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Abstract

This thesis focuses on a certain class of supersymmetric gauge theories. In particular, we study
the interplay between relevant mass deformations of these theories and a projection known as ori-
entifold. Using the usual tools for N = 1 theories, such as anomaly matching and a-maximization,
we look for the conditions for the theories to be conformally invariant after the projection and
classify the possible outcomes into three scenarios. We find that for certain families of models
the mass deformation is no longer relevant, as symmetries constrain this to be exactly marginal.
Moreover, we find a web of dualities that connects these projected models and construct infinitely
many non-chiral examples, along with a single dual chiral pair. The theories of interest arise as the
gauge side of the AdS/CFT correspondence, while their gravity side is defined over the so-called
toric geometries. Thus, projection and deformation have a geometric counterpart in the gravity
theory. In this context, we use tools as brane tiling to construct our models. However, the geo-
metric interpretation associated with our new found web of dualities is not completely understood.
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This thesis is divided into six chapters. The first three introduce concepts and tools that will be
used in chapters 4, 5, and 6, which represent the original part of the thesis and where it is given a
classification of orientifold of orbifold models and their mass deformation, along with arguments for
a new duality in the context of unoriented models. These are based on the following publications

• [1]: M. Bianchi, D. Bufalini, S. Mancani and F. Riccioni, "Mass deformations of unoriented
quiver theories", JHEP, 07 (2020), hep-th/2003.09620;

• [2]: A. Antinucci, S. Mancani and F. Riccioni, "Infrared duality in unoriented Pseudo del
Pezzo", Phys. Lett. B, 811 (2020), hep-th/2007.14749;

• [3]: A. Antinucci, M. Bianchi, S. Mancani and F. Riccioni, "Suspended Fixed Points", Nucl.
Phys. B, 976 (2021), hep-th/2105.06195.
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Introduction

Our understanding of quantum physics relies on the dynamics of point particles, and the framework
that sets the rules is quantum field theory. One of the greatest achievements of modern physics
is the realization of the Standard Model (SM) along with the numerous experiments in agreement
with its theoretical predictions. And yet, after roughly a century, many problems are left open and
unsolved, above all the absence of gravity, as an unfinished puzzle that needs more pieces but it is
not known where these can be found.

The heart of the issue is that the Standard Model is an effective description of the universe,
limited to scales of energies we have been able to explore and, to a certain extent, comprehend.
Alongside this aspect, in the framework of quantum field theory we have actual control over pertur-
bative regimes, whereas the dynamics at strong coupling is simply hard to manage. The bottom line
is that energy and couplings govern the physics and its description, in facts they are the parameters
of a quantum field theory.

In this context, symmetry is the guiding tool and principle that allows to select models among
others. While on one side a symmetry lets us formulate a theory in an elegant way and provides
some physical intuition on the dynamics, on the other the more constraints that it imposes make
some computations manageable. The Standard Model is in the first place a model of a certain local
symmetry, known as gauge. The idea, and hope, that perhaps what is beyond the SM is determined
by symmetry principles was a support for supersymmetry. Even though through the years it has
not met the same experimental success of the SM, supersymmetry represents an unprecedented
tool in understanding strongly coupled sectors of a quantum field theory, constraining the form of
the interactions.

The paradigm of point particle could be problematic if we think of a particle as a probe for a
certain system, because there is no limit on the energy scale that it can reach and this is a source
for ultra-violet divergences. An attempt to deviate from this paradigm was given by Veneziano,
who wrote down an amplitude trying to reproduce the phenomena of strong interaction and that
was related to line objects, open strings. It became clear that the dynamics of these strings is
quite rich and they also allow for closed strings. The vibration modes of both open and closed
strings can reproduce the behaviour of particles, if strings are seen from a large distance. The
spectrum produced by these modes not only contains the usual fields of gauge interactions, but
also, surprisingly, gravity. While this sounds promising, the bosonic model of strings has an unstable
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vacuum. Supersymmetry solves this problem, at the same time naturally introducing fermions in
the spectrum. Demanding the resulting superstring theory to be consistent at a quantum level
determines the dimension of spacetime to be 10.

In quantum corrections of string theory is hidden a novel relation between gauge interactions
and gravity. In fact, contributions from open and closed strings are balanced, a fact that results
in curing those ultra-violet divergences. After all, a probe with an associated length has a natural
cut-off already built-in. A single framework solves many issues of modern physics, and in its
foundations open strings and gauge interactions are dual to closed strings and gravity. However,
together with the answers, new questions arised. The most prominent seems: where are the extra 6
dimensions in the world we see? A simple idea is that they are compact, but this has consequences.
For example, strings can be wrapped along these compact directions, so that the effective theory
would be 4 dimensional and whose properties depend on the details of the compact space. The
spectrum given by strings wrapped around a compact space of a certain radius matches the one
from strings wrapped around a space of inverse radius, a duality known as T -duality. Dualities
such as this have been crucial in the development of the theory.

Apart from strings, extended objects are present as solutions of localised energy, solitons, whose
tension is inversely proportional to the string coupling. These states are called Dp-branes, which
decouple from strings states in the perturbative regime, while in the strong coupling limit the
manageable description is based on branes. These extended objects provides a laboratory in which
the duality between gauge interactions and gravity can be expressed in another way. Branes can be
used as probes for a certain geometry, and strings vibrating on the brane will define a field theory:
the local physics near the brane itself is determined by the property of the spacetime.

In this spirit, the AdS/CFT correspondence arose around twenty years ago and it says that a
theory of gravity in a spacetime of the form 5-d Anti de Sitter × 5-d compact space is dual to
a conformal supersymmetric field theory living on the boundary of the AdS part. We will give
these words a context, for now the idea is that two seemingly different systems, closed strings and
particles, can describe the same physics, i.e. they give the same observables. In this sense they are
dual. This gauge/gravity duality relates theories on different spacetime dimensions, realizing the
idea of the holographic principle that degrees of freedom inside a volume can actually be encoded
on its boundary. Moreover, the two sides of the correspondence are defined at opposite regimes
of couplings, meaning that actually a low curvature geometry is dual to a strongly-coupled gauge
field theory, unveiling the non-perturbative regime.

The situation truly becomes interesting when branes probe a singular space. In fact, strings
will smooth out the singularity, and features such as global symmetries of the gauge side of the
correspondence depend on isometries of the singularity itself, properties encoded in the compact
space transverse to AdS. The holographic duality is a realization of the intimate connection between
geometry and physics that translates isometries on gravity side into symmetries of the gauge theory.

The development of String Theory has gone through various revolutions over the years, unfor-
tunately never reaching the ultimate goal of obtaining the Standard Model as an effective theory
at some low energy scale. In the attempts of embedding the SM into the framework of strings,
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a crucial ingredient is represented by the orientifold projection. This reflects some spacetime di-
rections and project out half of string modes, acting, roughly speaking, as a mirror. Even recent
works address the SM and cosmological problems exploiting such orientifold involution. Then, it
is worth studying the dynamics of field theories arising from probes of an unoriented spacetime.

In the end, the framework of String Theory is a laboratory made by tools as strings, branes,
orientifold and dualities. In this thesis we focus on certain singular spaces called toric, whose
holographic gauge dual can be systematically constructed from a set of geometric data encoded in
polygons called toric diagrams. We investigate the consequences of the orientifold projection upon
these models and in particular the fate of the conformal point in the resulting unoriented gauge
theories. The orientifold projection usually breaks conformal invariance, but we will show evidences
for a new scenario, where in the unoriented theory conformal invariance is restored in the infrared.
This is only part of the story, as we will give arguments also for these new-found fixed point to be
dual to another unoriented gauge theory. We will show that a web of dualities connects families
of non-chiral models. Interestingly, before the orientifold these families are different, but related
to a mother theory via relevant deformations that give mass to some fields in the spectrum. In
light of the geometric connection of the AdS/CFT correspondence, the expectation is that different
singular geometries are dual in some sense, if not the same, after the orientifold projection. However,
a complete understading of the geometric counterpart of these field theory results is still missing.

The thesis is ideally divided into two parts, each organised as follows. The first three chapters
introduce the background for constructing the unoriented theories of interest. In particular, Chapter
1 gives some basics on toric geometry and constructs a graph called brane tiling from geometric
data of the toric polygon. The brane tiling allows to read the gauge theory associated with the
given geometry. Chapter 2 focuses on N = 1 gauge theories and their conformal point, as we play
on this ground for our analysis. Chapter 3 introduces the orientifold projection and explains how
to construct unoriented theories from a given brane tiling, setting the stage for the scenarios we
are going to explore. The last three chapters belong to the second part of this thesis. In chapter
4 is given a systematic construction of the orientifold projection of known toric theories, many
connected by mass deformations. Chapter 5 is dedicated to the mechanism that yields the new
scenario for unoriented conformal theories and construct infinite-classes of non-chiral models in
which this occurs. The chapter also shows that pairs of unoriented gauge theories are dual to
each other. Chapter 6 presents the only chiral pair of theories that, to the best of the author’s
knowledge, features the new scenario and the duality. Finally, conclusions are drawn in the last
dedicated chapter.
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Chapter 1

Gauge/gravity duality and brane

tiling

Inspired by the Bekenstein entropy of a black hole [4] that is proportional to the area of the
event horizon, the holographic principle [5, 6] states that in a theory of quantum gravity in the
semiclassical regime the information stored in a certain volume Vd+1 of (d + 1) dimensions is
encoded in its boundary Ad. The AdS/CFT correspondence, also known as holographic duality or
gauge/gravity duality, is the first realization of the holographic principle and it arises naturally in
the context of String Theory.

1.1 A spherical horizon

The AdS/CFT correspondence [7–10] states that a theory of gravity defined on a 10-dimensional
spacetime of the form AdS5 × Y5, where AdS5 is a 5-dimensional Anti de Sitter spacetime and Y5

a 5-dimensional compact space, is holographically dual to a superconformal gauge theory living on
the 4-dimensional conformal boundary of AdS5. Let us clarify this statement showing the original
formulation of the correspondence, following [11].

Let us first state some conventions, as capital latin letters as M, N, . . . for directions in 10-
d, greeks letters as µ, ν, . . . for directions in 4-d and small latin letters i, j, . . . for the six extra
directions. In type IIB string theory, consider a stack of N D3 branes in flat spacetime. The
free parameters are the string coupling gs and α′ = l2s , with ls the string length. Being α′ a
dimensionful quantity, we need a length scale in the setup, or equivalently an energy scale, so that
we can compare it to

√
α′. Let us take gs → 0, the perturbative regime in string theory. We

can think of the D3 branes as hyperplanes on which open strings are attached, and they do not
backreact on the geometry. At low energies, i.e. E ≪ 1/

√
α′, the dynamics of open strings attached

to the D3 branes is determined by a supersymmetric gauge theory living in the world-volume (WV)
of the branes, with gauge group U(N) and N = 4 supersymmetry. On the other hand, the D3
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1.1. A spherical horizon

branes are sources for closed strings, which propagate in flat spacetime. The complete action for
massless string modes is given by

S = Sclosed + Sopen + Sint , (1.1)

where the last term stands for the interaction between open and closed strings. In terms of metric
fluctuations h, the terms in Eq. (1.1) are

Sclosed ∼ −
1
2

∫
d10x ∂M h ∂M h +O(κ) ,

Sopen ∼ −
1

2πgs

∫
d4x

[1
4F a

µνF a µν + 1
2∂µϕi∂µϕi + Vscalar +O(α′)

]
,

Sint ∼ −
1

8πgs

∫
d4x ϕF a

µνF a µν + . . . , (1.2)

where F a
µν is the field strength under the gauge group U(N), ϕ is the dilaton field, ϕi are the scalar

fields indexed by directions transverse to the D3 branes and Vscalar is their scalar potential, and
κ = (2π)7/2(α′)2gs/2. In order to ensure canonical normalization we need to rescale the dilaton
field by κ, and Sint ∼ (α′)2. Hence, if we take the particle limit of strings α′ → 0, Sclosed describes
free supergravity in flat spacetime, Sopen describes the bosonic part of N = 4 YM with

2πgs = g2
Y M

, (1.3)

while open and closed strings sectors decouple1. The effective gauge coupling of the perturbative
expansion in the YM theory is g2

Y M N = λ, called ’t Hooft coupling. Therefore, the perturbative
regime of strings is reliable for gsN ≪ 1. Keeping the t Hooft coupling fixed, we take the limit
N → ∞, known as the planar limit of the gauge theory, at which the 1/N expansion of the field
theory is mapped to a genus expansion of the string worldsheet.

In order to explore the strong coupling limit of the gauge theory we should take λ → ∞. In
this regime, the D3 branes curve the spacetime and the metric reads

ds2 =
(

1 + L4

r4

)− 1
2

ηµνdxµdxν +
(

1 + L4

r4

) 1
2 (

dr2 + r2ds2
S5

)
, (1.4)

where the 5-dimensional sphere supports the flux of the 5-form F5, which is quantized and gives

L4 = 4πgsNα′2 . (1.5)

While the asymptotic region r ≫ L reduces to 10-dimensional flat spacetime, the region r ≪ L,
1To take properly this decoupling limit, we keep the ratio r/α′ fixed, where r is the distance from the D3 branes.

It is called the Maldacena limit.
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1.2. Non-Spherical horizons

called near horizon geometry or throat, yields

ds2 = r2

L2 ηµνdxµdxν + L2

r2

(
dr2 + r2ds2

S5

)
= ds2

AdS5 + L2ds2
S5 . (1.6)

We can see that the spacetime takes the form AdS5 × S5 and L is the curvature radius of both
the Anti de Sitter spacetime and the sphere. Note that in the limit gsN ≫ 1, L2 ≫ α′ so the
radius is much larger than the string length. Due to the redshift, all states through the throat are
seen as low energy states at infinity, and hence the dynamics of closed strings in the asymptotic
region r ≫ L decouples from the dynamics of closed strings in the near horizon region r ≪ L. By
comparing the physics at the two regimes of gsN , Maldacena in [7] realised that a 4-dimensional
N = 4 SYM with gauge group2 SU(N) is dual to string theory on AdS5 × S5 with identifications

2πgs = g2
Y M

,

L4

α′2 = 4πgsN . (1.7)

The isometry of the 5-sphere is SO(6) ∼= SU(4), which is also the R-symmetry group of 4d N = 4
SYM. The ’t Hooft coupling λ = g2

Y M
N needs to be large, for the radius L to be much larger than

ls. Hence, the holographic duality is a non-perturbative statement that connects the low curvature
regime of type IIB on AdS spacetime to a strongly-coupled SCFT.

