B_/˝ B:

r
 
a D

rX
kD1

� X
M2Nr

0

jM j>1

�a�
M
k � �

M

�
@k :

On the one hand, it follows from

Œr a ; @j � D r
 
a ı @j � @j ı r

 
a

D

rX
kD1

X
jM j>1

�a�
M
k � �

M@k ı @j �

rX
kD1

X
jM j>1

�a�
M
k � @j ı .�

M@k/

D �

rX
kD1

X
jM j>1

�a�
M
k �Mj�

M�ej � @k
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that

pr0
�
Œr a ; @j �

�
D �

rX
kD1

�a�
ej
k
� @k :

On the other hand, it follows from

0 D %a
˝
�k
ˇ̌
@j
˛„ ƒ‚ …

ık;j

D
˝
r
 
a�k

ˇ̌
@j
˛
C
˝
�k
ˇ̌
r
 
a @j

˛
and the fact that r a stabilizes the subspace �.S1.B// of �.S.B// that

r
 
a

�
@j
�
D

X
k

˝
�k
ˇ̌
r
 
a @j

˛
@k

D �

X
k

˝
r
 
a�k

ˇ̌
@j
˛
@k

D �

X
k

X
jM j>1

�a�
M
k �

˝
�M

ˇ̌
@j
˛
� @k

D �

X
k

�a�
ej
k
� @k :

Finally, for all a 2 �.A/ and b 2 �.B/, we have r a .b/ D rBotta .b/ as

pbw
�
r
 
a b � r

Bott
a b

�
D a � pbw.b/ � pbw

�
qŒa; j.b/�

�
D a � j.b/ � j ı q

�
Œa; j.b/�

�
D j.b/ � aC p

�
Œa; j.b/�

�
š

2�.A/

D 0

in U.L/
U.L/�.A/

. The proof is complete.

Lemma 3.7. �\ ıL� ı �\ D d
Bott
A .

Proof. Let .lk/k2f1;:::;rkLg denote any local frame ofL and let .�k/k2f1;:::;rkLg denote
the dual local frame ofL_. Likewise, let .ak/k2f1;:::;rkAg denote any local frame ofA
and let .˛k/k2f1;:::;rkAg denote the dual local frame of A_. For all ! 2 �.ƒ�A_/,
n 2 N, and j0; : : : ; jn 2 f1; : : : ; rg, we have

�\

�
Œ�; �\

�
! ˝ @j0 ^ � � � ^ @jn

�
�
�

D �\

�
Œ�; p>! ˝ 1˝ @j0 ^ � � � ^ @jn �

�
D �\

�
dL.p

>!/˝ 1˝ @j0 ^ � � � ^ @jn

C

X
k

�k ^ p
>! ˝ Œrlk � �lk„; 1˝ @j0 ^ � � � ^ @jn �

�
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D �
�
dL.p

>!/˝ 1
�
˝ @j0 ^ � � � ^ @jn

C

X
k

�\

�
p>˛k ^ p

>! ˝ Œr ak ; 1˝ @j0 ^ � � � ^ @jn �
�

D dA! ˝ @j0 ^ � � � ^ @jn

C

X
k

�\

�
p>.˛k ^ !/˝

� nX
tD0

1˝ @j0 ^ � � � ^ Œr
 
ak
; @jt � ^ � � � ^ @jn

��
D dA! ˝ @j0 ^ � � � ^ @jn

C

X
k

nX
tD0

˛k ^ ! ˝ @j0 ^ � � � ^ pr0Œr
 
ak
; @jt � ^ � � � ^ @jn :

It follows from Lemma 3.6 that

pr0Œr ak ; @jt � D r
 
ak
.@jt / D r

Bott
ak
.@jt /:

Hence, we conclude that �\ ıL� ı �\ D d
Bott
A .

Proof of Proposition 3.4. We proceed by homological perturbation; see Lemma A.1
and also [44, Lemma A.1] and [21, §1]. Starting from the filtered contraction of
Proposition 3.2, it suffices to perturb the coboundary operatorL�ı by the operatorL�.
One checks that �\L�h\ D 0. It follows that

M�\ WD

1X
lD0

�\.L�h\/
l
D �\

and, making use of Lemma 3.7,

# WD

1X
lD0

�\.L�h\/
lL��\ D �\L��\ D d

Bott
A :

The result follows immediately since �ı C � D Q.
Finally, the claim that �\ is compatible with the wedge products is contained

in Lemma 3.3, while the same statement for M�\ follows from Lemmas 3.3, A.3
and A.4.

The next proposition gives an alternative characterization of the map M�\ as the
solution of an initial value problem.
Proposition 3.8. Given x 2 �.ƒ�A_/ ˝R T ˘poly and y 2 �.ƒ�L_/ ˝R T˘poly, we
have

M�\.x/ D y if and only if

8̂<̂
:
h\.y/ D 0;

h\LQ.y/ D 0;

�\.y/ D x;

if and only if

8̂<̂
:

L�.y/ D 0;

LŒ�;Q�.y/ D 0;

�\.y/ D x:

The derivation � was defined in equation (25).
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Proof. Assume M�\.x/ D y. From h\�\ D 0 and h\h\ D 0, we get

h\ M�\ D h\

1X
lD0

.h\L�/
l�\ D h\�\ C h\.h\L�/

1X
lD0

.h\L�/
l�\ D 0:

It follows that

h\.y/ D h\ M�\.x/ D 0 and �\.y/ D �\ M�\.x/ D x:

Furthermore, since M�\ is a chain map, we have

h\LQ.y/ D h\LQ M�\.x/ D h\ M�\d
Bott
A .x/ D 0:

Conversely, assuming h\.y/ D 0; h\LQ.y/ D 0; and �\.y/ D x, it follows from

M�\�\ � id D Mh\LQ CLQ
Mh\

that

M�\.x/ � y D M�\�\.y/ � y D Mh\LQ.y/CLQ
Mh\.y/

D

1X
lD0

.h\L�/
lh\LQ.y/CLQ

1X
lD0

.h\L�/
lh\.y/ D 0

and we can conclude that M�\.x/ D y.
Finally, it is not difficult to show that ker.h\/ D ker.L�/. It follows that(

h\.y/ D 0;

h\LQ.y/ D 0
if and only if

(
L�.y/ D 0;

L�LQ.y/ D 0;
if and only if

(
L�.y/ D 0;

LŒ�;Q�.y/ D 0:

It follows from the homotopy transfer theorem forL1 algebras [1,5,6,14–17,22]
applied to the contraction in Proposition 3.4 that the dgla structure carried by

tot
�
�.ƒ�L_/˝R T�poly

�
induces an L1 algebra structure on

tot
�
�.ƒ�A_/˝R T �poly

�
:

Moreover, since the retraction �\ preserves the wedge products according to
Proposition 3.4, we immediately obtain the following:
Proposition 3.9. Given a Lie pair .L;A/, each choice of a splitting j WB ! L of the
short exact sequence of vector bundles 0! A! L! B ! 0 and of a torsion-free
L-connection r on B determines
(1) an L1 algebra structure on tot

�
�.ƒ�A_/˝R T �poly

�
with the operator dBottA as

unary bracket;
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(2) and a Gerstenhaber algebra structure on H�CE.A; T
�
poly/, the cohomology of the

total complex �
tot
�
�.ƒ�A_/˝R T �poly

�
; dBottA

�
;

where the Lie bracket is induced by the binary bracket of theL1 algebra structure
on tot

�
�.ƒ�A_/˝R T �poly

�
and the multiplication by the wedge product (9).

Remark 3.10. One can prove that theL1 algebra structure on tot
�
�.ƒ�A_/˝RT �poly

�
is compatible with the wedge product in the sense that allL1multibrackets are multi-
derivations with respect to the wedge product. In other words, in the terminology
of [2], tot

�
�.ƒ�A_/˝R T �poly

�
is a .C1/-shifted derived Poisson algebra.3

3.2. Dolgushev–Fedosov contraction and L1 algebra structure on the space of
polydifferential operators of a Lie pair. Denote the space of polydifferential
operators on LŒ1� ˚ B by D�poly.LŒ1� ˚ B/. The Hochschild cohomology of the
Fedosov dg manifold .LŒ1�˚ B;Q/ is the cohomology of the cochain complex�

D�poly.LŒ1�˚ B/; JQCm;�K
�
:

The algebra of functions C1.LŒ1�˚ B/ is a module over its subalgebra

�.ƒ�L_/ Š �.ƒ�L_ ˝ S0.B_//:

The subspace of D�poly.LŒ1� ˚ B/ comprised of all �.ƒ�L_/-multilinear poly-
differential operators is easily identified to

tot
�
�.ƒ�L_/˝R D�poly

�
;

the space of polydifferential operators on the Fedosov dg Lie algebroid F . Since F

is a dg Lie subalgebroid of the tangent bundle TM !M of the Fedosov dg manifold
.LŒ1�˚B;Q/, it follows that the subspace tot

�
�.ƒ�L_/˝RD

�
poly
�
ofD�poly.LŒ1�˚B/

is stable under the Hochschild coboundary operator JQCm;�K of the Fedosov dg
manifold .LŒ1�˚ B;Q/.
We also have the following

Lemma 3.11. The subspace tot
�
�.ƒ�L_/˝R D�poly

�
of D�poly.LŒ1�˚ B/ is stable

under Jı;�K.
Lemma 3.12. The diagram

�.ƒpL_/˝R Dv
poly �.ƒpC1L_/˝R Dv

poly

�.ƒpL_/˝R Dv�1
poly �.ƒpC1L_/˝R Dv�1

poly

Jı;�K

.�1/pJm;�K

Jı;�K

.�1/pC1Jm;�K

commutes.
3In the context of Z2-grading, .C1/-shifted derived Poisson algebras are also called homotopy

Schouten algebras by Khudaverdian–Voronov [24]. Note that, 0-shifted derived Poisson algebras were
studied by Oh–Park [41] and Cattaneo–Felder [8], who called them P1 algebras.
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Proof. It suffices to verify that the diagrams

�.ƒpL_/˝R Dvpoly �.ƒpC1L_/˝R Dvpoly

�.ƒpL_ ˝ yS.B_//˝R �..SB/
˝vC1/ �.ƒpC1L_ ˝ yS.B_//˝R �..SB/

˝vC1/

Jı;�K

ı˝id

id˝' Š id˝' Š

and

�.ƒpL_/˝R Dv�1poly �.ƒpL_/˝R Dvpoly

�.ƒpL_ ˝ yS.B_//˝R �..SB/
˝v/ �.ƒpL_ ˝ yS.B_//˝R �..SB/

˝vC1/

Jm;�K

id˝.�1/v�1dH

id˝' Š id˝' Š

commute.

Proposition 3.13. The diagram

:::
:::

:::

�.ƒ0L_/˝R D1poly �.ƒ1L_/˝R D1poly �.ƒ2L_/˝R D1poly � � �

�.ƒ0L_/˝R D0poly �.ƒ1L_/˝R D0poly �.ƒ2L_/˝R D0poly � � �

�.ƒ0L_/˝R D�1poly �.ƒ1L_/˝R D�1poly �.ƒ2L_/˝R D�1poly � � �

Jm;�K

J�ı;�K

�Jm;�K

J�ı;�K

Jm;�K

J�ı;�K

Jm;�K

J�ı;�K

�Jm;�K

J�ı;�K

Jm;�K

J�ı;�K

Jm;�K

J�ı;�K

�Jm;�K

J�ı;�K

Jm;�K

J�ı;�K

is a double complex.

