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The behavior of fundamental fields in strong gravity or nontrivial environments is important for our
understanding of nature. This problem has interesting applications in the context of dark matter, of dark
energy physics, or of quantum field theory. The dynamics of fundamental fields has been studied mainly in
static or stationary backgrounds, whereas most of our Universe is dynamic. In this Letter we investigate
“blueshift” and parametric instabilities of scalar fields in dynamical backgrounds, which can be triggered
(for instance) by oscillating stars in scalar-tensor theories of gravity. We discuss possible implications of
our results, which include constraints on an otherwise hard-to-access parameter space of scalar-tensor
theories.
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Introduction.—General relativity (GR) is currently the
best description of the gravitational interaction, and has
been successfully tested on different scales [1]. The recent
direct detection of gravitational waves (GWs) [2–4]
indicates that even dynamical, strong-field regions are
adequately described by GR (up to the precision probed
by current detectors). In spite of its brilliant status, there are
a number of conceptual issues with GR, ranging from the
large-scale description of the cosmos to the fate of classical
singularities in gravitational collapse or the incorporation
of quantum effects; see, e.g., Refs. [5–7] and references
therein. The resolution of some of these challenges most
likely requires that GR be superseded by a more sophis-
ticated description.
There is currently no single compelling alternative to GR

that solves the above issues without introducing new
problems of their own. However, a variety of modified
theories have been proposed, mostly with the view to
exploring the mathematical and physics content of possible
contenders to GR. These frequently include additional
degrees of freedom, which might lead to unique observa-
tional signatures. The simplest modifications of GR are
scalar-tensor theories, where a new scalar degree of free-
dom couples to curvature or matter. Some of these theories
arise naturally as possible alternatives, since they have a
well-posed initial value problem and simultaneously evade
all known constraints. Scalars are also a generic prediction
of string theory or of extensions of the standard model of
particle physics, and are also natural candidates for dark
energy and dark matter [5–9].
Depending on the coupling to matter, to curvature and on

the self-interactions, such theories and new fundamental
fields may give rise to a wide array of new effects, such as

the spontaneous “scalarization” of objects [10–17], screen-
ing mechanisms on astrophysical scales [18–20], etc.
Potential astrophysical consequences of these theories
were mostly based on analysis in stationary settings
[10–14,18,19,21,22]. Time-dependent setups include spon-
taneous scalarization during the inspiral and merger of
neutron stars [23–27], black holes [28,29], cosmological
evolutions [30,31], or situations aimed at understanding
well posedness or other fundamental issues [32–34].
Here, we wish to understand possible new phenomena

induced by time-periodic motion, in particular by vibrating
stars such as the ones summarized in Table I. Theories for
which a constant scalar is a ground state typically have the
same stationary solutions as GR, making it challenging to
tell the two apart. However, when such stars are disturbed
(stochastically, like our Sun, or via mergers or accretion for
a neutron star), they provide a time-periodic background on
which a scalar fluctuation propagates. Indeed, we show that
oscillating stars trigger various instabilities of fundamental
fields. Such instabilities may facilitate constraints on
otherwise hard-to-access parameter space of the theory.
A toy model had been studied in a Minkowski space-

time [41,42]. Our results confirm and extend the general
picture, but in a nontrivial way, by dealing also with gene-
ral relativistic backgrounds and fluctuations and provi-
ding realistic timescales for the mechanism (details on the
general relativistic case are discussed in the Supplemental
Material [43]).
We use geometrized units c ¼ G ¼ 1 and parametrize

stars by their mass M, radius L0, and compactness

C≡ 2M
L0

: ð1Þ
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Setup.—Our main purpose is to show that oscillating
backgrounds can trigger instabilities of fundamental
fields nonminimally coupled to matter. We will show this
explicitly for the simplest example of a scalar-tensor theory,
but our results are valid for more general setups.
We focus on theories in which a scalar field Φ is coupled

to matter, described by the Lagrangian density

L ¼ R½g�
16π

−
1

2
gμν∇μΦ∇νΦ − VðΦÞ þ Lm½Ψm; g̃�; ð2Þ

where g̃μν ¼ AðΦÞ2gμν is the physical metric and Lm the
Lagrangian describing matter fields Ψm (these could be the
microscopic, fundamental description leading to notions of
density and pressure, for example). The equations of
motion for the system are