1.2 Non-Spherical horizons

The original formulationo of the AdS/CFT correspondence is highly symmetric and perhaps this
means also unrealistic. On the gauge side, we would like to have a field theory with the minimal
number of supersymmetry, N = 1. Based on what we said, this means that we need to deform
the horizon into a space whose isometry contains an U(1), which takes the role of the R-symmetry
group for minimal supersymmetry. We consider then a stack of D3 branes transverse to a curved
manifold. However, the physics of the dual gauge theory depends on the nature of the space around
the point where the stack of branes is placed. Thus, if the manifold around that point is smooth,
the physics is still N = 4. As discussed in [12], the setup becomes interesting when the transverse
space has a singularity and the branes brought to the singular point. The near horizon limit is
still of the form AdS5 × Y5, and the properties of the horizon Y5 determines the field theory of the
gauge side, in particular the global symmetry. In order to have N = 1, the holonomy group of
the cone over Y5 must be SU(3), and for the cone being a Calabi-Yau (CY) three-fold, the horizon

2If you think that we are missing an abelian factor, you are right. We said U(N) before, but U(N) ∼= SU(N) ×
U(1), and the abelian factor corresponds to a free vector multiplet that describes the motion of the center of mass of
the system of branes.
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1.3. Toric geometry

must be a 5-dimensional Sasaki-Einstein manifold. For the rest of this manuscript, we will consider
orbifold singularities, obtained by quotienting the cone over the 5-sphere by a discrete subgroup
of SU(3)3, and deformations of these spaces. In particular, we shall consider toric CY cones, as
we have more control on toric spaces. After giving definition and properties of toric spaces, we are
going to introduce the machinery that allows us to read the dual SCFT from geometric data. In
particular, we will construct quiver gauge theories and the so-called brane tiling.

1.3 Toric geometry

A d-dimensional toric variety is defined by a fan Σ, which is a collection of strongly rational
polyhedral cones σ in Rd generated by n ≥ d vectors vi ∈ Zd such that

σ =
{

n∑
i=1

aivi | ai ≥ 0
}

σ ∩ (−σ) = 0 , (1.8)

so the apex of the cone stays at the origin and the edges are spanned by vectors vi. To each of
these vectors we associate a homogeneous coordinate zi ∈ C, and from the resulting Cn, the set

VΣ = ∪I {(v1, v2, . . . , vn) | vα = 0 ∀α ∈ I} , I ⊆ {1, . . . , n} , (1.9)

is quotiented out. The toric manifold M is then

M = Cn \ VΣ

(C⋆)n−3 ×A
, (1.10)

where A is an abelian group and (C⋆)n−3 acts as

(v1, v2, . . . , vn) ∼ (λQ1
v1, λQ2

v2, . . . , λQn
vn) , λ ∈ C⋆ ,

n∑
i=1

Qi
avi = 0 , a = 1, . . . , n− 3 , (1.11)

where Qi
a are (n− 3) charges called toric data. Having defined the toric variety, we want it to be a

CY manifold. This happens when all the vectors vi lie on the same hyperplane, condition that is

3One can construct orbifold singularities C3/Γ with Γ an abelian [13] or non-abelian [14] subgroup of SU(3)
acting on C3. We shall work only with the abelian orbifold.
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1.4. Brane tiling

Figure 1.1a: The toric diagram of
C3.

Figure 1.1b: The toric diagram of
C2/Z2 × C.

Figure 1.1c: The toric diagram of
C3/Z3.

translated into a constraint for the charges Qi
a

n∑
i=1

Qi
a = 0 ∀a . (1.12)

Moreover, this condition imposes also that the toric CY variety is non-compact. For the case of
interest, a toric CY three-fold, the vectors vi must lie on the same plane and therefore can be
brought to the form vi = (1, wi), with wi lying on that two-dimensional lattice and spanning a
graph. The dual graph is called the toric diagram and completely defines the fan Σ and, hence,
the toric CY manifold. Examples of toric diagrams are displayed in Fig. 1.1a-1.1c. Note that the
toric diagram is actually defined up to a SL(2,Z) transformation, that can change the shape of the
diagram but preserves the number of internal and external points, as well as the number of points
in an edge. Finally, a toric CY three-fold has isometry U(1)3, or an enhancement of rank 3. One
of the abelian factors is identified with the R-symmetry of the dual SCFT arising in the WV of D3
branes probing a toric CY cone, while the remaining U(1)2 is at the base of the construction we
shall see in the next section. See [15–18] for further details on toric geometry.

1.4 Brane tiling

The configuration relevant for our purposes is made of N D3 branes placed on the tip of a toric
CY cone, the singular point of the space. The toric space can be seen as a T3 fibration over the
polytope given by the toric diagram, in particular the T3 degenerates to a T2 along the edges. We
exploit the presence of the torus T2 in order to construct a fivebrane diagram, as we shall see. We
follow closely [19], but we invite the reader to have a look at the original papers and reviews on
brane tiling in order to find many more details [20–33].

1.4.1 A picture of five-branes

Consider a stack of D3 branes on the singular point of a toric CY cone, as in Tab. 1.1. The torus
T2 of the toric space wraps, say, directions x5 and x7.
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1.4. Brane tiling

0 1 2 3 4 5 6 7 8 9

D3 − − − −
CY3 − − − − − −

Table 1.1. D3-branes and toric CY threefold singularity.

Performing T -duality along these two directions results in a configuration with D5 branes, while
the geometry turns into orthogonal NS5 branes as in Tab. 1.2

0 1 2 3 4 5 6 7 8 9

D5 − − − − − −
NS5 − − − − − −
NS5’ − − − − − −

Table 1.2. D5-branes and NS5 branes T-dual to the configuration with D3 and CY3.

The reason why we prefer this T -dual configuration is two-fold. First, the configuration of
D3 branes at a CY singularity becomes a system of D5 and NS5 branes in flat spacetime. The
information on the geometry is now encoded into the NS5s. This system of 5-branes can be
complicated, but the tension of the branes are

τD5 ∼
1

gs(α′)3 , τNS5 ∼
1

g2
s(α′)3 (1.13)

and we can take the strong coupling limit where the 5-branes becomes flat and the NS5s are
orthogonal to the D5. Second, we can easily count the amount of supersymmetry. In fact, since the
three fivebranes do not wrap the same extra directions, supersymmetry is reduced by 1/8 and we
end up with 4 supercharges. The D5 branes wrap the T2, so the theory living in its worldvolume
is four dimensional, which means N = 1.

Let us look closely at the system of fivebranes. We may have several parallel NS5 branes and
NS5’, which divide the WV of the D5 into different subregions. We identify these subregions with
various gauge factors in the WV field theory. The important point is that at the junctions between
the fivebranes, (p, q)-branes are formed, i.e. objects charged under both types of branes. We
consider only (N, 0), (N,±1) branes. To understand better their role, we introduce the fivebrane
system as follows. Represent the T2 as a square with opposite boundaries identified, while the two
orthogonal directions stands for the two 1-cycles of the torus. The D5s are wrapped around the
graph while the NS5 wrap only 1-cycles, i.e. they are represented as arrows. Consider only one of
them, it splits the graph into two regions, thus a NS5 divides the D5’s WV. The NS5 charge jumps
by one unit between the two regions, with the convention that the charge increases going to the
right of the arrow and decreases to the left. Having a configuration of many NS5s, we obtain a web
of intersecting arrows, generating the subregions we mentioned before.
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1.4. Brane tiling

Figure 1.2a: The toric diagram of C2/Z2 ×C
and the vectors orthogonal to the edges.

(N, 0) (N, 0)

(N, 0)

(N, 0)

(N, 0)(N, 0)

(N, −1)

(N, +1)

(N, +1)

(N, −1)

Figure 1.2b: The fivebrane diagram of
C2/Z2 × C.

Let us clarify some points. We said that we take the strong coupling limit in order to have
flat NS5 branes and produce a clear picture. In the weak coupling limit, the NS5 in the system
recombine into a holomorphic curve that intersect some 1-cycles of the torus. Furthermore, the
structure of the fivebrane diagram is directly related to the toric diagram, i.e. the toric geometry.
Take the dual graph spanned by outgoing vectors orthogonal to the edge of the toric diagram, and
embed these vectors on the planar graph representing the torus, obtaining the fivebrane diagram
we have been constructing. A picture is worth a thousand words, so see Fig. 1.2a-1.2b where we
work out the example of C2/Z2 × C.

Identified already the regiones (N, 0) as gauge factors, SU(N) in the 4d gauge theory, we can
explore all other elements. At the intersections, massless open strings connect the two sub-parts of
the D5 WV. Given the number of supersymmetries for the presence of NS5 branes, only strings in
one direction are allowed, as can be seen directly from the fivebrane diagram and the vectors over
it. In fact, the 4d theory is chiral4. Thus, at the intersection we have bifundamental chiral fields
Xab transforming under two gauge factors labelled with a and b. Note that the lower indices in Xab

denotes only the group labels and the direction from a to b, they are not gauge indices, which we
are suppressing for the sake of clarity. The complete notation for Xab would be (Xab)ia

jb , where
lower indices as ia belongs to the fundamental representation, upper as jb to the anti-fundamental.

These bifundamentals surround the regions (N,±1), going clockwise for (+1) and counterclock-
wise for (-1). Note that these regions are topologically disks and at some points of the boundary
massless open strings are inserted. We interpret these regions as disk amplitudes, and then as inter-
action terms in the 4d field theory. Then, these interaction terms are composed of bifundamental
fields surrounding the disk, resulting in a trace operator whose sign is given by the direction around
the disk itself,

(N, +1) : + (Xab)ia

jb(Xbc)jb

lc . . . (Xfa)kf

ia = +Tr
∏

Xab . . . ,

(N,−1) : − (Xab)ia

jb(Xbc)jb

lc . . . (Xfa)kf

ia = −Tr
∏

Xab . . . . (1.14)

4Usually chiral. In some cases the matter content results in a non-chiral theory, and in others part of supersym-
metry gets restored resulting in N = 2. An example is C2/Zn × C.
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1 1

0

0

11

(−1)

(+1)

(+1)

(−1)

Figure 1.3: The fivebrane diagram of C2/Z2 × C. The gauge groups are labelled with 0 and 1.

As an example, look at the fivebrane of C2/Z2 × C in Fig. 1.3, where the different gauge factors
have been labelled5 with 0 and 1. The bifundamental fields are

X1
01 =

(
0, 1

)1
, X1

10 =
(

1, 0
)1

X2
01 =

(
0, 1

)2
, X2

10 =
(

1, 0
)2

X00 = ϕ0 =
(

0, 0
)

, X11 = ϕ1 =
(

1, 1
) (1.15)

where the latter two fields are actually adjoints and the upper index is put to distinguish different
fields with the same transformation rules. The superpotential can be read from the fivebrane
diagram

W
C2/Z2×C

= ϕ1X1
10X2

01 − ϕ1X2
10X1

01 + ϕ0X1
01X2

10 − ϕ0X2
01X1

10 . (1.16)

One final step remains to turn the fivebrane diagram into the brane tiling. Shrink the disks into
points, white point for (+1) and black for (−1), and connect white points to black one by edges. We
obtain a bipartite graph, as the edges represent the bifundamental fields. In fact, an edge is shared
between two adjacent faces/gauge factors, with an orientation given by the direction from white to
black points. This is the brane tiling, that encodes the information about the toric CY geometry
and completely defines the dual gauge theory in the sense of the AdS/CFT correspondence. See
Fig. 1.4 for the first example.

To sum up, a toric diagram specifies a certain toric geometry and from only the data in the
diagram we can construct the brane tiling, which translates geometric information into the dual
4d gauge theory. The dictionary of this bipartite graph consists in: each face is a gauge factor
SU(N)a, each edge is a bifundamental field Xab transforming under the adjacent faces, with an
orientation given by the direction black to white, the nodes represent the superpotential terms.

Moreover, the bipartite nature of the graph descends from the toric condition. Being each node
an interaction term, each field appears twice in the superpotential, once with positive sign and once

5We usually count the gauge factors starting from 0. It is for convenience, the reason will be clear when we
discuss orbifold singularities and quivers in more detail.
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1 1

0

0

11

Figure 1.4: The brane tiling of C2/Z2 × C.

with negative sign. All interaction terms are monomial in the fields and written as trace operators.
We say that they are mesonic operators, in contrast of baryonic operators usually in the form detO.

The global symmetry of the resulting gauge theory has several factors. Again, we divide them
into mesonic and baryonic. The mesonic symmetry is the toric U(1) × U(1) × U(1)R, which can
get enhanced to a rank three group. For example, in C2/Z2 × C, an SU(2) rotates Xi

01, another
one rotates Xi

10 instead. The baryonic factor is of the form U(1)|G|−1, where |G| is the number
of gauge factors. This comes from the fact that each (N, 0) region in the fivebrane diagram is
actually a U(N) group, but U(N) ∼= SU(N)× U(1). The beta functions of the two factors behave
differently and in the IR the U(1) factor becomes weakly coupled and we consider it as a global
symmetry. So, there as many global abelian factors as number of gauge factors, with the condition
that they are non-anomalous, i.e. the ABJ anomaly (global)×(gauge)2 vanishes. There are finally
(|G| − 1) global U(1) as the baryonic symmetry. The single U(1) that is needed to ensure anomaly
cancellation can be thought of as the center of mass of the system of branes that decouples in the
IR.

1.5 The fast forward algorithm

We are going to close the circle and show how toric data are encoded in the brane tiling and how
to retrieve them from the bipartite graph. Let us start by defining a perfect matching [21]: it is
a set of fields that connect all nodes in the tiling exactly once. The statistical mechanics of a set
of perfect matchings is called dimer model, for this reason we are going to use the words dimer
and brane tiling interchangeably. From the brane tiling, one can define various perfect matchings
and assign them a winding number around the fundamental cell of the torus, where the tiling is
embedded. Choose two directions representing the two 1-cycles of the torus and a direction for
the edges, say from white to black. With the example in Fig. 1.4 in mind, (ha, hb) will be the
winding number around the two directions of the square fundamental cell, ha goes horizontally and
hb vertically. We find 5 perfect matchings pα, we list all of them and their winding numbers in
Fig. 1.5. The winding numbers give exactly the coordinates of the toric diagram, up to a SL(2,Z)
transformation. Note that the internal point in the long side of the toric diagram has degeneracy
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p1, (-2,0) p2, (-1,0) p3, (-1,0)

p4, (0,0) p5, (0,1)

(0,0)(-1,0)(-2,0)

(0,1)

Figure 1.5. The list of all perfect matching for C2/Z2 × C, their winding numbers and the resulting toric
diagram.