Its total complex

� � � ! totn
�
�.ƒ�L_/˝R D�poly

� J�ıCm;�K
�������! totnC1

�
�.ƒ�L_/˝R D�poly

�
! � � �

admits the descending filtration F0 � F1 � F2 � F3 � � � � defined by

Fm D

rk.L/M
kD0

�.ƒkL_/˝R '
� 1M
qD�1

�. yS>m�k.B_/˝ S.B/˝ � � � ˝ S.B/�
qC1 factors

/
�
:

Here, ' is as in (32).
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We shall denote by �\, �\ and h\ the maps defined by the following commutative
diagrams (where � , � , and h are the maps introduced in Section 2.2 and ' is the
identification (32)):

�.ƒuL_/˝R Dvpoly

�.ƒuA_/˝R Dv
poly

�.ƒuL_ ˝ yS.B_//˝R �..SB/
˝vC1/

�\

id˝' Š

�˝pbw˝vC1

(38)

�.ƒuL_/˝R Dvpoly

�.ƒuA_/˝R Dv
poly

�.ƒuL_ ˝ yS.B_//˝R �..SB/
˝vC1/

�\

�˝.pbw�1/˝vC1

id˝' Š (39)

�.ƒuL_/˝R Dvpoly �.ƒu�1L_/˝R Dvpoly

�.ƒuL_ ˝ yS.B_//˝R �..SB/
˝vC1/ �.ƒu�1L_ ˝ yS.B_//˝R �..SB/

˝vC1/

h\

h˝id

id˝' Š id˝' Š

(40)
The following proposition can be easily verified.

Proposition 3.14. The cochain complex�
tot
�
�.ƒ�L_/˝R D�poly

�
; J�ı Cm;�K

�
contracts onto �

tot
�
�.ƒ�A_/˝R D�poly

�
; id˝dH

�
:

More precisely, we have a filtered contraction

� � � totn
�
�.ƒ�L_/˝R D�poly

�
totnC1

�
�.ƒ�L_/˝R D�poly

�
� � �

� � � totn
�
�.ƒ�A_/˝R D�poly

�
totnC1

�
�.ƒ�A_/˝R D�poly

�
� � �

� � � totn
�
�.ƒ�L_/˝R D�poly

�
totnC1

�
�.ƒ�L_/˝R D�poly

�
� � �

�\

J�ıCm;�K

�\

h\�\

id˝dH

�\

J�ıCm;�K

where �\, �\ and h\ are the maps defined by the commutative diagrams (38)–(40).
Lemma 3.15. The contraction .�\; �\; h\/ in Proposition 3.14 is a semi-full algebra
contraction (where the associative product on both sides is the cup product).
Moreover, the maps �\ and �\ respect the cup products.
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Proof. This follows easily from the definitions and the corresponding statements for
.�; �; h/; see Lemma 2.10.

Remark 3.16. For future reference, we point out that the same maps .�\; �\; h\/ also
define a filtered contraction of�

tot
�
�.ƒ�L_/˝R D�poly

�
; J�ı;�K

�
onto

�
tot
�
�.ƒ�A_/˝R D�poly

�
; 0/:

As for Proposition 3.14, we leave the verification of this claim as an easy exercise for
the reader.
Lemma 3.17. The diagram

�.ƒpL_/˝R DvC1
poly �.ƒpC1L_/˝R DvC1

poly

�.ƒpL_/˝R Dv
poly �.ƒpC1L_/˝R Dv

poly

J�;�K

.�1/pJm;�K

J�;�K

.�1/pC1Jm;�K

commutes.

Sketch of proof. We have J�;mK D 0 because, for every l 2 �.L/, the operator �l�
is a derivation for the multiplication m on C1.LŒ1�˚ B/.

It follows from Proposition 3.13 and Lemma 3.17 that

:::
:::

:::

�.ƒ0L_/˝R D1poly �.ƒ1L_/˝R D1poly �.ƒ2L_/˝R D1poly � � �

�.ƒ0L_/˝R D0poly �.ƒ1L_/˝R D0poly �.ƒ2L_/˝R D0poly � � �

�.ƒ0L_/˝R D�1poly �.ƒ1L_/˝R D�1poly �.ƒ2L_/˝R D�1poly � � �

Jm;�K

J�ıC�;�K

�Jm;�K

J�ıC�;�K

Jm;�K

J�ıC�;�K

Jm;�K

J�ıC�;�K

�Jm;�K

J�ıC�;�K

Jm;�K

J�ıC�;�K

Jm;�K

J�ıC�;�K

�Jm;�K

J�ıC�;�K

Jm;�K

J�ıC�;�K

is a double complex.
Indeed, the operator J�;�K is a perturbation of the filtered complex

� � � ! totn
�
�.ƒ�L_/˝R D�poly

� J�ıCm;�K
�������! totnC1

�
�.ƒ�L_/˝R D�poly

�
! � � �

Proposition 3.18. There exists a contraction

�
tot
�
�.ƒ�A_/˝R D�poly

�
; dU
A
C dH

� �
tot
�
�.ƒ�L_/˝R D�poly

�
; JQCm;�K

�M�\

�\

Mh\

(41)
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recall that dH WD id˝dH. More precisely, we have the (filtered) contraction

� � � totn
�
�.ƒ�L_/˝R D�poly

�
totnC1

�
�.ƒ�L_/˝R D�poly

�
� � �

� � � totn
�
�.ƒ�A_/˝R D�poly

�
totnC1

�
�.ƒ�A_/˝R D�poly

�
� � �

� � � totn
�
�.ƒ�L_/˝R D�poly

�
totnC1

�
�.ƒ�L_/˝R D�poly

�
� � �

�\

JQCm;�K

�\

Mh\
M�\

dU
A CdH

M�\

JQCm;�K

where M�\ D
P1
lD0

�
h\ ı J�;�K

�l
ı �\ and Mh\ D

P1
lD0

�
h\ ı J�;�K

�l
ı h\.

Moreover, the cochain maps M�\ and �\ respect the cup products on both sides.

As an immediate consequence of Proposition 3.18, by considering the bigradings
on both sides of (41), we obtain the following

Corollary 3.19. For every k > �1, we have a contraction

�
�.ƒ�A_/˝R Dk

poly; d
U
A

� �
�.ƒ�L_/˝R Dk

poly; JQ;�K
�M�\

�\

Mh\ : (42)

The case k D �1 was established in [44, Proposition 5.4].
The proof of Proposition 3.18 requires the following technical results.

Lemma 3.20. Let pr0 denote the canonical projection

yS.B_/˝ S.B/� S0.B_/˝ S.B/:

For all a 2 �.A/ and J 2 Nr
0 , we have

pr0
�
Jr a ; @

J K
�
D r

 
a .@

J /:

Proof. We have seen that, for all a 2 �.A/, the operator r a is a derivation of
�. yS.B_//, which stabilizes the filtration �. yS>n.B_//. Therefore, there exist local
sections �M

k
of L_ such that

r
 
a�k D

X
M2Nr

0

jM j>1

�a�
M
k � �

M :

It follows that r a may be regarded as a section of yS>1.B_/˝ B:

r
 
a D

rX
kD1

� X
M2Nr

0

jM j>1

�a�
M
k � �

M

�
@k :
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On one hand, it follows from

Jr a ; @
J K D r a ? @

J
� @J ? r a

D

rX
kD1

X
jM j>1

�a�
M
k � �

M@JCek �

rX
kD1

X
jM j>1

�a�
M
k �

�
@J ? �M@k

�
;

that

pr0
�
Jr a ; @

J K
�
D �

rX
kD1

X
jM j>1

�a�
M
k

J Š

MŠ.J �M/Š
@M .�M / � @J�MCek

D �

rX
kD1

X
jM j>1

�a�
M
k

J Š

.J �M/Š
� @J�MCek :

On the other hand, it follows from

0 D %a
˝
�K
ˇ̌
@J
˛̃

KŠ�ıK;J

D
˝
r
 
a�

K
ˇ̌
@J
˛
C
˝
�K
ˇ̌
r
 
a @
J
˛

that

r
 
a

�
@J
�
D

X
K

1

KŠ

˝
�K
ˇ̌
r
 
a @
J
˛
@K

D �

X
K

1

KŠ

˝
r
 
a�

K
ˇ̌
@J
˛
@K

D �

X
K

1

KŠ

DX
k

Kk�
K�ekr

 
a�k

ˇ̌̌
@J
E
@K

D �

X
K

1

KŠ

X
k

Kk
X
jM j>1

�a�
M
k

˝
�K�ekCM

ˇ̌
@J›̨

J Š�ıK�ekCM;J

@K

D �

X
k

X
jM j>1

J Š

.J �M C ek/Š
.Jk �Mk C 1/�a�

M
k @

J�MCek

D �

X
k

X
jM j>1

J Š

.J �M/Š
�a�

M
k @

J�MCek :

The proof is complete.

Lemma 3.21. �\ ı J�;�K ı �\ D dU
A .

Proof. Let .lk/k2f1;:::;rkLg denote any local frame forL and let .�k/k2f1;:::;rkLg denote
the dual local frame forL_. Likewise let .ak/k2f1;:::;rkAg denote any local frame forA
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and let .˛k/k2f1;:::;rkAg denote the dual local frame for A_. For all ! 2 �.ƒ�A_/,
n 2 N, and J0; : : : ; Jn 2 Nr

0 , we have

�\

�
J�; �\

�
! ˝ pbw.@J0/˝ � � � ˝ pbw.@Jn/

�
K
�

D �\

�
J�; p>! ˝ '.1˝ @J0 ˝ � � � ˝ @Jn/K

�
D �\

�
dL.p

>!/˝ '.1˝ @J0 ˝ � � � ˝ @Jn/

C

X
k

�k ^ p
>! ˝ Jrlk � �lk„; '.1˝ @

J0 ˝ � � � ˝ @Jn/K
�

D �
�
dL.p

>!/˝ 1
�
˝ pbw.@J0/˝ � � � ˝ pbw.@Jn/

C

X
k

�\

�
p>˛k ^ p

>! ˝ Jr ak ; '.1˝ @
J0 ˝ � � � ˝ @Jn/K

�
D dA! ˝ pbw.@J0/˝ � � � ˝ pbw.@Jn/

C

X
k

�\

�
p>.˛k ^ !/˝ '

� nX
tD0

1˝ @J0 ˝ � � � ˝ Jr ak ; @
Jt K˝ � � � ˝ @Jn

��
D dA! ˝ pbw.@J0/˝ � � � ˝ pbw.@Jn/

C

X
k

nX
tD0

˛k ^ ! ˝ pbw.@J0/˝ � � � ˝ pbw
�
pr0Jr ak ; @

Jt K
�
˝ � � � ˝ pbw.@Jn/:

It follows from Lemma 3.20 that

pbw
�
pr0Jr ak ; @

Jt K
�
D pbw

�
r
 
ak
.@Jt /

�
D ak � pbw.@Jt /:

Hence, we conclude that �\ ı J�;�K ı �\ D dU
A .