Rμν −
1

2
Rgμν ¼ 8πTμν; ð3aÞ

Tμν ¼∇μΦ∇νΦ− gμν

�
1

2
ð∇ΦÞ2þVðΦÞ

�
þTðmÞ

μν ;

□Φ−V 0ðΦÞ ¼−AðΦÞ3∂ΦAðΦÞT̃ðmÞ: ð3bÞ

Here, T̃ðmÞ ¼ g̃μνT̃ðmÞ
μν while TðmÞ

μν and T̃ðmÞ
μν are the

energy-momentum tensors of the matter fields with respect
to metric gμν and g̃μν.
The phenomena wewish to describe are also part of more

generic theories: the fundamental ingredient is a position-
dependent effective mass function for the scalar Φ. Once
linearized around a specific background, the right-hand
side of Eq. (3b) is proportional to T̃ðmÞΦ. In other words,
the coupling of the scalar to matter gives rise to an effective
scalar mass which depends on the matter content T̃ðmÞΦ.
This is one key ingredient of our study. Thus, direct
couplings to curvature would also produce similar effects
[15–17,48].
For concreteness, we focus exclusively on the following

scalar potential and coupling function:

VðΦÞ ¼ μ20
2
Φ2; AðΦÞ ¼ e

β
2
Φ2

; ð4Þ

but our results and methods can be applied to other models.
Scalar self-interactions can play an important role in the
nonlinear development of the instability; here we focus
exclusively on the physics at small Φ. Hence, our results
describe the early-time dynamics of more general self-
interacting theories. Here, μ0 is the (bare) mass parameter
of the scalar field (note that the mass ms of the field is
related to the mass parameter via ms ¼ μ0ℏ in these units).
With this choice of scalar potential and coupling function,
a vanishing scalar field is a solution to the theory and
fluctuations around this solution endow the scalar with an
effective, time and position-dependent mass. Our analysis
can also be generalized to theories with nontrivial, stable
scalar profiles, including popular examples such as sponta-
neous scalarization [10–12,15–17,49] and screening mech-
anisms [18–20,50,51].
Let us consider matter fields Ψm describing a perfect

fluid. Focus on a geometry with vanishing scalar, Φ ¼ 0,
describing a static star of (constant, for simplicity) density
ρ̃0 and radius L0 [52]. The total mass of this solution can be
written as M ¼ ð4π=3Þρ̃0L3

0.
We ignore the effect of the scalar field on the profile of

the fluid. In other words, we deal only with the Klein-
Gordon equation (3b) on this fixed geometry. Perturbing
around a background solution Φ0ðrÞ, one finds that the
stability of such solutions depend dramatically on the value
of the coupling β [10–13]. For concreteness, here we take
β < 0 with μ20 − βT̃ðmÞ ≫ −L−2

0 and such that Φ0 ¼ 0 is a
stable solution. The assumption of zero background scalar
is a conservative assumption, made to highlight the non-
trivial effects of the mechanism we discuss below, which
provides a unique tool to constrain the theory. When the
background scalar is not zero other effects become impor-
tant. For example, an oscillating body with a nontrivial
background scalar will radiate monopolar radiation, a topic
explored in the past [33,53,54].
Instabilities of oscillating astrophysical objects.—Let us

then consider the dynamical behavior of a (nonminimally
coupled) scalar field in a geometry describing a radially
oscillating star. For simplicity, the results shown below
assume a Minkowski background and are thus valid only
for Newtonian stars. General relativity effects change the
quantitative but not the qualitative behavior, and are
discussed in the Supplemental Material [43], including
an analysis of general-relativistic fluctuations of compact
stars [35,55,56]. Fluctuations around a background value of
the scalar field are described by the Klein-Gordon equation