2, as two perfect matchings have the same winding numbers. Only non-extremal points may have
degeneracy larger than 1, and there can be various toric diagrams with the same shape that differ
for the degeneracy of these points. Associated to the same geometry, the relation between them is
called toric duality and its counterpart in field theory side will be discussed in the next chapter.

1.6 Quiver gauge theories

Toric diagrams and brane tilings are powerful constructions that allow us to embed a gauge theory
on a torus while storing information about the geometry. We are going to construct another way
of representing a gauge theory, more convenient as the gauge group and matter content can be
read more quickly but less powerful because we lose information about the geometry, and hence
about the superpotential. The idea is to use a collection of nodes and arrows, called quiver [34–39],
where each node is a gauge group SU(N). For a general quiver each rank can differ one to another,
whereas for a toric quiver all ranks are equal. These nodes are connected by arrows, bifundamental
fields transforming in the fundamental of the outgoing node and in the antifundamental of the
ingoing node. If we are starting from a brane tiling, we just need a dictionary to draw the associate
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0 1

Figure 1.6: The quiver diagram for C3/Z2.

quiver as in Tab. 1.3.

Brane tiling Quiver Gauge theory

Face a Node a SU(N)a

Edge a|b Arrow a→ b
(

a, b

)
Table 1.3. The dictionary between tiling and quiver diagrams.

Coming back to our example C2/Z2 × C, from the brane tiling in Fig. 1.4 we get the quiver in
Fig. 1.6. However, what we gain in convenience we lose in information as we still need to read the
superpotential from the tiling to completely define the gauge theory. In case of simple examples
we can guess what is the form by going around the quiver following the arrows and forming trace
operators. Fig. 1.6 is a case, since it is an orbifold of C3 and all the terms are cubic, but in more
involved instances, obtained by deformation of orbifolds, it is not granted.

1.6.1 Cancellation of gauge anomaly and fractional branes

A chiral gauge theory is physically meaningful if gauge anomalies vanish, so we need to ensure that
this happens for all the cases. When dealing with toric gauge theories, all gauge factors have equal
rank N , the number of D3 branes, and the matter content is such that the anomaly cancellation
condition is already ensured. However, from the point of view of the quiver gauge theory, sometimes
there are more choices of the ranks that cancels the anomaly and in principle the gauge theory is
well-defined with all of them. In the rest of the manuscript, we assign general rank Na to each
node labelled by a and put constraints over them from gauge anomaly cancellation. It is easy
to write down this condition once we have drawn the quiver as we need to account for fermions
running inside a loop triangle with gauge currents attached. For each node in the quiver, say node
a we add up the anomaly coefficients Aρ associated with each arrow attached to the node, with a
positive sign for outgoing arrows, being fundamental, and negative sign for ingoing arrows, begin
antifundamental:

∑
Outgoing a

Aρ −
∑

Ingoing a

Aρ = 0 , (1.17)
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where the anomaly coefficients depend on the representation. In case of bifundamental fields/arrows
Xab, their contribution is given by (1 × Nb), where Nb is the rank of node b. For the quiver in
Fig. 1.6 the condition is trivially realised as

2×N1 − 2×N1 = 0 ,

2×N0 − 2×N0 = 0 . (1.18)

since the theory is non-chiral and hence we can choose any N0 and N1. For a chiral theory, this
condition put constraints on the ranks usually admitting some shifts between them. It is worth
saying that this is not the only way to ensure anomaly cancellation, but it can be obtained by
topological and geometric reasoning from the toric diagram and the brane tiling, considering that
anomaly cancellation follows from RR charge conservation [40] and following the spirit of the
correspondence, see [23, 41, 42].

The geometric meaning of shifts between the ranks, for instance a gauge factor with rank N

and another with rank N +M , is related to the presence of M D5 branes wrapped around compact
2-cycles and hence they are stuck at the singularity, whereas N regular D3 branes can be moved
away from the singular point. Fractional branes usually break conformal invariance and hence they
induce a non-trivial RG-flow out of the fixed point. They are classified into three different classes,
depending on the IR dynamics they trigger:

• deformation fractional branes, allowed when the toric geometry admits deformation of the
complex structure. They break conformal invariance and along the flow to the infrared, the
number of regular branes decreases. Tipically confinement occurs at the end of the flow.

• N = 2 fractional branes, related to the present of internal points on the sides of the toric
diagram. In these cases the geometry has a complex line of singularity rather than an isolated
point, in particular (k− 1) internal points on a side gives rise to a line of C2/Zk singularities.

• supersymmetry breaking fractional branes, which trigger a flow and in the infrared the theory
has a dynamically generated superpotential that leads to supersymmetry breaking.

1.6.2 Flavour branes

We can add non-compact D7 branes to the system, which are called flavour branes. Their presence
generates a D3-D7 open string sector and corresponding new matter fields. As the dynamics of
the D7 is decoupled from the 4d dynamics in the WV of D3, the U(N) group factors associated
to the D7s are global symmetry factors. Consequentely, the additional matter fields transform in
the fundamental or antifundamental of gauge factors, and antifundamental or fundamental of these
global group factors. In a quiver diagram, they contribute with other nodes that we choose to draw
as red squares, see Fig. 1.7 for an example of our convention. The inclusion of flavour branes on
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a b
Xi=1,2

ab a α
qaα

α a
q̃αa

Figure 1.7. The conventions of fields appearing in this work. On the left, two bifundamental fields
transforming under gauge factors a and b, represented by blue nodes, center and right fields transforming
under a gauge factor a and a flavour group α, in red. field

the brane tiling is discussed in the literature and they are nicely represented as open paths in the
dimer, see [19, 43–46].
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Chapter 2

The other side of the throat

2.1 The conformal point of N = 1 gauge theory

The gauge side of the holographic correspondence is a supersymmetric gauge theory that is con-
formal. Determining the condition such that the theory we read from the brane tiling is conformal
is then an important issue. This is simply the condition that the beta function vanish for all of
the gauge couplings. For a general N = 1 supersymmetric theory, with a single gauge group G

and a list of matter superfields transforming in a representation ρ of G, the expression of the exact
perturbative beta function has been given by Novikov, Shifman, Vainshtein and Zakharov in [47]
as the so-called NSVZ beta function for the gauge coupling g

βg = − g3

16π2
3TAdj −

∑
i Tρi (1− γi)

1− TAdj
g2

8π2

, (2.1)

where Tρ is the Dynkin index of the representation ρ, γ is the associated anomalous dimension and
the sum runs over all matter fields. Requesting the existence of a conformal point, i.e. imposing
β = 0 implies that

3TAdj −
∑

i

Tρi (1− γi) = 0 , (2.2)

which not only depends on the representations but also on the anomalous dimensions γ. Note that
it is easy to apply Eq. (2.2) to a quiver, with the sum running on the arrows attached to a node.
Determining γ is in general quite complicated, but actually we seek for their value at the fixed
point, and supersymmetry comes in our help. The lowest component of a chiral superfield is the
scalar field ϕ and its dimension ∆ is given by

∆ = 1 + 1
2γ . (2.3)
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Consider for a moment a gauge-invariant chiral primary operator O. For a conformal theory, the
superconformal algebra determines the relation between the scaling dimension ∆O and its R-charge
RO as

∆O = 3
2RO = 1 + 1

2γO . (2.4)

Moreover, for any scalar gauge-invariant operator O, for the theory be unitary we have the bound

∆O ≥ 1 ⇒ RO ≥
2
3 , (2.5)

where the equality holds only for a free operator.
We can form a gauge-invariant chiral operator by composing matter fields, and since the R-

charge of composite operators are additive, so are the anomalous dimensions. Thus, for a super-
conformal theory, we can think of the R-charge and anomalous dimension of matter fields related
as in Eq. (2.4). We can rewrite eq. (2.6) in terms of R-charges, so the condition for a fixed point
turns into a constraint on the R-charges:

TAdj +
∑

i

Tρi (R0 − 1) = 0 , (2.6)

where R0 is the R-charge of the scalar component. This is equivalent to demanding that the R-
symmetry is not anomalous, i.e. the ABJ anomaly for R-symmetry current is zero. Note that
(R0− 1) is the R-charge of the fermionic component, since the chiral fermions enter in the triangle
loop diagram associated to the anomaly, while gauginos have R-charge equal to 1.

Summing up, we require the R-symmetry to be anomaly-free, but only at the conformal point
this condition is equivalent to the condition that the beta functions vanish.

The presence of matter fields we need to carefully look at global symmetries. Any of these fields
can be transformed under a U(1) group, i.e. rotated with a certain phase. If we have a number ns

of matter fields, the N = 1 theory has (ns − 1) non-anomalous abelian factors. The crucial point
is that these phases can mix together, including the U(1)R symmetry. The consequence is that we
can not uniquely define an R-symmetry, all we can do is choosing a combination of R0 with all
other abelian factors FI

Rt = R0 +
ns−1∑
I=1

sI FI , (2.7)

where t stands for "trial". This is true but at the conformal point, where the combination in
eq. (2.7) is uniquely determined, resulting in the truly conserved U(1)R symmetry, as shown by
Intriligator and Wecht in [48]. The reason is again given by the supersymmetry algebra, as follows.
The stress-energy tensor Tµν and the R-symmetry current JR are both in the same supermultiplet,
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the super-stress tensor Tαα̇. For 4d conformal theories in curved space-time, the trace of the stress
tensor is non-zero and reads

T µ
µ = aE4 + cW 2 , (2.8)

where E4 is the Euler density

E4 = 1
4ϵµ1ν1µ2ν2ϵρ1σ1ρ2σ2Rµ1ν1ρ1σ1Rµ2ν2ρ2σ2 , (2.9)

Wµνρσ the Weyl tensor, and a and c the central charges, which contain the ’t Hooft anomalies TrR3

and TrR [49, 50] in the following way

a = 3
32
(
3TrR3 − TrR

)
,

c = 1
32
(
9TrR3 − 5TrR

)
. (2.10)

When holography holds, at large N a = c, i.e. Tr R = 0 [10, 51–53].
Let us look at the central charge a, which in a certain sense counts the degrees of freedom and

its value decreases along the RG flow, i.e. aIR < aIR [54]. Based on the previous discussion, we
should really look at the central charge at of the trial Rt in Eq. (2.7), so that

∂at

∂sI

= 3
32
(
9TrR2

t FI − TrFI

)
, (2.11)

∂2at

∂sI ∂sK

= 27
16TrRtFI FK . (2.12)

The two triangle anomalies appearing in Eq. (2.11) are related by the superconformal algebra.
Since Tµν and JR are in the same supermultiplet, TrR2

t FI ∝ ⟨TµνTρσJFI
⟩ ∝ TrFI [55], with the

proportionality constant being exactly1 9: 9TrR2
t FI = TrFI identifying the extrema of the central

charge at. A similar reasoning gives TrRtFI FK ∝ ⟨TµνJFI
JFK
⟩ ∝ − ⟨JFI

JFK
⟩, so that the extremum

is a maximum. In general, being the central charge at a cubic function of the R-charges, the
maximum is a local one.

The bottom line is that the superconformal algebra selects the unique combination Rt that
defines the conserved R-symmetry at the IR fixed point. This procedure, known as a-maximization,
allows us to identify the superconformal point of a 4d N = 1 theory, assigning the proper R-charges
to all matter fields. Note that no superpotential was turned on in the previous discussion, but we
can apply the same reasoning imposing that the symmetries are not broken by a superpotential W

and that all terms2 in W carry R(W ) = 2. So, the general procedure that we shall use in the next

1To see this, just study the case of a free theory, where matter fields have R = 2/3.
2To be a bit more precise, we should start with no superpotential and then add a deformation as W = λO, with
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2.1. The conformal point of N = 1 gauge theory

chapters is

1. impose cancellation of any gauge-anomalies;

2. impose cancellation of ABJ anomalies for any abelian factor in the global symmetry;

3. if W ̸= 0, impose that any abelian global symmetry is preserved by the superpotential;

4. if W ̸= 0, impose that R(W ) = 2;

5. use any non-abelian factor in the global symmetries to impose further constraint on the
R-charges;

6. choose a combination of R-charges in agreement with the previous steps. These Rs will be
functions of one or more variables;

7. write down the central charge a as a function of the Rs;

8. find the maximum of the central charge a to identify the superconformal R-charges.

Before showing an example, let us give some remarks. First, one may wonder what happens
in case a global abelian factor has TrFI = 0. From superconformal algebra, this means that this
symmetry does not mix with the R-symmetry, as TrR2FI = 0. This is what happens for baryonic
symmetries. Second, we have implicitly assumed that at the IR fixed point no accidental symmetries
are generated. A case in which this happens but we can control is the case of a gauge-invariant
operator O that violates the unitarity bound R ≥ 2/3. Along the flow, this operator O hits the
unitarity bound at R = 2/3 and becomes free, consequently it decouples generating a further
accidental abelian factor that mixes with the R-symmetry and under which only O is charged.
In [56] it is shown how to correct the a-maximization procedure taking into account the accidental
U(1):

ãt = at + 3
32
(
3Tr R3 − Tr R

)∣∣∣
R=2/3

− 3
32
(
3Tr R3

O − Tr RO
)

= at + 1
96 (2− 3RO)2 (5− 3RO) , (2.13)

where ãt and at are the corrected and uncorrected central charges, respectively. So, after having
found the maximum of at and the superconformal R-charges, one should check if any gauge-invariant
operator decouples and, when that happens, repeat the procedure correcting the central charge.

Finally, let us show an example of how we implement a-maximization, following the procedure
we have described. Consider the theory associated to orbifold C3/Z2, whose quiver and tiling

λ a coupling and O a gauge invariant operator. The coupling λ can run and with R(W ) = 2 we are looking for a
fixed point for λ.
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2.1. The conformal point of N = 1 gauge theory

0 1

Figure 2.1a: The quiver diagram for C3/Z2.
Figure 2.1b: The brane tiling for C3/Z2.

are drawn in Fig. 2.1a-2.1b. The gauge group is SU(N) × SU(N), with six matter fields, four
bifuntamentals X1

01, X2
01, X1

10, X2
10 and two adjoints ϕ0, ϕ1, interacting with superpotential

W
C3/Z2

= ϵij

(
ϕ1Xi

10Xj
01 + ϕ0Xi

01Xj
10

)
. (2.14)

This theory is actually N = 2, but that is not a problem since we can express the fields in N = 1
multiplets. Being non-chiral, it does not suffer from gauge-anomalies, so there is no constraint
for the ranks. Moreover, being the theory associated to a toric space, we expect that the global
symmetry contains mesonic factors of rank 3 and only one baryonic abelian factor U(1)B. We shall
see that this is the case.