Proof of Proposition 3.18. Weproceed by homological perturbation; see LemmaA.1
and also [44, Lemma A.1]. Starting from the filtered contraction of Proposition 3.14,
it suffices to perturb the coboundary operator J�ı C m;�K by the operator J�;�K.
One checks that �\ ı J�;�K ı h\ D 0. Therefore, we obtain

M�\ WD

1X
lD0

�\ ı
�
J�;�K ı h\

�l
D �\

and, making use of Lemma 3.21,

# WD

1X
lD0

�\ ı
�
J�;�K ı h\

�l
ı J�;�K ı �\ D �\ ı J�;�K ı �\ D dU

A :

The result follows immediately since �ı C � D Q.
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As in the proof of Proposition 3.4, applying Lemmas 3.15 and A.3, we conclude
that . M�\; �\; Mh\/ is a semi-full algebra contraction. Since the differential

JQCm;�K D JQ;�KC dH

is a derivationwith respect to the cup product4, according to LemmaA.4, we conclude
that M�\ is an algebra morphism. The fact that �\ is an algebra morphism is already
contained in Lemma 3.15.

The next proposition gives an alternative characterization of the map M�\ as the
solution of an initial value problem.
Proposition 3.22. Given x 2 �.ƒ�A_/ ˝R D˘poly and y 2 �.ƒ�L_/ ˝R D˘poly,
we have

M�\.x/ D y if and only if

8̂<̂
:
h\.y/ D 0;

h\
�
JQ;yK

�
D 0;

�\.y/ D x;

if and only if

8̂<̂
:

J�; yK D 0;
JŒ�;Q�; yK D 0;
�\.y/ D x:

The derivation � was defined in equation (25). The proof of Proposition 3.22 is
similar to the proof of Proposition 3.8 and is therefore omitted.
Proposition 3.23. The restriction of the map M�\ of Corollary 3.19 to differential
(rather than polydifferential) operators is a morphism of coalgebras

M�\W�.ƒ
�A_/˝R D0

poly ! �.ƒ�L_/˝R D0
poly:

Proof. Since, according to Proposition (3.18), M�\ respects the cup products, we have
the commutative diagramN2

�.ƒ�A_/

�
�.ƒ�A_/˝R D0

poly
� N2

�.ƒ�L_/

�
�.ƒ�L_/˝R D0

poly
�

�.ƒ�A_/˝R D1
poly �.ƒ�L_/˝R D1

poly

M�\˝M�\

^ Š ^Š

M�\

in which, owing to the very definition of the cup products, the two vertical arrows are
isomorphisms.
Denoting by M� the composition of the comultiplication and the cup product, we

are thus led to show that the following diagram commutes:

�.ƒ�A_/˝R D0
poly �.ƒ�L_/˝R D0

poly

�.ƒ�A_/˝R D1
poly �.ƒ�L_/˝R D1

poly:

M�\

M� M�

M�\

4Although the Gerstenhaber bracket J�;�K is not a biderivation with respect to the cup product, but
only a biderivation up to homotopy, it is known that Jm;�K D dH is indeed a derivation with respect to
the cup product; see [18, equation (20)].
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By virtue of Proposition 3.22, it suffices to show that the three identities

J�; M� ı M�\.x/K D 0; JŒ�;Q�; M� ı M�\.x/K D 0; and �\
�
M� ı M�\.x/

�
D M�.x/

hold for every x 2 �.ƒ�A_/˝R D0
poly.

Consider the dg Hopf algebroidU.F / arising from the Fedosov dg Lie algebroid
F ! M. Given any b 2 �.F / D �.ƒ�L_ ˝ yS.B_/ ˝ B/ and u 2 U.F / D

�.ƒ�L_ ˝ yS.B_/˝ SB/, we have

Jb; M�.u/K D b ?
�X
.u/

u.1/ ^ u.2/

�
�

�X
.u/

u.1/ ^ u.2/

�
? b

D

X
.u/

�
.b ı u.1// ^ u.2/ C u.1/ ^ .b ı u.2//

�
�

X
.u/

�
.u.1/ ı b/ ^ u.2/ C u.1/ ^ .u.2/ ı b/

�
D M�.b ı u/ � M�.u ı b/ D M�

�
Jb; uK

�
:

This fact together with Proposition 3.22 immediately implies that

J�; M�
�
M�\.x/

�
K D M�

�
J�; M�\.x/K

�
D 0

and JŒ�;Q�; M�
�
M�\.x/

�
K D M�

�
JŒ�;Q�; M�\.x/K

�
D 0:

Furthermore, since �\ is a morphism of coalgebras and �\ ı M�\ D id, we have

�\ ı M� ı M�\.x/ D M� ı �\ ı M�\.x/ D M�.x/:

The proof is complete.

Finally, we have the following:

Proposition 3.24. Given a Lie pair .L;A/, each choice of a splitting j WB ! L

of the short exact sequence of vector bundles 0 ! A ! L ! B ! 0 and of a
torsion-free L-connection r on B determines

(1) anL1 algebra structure on tot
�
�.ƒ�A_/˝RD�poly

�
with the operator dU

A CdH
as unary bracket;

(2) and a Gerstenhaber algebra structure on H�CE.A;D
�
poly/, the cohomology of the

total complex �
tot
�
�.ƒ�A_/˝R D�poly

�
; dU
A C dH

�
;

where the Lie bracket is induced by the binary bracket of theL1 algebra structure
on tot

�
�.ƒ�A_/˝R D�poly

�
and the multiplication by the cup product (8).
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Proof. Applying the homotopy transfer theorem forL1 algebras [5,17,22] to theL1
algebra obtained in Proposition 2.16 and the contraction obtained in Proposition 3.18,
we get an inducedL1 algebra structure on tot

�
�.ƒ�A_/˝RD�poly

�
, where the unary

bracket is the differential dU
A C dH. This proves (1).

For (2), we notice that at the level of cohomology M�\ and �\ induce isomorphisms
of graded spaces which are compatible with both the induced graded Lie
algebra structures (by construction, since these are related via homotopy transfer
along . M�\; �\; Mh\/) and the induced graded associative algebra structures (by
Proposition 3.18). It follows at once that the induced graded Lie algebra and graded
associative algebra structures makeH�CE.A;D

�
poly/ into a Gerstenhaber algebra, since

the same is true for

H�
�
tot
�
�.ƒ�L_/˝R D�poly

�
; JQCm;�K

�
;

according to Proposition 2.16. In particular, this shows that the cup product on
H�CE.A;D

�
poly/ is graded commutative, cf. the discussion in Remark 1.4.

3.3. Uniqueness of the L1 structure. Apriori, theGerstenhaber algebra structures
on H�CE.A; T

�
poly/ and H�CE.A;D

�
poly/ in Propositions 3.9 and 3.24 are not canonical,

as their constructions depend on a choice of a splitting j WB ! L of the short exact
sequence

0! A! L! B ! 0

and a torsion-free L-connection r on B . The aim of this section is to complete the
proof of Theorem A from the introduction and show that both Gerstenhaber algebras
are indeed canonical.
As observed at the end of Section 2.2, the Fedosov dg manifolds arising from

different choices of a splitting and a connection are isomorphic with each other (and
we made the isomorphism explicit in terms of the associated PBW maps). There
are induced isomorphisms between the Fedosov dg Lie algebroids, hence between
the corresponding algebras of polyvector fields and polydifferential operators from
Propositions 2.15 and 2.16. We can make these isomorphisms explicit, once again
in terms of the associated PBW maps. Throughout the present section we shall
concentrate on the (harder) case of polydifferential operators; the proof for the case
of polyvector fields is similar (see also [2]).
We consider two different choices j1;r1 and j2;r2 of a splitting of the short

sequence 0 ! A ! L ! B ! 0 and a torsion-free L-connection on B , together
with the induced homological vector fields Q1 and Q2 on M D LŒ1� ˚ B , as in
Theorem 2.11, and the induced PBW isomorphisms pbw1 and

pbw2W�.SB/!
U.L/

U.L/�.A/
;

as in the discussion preceding Theorem 2.13.
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Recall the isomorphism of R-coalgebras

 WD pbw�11 ı pbw2W�.SB/! �.SB/

and the dual isomorphism of R-algebras  _W�. yS.B_// ! �. yS.B_// introduced
at the end of Section 2.2. There is an induced isomorphism  �WD

�
poly ! D�poly

between the spaces of polydifferential operators, sending a polydifferential operator
D 2 Dk

poly to the one  �.D/ 2 Dk
poly defined by

 �.D/
�
�I0 ; : : : ; �Ik

�
D  _

�
D
�
. _/�1

�
�I0

�
; : : : ; . _/�1

�
�Ik

���
for all �I0 ; : : : ; �Ik 2 �. yS.B_//. By construction,  � is compatible with the
Gerstenhaber bracket of polydifferential operators, and in fact

id˝ �W
�
tot
�
�.ƒ�L_/˝R D�poly

�
; JQ1 Cm;�K; J�;�K

�
!
�
tot
�
�.ƒ�L_/˝R D�poly

�
; JQ2 Cm;�K; J�;�K

�
(43)

is an isomorphism of dgla’s.
We shall need the following lemma.

Lemma 3.25. Under the identification ' from (32), the isomorphism  � satisfies

'�1 ı  � ı '
�
�I ˝ @J0 ˝ � � � ˝ @Jk

�
D �I ˝  �1.@J0/˝ � � � ˝  

�1.@Jk /C �;

where � 2 yS>jI j.B_/˝ S.B/˝kC1.

Proof. In terms of any pair of dual local frames f�I gI2Nr and f@J gJ2Nr for yS.B_/
and S.B/, respectively, the isomorphisms

 �1W�.SB/! �.SB/ and . _/�1W�. yS.B_//! �. yS.B_//

are given by

 �1.@J / D
X
K2Nr

1

KŠ
 KJ @K and . _/�1.�I / D

X
K2Nr

1

KŠ
 IK�

K ;

where the IJ are smooth functions on the base manifold (more precisely, on the open
subset U �M on which the local frames are defined).
LetD andD0 2 Dk

poly be the polydifferential operators defined by

D WD  �ı'
�
�I˝@J0˝� � �˝@Jk

�
and D0 WD '

�
�I˝ �1.@J0/˝� � �˝ 

�1.@Jk /
�
:

Wehave to show that their differenceD�D0 sends�. yS.B_//˝kC1 into�. yS>jI j.B_//.
For all I; J;K 2 Nr , we have

 _.�I / D �I C terms in �.S>jI j.B_//
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and

@J .�
K/ D

(
.K � J /Š � �K�J if J � K;
0 otherwise.

The partial order � on Nr is defined as follows:

.j1; j2; : : : ; jr/ � .k1; k2; : : : ; kr/

if and only if jp 6 kp for each p 2 f1; 2; : : : ; rg.
It follows that, for all �I0 ; : : : ; �Ik 2 �. yS.B_//,

D.�I0 ; : : : ; �IK / D  _
�
�I � @J0.. 