□Φ ¼ μ2Φ; ð5Þ

with an effective mass

μ2 ¼ μ20 − βT̃ðmÞ;

which acts as a position-dependent mass term that depends
on the energy density of the star. If the star oscillates [with a

TABLE I. List of some stellar objects which can be prone to the
processes described here. We take the radial mode of a neutron
star (NS) of mass 1.3 M⊙ and radius L0 ¼ 9.7 km described by
equation of state A in Ref. [35]. For white dwarfs (WD) we take a
degeneracy parameter 1=y20 ¼ 0.05 as quoted in Refs. [36–38].
The Sun’s description was taken from Refs. [39,40]. The
compactness C is defined in Eq. (1).

C L0 (km) ωL0=c Radial frequency

NS 0.3 10 0.6 3 kHz
WD 10−3 103 0.004 0.2 Hz
Sun 10−6 7 × 105 0.029 2 mHz
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time-dependent radius LðtÞ], so does the effective mass of
the scalar field. For simplicity we here assume the simple
model

LðtÞ ¼ L0 þ δL sinωt; ð6Þ

μ2ðt; rÞ ¼ μ20 þ β½ρ̃0 þ δρ̃ðt; rÞ sinðωtÞ�; ð7Þ

where δρ̃ðt; rÞ is the amplitude of the density oscillation,
and ρ̃0 is the average of the energy density. We assume
β < 0, in such a way that μ20 þ βρ̃0 ≳ 0 to avoid tachyonic
instabilities. The competition between different mecha-
nisms is discussed in detail below and in the Supplemental
Material [43].
Here, we assumed δL ≪ L0 and δρ̃ ≪ ρ̃0. This depend-

ency has two important aspects: (i) Because the effective
mass inside the star is smaller than the exterior bare mass
μ0, cf. Eq. (7), long wavelength modes are trapped inside
the star. The oscillating star surface therefore provides
reflecting boundary conditions at the periodically varying
location LðtÞ. For setups where there is a continuous mass
profile, a radially oscillating star corresponds, nevertheless,
to periodically varying field profiles at the surface, possibly
changing on scales smaller than a wavelength. (ii) The local
density oscillations cause a time-varying effective mass for
the scalar, which lends itself to parametric instabilities as
we show below.
In astrophysically realistic stars, the time dependence of

the radius and density of the star is quite involved. Normal
modes of oscillation of a star will cause a density profile
with a sinusoidal-like radial profile as well. We studied
other profiles for the perturbation (in particular δρ̃ ∝ sinωr)
and fully general-relativistic settings and find that they lead to
similar results as described below and in the Supplemental
Material [43].
We decompose the scalar field into spherical harmonics

and evolve each mode, Φlmðt; rÞ, using a fourth-order
accurate Runge-Kutta scheme for the time integration
where spatial derivatives are approximated by fourth-order
accurate finite difference stencils. Radiative boundary
conditions are imposed at the boundary of the computa-
tional domain, which is not in causal contact with the star
during our numerical evolutions.
We use time-symmetric initial data with a profile para-

metrized by

Φlm ¼ e−ð
r−r0
σ Þ2 ; _Φlm ¼ 0; ð8Þ

where σ and r0 denoting the width and initial position of the
scalar field pulse. Since the equation to be solved is linear
we set the initial amplitude of the pulse to unity. We focus
our discussion on l ¼ 0 modes and we fix r0 ¼ 0.5L0 and
δL ¼ 0.1L0. We studied higher-l modes, and found no
qualitative difference. The results discussed below all show
fourth-order convergence.