From the superpotential we can read an SU(2) global symmetry rotating X1
01 and X2

01, X1
10

and X2
10. Due to this non-abelian symmetry, we count four fields, ϕ0, ϕ1, Xi

01, Xi
10 and two

superpotential terms. In order to find the number of global U(1)q, we impose q(W ) = 0 and
cancellation of ABJ anomaly3

q00 + q01 + q10 = 0

q11 + q10 + q01 = 0

2N0q00 + 2N1q01 + 2N1q10 = 0

2N1q11 + 2N0q10 + 2N0q01 = 0 , (2.15)

where q00, q11 are the charges associated to the adjoint fields ϕ0 and ϕ1, similarly for q01 and q10.
The space of solution, which requires N0 = N1 = N , is parametrized by two variables, hence there
are two abelian factors. As for the R0-symmetry U(1)R0 , we impose R(W ) = 2 and anomaly-free

3We are using for SU(N) T = 1 and TAdj = 2N .
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2.1. The conformal point of N = 1 gauge theory

condition and the Z2 symmetry4 R01 = R10 as

R00 + 2R01 = 2

R11 + 2R01 = 2

2NR00 + 4NR01 + 2N = 0

2NR11 + 4NR01 + 2N = 0 , (2.16)

and two of them are redundant. In total, the global symmetry is SU(2) × U(1) × U(1) × U(1)R0 ,
and a possible choice of charges is given in Tab. 2.1.

SU(2) U(1) U(1)R0 U(1)B

ϕ0 1 +1 0 0

ϕ1 1 +1 0 0

Xi
01 -1 +1 +1

Xi
10 0 +1 -1

Table 2.1. Charge table of C3/Z2.

Note that TrU(1)B = 0, so that the abelian factor is baryonic. Moreover, the mesonic factor is
SU(2)×U(1)×U(1)R0 as we should have expected being the theory toric. We need now to choose
a combination of the U(1) non-baryonic factors, construct the central charge a and maximize over
it. The most general combination for R-charges is given by a solution of Eq. (2.16), hence

R00 = R11 ,

R00 + 2R01 = 2 . (2.17)

Note that we can choose only one R-charge, signaling that only one U(1) is mixing with U(1)R0 .
The ’t Hooft anomalies read

Tr R = 2(N2 − 1)(R00 − 1) + 4N(R01 − 1) + 2N = −2(R00 − 1) , (2.18)

Tr R3 = 2(N2 − 1)(R00 − 1)3 + 4N(R01 − 1)3 + 2N

= 2(N2 − 1)(1− 2R01)3 + 4N(R01 − 1)3 + 2N . (2.19)

We take the large N limit to meet the holography condition, so that TrR = 0. The central charge

4We have not used it before because we would have missed the baryonic factor.
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Nc

Nf

Nf

Q

Q

Figure 2.2. The quiver for SQCD with gauge group SU(Nc) and Nf flavours.

a has a maximum at

R00 = R01 = 2
3 , (2.20)

a
C3 /Z2 = 3

32
(
3TrR3 − TrR

)
= 1

2N2 . (2.21)

Finally, the gauge-invariant operators that can be constructed from the fundamental fields are Trϕ2
0,

Trϕ2
1, TrXi

01Xj
10 and all of their scaling dimension ∆ is above the unitarity bound, hence none of

them decouple. From now on, we will drop the zero in U(1)R0 as it will be clear from the context5

if we are dealing with the superconformal R-charge or not.

2.2 Seiberg duality

We took a quite general detour in explaining how to determine the conformal fixed point of an
N = 1 gauge theory with general gauge group G and matter fields in some representation, but the
result is quite powerful. We can achieve an equally , if not even more, powerful result by looking at a
simple model, the prototypical N = 1 supersymmetric theory: SQCD. Let us consider G = SU(Nc)
with Nf flavours, so Nf quark Q in the fundamental representation and Nf anti-quark Q̃ in the
antifundamental, and no superpotential. Take Nf > Nc, so that we can define baryons and mesons
as gauge-invariant operators parametrizing the classical moduli space. The global symmetry is
SU(Nf )×SU(Nf )×U(1)B ×U(1)R, see the quiver drawn in Fig. 2.2 and charges in Tab.2.2. The
NSVZ beta function Eq. (2.1) read

SU(Nf ) SU(Nf ) U(1)B U(1)R

Q 1 +1 Nf −Nc

Nf

Q̄ 1 -1 Nf −Nc

Nf

Table 2.2. Charge table of SQCD with gauge group SU(Nc) and Nf flavours.

5A hint is for example whether there are other non-baryonic U(1)s around or not.
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2.2. Seiberg duality

βg = − g3

16π2
6Nc − 2Nf (1− γ)

1− 2NC
g2

8π2

, (2.22)

where γ = γQ = γQ is the anomalous dimension of the quarks and in perturbation theory

γ = − g2

8π2
N2

c − 1
Nc

+O
(
g4
)

. (2.23)

Inserting in the beta function and expanding βg we get

βg = − g3

8π3 (3Nc −Nf )− g5

64π4

[
3Nc(2Nc −Nf ) + Nf

Nc

]
+O

(
g7
)

. (2.24)

Suppose the gauge coupling is small, then the sign of the beta function is given by (Nf − 3Nc).
When Nf > 3Nc, βg > 0 and the gauge coupling goes to zero in the IR, where the theory is free.
Asymptotic freedom can be reached with the opposite behaviour, βg < 0 and Nf < 3Nc, but in
the IR the gauge coupling tends to increase. The second term in Eq. (2.24) may cancel the first,
possibly signaling the presence of a fixed point. In order to see what happens, choose Nf slightly
lower than 3Nc,

Nf = 3Nc − ϵNc , 0 < ϵ < 1 , (2.25)

and looking at Eq. (2.24) we get

βg = − g3

8π2

[
Ncϵ−

g2

8π2 3 (Nc − 1) +O(ϵ) +O
(
g4
)]

. (2.26)

There is a perturbative fixed point at

g2
⋆ = 8π2

3
Nc

N2
c − 1ϵ , (2.27)

known as the Banks-Zaks fixed point [57].
We could have found a conformal point from the exact NSVZ with

γ = Nf − 3Nc

Nf
. (2.28)

Since the only other abelian factor is baryonic, the U(1)R is determined by anomaly cancellation
only

2(RQ − 1)Nf = −2Nc ⇒ RQ = Nf −Nc

Nf
(2.29)
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Nf
3
2Nc 3Nc

Conformal
Window

Asymptotic
freedom

IR
free

Figure 2.3. The conformal window and outer regions for SQCD with gauge group SU(Nc) and Nf flavours.

and no need for a-maximization. Note that Eq. (2.4) gives the right γ. The gauge-invariant meson
M = QQ has RM = 2RQ and dimension

∆M = 3Nf −Nc

Nf
≥ 1 ⇒ Nf ≥

3
2Nc , (2.30)

and the situation is summarized in Fig. 2.3, where

3
2Nc < Nf < 3Nc (2.31)

is called the conformal window. There, we may expect that mesons and baryons describe the
macroscopic theory of SQCD, but this expectation is too naive, as the ’t Hooft anomalies do not
coincide with those of quarks and gauginos. On the other hand, when Nf is slightly larger than
3/2Nc, namely close to border but inside the conformal window, the anomalous dimension γ ∼ O(1)
and we lose perturbative control of the theory, a signal that we should carefully look into this region.
It was Seiberg [58] who suggested that there is always a non-trivial fixed point in the conformal
window, providing also a solution for the anomaly matching problem. He considered a theory with
G = SU(Ñc), Nf quark q and antiquark q̄ and N2

f mesons M̃ , with global symmetry SU(Nf ) ×
SU(Nf ) × U(1)B × U(1)R, quiver drawn in Fig. 2.4 and charges in Tab 2.3. The discussion just
presented still holds, so a Banks-Zaks fixed point perturbatively emerges at g̃⋆ inside a conformal
window 3/2Ñc < Nf < 3Ñc, with Rq = Rq̄ = (Nf − Ñc)/Nf and R

M̃
= 2/3. However, this model

admits the superpotential term with coupling λ

SU(Nf ) SU(Nf ) U(1)B U(1)R

q 1 Nc

Ñc

Nf −Ñc

Nf

q 1 -Nc

Ñc

Nf −Ñc

Nf

M̃ 0 2 Ñc
Nf

Table 2.3. Charge table of SQCD with gauge group SU(Ñc), Nf flavours and a meson M̃ .

W̃λ = λTr qM̃ q̄ . (2.32)
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Ñc

Nf

Nf

q̄

q

M̃

Figure 2.4. The quiver for SQCD with gauge group SU(Ñc), Nf flavours and a meson M .

Turning on this deformation and imposing anomaly-free R-symmetry and that R(W̃λ) = 2 yield

Rq = Rq̄ = Nf − Ñc

Nf
,

R
M̃

= 2 Ñc

Nf
(2.33)

which is not compatible with the fixed point at g̃⋆ and λ = 0: the deformation is relevant and the
Banks-Zaks fixed point unstable. The solution of the matching problem relies on the fact that at
some λ = λ⋆ there is a non-trivial fixed point with the previous assignment of R-charges. Let us
compare the scaling and anomalous dimensions of the mesons in the two theories, M in SU(Nc)
and M̃ in SU(Ñc)

∆M = 3Nf −Nc

Nf
, ∆

M̃
= 3 Ñc

Nf
,

γM = 4− 6 Nc

Nf
, γ

M̃
= 6 Ñc

Nf
− 2 . (2.34)

Looking at the dimesions of the mesons, it is intuitive to put Ñc = Nf − Nc. Baryons on the
two sides share the same dimension too. With this identification, the conformal windows of the
two theories are the same, a hint that they provide different descriptions of the same IR physics.
However, outside this region their behaviour is exchanged and where one is asymptotically free the
other is IR free, and vice versa.
To sum up, we have a theory A on one side, SQCD with G = SU(Nc) and Nf flavours, and on
the other side a theory B SQCD with G = SU(Ñc) and Nf flavours, N2

f mesons M̃ , interacting
with W̃ = qM̃ q̄. For Ñc = Nf −Nc, the scaling dimension of gauge invariant operators of the two
theories are the same and they share the same conformal window. Outside of this window, A and
B have instead different behaviour. Finally, the ’t Hooft anomalies between A and B match, see
Tab. 2.4. Seiberg duality states that inside the conformal window the theory A, called electric,
flows to the same superconformal fixed point of theory B, the magnetic. Outside the conformal
window, consider the electric theory close to Nf = 3/2Nc, where the theory is strongly coupled
in the IR. At those scale we lose perturbative control, but the magnetic theory provides a weakly
coupled description for the infrared physics, since ’t Hooft anomalies are the same. Hence, the
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2.2. Seiberg duality

electric theory can be seen as the UV completion of the magnetic.

Global symmetry ’t Hooft anomaly

SU(Nf )3 Nc

SU(Nf )2U(1)B Nc

SU(Nf )2U(1)R −N2
c

Nf

U(1)2
BU(1)R −2N2

c

U(1)BU(1)2
R 0

U(1)R −N2
c − 1

U(1)3
R −2N4

c

N2
f

+ N2
c − 1

Table 2.4. ’t Hooft anomalies for the Seiberg dual electric and magnetic theory.

Seiberg duality has allowed to establish a plethora of infrared connections between seemingly differ-
ent theories. As examples, a theory with gauge group Sp(Nc) and Nf fundamentals, the magnetic
theory is Sp(Nf−Nc−4), Nf fundamentals and an antisymmetric meson transforming in the U(Nf )
flavour group [59]. The magnetic dual of a theory with gauge group SO(Nc) with Nf quarks in
the vector representation is a theory with SO(Nf −Nc + 4), Nf quarks and a symmetric meson in
the symmetric of the U(Nf ) flavour symmetry group [60]. See [61–63] for other cases with various
matter fields and superpotentials.
Finally, in the context of gauge theory dynamics of systems of D-branes at CY-singularities, Seiberg
duality has proven to play a crucial role in understanding very peculiar RG-flows as cascade of
dualities [64, 65]. The prototypical example for this mechanism is the conifold theory, whose gauge
group is in general6 SU(N + M)0 × SU(N)1, and matter fields X1

01, X2
01, X1

10, X2
10 that interact

with superpotential

WC = ϵijϵklX
i
01Xk

10Xj
01X l

10 . (2.35)

The shift in the ranks signals the presence of M fractional branes in the gravity picture, while N

is the number of regular branes. From the beta functions of the two gauge factors, one can see
that the gauge couplings run in opposite direction, so one gauge factor reach a strongly coupled
regime, while the other remains weakly coupled. The strong sector can be effectively described by
its magnetic phase, with dual quark and mesons M ij = Xi

01Xj
10 that interact as in Eq. (2.32). The

gauge group of the Seiberg dual phase is SU(N −M)0 × SU(N)1. The beta function still have
opposite sign, but it is now the factor 1 that goes to strong coupling. Repeating this steps, ranks
decrease and the two gauge factors show this alternate behaviour. The IR dynamics depends on

6Actually, with rank shifted by a quantity M we should refer to this as deformed conifold.
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2.3. Connection to geometry

the relation between N and M. For instance, if N = kM , in the deep IR one factor confines and the
remaining one is a pure gauge theory, leading to gauge condensation and chiral symmetry breaking.
See [65] for a detailed description of this cascade.