_/�1.�I0// � � � @JK .. 
_/�1.�IK //

�
D  _

� X
K0;:::;Kk2Nr

1

K0Š � � �KkŠ
 
I0
K0
� � � 

Ik
Kk
�I � @J0.�

K0/ � � � @Jk .�
Kk /

�
D  

I0
J0
� � � 

Ik
Jk
�I C terms in �.S>jI j.B_//;

while

D0.�I0 ; : : : ; �IK / D �I �  �1.@J0/.�
I0/ � � � �1.@JK /.�

IK /

D

X
K0;:::;Kk2Nr

1

K0Š � � �KkŠ
 
K0
J0
� � � 

Kk
Jk
�I � @K0.�

I0/ � � � @Kk .�
Ik /

D  
I0
J0
� � � 

Ik
Jk
�I C terms in �.S>jI j.B_//:

This concludes the proof of the lemma.

With these preparations, we are finally ready to complete the proof of Theorem A
from the introduction. In light of Propositions 3.9 and 3.24, the only thing which
remains to be shown is the following:
Proposition 3.26. The L1 algebra structures on

tot
�
�.ƒ�A_/˝R T �poly

�
and tot

�
�.ƒ�A_/˝R D�poly

�
from Propositions 3.9 and 3.24, respectively, are independent of the involved choices
up to an L1 isomorphism with linear part the identity map. In particular, the
induced Gerstenhaber algebra structures on H�CE.A; T

�
poly/ and H�CE.A;D

�
poly/ are

independent of the involved choices.

Proof. We shall prove the proposition in detail for the L1 algebra structure on

tot
�
�.ƒ�A_/˝R D�poly

�
:

The claim for tot
�
�.ƒ�A_/ ˝R T �poly

�
can be proved by a similar reasoning, or by

comparison with the results from [2], where in fact a stronger result is proven: theL1
algebra structure on

tot
�
�.ƒ�A_/˝R T �poly

�
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is independent of the choice of r altogether, and is independent of the choice of j
up to an L1 isomorphism with linear part the identity map (cf. [2, Propositions 4.9
and 4.17]).
Let j1;r1 and j2;r2 be two choices of a splitting and a connection. Each choice

ji , ri (with i 2 f1; 2g) determines a homological vector field Qi on LŒ1� ˚ B , a
Poincaré–Birkhoff–Witt isomorphism

pbwi W�.SB/!
U.L/

U.L/�.A/
;

and a Dolgushev–Fedosov contraction

�
tot
�
�.ƒ�A_/˝R D�poly

�
; dU
A C dH

� �
tot
�
�.ƒ�L_/˝R D�poly

�
; JQi Cm;�K

�M�\;i

�\;i

Mh\;i

(44)
as in Proposition 3.18.
Together with an L1 algebra structure ‡i on�

tot
�
�.ƒ�A_/˝R D�poly

�
; dU
A C dH

�
;

homotopy transfer along the Dolgushev–Fedosov contraction (44) induces a pair of
L1 quasi-isomorphisms

tot
�
�.ƒ�A_/˝R D�poly

�
 tot

�
�.ƒ�L_/˝R D�poly

�
;

tot
�
�.ƒ�L_/˝R D�poly

�
 tot

�
�.ƒ�A_/˝R D�poly

�
with linear parts M�\;i and �\;i , respectively. Recall the isomorphism of dgla’s�
tot
�
�.ƒ�L_/˝R D�poly

�
; JQ1 Cm;�K; J�;�K

�
id˝ �
����!

�
tot
�
�.ƒ�L_/˝R D�poly

�
; JQ2 Cm;�K; J�;�K

�
defined in (43). The two induced L1 algebra structures on tot

�
�.ƒ�A_/˝R D�poly

�
are related by an L1 morphism

F W
�
tot
�
�.ƒ�A_/˝R D�poly

�
; ‡1

�
 

�
tot
�
�.ƒ�A_/˝R D�poly

�
; ‡2

�
with linear part f1 D �\;2 ı .id˝ �/ ı M�\;1.
In order to conclude the proof, we only need to show that f1 is the identity map.

In fact, since an L1 morphism F is an isomorphism of L1 algebras if and only if
its linear part f1 is an isomorphism between the underlying tangent complexes, this
will show that F is an L1 isomorphism. Moreover, once we have proven that f1
is the identity map, the second claim will also follow. In fact, denoting by J�;�Ki
the Lie bracket on H�CE.A;D

�
poly/ induced by the quadratic bracket of ‡i , i D 1; 2,

in order to conclude the proof we only need to show J�;�K1 D J�;�K2, since the



Polyvector fields and polydifferential operators associated with Lie pairs 687

associative product (the cup product) is already independent of the choices at the
cochain level: but, F being an L1 morphism, its linear part f1 commutes with
the quadratic brackets of ‡1, ‡2, up to the homotopy f2, thus the induced map on
cohomology intertwines the two brackets J�;�K1 and J�;�K2.
Recall the identification ' from (32), the map � Wƒ�L_ ˝ yS.B_/ ! ƒ�A_

from (24) and the commutative diagram

�.ƒ�L_/˝R Dk
poly

�.ƒ�A_/˝R Dk
poly

�.ƒ�L_ ˝ yS.B_//˝R �..SB/
˝kC1/

Šid˝'�1

�\;i

�˝pbw˝kC1
i

defining �\;i .
According to Lemma 3.25, the maps '�1ı � and

�
id˝. �1/˝kC1

�
ı '�1 from

Dk
poly to�

�
yS.B_/˝ S.B/˝kC1

�
coincide up to terms in�

�
yS>1.B_/˝ S.B/˝kC1

�
.

Therefore, we obtain

�\;2 ı .id˝ �/ D
�
� ˝ pbw˝kC12

�
ı
�
id˝.'�1 ı  �/

�
D
�
� ˝ .pbw2 ı �1/˝kC1

�
ı .id˝'�1/ D �\;1

since �.ƒ�L_ ˝ yS>1.B_// � ker.�/ and  D pbw�11 ı pbw2. It follows that

f1 D �\;2 ı .id˝ �/ ı M�\;1 D �\;1 ı M�\;1 D id :

4. Matched pair case

This section is devoted to the proof of Theorem B, which was stated in the introduc-
tion. See Theorems 4.9 and 4.12 below.
Let .L;A/ be a Lie pair with quotient B WD L=A. Recall that, if a splitting

j WB ! L of the short exact sequence

0! A
i
�! L! B ! 0

is given, whose image j.B/ happens to be a Lie subalgebroid of L, then A and B are
said to form a matched pair of Lie algebroids; see [35, 39] for more details. In such
a situation, we write L D A ‰ B to stress that A and B – more precisely i.A/ and
j.B/ – play symmetric roles as a pair of complementary Lie subalgebroids of the
Lie algebroid L. In the case of matched pairs, the algebraic structures on the space
of polyvector fields and the space of polydifferential operators described in Section 3
reduce to the natural ones described in Theorem B.
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4.1. Dg Lie algebroid arising from a matched pair. LetL D A‰ B be amatched
pair of Lie algebroids over a manifoldM . Consider the double vector bundle

A˚ B B

A M

$

�

where the vector bundle A˚ B ! A is the pullback of the vector bundle B
$
�! M

via the map � WA! M , while the vector bundle A˚ B ! B is the pullback of the
vector bundle A

�
�!M via the map$ WB !M .

Each section b 2 �.B/ determines a derivation Eb of the algebra of smooth
functions C1.A/ through the relations

Eb.��f / D ��
�
%bf

�
; 8f 2 C1.M/

and Eb.l�/ D lrBott
b
� ; 8� 2 �.A_/;

where l� denotes the fiberwise linear function A 3 a 7! h�jai 2 R on A.
The vector bundle A˚B ! A, whose space of sections is naturally identified to

C1.A/˝C1.M/ �.B/, admits a natural Lie algebroid structure with anchor map

C1.A/˝C1.M/ �.B/ 3 g ˝ b 7! g � Eb 2 X.A/; 8g 2 C1.A/; b 2 �.B/

and Lie bracket

Œg1 ˝ b1; g2 ˝ b2� D g1g2 ˝ Œb1; b2�C g1 � Eb1.g2/˝ b2 � g2 � Eb2.g1/˝ b1;

8g1; g2 2 C
1.A/; b1; b2 2 �.B/:

Similarly, the vector bundle A ˚ B ! B admits a natural Lie algebroid structure.
These two Lie algebroid structures on A ˚ B are known to be compatible in the
following sense:
Lemma 4.1 (Mackenzie [34]). If A‰ B is a matched pair of Lie algebroids, then

A˚ B B

A M

is a double Lie algebroid.

According to Voronov [52], any double Lie algebroid induces a pair of dg Lie
algebroids. As an immediate consequence, we have the following:
Corollary 4.2. If A‰ B is a matched pair of Lie algebroids, then .AŒ1�˚B; dBottA /

is a dg Lie algebroid over .AŒ1�; dA/.
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Here the dg manifold structures on .AŒ1�˚B; dBottA / and .AŒ1�; dA/ are induced,
respectively, from the Lie algebroid structures onA˚B ! B andA!M according
to Vaı̆ntrob’s theorem [47]; see Example 2.1. In what follows, we write B to denote
the dg manifold .AŒ1�˚ B; dBottA / and AŒ1� to denote the dg manifold .AŒ1�; dA/.
The space of sections of the dg Lie algebroidB ! AŒ1� can be identified naturally

with �.ƒ�A_ ˝ B/. Then, the Lie bracket on �.ƒ�A_ ˝ B/ is

Œ�1˝b1; �2˝b2� D �1^�2˝Œb1; b2�C�1^
�
r
Bott
b1
�2
�
˝b2�

�
r
Bott
b2
�1
�
^�2˝b1 (45)

for all �1; �2 2 �.ƒ�A_/ and b1; b2 2 �.B/, while the anchor map

�.ƒ�A_ ˝ B/
x%
�! Der

�
�.ƒ�A_/

�
is characterized by the relation

x%�˝b.�/ D � ^ r
Bott
b �; (46)

for all �; � 2 �.ƒ�A_/ and b 2 �.B/. Finally, the differential on the space of
sections of B ! AŒ1� induced by the homological vector fields on B and AŒ1� is
simply the Chevalley–Eilenberg differential

dBottA W�.ƒ
�A_ ˝ B/! �.ƒ�C1A_ ˝ B/

corresponding to the Bott representation of A on B .