Results.—Consider setups where the effective mass
inside [cf. Eq. (7)] the star satisfies μ2in < μ20. Low-energy
fluctuations of the scalar are trapped inside the star and
subject to conditions at the surface which might be prone to
blueshift instabilities—the growth of energy in the field can
be understood from a simple particle picture as a cumu-
lative Doppler effect [57], which is discussed in greater
depth in the Supplemental Material [43]. Such an analysis
indicates the dominant instability window to be [57],

π

L0 þ δL
< ω <

π

L0 − δL
: ð9Þ

In such cases, we see a transfer of energy from the
oscillating star to the scalar field, increasing the scalar
frequency. We can see this behavior in Figs. 1–2. Upon
each reflection at the surface the scalar drifts to higher
frequencies, and after a sufficient amount of reflections it is
no longer confined: the field is finally able to leak to
outside the star (and has frequency ω ∼ μð1þ ϵÞ, ϵ ≪ 1).
This mechanism causes the energy to grow as E ∼ E0eλBt ¼
E0e2nrefL0λB , with nref the number of reflections and λB the
instability growth rate. Here, E0 ∼ σ−1 is the initial dom-
inant spectral content at low energies, the ones that linger
long enough to be amplified. Thus, the field is able to leak
away from the star and out to spatial infinity when
e2nrefL0λBσ−1 > μ0. This occurs after a number of reflections

nref > n� ∼
ln jμ0σj
2λBL0

: ð10Þ

At the critical number of reflections, the total energy
confined inside the star as scalar field is

FIG. 1. Time evolution of a massive scalar field nonminimally
coupled to geometry, such that it is effectively massless inside the
star (μin ¼ 0) but with bare mass μ0L0 ¼ 100 and δρ̃ ¼ 0. The
field “sees” only an oscillating boundary with ωL0 ¼ 3.1; we froze
density variations inside the star. The field is extracted at r ¼ 0.5L0

and the corresponding integrated energy inside the star is shown in
the inset. Here, the initial data is characterized by σ ¼ 0.1L0.
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E
E0

����
max

¼ σμ0; ð11Þ

this being also the total amount of energy extracted from
the star.
We have thus far focused only on the effect of oscillating

boundaries, while the interior is nondynamical. However,
real objects will also have an oscillating density. Thus, the
effective mass inside the star will have a periodic time
variability, potentially giving rise to “parametric” instabil-
ities [58–61]. Figure 3 summarizes our results for non-
vanishing βδρ̃. Two mechanisms now compete, a blueshift
and a parametric mechanism. For small L2

0δρ̃, the evolution
of the scalar field is almost identical to that with a vanishing
δρ̃L2

0, and the blueshift mechanism dominates. For large
δρ̃L2

0, we observe instead that the amplitude of the scalar
field grows while its frequency is barely changing, a clear
sign that we are dealing with a different process. This is in
fact a parametric instability. Contrast this with the blueshift
instability cases, where the scalar field pulse becomes
narrower (due to the oscillating boundary) as time passes,
but its amplitude remains constant. Here, the width of the
scalar pulse is roughly constant and the instability is driven
by a growth in the amplitude of the field (due to the
oscillating effective density).
Application to astrophysical systems.—We have shown

that pulsating stars or other objects may excite important
instabilities of nonminimally coupled fields. Compact stars,
such as neutron stars, have radial pulsations with frequen-
cies satisfying ωL0 ∼ 1 for the lowest overtones [35], and
are ideal systems where such instabilities might be relevant.
These change the local density and distribution of the scalar
(which could be one dark matter component) and may even
backreact on the star. A precise description of the evolution
of the instability requires a precise knowledge of stellar

oscillations and careful modeling of the evolution of the
scalar in such backgrounds. This is a challenging program
that requires further study.
Notice first that one can apply our results for stars as long

as other dissipation mechanisms are subdominant. Of
particular importance are shear viscosity effects, which
in neutron stars have a timescale [62,63]