2.3 Connection to geometry

We should keep in mind that the SCFTs we are interested in represent only one side of the con-
struction, as they stand as the gauge side of the holographic correspondence. There is another part
of the story, where gravity is the protagonist. As said in the previous chapter, global symmetry
connects the two sides. After having briefly reviewed tools and features of 4d N = 1 superconformal
gauge theories, heavily dependent on global symmetry, we shall explore this connection.
A gauge theory that is dual to a theory of gravity defined on a geometry whose transverse space
to the D3 branes is toric is completely defined by the brane tiling, as we saw in the previous
chapter. This means that matter content, gauge group and superpotential can be read from the
bipartite graph. However, the former two can be encoded in a quiver, which is not enough to
contain the information about the interaction. In fact, the relevant data for the geometry is stored
in the superpotential. In order to see this, suppose we have a quiver theory with gauge group
G = ∏n

a=1 SU(N)a, E bifundamental matter fields Xab and a superpotential with V terms that
respects the toric condition, i.e. all terms Wi are monomial in the fields and each field enter twice,
once with positive sign and once with negative sign. Look closely to anomaly-free condition for R

and R(W ) = 2

∑
Xab∈Wi

Rab = 2 ,

∑
Xab∈Ga

(Rab − 1) = −2 , (2.36)

and sum the first over all superpotential terms and the second over all groups factors, obtaining

∑
Wi

 ∑
Xab∈Wi

Rab

 = 2V ,

∑
Ga

 ∑
Xab∈Ga

(Rab − 1)

 = −2n . (2.37)

Since each bifundamental field connects two nodes in the quiver and appears in two Wi, we can
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rewrite them as

2
∑
Xab

Rab = 2V ,

2
∑
Xab

(Rab − 1) = 2
∑
Xab

Rab − 2E = −2n , (2.38)

obtaining

n− E + V = 0 = 2− 2g . (2.39)

The last equality states that if we want to draw the interaction terms on a certain surface, exploiting
a tessellation with n nodes, E arrows and V faces, the surface must have genus g = 1 and the Euler
characteristic must vanish. Hence, that surface is a torus. This closes the circle, as in the previous
chapter we started from geometric data of the toric CY cone to construct a bipartite graph on a
torus.

2.3.1 Isoradial embedding

Let us go back to Eq. (2.36) and multiply both by π

∑
Rab∈node

Rabπ = 2π ,

∑
Rab∈face

Rabπ = (E|f − 2)π , (2.40)

where E|f is the number of edges around that face. We can think of the combination πRab as
angles, since going around a node gives 2π and summing the internal angles of a face/polygon gives
(E|f − 2)π. In [24], the authors notice this fact and used the concept of isoradial embedding of the
brane tiling, where each face of the tiling is embedded inside an unit circle, see Fig. 2.5. Connecting
the centres of the circles to the nodes, we obtain a graph of rhombi, called rhombus lattice. An
edge/bifundamental field is associated with each rhombus, in particular with one of the diagonals.
It is natural to identify πRab with the angle under this diagonal, which gives a geometric basis
under the interpretation of Eq. (2.40) as angles around a node and inside a face. Note that if R = 0
or R = 1 the rhombus closes and becomes degenerate.
Requesting that the global R-symmetry is anomaly-free not only determines that the gauge theory
is embedded in a torus as a tiling, but also the shape of the tiles. On the other hand, the tiling
was obtained from the toric diagram, hence from purely geometric information. The true non-
anomalous R-symmetry takes the role of bridge between the two descriptions, geometry and gauge
theory.
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Figure 2.5. Isoradial embedding of the brane tiling, where faces are embedded into circles and each edge
has an associated angle related to the R-charge of the field.

2.3.2 Toric duality

In Sec. 1.5 we mentioned the fact that non-extremal points in the toric diagram may have various
degeneracies, while keeping the same shape of the toric polygon. All of them are associated to the
same geometry. However, two toric diagrams with different degeneracies give different configuration
of perfect matchings and bipartite graph, so the two gauge theories defined from fivebranes and
brane tilings are different as well. One can actually pass from one fivebrane to the other by moving
the NS5 across each other and reaching a new possible configuration. These toric phases give rise
to Seiberg dual gauge theories that, in the conformal window, flows to the very same fixed point
and there they share the same ’t Hooft anomalies and central charge a. As we are going to see in
the next section, this means that the Seiberg dual theories are associated to the same geometry.
Hence, toric duality accounts for Seiberg duality [22, 66].

2.3.3 Volume minization

Exploring the geometric connection between the two sides of AdS/CFT, we are slowly going back to
the construction in the previous chapter. Remember that the gravity side is defined on a geometry
of the form AdS5×Y5, where Y5 is a Sasaki-Einstein space, which is the base of the toric CY cone.
Constructing a foliation of Y5, whose leaves are compact, there is always a U(1) isometry acting
on Y5. The space has a constant norm Killing vector, called Reeb vector, whose orbits are related
to the action of the U(1). When it acts freely, the space is called regular, while if the action is
locally free the space is called quasi-regular. Finally, if the orbit of the Reeb vector does not close
the geometry is said to be irregular. The importance of the Reeb vector relies on the fact that it
represents the gravity dual of R-symmetry of the SCFT. In [67] it is shown that the Reeb vector
of a given toric Y5 can be determined only from toric data, without knowing the metric and, most
importantly, the volume of the space can be computed with a procedure dual to a-maximization,
which has been referred to volume minimization, and it works as follows.
Consider a toric cone defined by vectors va = (1, wa), with a = 1, . . . , d and vd+1 = v1, where was
have two components and define the toric diagram. The Reeb vector is of the form b = (3, x, y),
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where (x, y) can be seen as coordinates in the toric diagram. Defining (v, u, z) as

(v, u, z) = det


v(1) v(2) v(3)

u(1) u(2) u(3)

z(1) z(2) z(3)

 , (2.41)

the volume of the space is given by

VolY = π3

3

d∑
a=1

(va−1, va, va+1)
(b, va−1, va)(b, va, va+1) (2.42)

as a function of the components of b, and whose minimum yields the volume of Y5 at the base of
the CY cone and the precise components of the Reeb vector.
Thus, the Reeb vector determines the volume of Y5 and it is the dual of the R-symmetry, which in
turn determines the central charge a, the degrees of freedom of the gauge theory. While the volume
is minimised by b, the central charge is maximized by R. In [68] it is proposed the inverse relation

VolY = π3

4
N2

a
, (2.43)

that represents the connection between geometry and field theory we have been seeking.

2.4 Deformations

We have built a machinery that allows us to generate many toric theories. From a field theory point
of view, it is clear that we can deform the theory adding suitable operators to the superpotential.
When these trigger a flow, the nature of the end is not guaranteed, as confinement may occur
or the effective theory may develop a new conformal fixed point. We are going to introduce two
types of deformations, higgsing/un-higgsing and mass deformation, and see that, under particular
conditions, we end up with a different toric model.

2.4.1 Mass Deformation of toric theories

Consider again the orbifold model C3/Z2 of Fig. 2.1a-2.1b, recall the superpotential is

W
C3/Z2

= ϵab

(
ϕ0Xa

10Xb
01 + ϕ1Xa

01Xb
10

)
. (2.44)

Deform the theory with a relevant term for the two adjoint fields, as

∆W = m2
(
ϕ2

0 − ϕ2
1

)
, (2.45)
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which introduces a mass scale and triggers an RG flow. Moreover, the theory is no-longer toric, as
can be seeon from the superpotential W + ∆W . Integrating the massive fields out by computing
F-terms and redefining fields properly, we obtain

W = ϵabϵcdXa
01Xc

10Xb
01Xd

10 . (2.46)

Note that each field appears twice, with opposite sign: the toric condition. From the discussion in
Sec. 2.3, we can embed this superpotential in a torus, using a tessellation with four-side polygons.
Moreover, exploiting the SU(2) × SU(2) and Z2 symmetry we find that all R-charges7 must be
1/2. In terms of isoradial embedding this means that the related angles are π/2 and all faces on
the torus are squares, as in Fig. 2.6a. In this way, we obtain a brane tiling for the resulting theory
after the deformation and, from the fast forward algorithm in Sec. 1.5, the related toric diagram
that specify the toric CY cone, see Fig. 2.6b. The final toric space is the conifold, the CY over the
space T 1,1, whose associated field theory has been constructed for the first time in [69]. There, the
authors give the geometric interpretation of the mass deformation in the original C3/Z2: in the
cone over S5/Z2, the deformation amounts to blowing up the orbifold singularity, replacing it by
a 3-sphere. The geometry results in a S3 bundle over S2, which is in fact the geometry of T 1,1.
In terms of toric geometry, the effect of mass deformation is to move a vertex, compare the two
figures Fig. 1.1b-2.6b.
Let us focus on the brane tiling. Integrating a pair of massive fields out result in collapsing the
corresponding edges in the dimer, and exagons turn into squares, compare Fig. 2.1b with 2.6a.
In [70] it is shown that in the in the context of brane tiling, one can give mass to pairs of adjoint
or vector-like fields and, after having integrated them out of the theory and suitable redefined the
fields as

X ′
ab = Xab + 1

m

∑
k

c
(ab)
k XakXkb ,

ϕ′
a = ϕa + 1

m

∑
k

ca
kXakXka , (2.47)

where c
(ab)
k and ca

k are some coefficients that ensure the restoration of toric symmetry, the effective
field theory below the mass scale is associated to a toric geometry.

2.4.2 Higgsing a toric model

Mass deformation is not the only tool we have to deform a theory. Consider a supersymmetric
gauge theory from the toric setup we described, with superpotential W . If we give non-zero VEV
to one of the bifundamental fields we can obtain another toric theory. For instance if ⟨Xab⟩ = v

[71], we are taking out from the dimer the edge corresponding to Xab and consequently the two
7In this case we do not need a-maximization, for the huge amount of symmetry determines the unique non-

anomalous R-symmetry.
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0 0

00

1

Figure 2.6a: The brane tiling of the conifold C. Figure 2.6b: The toric diagram of the conifold C.

adjacent faces a and b merge into one, providing only one gauge group, which we denote a. In the
case Xab enters in the superpotential in a cubic term, its non-zero VEV generates quadratic terms
as

W = . . . + ⟨Xab⟩XbcXca − ⟨Xab⟩XbdXdb + . . . (2.48)

and the fields Xbc, Xca, Xbd and Xdb become massive, generating in turn an energy scale for the
new theory. After integrating them out, one obtain the effective theory at low energy with a = b.
The dimer will change accordingly, in a different way from a mass deformation.
The reverse method is called unhiggsing. Starting from the dimer, we unhiggs a field drawing a
new edge that connects a white node with a black node and splits a face into two parts. This a
new gauge factor arises and new terms in the superpotential, which can be read from the resulting
dimer.
This method was a tool to obtain non-orbifold singularities from deformation of orbifold ones and
their associated gauge theories, before the advent of brane tiling. We will encounter some examples
in Chapter 4.
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Chapter 3

Reflecting the throat

Open and unoriented strings, whose systematic construction was addressed long ago [72–75], have
proven to be an unprecedented tool in the exploration of gauge field dynamics. Perhaps the
investigation of unoriented singularities has been less systematic, even though it has a crucial role
for Standard Model embedding [76–80], but recently some attention has been devoted to unoriented
models [81–86]. In the case of unoriented singularities, an orientation reversing action σ on the
CY is combined with world-sheet parity Ω that entails an action γΩ on the Chan-Paton factors or,
equivalently, on the D-branes. The geometric counterpart of the construction, known as orientifold,
involve orientifold-planes or O-planes for short.
We shall consider orientifold projections of gauge theories associated with toric CY singularities.
This unoriented involution involves the action of the world-sheet parity operator Ω, general space-
time reflections σ and a suitable Z2 symmetry such as the left moving fermion number (−1)FL .
The original theory before the projection will be called the parent theory, whose gauge group is
composed by several SU(Na) gauge factors. After the orientifold projection, one can end up with a
theory that includes also SO(Na) or USp(Na) gauge factors1 and matter in symmetric or antisym-
metric representations. We now discuss how to perform such orientifold projection on the diagrams
discussed in the previous chapter.

3.1 Orientifolding the brane tiling

As the brane tiling encodes information about the geometry and gives the dual gauge theory, it
may be as well a tool for implementing the orientifold. Since the projection involves spacetime
reflection and a Z2 symmetry, in [81] the symmetry of the brane tiling is exploited to read the
projected gauge theory, studying the possible Z2 involutions of the torus. These are classified, but
not all of them are compatible with the request that a common supersymmetry with the stack of
D3 branes is preserved, the interesting ones either have fixed loci or implement a transformation

1In the literature it is sometimes used Sp(Na/2) whose rank is Na/2. Clearly, N must be even in this case.
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3.1. Orientifolding the brane tiling

with no fixed points called glide [81, 87]. We focus only on the former, where fixed loci may be
either four fixed points or a fixed line. These fixed loci are associated with orientifold planes in the
system of branes, hence they carry a positive or negative RR charge as the charge of the O-planes.
In [39] it is discussed the introduction of O-planes in the system of D3 branes, and O3 or O7 are
allowed. On the other hand, we saw in the first chapter that the brane tiling is constructed in the
double T-dual configuration of D5 branes, so the orientifold planes are O5, points on or 1-cycles of
the torus. The projection given in the two cases are different.