4.2. Fedosov dg manifolds associated with matched pairs. The identification
L D A˚ B induces a decomposition

�.ƒnL_/ D
M

pCqDn
p;q>0

�.ƒpA_ ˝ƒqB_/; n > 0: (47)

Denote by
dLW�.ƒ

�L_/! �.ƒ�C1L_/

the Chevalley–Eilenberg differential of the Lie algebroid L for cochains with trivial
coefficients.
SinceA andB play symmetric roles as a pair of complementary Lie subalgebroids

of the Lie algebroid L, we have a pair of Bott connections: the Bott A-connection
on B and the Bott B-connection on A, both denoted by rBott by abuse of notations.
Denote by

dBottA W�.ƒ
�A_ ˝ƒ˘B_/! �.ƒ�C1A_ ˝ƒ˘B_/

the Chevalley–Eilenberg differential of the Lie algebroid A for cochains with
coefficients in the A-module ƒB_ – the implicit flat A-connection rBott on ƒB_ is
induced from the Bott A-connection on B . Similarly, denote by

dBottB W�.ƒ
�A_ ˝ƒ˘B_/! �.ƒ�A_ ˝ƒ˘C1B_/
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the Chevalley–Eilenberg differential of the Lie algebroid B for cochains with
coefficients in the B-module ƒA_ – the implicit flat B-connection rBott on ƒA_ is
induced from the Bott B-connection on A.
In order to describe the Fedosov dg manifold arising from the Lie pair .L;A/, we

need to choose a torsion-free L-connection r on B . Such an L-connection on B is
completely determined by, and in fact equivalent to, a torsion-freeB-connectionr1;0
on B .
The following lemma can be verified by a direct computation.

Lemma 4.3. For a matched pair L D A ‰ B , having identified ƒL_ with
ƒA_ ˝ƒB_ as in (47), we have

dL D d
Bott
A C dBottB :

Furthermore, the covariant differential drL appearing in Theorem 2.11 decomposes
as the sum

drL D d
Bott
A C dr

1;0

B

of

dBottA W�.ƒ
�A_ ˝ƒ˘B_ ˝ yS.B_//! �.ƒ�C1A_ ˝ƒ˘B_ ˝ yS.B_//

and

dr
1;0

B W�.ƒ�A_ ˝ƒ˘B_ ˝ yS.B_//! �.ƒ�A_ ˝ƒ˘C1B_ ˝ yS.B_//:

Similarly, the 1-form Xr 2 �.L_ ˝ yS>2.B_/ ˝ B/ valued in formal vertical
vector fields on B constructed in Theorem 2.11 decomposes as the sum

Xr D X1;0 CX0;1

of two formal vertical vector fields

X0;1 2 �.A_ ˝ yS>2.B_/˝ B/ and X1;0 2 �.B_ ˝ yS>2.B_/˝ B/:

The following lemma is quite obvious; see [3, Section 5].
Lemma 4.4. Given a matched pair L D A ‰ B , consider the Lie pair .L;A/
with the splitting identifying B to a Lie subalgebroid of L complementary to A and
choose a torsion-free B-connection r1;0 on B . Then, the Fedosov homological
vector fieldQ constructed in Theorem 2.11 is the sumQ D Q1;0CQ0;1 of the pair
of operators

Q1;0
W�.ƒ�A_ ˝ƒ˘B_ ˝ yS.B_//! �.ƒ�A_ ˝ƒ˘C1B_ ˝ yS.B_//

and
Q0;1
W�.ƒ�A_ ˝ƒ˘B_ ˝ yS.B_//! �.ƒ�C1A_ ˝ƒ˘B_ ˝ yS.B_//
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defined by the relations

Q1;0
D �ı C dr

1;0

B CX1;0 and Q0;1
D dBottA CX0;1

and satisfying the relations

Q1;0
ıQ1;0

D 0; Q0;1
ıQ0;1

D 0; and Q0;1
ıQ1;0

CQ1;0
ıQ0;1

D 0:

We now give a more detailed description of the operators Q1;0 and Q0;1, which
will be needed later on.
Consider (i) the isomorphism of left R-modules

pbwW�.SB/!
U.L/

U.L/�.A/

arising from the Lie pair .L;A/ and the L-connection r on B , (ii) the isomorphism
of left R-modules

epbwW�.SB/! U.B/

arising from the Lie pair .B; 0/ and the B-connection r1;0 on B (see equation (27))
and (iii) the natural isomorphism of left R-modules

U.L/
U.L/�.A/

U.B/:
Š (48)

The following lemma can be verified easily by applying the PBW iteration formula
in [28, 29]; see also [44, § 3.4].
Lemma 4.5. Given a matched pair L D A‰ B , the diagram

U.L/
U.L/�.A/

�.SB/

U.B/

Š

pbw

gpbw
commutes.
The flat L-connection r on SB defined by equation (28) gives rise to a flat

A-connection on SB:

zr
 
a .s/ D r

 
i.a/
s D pbw�1

�
i.a/ � pbw.s/

�
D epbw�1�a ? pbw.s/� (49)

and a flat B-connection on SB:

zr
 
b
.s/ D r

 
j.b/

s D pbw�1
�
j.b/ � pbw.s/

�
D epbw�1�b �epbw.s/�: (50)

Here, a 2 �.A/, b 2 �.B/, s 2 �.SB/. The symbol � appearing in the r.h.s. of equa-
tion (50) denotes the multiplication in U.B/, while the symbol ? appearing in the
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r.h.s. of equation (49) denotes the action ofA onU.B/ induced by the multiplication
inU.L/ and the natural identification of U.L/

U.L/�.A/
withU.B/.

According to Theorem 2.13 (see also [44, Theorem 4.7]), the homological
vector field Q on the Fedosov dg manifold LŒ1� ˚ B is the Chevalley–Eilenberg
differential (29) corresponding to the flat L-connection on yS.B_/ dual to the flat
L-connection r on SB defined by equation (28). Therefore, as an immediate con-
sequence of Lemma 4.3, we obtain
Corollary 4.6. Under the assumptions of Lemma 4.4,
(1) the operator Q1;0 coincides with the Chevalley–Eilenberg differential of the Lie

algebroid B for cochains with coefficients in the B-module ƒA_ ˝ yS.B_/ with
the B-representation

rb.˛ ˝ &/ D r
Bott
b ˛ ˝ & C ˛ ˝ zr

 
b
&;

for all ˛ ˝ & 2 �.ƒA_ ˝ yS.B_//;
(2) and the operatorQ0;1 coincides with the Chevalley–Eilenberg differential of the

Lie algebroid A for cochains with coefficients in the A-module ƒB_ ˝ yS.B_/
with the A-representation

ra.ˇ ˝ &/ D r
Bott
a ˇ ˝ & C ˇ ˝ zr a &:

for all ˇ ˝ s 2 �.ƒB_ ˝ yS.B_//.
Here, zr a and zr 

b
are the flat connections introduced in equations (49) and (50),

respectively.
Restricting the operatorQ0;1 to �.ƒ�A_˝ yS.B_// determines a derivationQ0;1

of �.ƒ�A_˝ ySB_/ of degreeC1 such thatQ0;1ıQ0;1 D 0. In other words,Q0;1 is
a homological vector field on the graded manifoldAŒ1�˚B . Hence .AŒ1�˚B;Q0;1/

is a dg manifold. Corollary 4.6 implies that .AŒ1�˚ B;Q0;1/ is indeed an instance
of the Kapranov dg manifolds investigated in [28, 29].
Remark 4.7. Given a complex manifold X , let A D T

0;1
X and B D T

1;0
X . Then

T C
X D A‰ B is a matched pair of Lie algebroids overC. The Bott T 0;1X -connection
on T 1;0X encodes the holomorphic vector bundle structure of T 1;0X ; the (local) sections
of T 1;0X which are flat w.r.t. the T 0;1X -connection are precisely the (local) holomorphic
sections of T 1;0X . In other words, the Chevalley–Eilenberg differential associated with
the Bott T 0;1X -connection on T

1;0
X is the Dolbeault operator

x@W�0;�.X; T
1;0
X /! �0;�C1.X; T

1;0
X /:

Similarly, the Chevalley–Eilenberg differential associated with the Bott T 1;0X -conn-
ection on T 0;1X is the complex conjugate operator

@W��;0.X; T
0;1
X /! ��C1;0.X; T

0;1
X /:
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To construct a Fedosov dg manifold corresponding to the matched pair .T 0;1X ; T
1;0
X /,

we need a torsion-free T C
X -connection r on T

1;0
X , which is necessarily the sum

r D x@ C r1;0 of the Dolbeault operator and a torsion-free T 1;0X -connection r
1;0

on T 1;0X – more precisely, we have dr D x@Cdr1;0 . The graded manifold underlying
this Fedosov dg manifold is T C

X Œ1�˚ T
1;0
X with the algebra of functions

C1
�
T C
X Œ1�˚ T

1;0
X

�
Š

M
p>0;q>0

�p;q
�
X; yS.T

1;0
X /_

�
:

Its homological vector field decomposes as the sum

Q D Q1;0
CQ0;1

of two operators

Q1;0
W�p;q

�
X; yS.T

1;0
X /_

�
! �pC1;q

�
X; yS.T

1;0
X /_

�
and

Q0;1
W�p;q

�
X; yS.T

1;0
X /_

�
! �p;qC1

�
X; yS.T

1;0
X /_

�
(51)

given by

Q1;0
D �ı C dr

1;0

CX1;0 and Q0;1
D x@CX0;1

with

X1;0 2 �1;0
�
X; yS>2.T

1;0
X /_ ˝ T

1;0
X

�
and X0;1 2 �0;1

�
X; yS>2.T

1;0
X /_ ˝ T

1;0
X

�
:

Here, ı is the usual Koszul operator and dr1;0 is the Chevalley–Eilenberg differential
associated with the T 1;0X -connection @˝ idC id˝r

1;0 on ƒq.T 0;1X /_ ˝ yS.T
1;0
X /_.

Restricting to p D 0 in (51), we obtain a derivation Q0;1 of degree C1 of the
algebra �0;�.X; yS.T 1;0X /_/ satisfying Q0;1 ıQ0;1 D 0. Therefore, Q0;1 induces a
L1Œ1� algebra structure (see [23]) on �0;�.X; T 1;0X /, and�

T
0;1
X Œ1�˚ T

1;0
X ;Q0;1

�
is a Kapranov dg manifold; see [29, Section 5.5]. If the complex manifold X admits
a Kähler metric, there is a canonical torsion-free flat T 1;0X -connection r

1;0 on T 1;0X
induced by the Levi-Civita connection on TX . In that case, Kapranov obtained
an explicit formula for the L1Œ1� algebra structure on �0;�.X; T 1;0X /; see [23,
Theorem 2.6]. Such L1Œ1� algebras played an important role in Kapranov’s
investigation [23] of Atiyah classes and Rozansky–Witten invariants; see also [28,
29, 51].
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4.3. Polyvector fields associated with matched pairs. According to Proposition 2.7,
the dg Lie algebroid structure on B ! AŒ1� induces a differential Gerstenhaber
algebra structure on

�.ƒ�C1B/ Š �.ƒ�A_ ˝ƒ�C1B/:

Its differential is the Chevalley–Eilenberg differential

dBottA W�.ƒ
kA_ ˝ƒpC1B/! �.ƒkC1A_ ˝ƒpC1B/ (52)

corresponding to the Bott representation of A on ƒB; its associative multiplication
is the wedge product

^W�.ƒkA_ ˝ƒpC1B/˝ �.ƒlA_ ˝ƒqC1B/! �.ƒkClA_ ˝ƒ.pCqC1/C1B/I

(53)
and its Lie bracket

Œ�;��W�.ƒkA_ ˝ƒpC1B/˝ �.ƒlA_ ˝ƒqC1B/! �.ƒkClA_ ˝ƒpCqC1B/

(54)
is the Schouten bracket of the dg Lie algebroid B ! AŒ1� extending the Lie
bracket (45) by way of the Leibniz rule and the anchor map (46).
Applying Proposition 2.7 to the dg Lie algebroid B ! AŒ1�, we obtain the

following:
Proposition 4.8. Let A‰ B be a matched pair of Lie algebroids.
(1) When endowed with the differentialdBottA (52); the associative multiplication (53);

and the Lie bracket (54), tot�.ƒ�A_ ˝ƒ˘C1B/ is a differential Gerstenhaber
algebra, whence a dgla.