τη ≈ 100ρ−5=417 T2
5

�
L0

10 km

�
2

s; ð12Þ

where ρ17 ¼ ρ=ð1017 kg=m3Þ, T5 ¼ T=ð105 KÞ and T is
the neutron star temperature.
The blueshift instability is quenched after

tB ∼ 2L0n� ¼ 3 × 10−2 s

�
10−3

λBðωÞL0

��
L0

10 km

�

× ln

����10 μ

10−10 eV
σ

10 km

����; ð13Þ

and on this timescale an energy E ∼ E0σμ0 is removed from
the star. This result is not very sensitive to the initial
conditions. It is, in principle, only weakly affected by
backreaction, unless σμ0 is an extremely large number. Our
numerical results indicate that λBL0 ∼ 10−3 is a reasonable
estimate for δL > 0.01L0. The instability window for the
blueshift mechanism to work is tight, however [cf. Eq. (9)].
Only large overtones are affected by it, unless the star is
oscillating nonlinearly with δL≳ 0.1L0.
Consider now the parametric instability. When

β ∼ −ðμ2=ρ̃0Þ, with ρ̃0 the temporal average of the density
of the star, the relevant dynamics is governed by the
Mathieu equation [64,65]. This particular case provides
a test on our results, and allows us to estimate analytically
the timescales involved. For small δμ2, the instability
condition amounts to L0ω ¼ 4π=j (j ∈ Z). The instability
rate timescale for j ¼ 1, for example, is roughly tA ∼
2ω=δμ2, or

tA ∼
2ω

δμ2
∼ 1 s

�
10 km
L0

��
ωL0

4π

��
10−2ρ17

δρ̃

��
−10
β

�
;

for small δμ2=ω2. These estimates assume that the field is
effectively very light inside the star, which amounts to
requiring that

jβj ∼ 7

�
0.3
C

��
μ

10−10 eV

�
2
�

L0

10 km

�
2

; ð14Þ

but the instabilities discussed here are expected to set in
even at small nonzero effective masses. The star oscilla-
tions can be induced by accretion, tidal effects or even
mergers [66–68]. Note that numerical relativity simulations
show that the amplitude of density perturbations during

FIG. 2. Evolution of the integrated energy of a scalar inside an
oscillating star, for different bare mass parameters μ0. The
coupling to matter is such that the field is massless inside the
star (μin ¼ 0). The field sees only an oscillating boundary with
ωL0 ¼ 3.1; we froze density variations inside the star. The initial
data is characterized by σ ¼ 0.1L0.
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coalescence, for example, can be significant and of the
order of the central density itself [69,70]. Thus, both
mechanisms may act on timescales short enough to be
relevant. In fact, at large couplings β—not yet ruled out
for large bare masses—parametric instabilities will be
dominant.
Final remarks.—Nonminimally coupled, massive scalar

fields can evade all observational constraints from the
observation of nearly stationary configurations, yet produce
distinct signatures when evolving around oscillating back-
grounds. We have shown that there are at least two possible
instability mechanisms: one blueshifts light scalars inside
oscillating stars [71]; the second mechanism is of para-
metric origin, triggered by a periodic oscillation of the star
material. Possible excitation mechanisms for the scalar
field could include, for instance, coherently or stochasti-
cally oscillating dark matter.
Both instabilities act on short timescales when compared

to viscous timescales [62], and are expected to play a role in
neutron star oscillations. They can backreact on the star—
perhaps leading to gravitational collapse, or (in the blue-
shift mechanism) simply result in a leakage of high
frequency, high amplitude scalar. If a fraction, or all of
dark matter is made of a scalar component, then these
mechanisms can act to produce overdensities close to
neutron stars, providing one more route to constraining
dark matter. Details on observational signatures of these
instabilities require further studies, beyond the scope of
this work.
Similar instabilities are expected not only in scalar-

tensor theories, but also in other theories with vectors or
spinors [78–80]. Scalarized background solutions are not
prone to the type of instabilities discussed here, but star

oscillations will lead to radiation emission [33]. We expect
that the instabilities discussed here could describe and
affect other systems where a light degree of freedom is
confined to an oscillating background, potentially observ-
able in condensed matter systems.
Finally, other periodic systems include compact binaries;

it can be expected that similar blueshift mechanisms act
on such binaries. Their high degree of asymmetry makes it
more challenging to model, but their immense gravitational
potential energy certainly makes them important
candidates.
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