3.1.1 Four fixed points on the dimer

An inversion of both coordinates of the torus generates four fixed points. This operation preserves
angles in the tiling and the mesonic global symmetry U(1)2 × U(1)R. All elements of the tiling,
namely faces, edges and nodes, are mapped to the others with respect to the fixed points. We label
a face/gauge factor with a and its image under the orientifold with a′. If a ̸= a′, for instance a
group SU(N1) is mapped to another group SU(N2). This, by consistency, requires N1 = N2 in
the parent theory, while in the orientifold theory we keep one factor, say SU(N1). On the other
hand, when a = a′, a fixed point lies on the face with label a and the group SU(Na) is identified
with itself. The orientifolded theory has a factor SO(Na) if the charge τa carried by the point is
positive, USp(Na) if negative. To take into account the fact that the orientation of open strings is
inverted by the orientifold plane, representations are conjugated under the involution as

a ←→ a′ ,

a ←→ a′ , (3.1)

so that for a generic bifundamental field

(Xab)ia

jb =
(

a, b

)
ia

jb ←→
(

a′ , b′
)ia

jb
=
[
(Xab)ia

jb

]T
. (3.2)

When a fixed point lies on an edge, b = a′ and the bifundamental field is projected on a tensor
representation, symmetric if the fixed point carries a positive charge τab, antisymmetric in case
of a negative τab. Finally, white nodes in the dimer are mapped to black nodes and viceversa.
Note that this means a fixed point cannot lie inside a square in a bipartite graph. The resulting
superpotential is given by half the terms of the parent theory, NW /2, with the constraint on the τ

charges

∏
fxd pts

τ = (−1)NW /2 . (3.3)

Let us provide an example of a fixed points orientifold and consider our old friend C2/Z2 ×C. We
perform such orientifold projection on its brane tiling, as drawn in Fig. 3.1, where the fixed points
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3.1. Orientifolding the brane tiling

1 1

0

0

11

τ0 τ00

τ1 τ11

Figure 3.1: The orientifold projection with four fixed points of C2/Z2 × C.

are represented by red crosses.
From Fig. 3.1 we see that there are four nodes in the tiling, which represent the interaction terms
of the theory. The constraint in Eq. (3.3) with NW /2 = 2 demands that the product of the τs
is positive, so for (τ0, τ00, τ1, τ11) we have the choices (±, ±, ± ,±), (±, ±, ∓ ,∓), (±, ∓, ± ,∓),
(±, ∓, ∓ ,±). Let us focus on the last one, with the upper signs. The resulting gauge group is
SO(N0)× USp(N1) with matter content

ϕA
0 = A = 0 ,

ϕS
1 = S = 1 ,

Xi
01 =

(
0, 1

)i
, i = 1, 2 , (3.4)

where X01 is identified with Xi
10. The projected superpotential W Ω

C3/Z2
reads

W Ω
C3/Z2

= −AX2
01X1

10 + SX1
10X2

01 . (3.5)

3.1.2 Fixed lines on the dimer

The second projection with fixed loci inverts only one coordinate of the torus, resulting in a reflection
with fixed lines. The mesonic U(1)2 is broken to an U(1) subgroup. Contrary to the previous case,
this involution is possible only for certain complex structure, i.e. certain shape of the fundamental
cell, such as reactangles and rhombi. The action over the elements of the tiling is very similar to the
previous case, with the adjustment that the locus is now given by one or two lines, each carrying
charge denoted by τ . When a line pass over a face a, the corresponding gauge group SU(Na)
is projected into SO(Na) or USp(Na), for τ positive or negative respectively. Different edges
mapped with respect to the line are identified, while edges mapped to themselves are projected
into symmetric or antisymmetric representation for positive or negative τ . As for nodes, in this
case the black ones are mapped to black and white to white, and it happens that a node is mapped
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3.2. Orientifolding the Quiver

0 0

00

1

τ0

τ1

Figure 3.2: The orientifold projection with two fixed lines of the conifold C.

to itself. As an example, the line orientifold for the conifold C is shown in Fig. (3.2). Denoting with
τ0 and τ1 the charges carried by the lines passing on face 0 and 1, and choosing τ0 = +, τ1 = − the
gauge group results in SO(N0)× USp(N1), while fields are identified as

X1
10 −→ X2

01 ,

X2
10 −→ X1

01 , (3.6)

hence the matter content is made by only X1
01, X2

01 interacting as

W Ω
C = X1

01

(
X2

01

)T
X2

01

(
X1

01

)T
−X1

01

(
X1

01

)T
X2

01

(
X2

01

)T
. (3.7)

3.2 Orientifolding the Quiver

We discussed how to represent the gauge theory given by the brane tiling as a quiver diagram,
which is a quick way to draw and read the gauge group and the matter content. While we still
need to work out the superpotential from the dimer and the rules we have seen in the last section
in case of an orientifold projection, we can again use the quiver diagram as an easy way to read the
resulting gauge theory and the identifications under the orientifold. We need to draw the quiver
in such a way the Z2 symmetry is explicit and draw a line that divide the quiver into two parts,
mapped by the orientifold. Elements in the quiver are identified with respect to this line, which we
denote by Ω. We stress that the quiver lack any of the geometric information about the torus and
the Ω-line is not related with the fixed loci, its role is just to make the orientifold projection visually
clear. Groups paired up by the orientifold are identified with respect to the line, while projected
gauge factor are crossed by Ω. Similarly for the bifundamental fields, but the Z2 involution must
map arrows with opposite orientation to take account of the conjugation. We show such quiver
diagrams for the orientifold of C2/Z2 × C and C in Fig. 3.3, the examples in the last section.
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3.3. Orientifolding the Toric Diagram

0 1
Ω

0 1
Ω

Figure 3.3. On the left, the quiver diagram for the orientifold projection of C2/Z2 ×C, on the right for C.

3.3 Orientifolding the Toric Diagram

As we have seen, projections with four fixed points on the dimer preserve the mesonic symmetry
while projections with fixed lines break it. In [85], these two cases are called toric and non-toric
involutions, respectively. The toric involution is described by points on an even sublattice of
the toric space, while non-toric ones by fixed lines of the diagram. In [85] the authors focus on
the toric diagram rather than the brane tiling and discuss the toric involution in relation with
the complete resolutions of the singularity, which corresponds to dividing the toric diagram into
minimal triangles. So, each point on the even sublattice represents an O7 plane, which wraps a
compact divisor if the point stays inside the toric diagram, a non-compact one if it lies on the
boundary of the diagram. A minimal triangle of the resolution corresponds to either an O3 plane
or an O7 if a corner of the triangle lies on the even sublattice. These O-planes live in the resolved
space. Thus, given a particular toric diagram we may have various resolutions and choices of the
even sublattice, then different orientifold configurations. See Fig. 3.4 for an example in the case of
C3/Z3.

Figure 3.4. The toric involution on the toric diagram of the resolved C3/Z3 orbifold theory, with the points
of the even sublattice drawn in red. On the left the resolved orientifolded theory with a compact O7,
while on the right the resolved unoriented theory with a non-compact O7 and an O3.

3.4 Anomaly cancellation condition

In order to have a meaningful orientifolded theory, gauge anomalies must vanish. The projection
yields real groups, for which there is no gauge anomaly, and tensorial matter, for which the anomaly
coefficient changes to (N±4) depending on symmetric or antisymmetric transformation rules. Their
presence may rule out some solutions of the anomaly cancellation condition for the parent theory,
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3.5. Conformal invariance of unoriented theories

N0

N1N2

Xi
01

Xj
12

Xk
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Ω
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2

1

11

0

Figure 3.5. The orientifold projection of C3/Z3 with four fixed points.

such as Na = N ∀a. The anomaly cancellation condition for a node a gets modified into

∑
Xab

Nb −
∑
Xca

Nc +
∑
XS

aa′

(Na + 4)−
∑

XS
a′ a

(Na + 4) +
∑
XA

aa′

(Na − 4)−
∑

XA
a′ a

(Na − 4) = 0 . (3.8)

Let us show an example, the orientifold projection with four fixed points of C3/Z3, see Fig. 3.5.
Since there are six terms in the superpotential, ∏ τ = −1 and the choices for

(
τ0, τ1

12, τ2
12, τ3

12
)

are
(±, ∓, ∓, ∓). Focusing on upper signs, the gauge group is SO(N0) × SU(N1), with fields Xi

01,
Xi

12 = Ai, with i = 1, 2, 3, while Xi
20 → Xi

01. The superpotential after the projection reads

W Ω
C3/Z3

= ϵijkXi
01Aj

(
Xk

01

)T
, (3.9)

and from Eq. (3.8), for SU(N1) we have

−3N0 + 3(N1 − 4) = 0 ⇒ N1 = N0 + 4 . (3.10)

In Chapter 1, we said that the shift between the ranks means that fractional branes are present,
as D5 wrapping 2-cycles. Typically, the orientifold projection requires the presence of fractional
branes, and for chiral theories this usually affects conformal invariance, as we are about to see.

3.5 Conformal invariance of unoriented theories

We demand what is the fate of the conformal point after the orientifold projection. In Eq. (2.1),
we write the one-loop exact beta function for a generic N = 1 gauge theory. When it vanishes, the
numerator is related to the anomaly-free condition for R-symmetry. Let us focus on it

3TAdj −
∑

i

Tρi (1− γi) = 0 . (3.11)
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3.5. Conformal invariance of unoriented theories

It is easy to generalise it for an unoriented theory, with real groups and tensorial matter, as

β(SO/USp)
a ∝ 3(Na − 2)−

∑
Xab,Xba

Nb(1− γab)−
∑
S/A

(Na ± 2)(1− γS/A) ,

β(SU)
a ∝ 3(2Na)−

∑
Xab,Xba

Nb(1− γab)−
∑
S/A

(Na ± 2)(1− γS/A) . (3.12)

Going back to the previous example,
(
C3/Z3

)
/Ω with (+, −, −, −) for

(
τ0, τ1

12, τ2
12, τ3

12
)

and N0 =
N1 − 4, we have

β0 ∝ 3(N0 − 2)− 3N1(1− γ01)

= −18 + 3N1γ01 ,

β1 ∝ 6N1 − 3N0(1− γ01)− 3(N0 − 2)(1− γ12)

= +18 + 3N1(γ01 + γ12)− 6γ12 − 12γ01 , (3.13)

and they vanish if the anomalous dimensions are of order (1/N). Note that this holds together
with the condition that the superpotential in Eq. (3.9) is marginal, i.e. 2γ01 + γ12 = 0. In the large
N limit, the γs vanish, βs as well and the model behaves as a free theory. This can be seen from
anomaly condition for R-symmetry and R(W ) = 2, as

2R01 + R12 = 2 ,

(R01 − 1)3N1 + (N0 − 2) = 0 ,

(R01 − 1)3N0 + (R12 − 1)3(N1 − 2) + 2N1 = 0 , (3.14)

and in the large N -limit the system of equations is the same as the parent theory, whose solution
is R = 2/3. We can see this result as the effect of the orientifold projection is negligible in case of
large number of D3 branes probing the unoriented singularity.
However, let us see another example, the orientifold projection with a fixed line of the chiral orbifold
of the conifold C/Z2, see Fig. 3.6. Let us choose a positive charge for the fixed line, τ0 = +1. The
projection results in gauge group SO(N0)×SU(N1)×SO(N2), with N0 = N2 for anomaly condition
and N1 unconstrained. The superpotential reads

W Ω
C/Z2

= ϵabϵcdXa
01Xc

12

(
Xb

01

)T (
Xd

12

)T
. (3.15)

40



3.5. Conformal invariance of unoriented theories

N0

N1N2

N3

Xp
01

Xp
12

Xp
23

Xp
30

Ω

1

1

1

1

2

2

2

2

0

0

0

0

3

3

3

3

Figure 3.6. The orientifold involution with a fixed line of C/Z′
2, whose quiver is drawn on the left and the

dimer on the right.

From the R symmetry we write

R01 + R12 = 1 ,

(R01 − 1)2N1 = −(N0 − 2τ0) ,

(R01 + R12 − 2)2N0 = −2N1 ,

(R12 − 1)2N1 = −(N0 − 2τ0) , (3.16)

which has no solution, hence there is no conformal fixed point after the orientifold projection since
no anomaly-free R-symmetry is allowed. This is an example in which conformal invariance is broken
by the involution. In [88] this unoriented model is discussed, in particular its flow described as a
Seiberg duality cascade and its confinement in the infrared.
Upon orientifolding, the fate of the conformal point is different in these two examples. In the first
case, the fixed point still exists but with R-charges corrected at subleading order. On the other
hand, in the second case conformal invariance is broken by the orientifold involution. These two
cases, dubbed first scenario and second scenario are not the only ones allowed, as another behaviour
will be discussed in Chapter 5.
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Chapter 4

Mass deformation of unoriented

quivers

In the past chapters we have introduced various tools to describe the field theory side of the gauge/-
gravity duality in particular dimers, quivers and the orientifold projection, along with deformations
as higgsing and mass deformation. This chapter is based on [1] and explores the overlap between
orientifold and mass deformations. In doing so, our focus will be on orbifold parent theories. The
systematic construction from string theory was given in [39] and along this we use here dimer and
toric techniques.
In presence of orientifold planes, we reach non-orbifold singularities by mass deforming or higgsing
a model, and we exploit the systematic approach of [39] in order to find consistent theories. This
also allow us to add flavour branes, i.e. non-compact D7, to the system following the prescription
of [39] and, as a simple example, we address this more delicate problem in the prototypical case of
the unoriented C3/Z3 orbifold [89, 90].
We also address the issue of identifying O7 planes on compact cycles using a result from algebraic
geometry, the Ito-Reid theorem [91]. We conclude our analysis discussing the orientifold projection
in the context of Seiberg duality and duality cascades.

4.1 The Setup

We describe the setup at the base of our analysis. We consider Type IIB Superstring Theory on
a four-dimensional Minkowski space R1,3, transverse to a singular (toric [15]) non-compact Calabi-
Yau (CY) three-fold, parametrized by three complex coordinates (X1, X2, X3), I = 1, 2, 3. The
singularity is probed by D3-branes on which, at low energy, a non-abelian supersymmetric gauge
theory lives. The transverse CY three-fold can either be an orbifold of C3 of the form C3/Γ or a
non-orbifold space. On top of this setup, we further consider the action of Orientifolds via O-planes
and, later on, flavour branes.

42



4.1. The Setup

4.1.1 D3-Branes at Toric Calabi-Yau Singularities

Consider the case of an abelian orbifold of the form C3/Γ with Γ = Zn. On each complex coordinate
(X1, X2, X3) of the transverse space, the orbifold group acts as

g : XI 7→ ωkI XI , ω = e
2πi
n , (4.1)

where g is the generator of Zn and kI must satisfy the supersymmetry-preserving CY condition1

3∑
I=1

kI = 0 mod n , (4.2)

where 0 ≤ kI ≤ (n − 1). The quotient C3/Zn has only one fixed point at the origin, which
is the singularity. There we place the D3-branes, as we are interested in the dynamics of their
WV. A 4d theory can arises also on D5- and D7-branes wrapping respectively collapsed two- or
four-cycles of the resolved CY three-fold. At low energy, the dynamics of open strings living on
their world-volume is governed by a supersymmetric quiver gauge theory whose gauge group is a
product of U(Na), a = 1, . . . , n groups. The strings with endpoints connecting different fractional
branes give rise to bifundamental fields ( a, b) denoted by Xab, where a( a) is the fundamental
(antifundamental) representation of the gauge group U(Na). A more detailed discussion of the
spectrum in the orbifold case is presented in [39]. The quiver for the simple example of the C3/Z3

orbifold is shown in Fig. (4.1). Note that the gauge theories arising from orbifold may be chiral
(as kI = (1, 1, n− 2)) or non-chiral (as kI = (1, n− 1, 0)). While the latter are non-anomalous by
construction, the former need the RR tadpoles to vanish for the theory to be anomaly-free, thus
giving constraints on the ranks of the gauge groups. Furthermore, even if for C3/Zn the sum of all
the beta functions is zero, i.e. ∑a βa = 0, each gauge factor may have a non-zero βa.