(2) When endowed with the wedge product (53) and the Schouten bracket (54), the
cohomology H�CE.A;ƒ

�C1B/ is a Gerstenhaber algebra.
The following theorem is the first main result of the present section.

Theorem 4.9. Let L D A ‰ B be a matched pair and let r be a torsion-free
L-connection on B . Then the L1 algebra tot

�
�.ƒ�A_/ ˝R T ˘poly

�
and the

Gerstenhaber algebra H�CE.A; T
˘
poly/ of Proposition 3.9 coincide with the dgla

tot�.ƒ�A_ ˝ƒ˘C1B/ and the Gerstenhaber algebra H�CE.A;ƒ
˘C1B/ of Proposi-

tion 4.8, respectively.
Theorem 4.9 is a direct consequence of [2, Proposition 4.9]; see also [2, Theo-

rem 4.20]. However, for the sake of completeness, we proceed to outline a direct
proof.
Denote by Xver.B/ the space of formal vertical vector fields on the vector bundle

B !M . We have the natural identification

Xver.B/ Š �. yS.B
_/˝ B/:
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Since T �1poly D C
1.M/; T 0

poly D �.B/; T�1poly Š �. yS.B_//; and T0poly Š Xver.B/,
specializing the contraction of Corollary 3.5 in the cases where k D �1 and k D 0

yields a pair of contractions:�
�.ƒ�A_/; dA

� �
�.ƒ�L_ ˝ yS.B_//;Q

�M�

�
Mh (55)

and �
�.ƒ�A_ ˝ B/; dBottA

� �
�.ƒ�L_/˝R Xver.B/;LQ

�M�\

�\

Mh\ : (56)

Note that
�
�.ƒ�A_ ˝ B/; dBottA

�
is a dg Lie–Rinehart algebra over the dg ring�

�.ƒ�A_/; dA
�
while

�
�.ƒ�L_/ ˝R Xver.B/;LQ

�
is a dg Lie–Rinehart algebra

over the dg ring
�
�.ƒ�L_ ˝ yS.B_//;Q

�
.

Proposition 4.10. The pair of maps M� and M�\ in the contractions (55) and (56)
constitutes a morphism of dg Lie–Rinehart algebras from

�
�.ƒ�A_ ˝ B/; dBottA

�
to
�
�.ƒ�L_/˝R Xver.B/;LQ

�
.

Recall that M�\ D
P1
lD0.h\L�/

l�\, where

� D drL CX
r
D
�
dBottA C dr

1;0

B

�
C
�
X0;1 CX1;0

�
;

since L D A˚ B is a matched pair. It is simple to see that

LdBott
A
CX0;1

�
�.ƒ�A_ ˝ƒ0B_/˝R Xver.B/

�
� �.ƒ�C1A_ ˝ƒ0B_/˝R Xver.B/

� ker h\ (57)
and
L
dr

1;0

B
CX1;0

�
�.ƒ�A_ ˝ƒ0B_/˝R Xver.B/

�
� �.ƒ�A_ ˝ƒ1B_/˝R Xver.B/:

Therefore, the operator h\L� stabilizes �.ƒ�A_ ˝ƒ0B_/˝R Xver.B/ and we can
conclude that

M�\
�
�.ƒ�A_ ˝ B/

�
� �.ƒ�A_ ˝ƒ0B_/˝R Xver.B/: (58)

Since M�\ is a cochain map, we have LQ ı M�\ D M�\ ı d
Bott
A , and it follows that

LQ0;1 ı M�\ D M�\ ı d
Bott
A and LQ1;0 ı M�\ D 0; (59)

whereQ0;1 andQ1;0 are the vector fields defined in Lemma 4.4.

Proof of Proposition 4.10. It suffices to verify that the pair of maps M� and M�\ in the
contractions (55) and (56) satisfy the identities

Œ M�\.� ˝ b/; M�\.�˝ c/� D M�\Œ� ˝ b; �˝ c�; (60)
Œ M�\.� ˝ b/; M�.�/� D M�Œ� ˝ b; ��; (61)
M�.�/ � M�\.� ˝ b/ D M�\.� � � ˝ b/ (62)
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for all �; � 2 �.ƒ�A_/ and b; c 2 �.B/. In equations (60) and (61), the brackets
on the r.h.s. are Schouten brackets of polyvector fields on the dg Lie algebroid B,
while the brackets on the l.h.s. are Schouten brackets of polyvector fields on the dg
Lie algebroid F .
Consider,

Y D Œ M�\.� ˝ b/; M�\.�˝ c/�:

It follows from (58) that Y2�.ƒ�A_ ˝ƒ0B_/˝R Xver.B/ and thence h\.Y/D0.
SinceQ0;1 D dBottA CX0;1, according to (57) we also get h\LQ0;1.Y/ D 0. Further-
more, from equation (59), we obtain

LQ1;0Y D LQ1;0

�
Œ M�\.� ˝ b/; M�\.�˝ c/�

�
D ŒLQ1;0

�
M�\.� ˝ b/

�
; M�\.�˝ c/�˙ Œ M�\.� ˝ b/;LQ1;0

�
M�\.�˝ c/

�
� D 0:

Therefore, we conclude that

h\LQ.Y/ D h\LQ0;1.Y/C h\LQ1;0.Y/ D 0:

From the definitions (34) and (37) (see also [2, Lemma 4.13]) of �\ and M�\, we
obtain

�\.Y/ D �\Œ M�\.� ˝ b/; M�\.�˝ c/� D Œ� ˝ b; �˝ c�:

Since h\.Y/ D 0; h\LQ.Y/ D 0; and �\.Y/ D Œ� ˝ b; � ˝ c�, it follows from
Proposition 3.8 that

Y D M�\
�
Œ� ˝ b; �˝ c�

�
:

Identity (60) is thus established. Identities (61) and (62) can be verified in a similar
fashion.

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Since L D A ‰ B is a matched pair, the cochain complex
on the l.h.s. of (36) in Proposition 3.4 is tot�.ƒ�A_ ˝ ƒ˘C1B/. It suffices to
prove that the injection M�\ in (36) is a morphism of Lie algebras, where the Lie
bracket on tot�.ƒ�A_˝ƒ˘C1B/ is as in Proposition 4.8. This follows immediately
from Proposition 4.10 and the fact that M�\ respects wedge products by virtue of
Proposition 3.4.

4.4. Polydifferential operators associated with matched pairs. We now turn to
the study of polydifferential operators.
Recall that the universal enveloping algebra U.B/ of the dg Lie algebroid

B ! AŒ1� is a dg Hopf algebroid over the dgca

C1
�
AŒ1�

�
D �.ƒ�A_/:
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There is a natural isomorphism of left �.ƒ�A_/-modules

U.B/ Š �.ƒ�A_/˝R U.B/: (63)

Consequently, �.ƒ�A_/˝R U.B/ admits a structure of dg Hopf algebroid over the
dgca

�
�.ƒ�A_/; dA

�
:

(1) The multiplication is characterized by the relations

.� ˝ 1/ � .�˝ 1/ D � ^ �˝ 1; 8�; � 2 �.ƒ�A_/I

.1˝ u/ � .1˝ v/ D 1˝ u � v; 8u; v 2 U.B/I

.� ˝ 1/ � .1˝ u/ D � ˝ u; 8� 2 �.ƒ�A_/;8u 2 U.B/I

.1˝ b/ � .� ˝ 1/ � .� ˝ 1/ � .1˝ b/ D .rBottb �/˝ 1; 8b 2 �.B/;8� 2 �.A_/:

Indeed, the multiplication is defined by the relation

.�˝b1b2 � � � bn/�.�˝u/ D

nX
kD0

X
�2Sn�k

k

.�^rBottb�.1/
� � � r

Bott
b�.k/

�/˝b�.kC1/ � � � b�.n/ �u;

(64)
for all �; � 2 �.ƒ�A_/, b1; b2; : : : ; bn 2 �.B/, and u 2 U.B/. Note that the
multiplication is well-defined by equation (64) because the BottB-connection onA_
is flat.

(2) The source and target maps

�.ƒ�A_/ �.ƒ�A_/˝R U.B/
˛

ˇ

are one and the same map: the inclusion � 7! � ˝ 1.

(3) The differential is the Chevalley–Eilenberg differential

dU
A W�.ƒ

�A_/˝R U.B/! �.ƒ�C1A_/˝R U.B/

of theLie algebroidA for cochainswith coefficients inU.B/. TheA-module structure
onU.B/ follows from the canonical identification (48) – the Lie algebroid A acts on
U.L/ by multiplication from the left.

(4) The comultiplication� is defined by the commutative diagram of left �.ƒ�A_/-
modules �

�.ƒ�A_/˝R U.B/
�
˝�.ƒ�A_/

�
�.ƒ�A_/˝R U.B/

�
�.ƒ�A_/˝R U.B/

�.ƒ�A_/˝R U.B/˝R U.B/:

Š

�

id˝ Q�
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Indeed, it is the �.ƒ�A_/-linear extension of the comultiplication

z�WU.B/! U.B/˝R U.B/

of the Hopf algebroidU.B/; see [55].

(5) The counit map "W�.ƒ�A_/˝RU.B/! �.ƒ�A_/ is the canonical projection.
From the isomorphism (63), we obtain an isomorphism�

sU.B/
�˝kC1

Š �.ƒ�A_/˝R U.B/˝kC1Œ�k � 1�; (65)

which identifies (up to a grading shift) the differentialQW sU.B/˝kC1!sU.B/˝kC1

to the Chevalley–Eilenberg differential

dU
A W�.ƒ

�A_/˝R U.B/˝kC1 ! �.ƒ�C1A_/˝R U.B/˝kC1: (66)

HereU.B/˝kC1 with k > �1 denotes the tensor productU.B/˝R � � �˝R U.B/ of
.kC1/-copies of the leftR-moduleU.B/, and theA-module structure onU.B/˝kC1

is the natural extension of the A-module structure onU.B/.
The Hochschild coboundary differential (18), the Gerstenhaber bracket (19), and

the cup product (22) on tot˚ sU.B/˝�C1 arising from the dg Lie algebroidB carry
over, through the identification (65), to a Hochschild coboundary differential

�.ƒ�A_/˝R U.B/˝k
dH
��! �.ƒ�A_/˝R U.B/˝kC1; (67)

a Gerstenhaber bracket�
�.ƒ�A_/˝R U.B/˝pC1

�
˝
�
�.ƒ�A_/˝R U.B/˝qC1

�
J�;�K
����! �.ƒ�A_/˝R U.B/˝pCqC1; (68)

and a cup product�
�.ƒ�A_/˝R U.B/˝pC1

�
˝
�
�.ƒ�A_/˝R U.B/˝qC1

�
^
�! �.ƒ�A_/˝R U.B/˝.pCqC1/C1 (69)

on �.ƒ�A_/˝R U.B/˝˘C1.
Note that both the Hochschild coboundary differential and the cup product are

�.ƒ�A_/-linear. That is, we have

dH.! ˝ u/ D .�1/
k! ˝ dH.u/

and .! ˝ u/ ^ .� ˝ v/ D .�1/l.pC1/.! ^ �/˝ .u˝ v/

for all ! 2�.ƒkA_/, � 2�.ƒlA_/, u2U.B/˝pC1 and v 2U.B/˝qC1. However,
the Gerstenhaber bracket (68) is not the obvious extension of the Gerstenhaber
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bracket on U.B/˝�C1 obtained by tensoring with the commutative associative
algebra �.ƒ�A_/. In fact, to write down an explicit formula – which is quite
involved – one must use the Bott representation of B on ƒA_.
Applying Proposition 2.8 to the dg Lie algebroid B ! AŒ1�, we are led to the

following:

Proposition 4.11. Let A‰ B be a matched pair of Lie algebroids.

(1) When endowed with the differential dU
A C dH (see (66) and (67)) and the

Gerstenhaber bracket (68), tot
�
�.ƒ�A_/˝R U.B/˝˘C1

�
is a dgla.

(2) When endowed with the cup product (69) and the Gerstenhaber bracket (68),
the Hochschild cohomology H�CE

�
A;U.B/˝˘C1

�
; i.e. the cohomology of the

complex
�
tot.ƒ�A_ ˝R U.B/˝˘C1/; dU

A C dH
�
, is a Gerstenhaber algebra.

As pointed out in Remark 2.9, on the cochain level, the Gerstenhaber bracket (68)
satisfies the graded Leibniz rule with respect to the cup product (69) only up to
homotopy. Therefore, tot

�
�.ƒ�A_/˝R U.B/˝˘C1

�
is not a differential Gersten-

haber algebra. Likewise, the cup product is graded commutative only up to homotopy.
Again this is reminiscent of ordinary Hochschild cohomology theory of associative
algebras [19].
Theorem 4.12 below is the secondmain result of the present section, the remainder

of which is devoted to its proof.

Theorem 4.12. Let L D A ‰ B be a matched pair and let r be a torsion-
free L-connection on B . Then the L1 algebra tot

�
�.ƒ�A_/˝R D˘poly

�
and the

Gerstenhaber algebra H�CE.A;D
˘
poly/ of Proposition 3.24 coincide with the dgla

tot
�
�.ƒ�A_/˝R U.B/˘C1

�
and the Gerstenhaber algebra H�CE.A;U.B/

˘C1/ of
Proposition 4.11, respectively.

Denote by Dver.B/ the algebra of formal vertical differential operators on the
vector bundle B ! M . The canonical isomorphism (32), specialized to the case
k D 0, gives the identification

Dver.B/ Š �
�
yS.B_/˝ SB

�
:

Consider the contraction (42) in Corollary 3.19. As an immediate consequence of
isomorphism (48), we haveDk

poly Š U.B/˝kC1. We also have isomorphism (32):

Dk
poly Š �

�
yS.B_/˝ .SB/˝kC1

�
:

Specializing Corollary 3.19 to the case k D 0, we obtain the contraction

�
�.ƒ�A_/˝R U.B/; dU

A

� �
�.ƒ�L_/˝R Dver.B/; JQ;�K

�M�\

�\

Mh\ :

(70)
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Likewise, specializing Proposition 3.22 to the case of differential (rather than
polydifferential) operators, we obtain:
Proposition 4.13. Given x 2 �.ƒ�A_/˝R U.B/ and y 2 �.ƒ�L_/˝R Dver.B/,
we have

M�\.x/ D y if and only if

8̂<̂
:
h\.y/ D 0;

h\
�
JQ;yK

�
D 0;

�\.y/ D x:

Both sides of (70) are universal enveloping algebras of dg Lie algebroids. Indeed,
isomorphism (63) identifies �.ƒ�A_/ ˝R U.B/ with the universal enveloping
algebra U.B/ of the dg Lie algebroid B ! AŒ1�, while �.ƒ�L_/ ˝R Dver.B/
is naturally identified with the universal enveloping algebra of the Fedosov dg Lie
algebroid F ! M (appearing in Proposition 2.14) since F is isomorphic to the
pullback bundle pr� TverB .
Following [40, Definition 2.6], we consider the associative algebra

J.B/ WD HomR
�
U.B/;R

�
of B-jets on M – the multiplication on J.B/ arises as the map dual to the
comultiplication onU.B/.
Dualizing the isomorphism of R-coalgebras

epbwW�.SB/ Š�! U.B/

appearing in Lemma 4.5, we obtain an isomorphism of associative R-algebras

epbw>WJ.B/ Š�! �. yS.B_//: (71)

The isomorphism epbw> identifies the Grothendieck B-connection zrG on J.B/

introduced by Nest–Tsygan [40, Proposition 2.7] and characterized by the relation˝
zr
G
b 'ju

˛
D %b h'jui � h'jb � ui ;

for all b 2 �.B/; ' 2 J.B/; and u 2 U.B/, with the B-connection zr on
�. yS.B_// dual to the flatB-connection on �.SB/ defined by equation (50). Indeed,
the diagram

J.B/ J.B/

�. yS.B_// �. yS.B_//

zrG
b

Šgpbw> Š gpbw>
zr
 
b

(72)

commutes for all b 2 �.B/ since˝epbw>.zrGb '/js˛ D ˝zrGb 'jepbw.s/˛
D %b

˝
'jepbw.s/˛ � ˝'jb �epbw.s/˛
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D %b
˝
'jepbw.s/˛ � ˝'jepbw.zr 

b
s/
˛

D %b
˝epbw>.'/js˛ � ˝epbw>.'/j zr 

b
s
˛
D
˝
zr
 
b

�epbw>.'/�js˛
for all ' 2 J.B/ and s 2 �.SB/.
Given x 2 U.B/, we think of the multiplication u 7! u � x by x from the right

inU.B/ as an endomorphism zRx of the R-moduleU.B/, and we consider the dual
endomorphism

zR>x WJ.B/! J.B/:

For all b 2 �.B/ and x 2 U.B/, we have

zr
G
b ı
zR>x D

zR>x ı
zr
G
b ;

since ˝
zr
G
b ı
zR>x .'/ju

˛
D %b

˝
zR>x .'/ju

˛
�
˝
zR>x .'/jb � u

˛
D %b h'ju � xi � h'jb � u � xi

D
˝
zr
G
b 'ju � x

˛
D
˝
zr
G
b 'j
zRx.u/

˛
D
˝
zR>x ı

zr
G
b .'/ju

˛
for all ' 2 J.B/ and u 2 U.B/.
Lemma 4.14. For every x 2 U.B/, the endomorphism zR>x of J.B/ is an R-linear
differential operator on the algebra J.B/. Furthermore, the map x 7! zR>x is a
morphism of associative algebras from U.B/ to the algebra of R-linear differential
operators acting on the algebra J.B/.

Proof. Adopting the Sweedler notation

�.u/ D
X
.u/

u.1/ ˝ u.2/ D
X
.u/

u.2/ ˝ u.1/

to denote the cocommutative comultiplication on U.B/ defined by equation (17),
and using the very definition of the multiplication in U.B/ (see relations (16) or
equation (64)) we easily obtain that

zRf .u/ D u � f D
X
.u/

%u.1/.f / � u.2/ D
X
.u/

%u.2/.f / � u.1/

for all f 2 R � U.B/ and u 2 U.B/. Here the anchor map %W�.B/ ! X.M/

of the Lie algebroid B ! M was implicitly extended to a morphism of associative
algebras %WU.B/! D.M/.
It follows that, for all f 2 C1.M/ � U.B/, � 2 J.B/, and u 2 U.B/, we have˝
zR>f .�/ju

˛
D
˝
�j zRf .u/

˛
D

D
�
ˇ̌X
.u/

%u.2/.f / � u.1/

E
D

X
.u/

˝
�ju.1/

˛
� %u.2/.f /



702 R. Bandiera, M. Stiénon and P. Xu

D

X
.u/

˝
�ju.1/

˛
� %u.2/�f .1/ D

X
.u/

˝
�ju.1/

˛
�
˝
1ju.2/ � f

˛
D

X
.u/

˝
�ju.1/

˛
�
˝
zR>f .1/ju.2/

˛
D

D
� ˝ zR>f .1/

ˇ̌X
.u/

u.1/ ˝ u.2/

E
D
˝
� ˝ zR>f .1/j�.u/

˛
D
˝
�>

�
� ˝ zR>f .1/

�
ju
˛
D
˝
� � zR>f .1/ju

˛
;

where the B-jet 1 is the morphism of left R-modules U.B/ 3 u 7! %u.1/ 2 R

associated with the constant function 1 2 R D C1.M/. Hence, we have

zR>f .�/ D � �
zR>f .1/; 8f 2 C

1.M/; 8� 2 J.B/;

which shows that zR>
f
is indeed a differential operator of order zero on the

algebra J.B/.
For every b 2 �.B/ � U.B/, the operator zRb is a coderivation of the left

R-coalgebraU.B/ and, consequently, zR>
b
is a derivation of the leftR-algebra J.B/.

For any two elements u; v 2 U.B/, we have

zR>uv D
zR>u ı

zR>v

since zRuv D zRv ı zRu.
Since the universal enveloping algebra U.B/ of the Lie algebroid B ! M is

generated multiplicatively by the elements of its subspaceC1.M/˚�.B/, it follows
immediately that zR>x acts on the algebra of jets J.B/ in the manner of a differential
operator. The R-linearity of zR>x WJ.B/! J.B/ is obvious.

Similarly, we can consider the Lie algebroid B ! AŒ1�, the graded associative
algebra of B-jets on AŒ1�

J.B/ WD Hom�.ƒ�A_/
�
U.B/; �.ƒ�A_/

�
;

and the Grothendieck B-connection rG on J.B/ characterized by the relation˝
r
G
b '
ˇ̌
u
˛
D x%b h'jui � h'jb � ui ;

for all b 2 �.B/; ' 2 J.B/; and u 2 U.B/.
It follows from the natural identification of the space of sections of the Lie

algebroidB ! AŒ1� with �.ƒ�A_˝B/; the definition (46) of the anchor map x% of
the Lie algebroid B; and the isomorphism of graded associative algebras

J.B/ Š �.ƒ�A_/˝R J.B/

induced by the identification (63) that

r
G
1˝b.˛ ˝ '/ D .r

Bott
b ˛/˝ ' C ˛ ˝ .zrGb '/; (73)

for all b 2 �.B/; ˛ 2 �.ƒA_/; and ' 2 J.B/.
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Given x 2 U.B/, we think of the multiplication u 7! u � x by x from the right
inU.B/ as an endomorphism Rx of the �.ƒ�A_/-module

U.B/ Š �.ƒ�A_/˝R U.B/;

and we consider the dual endomorphism

R>x W�.ƒ
�A_/˝R J.B/! �.ƒ�A_/˝R J.B/:

The multiplication inU.B/ Š �.ƒ�A_/˝R U.B/ was defined in equation (64).
For all b 2 �.B/ Š �.ƒA_ ˝ B/ and x 2 U.B/ Š �.ƒ�A_/˝R U.B/, we

have
r
G
b ıR

>
x D R

>
x ı r

G
b ; (74)

since˝
r
G
b ıR

>
x .'/

ˇ̌
u
˛
D x%b

˝
R>x .'/

ˇ̌
u
˛
�
˝
R>x .'/

ˇ̌
b � u

˛
D x%b h'ju � xi � h'jb � u � xi

D
˝
r
G
b '
ˇ̌
u � x

˛
D
˝
r
G
b '
ˇ̌
Rx.u/

˛
D
˝
R>x ı r

G
b .'/

ˇ̌
u
˛

for all ' 2 J.B/ and u 2 U.B/.
Lemma 4.15. For every x 2 U.B/, the endomorphismR>x of J.B/ is a differential
operator on the algebra J.B/. Furthermore, the map x 7! R>x is a morphism
of associative algebras from U.B/ to the algebra of �.ƒ�A_/-linear differential
operators acting on the algebra J.B/.