N0

N1N2

Figure 4.1. The quiver of the C3/Z3 orbifold theory with kI = (1, 1, 1). The bifundamental fields are
arrows connecting nodes representing U(N) gauge groups. The condition of anomaly cancellation gives
N0 = N1 = N2 and, as a result, β0 = β1 = β2 = 0.

The above example is only one of infinitely many possibilities where fractional D3-branes are placed
at CY singularities. We focus on the case of toric CY spaces, i.e. admitting at least a U(1)×U(1)
isometry in addition to the U(1)R R-symmetry.
Strings on the fractional branes do not see the singular space Ŷ , but they effectively live on a

1If you are keeping track of footnotes, this clarifies the reason why we start counting nodes from 0 instead of 1.
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smooth resolved space Y , related to the former by a blow-down morphism Y → Ŷ . For Ŷ = Cm/Γ
orbifold theories, one can determine some useful geometrical properties of the resolved space by
introducing the concept of age grading [14, 91, 92]. Consider an element g ∈ Γ, that is such that
gn = 1. The age of the element g is defined as

age(g) = 1
n

m∑
I=1

kI . (4.3)

From the age, one can organize the elements of Γ in various conjugacy classes: null or baby classes
have age = 0, junior classes have age = 1 and senior classes with age = 2. According to the Ito-
Reid Theorem [91], each conjugacy class is associated with the dimension of de Rham cohomology
groups of the crepant2 resolution, according to

dimH2k(Y ) = number of age k conjugacy classes of Γ (4.4)

while all odd cohomology groups are trivial3. The conjugacy classes of age k are then related to the
existence of 2k-cycles in the smooth space Y . In particular, a non-trivial senior class implies the
existence of a compact 4-cycle. A more general and detailed discussion is presented, for instance,
in [14]. As an example, the crepant resolution of C3/Z4 is addressed in [92]. This classification
helps identifying the cycles wrapped by a D-brane or an O-plane.

4.1.2 Adding Flavour Branes

In the setup with D3-branes transverse to a singular toric CY and O-planes we may add stacks of M

non-compact D7-branes which act as flavour branes. Their presence generates a non-dynamical D7-
D7 open string sector, and a dynamical D3-D7 sector which adds new matter fields to the spectrum
and to the superpotential. The group U(M) is seen as a global symmetry by strings living on the
D3. Under an orbifold quotient by Zn, the flavour groups becomes U(Mα), α = 0, . . . , n−1. We
denote the new matter fields as qaα = ( a, α) for fields transforming in the fundamental of U(Na)
of the a-th fractional brane and in the anti-fundamental of U(Mα) of the α-th flavour brane (i.e.
starting from the D3-brane and ending on the D7-brane) while q̃αa = ( α, a) for open strings with
the opposite orientation. They enter in the super-potential with terms of the form

W37 = (q̃αa)ia
iα

(Mab)ib
ia

(qbα)iα
ib

, (4.5)

where Mab = (Xac)ic
ia

(Xcd)id
ic

. . . (Xfb)ib
if

is a composite operator and the indices ia run over the Na

colours of the a-th gauge group, while the indices iα run over the Mα flavours of the α-th flavour

2We recall that a crepant resolution is a resolution that preserves the Calabi-Yau condition, namely the first
Chern class of the tangent bundle of Y vanishes.

3This implies that the singularity, as most of the toric CY singularities, is ‘isolated’ in that it does not admit
complex (marginal) deformations, i.e.. We will later on discuss relevant mass deformations which trigger RG-flows.
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groups.
When the D7’s wrap non-compact cycles, they are much heavier than the D3’s and thus backreact
on the geometry, in which case the toricity may not be preserved. This can be further seen from
the super-potential where the new terms coming from the D3-D7 sector break the toric condition.
In [43] the possibility of representing flavour branes as open paths in the dimer is presented and
one can read the field theory after this deformation, but one can no longer define a tiling on a torus
for the resulting theory, but on other geometries [46].
We can add flavour branes to the quiver as new nodes and links for the global symmetry groups
and 3-7 fields. The D3-D7 open strings sector contains chiral multiplets Cȧ which transform in
Spin(4) with weights ±(1

2 , 1
2). Under the orbifold projection by Zn, Cȧ transform as

Cȧ 7→ ω± 1
2 (kI+kJ )Cȧ = ω±sCȧ , (4.6)

where ω = ei2π/n, I ̸= J ̸= K = 1, 2, 3, we have used the supersymmetry preserving condition
k1 +k2 = −k3 mod n and we have defined s = (kI +kJ)/2. For a supersymmetric embedding of the
D7 branes it must be (ω±s)n = 1, thus kK must be even. Moreover, s determines the connection
between gauge and global groups, as a colored node a is connected to a flavour node α+s. Note
that we can embed different D7-branes on the same divisor XK = 0 but with different Chan-Paton
factors [43]. There are various choices, but here we show only one of them for C3/Z3. Under
an orientifold projection, flavour groups are projected to SO/USp(Mα) while D3-D7 strings are
identified as,

Ω : α ↔ n−α ,

Ω̂ : α ↔ n−α−1 ,

qaα = ( a, α)↔ ( α′ , a′) = q̃α′a′ . (4.7)

4.2 Unoriented Toric Singularities and their Mass Deformation

In this Section, we try to unify the machineries of dimers and of [39]. After that, we will present
several examples with small number of nodes. We will revisit by-now prototypical examples, like
C3 and C3/Z3, as well as new ones. We will try and emphasize the connection between orbifold and
non-orbifold singularities via mass-deformations or Higgsing that preserve toricity, where possible.
The super-potential W consists of mesonic operators as (Xab)ib

ia
(Xbc)ic

ib
. . . (Xfa)ia

if
. For convenience

of notation, we just write XabXbc . . . Xfa. The same holds when 3-7 fields qaα and q̃αa are involved.
In this way, we use upper indices I = 1, 2, 3 or p = 1, 2 to denote the different fields in a multiplet as
X

I (p)
ab , which enter with different combinations in mesonic operators. We use the extended notation

only when needed for clarity.
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4.2. Unoriented Toric Singularities and their Mass Deformation

4.2.1 Orientifolding the D3 branes picture

All of the discussion in the previous chapters was mainly based on the brane tiling, i.e. the
system of 5-branes, but we always keep in mind that the gauge theory arises in the D3 brane WV,
with these probing the singular point of a toric CY cone. The case of unoriented projections of
abelian orbifolds of the form C3/Zn or C3/ (Zn × Zm) in presence of either O3 or O7 planes was
systematically addressed in [39], only from string amplitudes considerations. They used quivers to
represent the theory arising from unoriented singularities, so the diagrams are similar and we can
easily compare. The only difference with our setup relies on the orientifold action, that is encoded
into four charges (ϵ0, ϵ1, ϵ2, ϵ3) with a clear physical interpretation: ϵ0 is the RR charge of the
orientifold plane, while the three ϵI , I = 1, 2, 3, determine the Z2 action of the orientifold plane on
the complex direction XI of the CY transverse to the D3 branes. Thus, we can leave

O3± : (±, −, −, −) ,

O7± : (±, +, +, −) . (4.8)

Note that for an O7 the ϵI charges has different signs, while O3 only ϵI = −. Using the conventions
of [39], when a node on the quiver is crossed by the Ω-line the corresponding gauge group is
projected down to USp or SO if ϵ0 = +1 or ϵ0 = −1, respectively4.
For orbifold theories C3/Zn, the possible orientifold projections are classified by parity of n. In case
of odd n, there is always at least one node on top of the orientifold line, that for convenience and
without loss of generality we denote by 0, while nodes a and n−a are reflected into each other. For
even n, configurations with all nodes away from the orientifold line are allowed, which we denote
as Ω̂, in such a way that nodes a and n−a−1 are reflected into each other (up to renumbering of
the nodes). Thus

Ω : a ←→ n−a ,

Ω̂ : a ←→ n−a−1 , (4.9)

hence fields are identified as in the previous sections. When a field XI
aa′ connects a node and

its image a′, it gives rise to the symmetric representation if ϵ0ϵI = +1 or to the antisymmetric
representation if ϵ0ϵI = −1. In these conventions, quivers associated to non-orbifold singularities
can be related to orbifold ones via mass deformation or higgsing/un-higgsing.
It is important to stress that the orientifold charges (ϵ0, ϵI) for orbifold theories, which have a more
direct geometric interpretation, and the τ charges defined on the dimer are in principle different,
and in fact they also act in different ways. The mesonic moduli space is spanned by gauge-invariant
mesonic operators and a subclass of them can be regarded as the transverse coordinates to the D3
branes. On the dimer, they are constructed with fields lying on closed oriented paths (see [81]) and

4Note the opposite convention w.r.t. the brane tiling machinery. Not even physicists are perfect.
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4.2. Unoriented Toric Singularities and their Mass Deformation

the product of τ charges they intersect gives the orientifold action on the mesonic operators. For
the unoriented projection of C3 and C3/Z3 the product of pairs of τ charges, i.e. the orientifold
action on mesonic operators, is exactly the same as ϵ0ϵI . The relation between ϵ and τ becomes
much more complicated in other cases.

4.2.2 Anomaly Cancellation Conditions

The low-energy gauge theories we have so far considered involve chiral fields, hence they can be
potentially anomalous. We now rewrite the anomaly cancellation condition following the method
developed in [39] for unoriented C3/Zn orbifolds. Recall that for a node a in the quiver we need to
count how many fields transform under the gauge group. Those which go out from the node, i.e.
transform in the fundamental representation, are counted with a positive sign, while those which
enter in the node, i.e. transform in the anti-fundamental representation, take a negative sign. Also
chiral fields with flavour indices must be counted, if flavour branes are present. When the O-plane
crosses fields which connect the node a to its image a′, these are projected to their symmetric or
antisymmetric representation and thus their contribution to the anomaly is (Na+4) and (Na−4)
respectively, for each field. For each node a, the anomaly cancellation condition for the orbifold
theory reads

n−1∑
b=1

(IabNb + JabMb) + 4
∑

I

(
ϵ
(I)
aa′ − ϵ

(I)
a′a

)
= 0 , (4.10)

where Iab and Jab count with orientation how many fields start from (or end on) the node a,

Iab =
3∑

I=1
(δa, b−kI

− δa, b+kI
) , Jab = δa, b−s − δa, b+s , (4.11)

and ϵ
(I)
aa′ , ϵ

(I)
a′a = ± account for symmetric (+) or antisymmetric (−) fields, connecting nodes a and

a′ = a + kI (or the opposite orientation). It is important to note their relative sign in the anomaly
cancellation, due to their different orientation in the spectrum5. In simple cases where fields along
the direction I have the same orientation, ϵ

(I)
aa′ = −ϵ0ϵI and ϵ

(I)
a′a = ϵ0ϵI . The above Eq. (4.10) is

a generalization of the anomaly cancellation condition used in [39], where it is was derived from
the partition function of orbifold theories along the lines of [93, 94]. We will use it also for non-
orbifold theories, since these can be related via mass deformations or Higgsing to orbifold theories.
In this case we still use the notation ϵ

(I)
aa′ , where I stands for the fields in a multiplet rather than

the orbifold directions. The above generalization allow us to exactly reproduce known results in
the literature and to gain further physical intuition about unoriented gauge theories at general
Calabi-Yau singularities, as we will see in the forthcoming sections.

5Actually, in [39] the anomaly cancellation condition was different, because it was assumed that fields along the
direction I = 1, 2, 3 have always the same orientation. In the present work the general scenario is allowed, generalizing
previous results. See below the example of C3/Z4 (1, 1, 2).
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4.2.3 Conformal Invariance

We also rewrite the beta functions in terms of Iab and Jab. The presence of both O-planes and
flavour branes can alter the conformal properties of the original parent theory. It is thus an
interesting question to ask which unoriented projections allow for a theory which is simultaneously
anomaly-free and conformal in the perturbative regime, i.e. without the inclusion of strongly
coupled sectors in the IR as done in [84, 85]. We will show that not all the orientifold projections
we consider fulfill this request and we will give a physical interpretation of the results in terms of
O3 and compact/non-compact O7 planes.
Recall that the β-function of an N = 1 gauge theory is

β ∝ 3TAdj −
∑

i

Tρi (1− γi) , , (4.12)

where Tρ denotes the Dynkin index of the representation ρ, γi is the anomalous dimension of the
bi-fundamental chiral fields and the sum runs over all chiral fields transforming under the gauge
group factor. To determine the anomalous dimensions of the chiral fields Xab, one may use the
properties of the superpotential and the fact that at the conformal point ∆ = 3

2R, that has to be
positive for gauge-invariant chiral fields in a unitary theory.
Starting with a superconformal quiver gauge theory, the orientifold projection may break conformal
invariance. In case of an O3-plane, which acts projecting fields XI

aa′ onto different symmetric or
antisymmetric representations for different I, conformal invariance may hold. On the other hand,
an O7-plane couples to the dilaton and then its presence usually breaks conformal invariance. In
some cases, in order to obtain a conformal theory, we may add a suitable number of flavour branes,
as shown in [39]. For quiver gauge theories with flavour branes and O-planes, the general β-function
βa at the node a reads

βSU
a = 3Na −

∑
I

(
ϵ
(I)
aa′ + ϵ

(I)
a′a

) (
1− γ

(I)
aa′

)
− 1

2
(
I+

abNb + J+
abMb

)
,

βSO/USp
a = 3

2Na + 3ϵa −
1
2
∑

I

(
ϵ
(I)
aa′ + ϵ

(I)
a′a

) (
1− γ

(I)
aa′

)
− 1

4
(
I+

abNb + J+
abMb

)
. (4.13)

For oriented abelian orbifolds C3/Zn, γab = 0. The anomalous dimensions of fields in the oriented
parent theory and in the unoriented one usually differ by terms of order 1/N , which are suppressed in
the large N limit. Moreover, fields transforming in the symmetric or antisymmetric representation
are usually present in unoriented theories and their contribution to the beta function differs from the
original fields in the parent theory. For these reasons, we allow for non-zero anomalous dimensions
even in the simple case of unoriented abelian orbifolds.
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In Eq. (4.13) we have used

I+
ab =

3∑
I=1

(δa,b−kI
+ δa,b+kI

)
(
1− γ

(I)
ab

)
, J+

ab = δa,b−s + δa,b+s , (4.14)

and ϵa = ± projects a gauge group to Sp (+) or SO (−). The second term on the right hand
side of both expressions in Eq. (4.13) only exists if in the quiver there are fields that are cut by
the orientifold action and start from the node a. The above equations are a generalization of the
action of a unique orientifold charge ϵ0 i.e. we allow different projections for gauge groups in the
same theory: the same orientifold may project a gauge group to SO(Sp) while another group is
projected to USp(SO). This generalization works also for the anomaly cancellation equation and is
perfectly consistent with previous results obtained in the literature, as we will see in the examples
below.
Furthermore, since for C3/Zn far away from the singularity the space looks like C3 and the theory
is conformal, the sum of all the beta functions is zero, i.e. ∑

a βa = 0, which corresponds to a
constant complex dilaton S. In fact, for C3/Zn the gauge kinetic function at each node, fa, sum up
to S. Note that, as observed in [39], U(1) and O(2) group factors are free in the IR and so decouple
from the dynamics at large distances. The vanishing of their β functions cannot be achieved and
should be relaxed. Similarly O(1) = Z2 has no proper β function.