The proof of Lemma 4.15 is similar to the proof of Lemma 4.14 and is therefore
omitted.
The following lemma indicates that M�\.x/ coincides with the operator R>x

conjugated by the algebra isomorphism

id˝epbw>W�.ƒ�A_/˝R J.B/! �.ƒ�A_ ˝ yS.B_//:

Lemma 4.16. For all x 2 U.B/ Š �.ƒ�A_/˝R U.B/, the diagram

�.ƒ�A_/˝R J.B/ �.ƒ�A_/˝R J.B/

�.ƒ�A_ ˝ yS.B_// �.ƒ�A_ ˝ yS.B_//

R>x

Šid˝gpbw> Š id˝gpbw>
M�\.x/

commutes.

Proof. Given any element x of �.ƒ�A_/˝R U.B/, let

Yx D
�
id˝epbw>� ıR>x ı � id˝epbw>��1: (75)
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According to Lemma 4.15, the operator R>x acts on the algebra

J.B/ Š �.ƒ�A_/˝R J.B/

in the manner of a �.ƒ�A_/-linear differential operator and, consequently, the
operator Yx acts on the algebra

�.ƒ�A_ ˝ yS.B_// Š C1.M/

in the manner of a �.ƒ�A_/-linear differential operator. In other words, Yx is a
formal vertical differential operator on B, i.e. an element of

�.ƒA_ ˝ yS.B_/˝ SB/ Š �.ƒ�A_/˝R Dver.B/:

According to Corollary 4.6, for all b 2 �.B/ and ˛ ˝ & 2 �.ƒA_ ˝ yS.B_//,
we have

�bQ
1;0.˛ ˝ &/ D rBottb ˛ ˝ & C ˛ ˝ zr

 
b
&:

By commutativity of diagram (72), we have

zr
 
b
& D epbw> ı zrGb ı

�epbw>��1.&/;
and it then follows from equation (73) that

�bQ
1;0
D
�
id˝epbw>� ı rG1˝b ı � id˝epbw>��1: (76)

Equations (76), (75), and (74) yield

J�bQ1;0;YxK D
�
id˝epbw>� ı JrG1˝b; R

>
x K ı

�
id˝epbw>��1 D 0

for all b 2 �.B/. Hence, we obtain

JQ1;0;YxK D 0:

It is not difficult to check that the subspace

�.ƒA_ ˝ yS.B_/˝ SB/ Š �.p>.ƒ�A_//˝R Dver.B/

of �.ƒL_/ ˝R Dver.B/ is contained in the kernel of h\ and is stable under
JdBottA CX0;1;�K. Therefore, since

Q D Q0;1
CQ1;0

I Q0;1
D dBottA CX0;1I and JQ1;0;YxK D 0;

we conclude that

h\.Yx/ D 0 and h\
�
JQ;YxK

�
D h\

�
JdBottA CX0;1;YxK

�
D 0:

Let f�igiD1;:::;r and f@j gjD1;:::;r be a pair dual local frames for the vector bundles
B_ and B respectively. Then, with the usual multi-indices notations, f�I gI2Nr
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and f@J gJ2Nr are the corresponding dual local frames for yS.B_/ and S.B/,
respectively. Locally, every formal vertical differential operator

� 2 �.ƒA_ ˝ yS.B_/˝ SB/

on the dg vector bundle B ! AŒ1� can be written as a linear combination

� D
X

I;J2Nr

�I;J ˝ �
I
˝ @J

with coefficients �I;J D
˝
�.�J /

ˇ̌
@I
˛
in �.ƒA_/. Furthermore, we have

�\.�/ D
X
J2Nr

�0;J ˝epbw.@J / with �0;J D
˝
�.�J /j1

˛
: (77)

In particular, since

Y˛˝u D
�
id˝epbw>� ıR>˛˝u ı � id˝epbw>��1

D
��
id˝epbw�1� ıR˛˝u ı � id˝epbw��>;

it follows that˝
Y˛˝u.�

J /j1
˛
D
˝
�J j

�
id˝epbw�1� ıR˛˝u ı � id˝epbw�.1/˛

D
˝
�J j

�
id˝epbw�1� ıR˛˝u.1/˛

D ˛ �
˝
�J jepbw�1.1 � u/˛ D ˛ � ˝�J jepbw�1.u/˛

and, according to equation (77),

�\.Y˛˝u/ D
X
J2Nr

˝
Y˛˝u.�

J /j1
˛
˝epbw.@J / D

X
J2Nr

˛ �
˝
�J jepbw�1.u/˛˝epbw.@J /

D˛ ˝epbw
� X
J2Nr

˝
�J jepbw�1.u/˛ � @J�D˛ ˝epbw�epbw�1.u/�D˛ ˝ u;

for all ˛ ˝ u 2 �.ƒA_/˝R U.B/. Hence, we have �\.Yx/ D x.
It follows from Proposition 4.13 that Yx D M�\.x/.

The following proposition will play a key role in the proof of Theorem 4.12.
Proposition 4.17. In the contraction (70), the cochain map

M�\W�.ƒ
�A_/˝R U.B/! �.ƒ�L_/˝R Dver.B/

respects the algebra and the coalgebra structures as well as the counit maps. Hence,
it realizes a morphism of dg Hopf algebroids from U.B/ to U.F /.
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Proof. It follows immediately from Lemma 4.16 that M�\ is a morphism of algebras:

M�\.x1x2/ D
�
id˝epbw>� ıR>x1x2 ı � id˝epbw>��1

D
�
id˝epbw>� ıR>x1 ıR>x2 ı � id˝epbw>��1 D M�\.x1/ � M�\.x2/:

Proposition 3.23 established that M�\ is a morphism of coalgebras. It is also clear
that M�\ respects the counit maps.

We are now ready to prove Theorem 4.12.

Proof of Theorem 4.12. Since L D A‰ B is a matched pair, as vector spaces,

tot
�
�.ƒ�A_/˝R D˘poly

�
in Proposition 3.18 are isomorphic to

tot
�
�.ƒ�A_/˝R U.B/˘C1

�
:

According to Proposition 3.18, the cochain maps M�\ respects the cup products.
Therefore, it suffices to prove that M�\ in (41) respects the Lie algebra structures –
the Lie bracket on tot

�
�.ƒ�A_/˝R U.B/˘C1

�
is the Gerstenhaber bracket of the

dg Lie algebroid B ! AŒ1� as in Proposition 4.11. We know from the general
theory of dg Lie algebroids (see Section 2.1) that the Gerstenhaber bracket of a dg
Lie algebroid is completely determined by its multiplication and comultiplication as
shown by equations (20) and (21). The conclusion thus follows immediately from
Proposition 4.17.

A. Semi-full algebra contractions

Let .V; dV / and .W; dW / be complexes: recall that a contraction of .V; dV / onto
.W; dW / is the data of dg morphisms � WW ! V , � WV ! W and a contracting
(degree minus one) homotopy hWV ! V such that

�� D idW ; �� � idV D dV hC hdV ; h� D 0; �h D 0; h2 D 0:

In the following well known homological perturbation lemma [20,21] we assume
that V and W are equipped with complete exhaustive decreasing filtrations F �V
and F �W (we need this hypothesis to ensure convergence of the infinite sums in the
following Lemma A.1), i.e.

V D F 0V � F 1V � � � � � F pV � � � �

and the natural map
V ! lim

 �
pV=F

pV
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is an isomorphism, similarly for W . Furthermore, we assume that the differentials
dV ; dW and the contraction data .�; �; h/ preserve the filtrations. Recall that a per-
turbation of the differential dV on V is a degree one map �V WV ! V such that
.dV C �V /

2 D 0.
Lemma A.1 (Homological Perturbation). Given a perturbation �V WV ! V of the
differentialdV onV such that�V .F pV / � F pC1V , for allp > 0, the endomorphism
�W of W defined by

�W WD
X
l>0

�.�V h/
l�V � D

X
l>0

��V .h�V /
l�

is a perturbation of the differential dW on W , and the triple of maps

M� WD
X
l>0

.h�V /
l�; M� WD

X
l>0

�.�V h/
l ; Mh WD

X
l>0

h.�V h/
l
D

X
l>0

.h�V /
lh

is a contraction of .V; dV C �V / onto .W; dW C �W /.
In the following definition, taken from [42], we shall assume given two

associative (but not necessarily graded commutative) products �V WV ˝2 ! V and
�W WW

˝2 ! W : we do not require a priori dV and dW to be algebra derivations.
Definition A.2. A contraction .�; �; h/ of .V; dV / onto .W; dW / is a semi-full algebra
contraction if the following identities are satisfied

h�V .h˝ h/ D 0; h�V .h˝ �/ D 0; h�V .� ˝ h/ D 0; h�V .� ˝ �/ D 0;

��V .h˝ h/ D 0; ��V .h˝ �/ D 0; ��V .� ˝ h/ D 0; ��V .� ˝ �/ D �W :

Lemma A.3. Given (i) a pair of cochain complexes .V; dV / and .W; dW / carrying
additional graded associative algebra structures; (ii) a semi-full algebra contraction
.�; �; h/ of .V; dV / onto .W; dW /; and (iii) a perturbation �V WV ! V of the
differential dV satisfying �V .F

pV / � F pC1V for all p > 0, the perturbed
contraction . M�; M�; Mh/ is a semi-full algebra contraction of .V; dV C �V / onto
.W; dW C �W /.

Proof. The proof is straightforward.

Lemma A.4. Given a semi-full algebra contraction .�; �; h/ of .V; dV / onto .W; dW /,
if dV is an algebra derivation, then � WW ! V is a morphism of algebras.

Proof. Since ��V .� ˝ �/ D �W and h�V .� ˝ �/ D 0, we have

�V .� ˝ �/ D .�� � dV h � hdV /�V .� ˝ �/

D ���V .� ˝ �/ � dV h�V .� ˝ �/ � hdV�V .� ˝ �/

D ��W � h�V .dV ˝ idV C idV ˝dV /.� ˝ �/
D ��W � h�V .� ˝ �/.dW ˝ idW C idW ˝dW / D ��W :
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