4.2.4 Unoriented Projections of D3-branes on C3

The first prototypical example is the unoriented projection of C3 [81, 85]. The parent gauge theory
is N = 4 Super Yang-Mills (SYM) theory with super-potential

W = Tr Φ1[Φ2, Φ3] , (4.15)

where ΦI are adjoint fields, which parametrize the three complex directions transverse to the stack
of D3-branes. The toric diagram of this theory is a triangle with no internal point and consequently
there are two different involutions given by an O3 or a non-compact O7.

N

Ω

Figure 4.2. The unoriented quiver (left) and the dimer (center) of C3, while the unoriented toric diagram
(right) with the two orientifolds O3 and O7, see Section 3.3 for a summary of the orientifold on the toric
diagram.
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4.2. Unoriented Toric Singularities and their Mass Deformation

Following the quiver description presented in [39], the orientifold charges for an O3±, (±,−,−,−)
give N = 4 SYM with USp(SO)(N) gauge group and the three fields transforming in the
(anti)symmetric representation; the orientifold charges for a O7±, (∓, +, +,−) yield a N = 2
gauge theory with either USp(N) and two antisymmetric fields and one symmetric, or SO(N) with
two symmetric fields and one antisymmetric. The superpotential of the parent theory is easily
read from the dimer and, after the unoriented projection, the product of the τ charges on the
dimer must be negative due to the constraint given by Eq. (3.3). The first of various choices6 is
(τ0, τ1, τ2, τ3) = (∓,±,±,±), which gives N = 4 SYM. In fact, the three mesonic operators on
the dimer flip their signs under O3±. For this model the relation with the orientifold charges is
ϵ0 = −τ0 = ±, ϵ1 = τ0τ1 = −, ϵ2 = τ0τ2 = −, ϵ3 = τ0τ3 = −, and corresponds to an O3±. On
the other hand, the action of an O7 is encoded in such choices of τ charges as (±,±,±,∓) or
permutation of the last three signs. The three diagrams are drawn in Fig. (4.2). Finally, note that
O3 yields a conformally invariant theory with canonical dimensions and R-charges for the three
adjoint chiral fields.

4.2.5 Orientifold of N = 1 Orbifold C3/Z3, (1, 1, 1)

In this section we analyze the second prototypical example, the unoriented projection of the chiral
orbifold C3/Z3 [81, 85, 95], whose different descriptions are drawn in Fig. (4.3). We study the
N = 1 theory with kI = (1, 1, 1), whose quiver is the same as the theory with kI = (2, 2, 2), up
to relabelling the nodes. Among the conjugacy classes, summarized in Tab. (4.1), the single senior
class signals the presence of a single compact 4-cycle and this information will be useful later.

(k1, k2, k3) Age= 1
3
∑

I kI Conjugacy class

(0, 0, 0) 0 Baby
(1, 1, 1) 1 Junior
(2, 2, 2) 2 Senior

Table 4.1. The conjugacy classes of the orbifold model C3/Z3.

The super-potential is
W = ϵIJK XI

01XJ
12XK

20 , (4.16)

which enjoys the mesonic symmetry SU(3). In fact, the theory has symmetry SU(3) × U(1)R,
where U(1)R is the R-symmetry of the N = 1 SCFT.
Let us perform the unoriented projection with a compact O7-plane in the resolved space, whose
toric diagram is the left one shown in Fig. (4.3). Since n = 3 is odd, there are only three equivalent
projections with the O-plane on top of a node. Here, without loss of generality, we consider only

6The first τ lays on the face, the other three follow in clockwise order on the dimer.
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N0

N1N2

XI
01

XI
12

XI
20

Ω

2 2

2

1

11

0

Figure 4.3. The various unoriented descriptions of C3/Z3. The upper row shows the quiver (left) and the
Ω-line, whereas on the right side the dimer, with the four fixed points in red. In the lower row: the toric
diagram and the toric involution with a compact O7 (left) and a non-compact O7 (right).

an O-plane through the node 0. This orientifold involution acts on the orbifold as

2 = 1 , U(N0)→ USp/SO(N0) (4.17)

and the super-potential becomes

W Ω = ϵIJK XI
01XJ

11′XK
1′0 . (4.18)

The anomaly cancellation condition Eq. (4.10) reads

N0 = N1 + 4
3

3∑
I=1

ϵ
(I)
11′ = N1 ± 4 , (4.19)

which is indeed what we would have obtained with an O3± placed at the origin of the singular space.
According to the toric diagram, the orientifold plane is a compact O7 in the smooth resolved space,
which wraps the compact 4-cycle (whose presence is signaled by the senior conjugacy class) that in
the singular space corresponds to an O3±-plane. The results are summarized in Tab. (4.2). From
the dimer, we can reproduce this unoriented projection with four fixed points τi = (±,∓,∓,∓)
as displayed in Fig. (4.3) and negative overall product of the τ charges τi. Again in this case, the
relation between τ charges and orientifold charges is given by ϵ0 = −τ0 and the relative sign of the
mesonic operators under the orientifold involution ϵI = τ0τI .
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Orientifold Gauge groups Anomaly condition (X1
11′ , X2

11′ , X3
11′)

O3+ USp(N0)× U(N1) N0 = N1 + 4 (S, S, S)
O3− SO(N0)× U(N1) N0 = N1 − 4 (A, A, A)

Table 4.2. The unoriented projection O3± (on the singular space) of the orbifold model C3/Z3 which, in
the resolved space, is a compact O7-plane. The fields XI

11′ are projected onto symmetric or antisym-
metric representation, where “A” stands for “Antisymmetric representation”, while “S” for “Symmetric
representation”.

Let us compute the β-functions. From Eq. (4.13) and using Eq. (4.19) we obtain

β
SO/USp
0 = 3

2N1γ01 + 2
3∑

I=1
ϵ
(I)
11′ + 3ϵ0 ,

βSU
1 = 3

2N1 (γ01 + γ11′) +
3∑

I=1
ϵ
(I)
11′ (−3 + γ11′ + 2γ01) . (4.20)

Assuming there is a conformal point, where 1− γab = 3(1−Rab), we have for the R-charges

R01
9
2N1 = 3N1 − 3ϵ0 − 2

3∑
I=1

ϵ
(I)
11′ ,

R01

(
9
2N1 + 6

3∑
I=1

ϵ
(I)
11′

)
+ R11′

(
9
2N1 + 3

3∑
I=1

ϵ
(I)
11′

)
= 3

(
2N1 + 3

3∑
I=1

ϵ
(I)
11′

)
,

2R01 + R11′ = 2 , (4.21)

where the last equation comes from the super-potential. The solution of the system is

R01 = 2
3

N1 −
∑3

I=1 ϵ
(I)
11′

N1
,

R11′ = 2
3

N1 + 2∑3
I=1 ϵ

(I)
11′

N1
, (4.22)

from which γ01 = −2
∑3

I=1 ϵ
(I)
11′

N1
, γ11′ = +2

∑3
I=1 ϵ

(I)
11′

N1
. Note that in the large N limit we retrieve back

the anomalous dimensions of the parent theory, namely, γ11′ = γ01 = 0 and the sum of the beta
functions vanishes if 3ϵ0 = ∑3

I=1 ϵ
(I)
11′ .

Note also that in the resolved space the compact O7 acts in such a way that all the three fields XI
11′

are projected in the same way, as we can see from the anomaly cancellation condition Eq. (4.19).
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N0

N1N2

M0

M1M2
q02

q̃22

q20 q̃01

q11

q̃10

Ω

Figure 4.4. The quiver of C3/Z3 with the addition of flavour branes.

In [39] it is been argued that one may add non-compact flavour branes in the system as shown in
Fig. (4.4). We discuss the presence of flavour branes only for this model. Since the D7-branes yield
additional chiral fields, the new anomaly equations read

M0 −M1 = 3(N1 −N0) + 4
3∑

I=1
ϵ
(I)
11′ , (4.23)

that can be solved even with the presence of O7 in the singular space and a judicious choice of M1

and M0. These branes enter in the super-potential with new terms such as

W = ϵIJK XI
01XJ

12XK
20 + q̃αaX3

abqbα (4.24)

wrapping the flavour branes along the divisor X3 = 0. The orientifold action on the flavour groups
and super-potential is

3 = 2 ,

U(M0)→ USp/SO(M0) ,

W Ω = ϵIJK XI
02′XJ

2′2XK
20 + q̃02′X3

2′2q2 0 + q̃10X3
01q1 1 + q̃1′2X3

20q0 1′ . (4.25)

The beta-functions, together with the anomaly-free condition, in this case read

2β0 = 3N1γ01 + 6ϵ0 + 4
3∑

I=1
ϵ
(I)
11′ −M0 ,

2β1 = N1

(
3γ01 +

3∑
I=1

γ
(I)
11′

)
+ 2

3∑
I=1

ϵ
(I)
11′

(
−3 + 2γ01 + γ

(I)
11′

)
+ M0 (−2 + γ01)−M0γ01 . (4.26)
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Imposing the vanishing of the sum of the beta functions when the anomalous dimensions are trivial,
we get

3ϵ0 −
3∑

I=1
ϵ
(I)
11′ = 1

2(M0 + 2M1) , (4.27)

which is solved, for instance, for ϵ0 = +1,
∑3

I=1 ϵ
(I)
11′ = −3 and M0 = M1 = 4. This scenario

corresponds to the presence of a O3-plane or, better, a compact O7-plane in the resolved space
wrapped on a 4-cycle, whose existence is guaranteed by the Ito-Reid theorem. Note that in this case
the beta functions do not vanish separately. A second choice corresponds to considering ϵ0 = +1
and ∑3

I=1 ϵ
(I)
11′ = ±1 which is related to the presence of a non-compact O7-plane.

The point of [39] is that, when the orientifold breaks conformal invariance, one may add flavour
branes in order to recover such invariance. However, the presence of non-compact flavour branes
breaks the toric condition and we cannot use the orientifold rules from the dimer. The tiling would
not be defined on a torus and the orientifold involution gives rise to different geometries.

4.2.6 Orientifold of the First del Pezzo Surface (dP1)

We begin the study of the unoriented projections of some non-orbifold theories with the complex
cone over the first del Pezzo surface dP1 [81, 85, 95, 96], whose different diagrams are drawn in
Fig. (4.5). The anomaly cancellation condition Eq. (4.10) is derived from partition functions of
orbifold theories, then in principle we are not allowed to use it for these cases. However, the dP1

theory is related to the orbifold model C3/Z3 by higgsing two gauge groups [71]. From the quiver
and the dimer it is easy to see that merging nodes/faces 0 and 3 into one node/face produce the
diagrams of C3/Z3, see for example Fig. (4.6). On the toric diagram, the giggsing procedure takes
out an external node, as displayed in Fig. (4.7). We will see that also the super-potential matches.
Let us begin with the super-potential of dP1, which reads

W = ϵpq

[
Xq

12 (X20Xp
01 −Xp

23X31) + X3
12Xq

23X30Xp
01

]
. (4.28)

with p, q = 1, 2. As explained in Sec. 2.4.2, we give VEV to ⟨X30⟩ = 1 and the super-potential
becomes

W = ϵpq

[
Xq

12 (X20Xp
01 −Xp

20X01) + X3
12Xq

20Xp
01

]
. (4.29)

Re-defining the fields as X20 → X3
20, X01 → X3

01 we end up with the super-potential of the C3/Z3

theory
W = ϵIJK

(
XI

12XJ
20XK

01

)
. (4.30)

The idea is to use the argument the other way around, namely from the unoriented C3/Z3 we
un-higgs the group at node 0 and obtain the unoriented dP1. The anomaly cancellation condition
is thus inherited from the orbifold theory.
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Figure 4.5. The quiver (left), the dimer (center) and the toric diagram (right) of dP1.
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XI
01
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Figure 4.6. The Higgsing of nodes 0 and 3 on the quiver of dP1 gives the quiver of C3/Z3.

Orientifold Ω̂ of dP1

Considering the toric diagram of this model, there are three orientifold involutions allowed, one
with a compact O7, one with a non-compact O7 and an O3, and one with a non-compact O7, see
Fig.(4.9). The unoriented projections from quiver and dimer are shown in Fig.(4.8). Identifications
are

3 = 0 , = 1 , (4.31)

Figure 4.7. Higgsing dP1 (left) takes out an external node from the toric diagram, resulting in C3/Z3
(right).
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Figure 4.8. The orientifold projection Ω̂ of dP1, whose quiver is on the left and dimer on the right.

Figure 4.9. The various orientifold projections of toric diagram of dP1. The left figure shows the orientifold
with a non-compact O7 and O3, in the center a non-compact O7 and on the right a compact O7.

the superpotential reads

W = ϵpq

[
Xq

11′
(
X1′0Xp

01 −Xp
1′0′X0′1

)
+ X3

11′X
q
1′0′X0′0Xp

01

]
(4.32)

and the anomaly-cancellation equations are

ϵ0′0 = −1
3

3∑
I=1

ϵ
(I)
11′ ,

N1 = N0 −
4
3

3∑
I=1

ϵ
(I)
11′ , (4.33)

which requires
(
ϵ
(1)
11′ , ϵ

(I)
11′ , ϵ

(I)
11′

)
= (±,±,±) and ϵ0′0 = ∓. This agrees with Eq. (3.3), from which the

overall product of the signs must be negative. The possible choices are summarized in Tab. (4.3).

Orientifold Anomaly condition X0′0
(
X1

11′ , X2
11′ , X3

11′
)

Ω̂+ N1 = N0 + 4 S (A, A, A)
Ω̂− N1 = N0 − 4 A (S, S, S)

Table 4.3. The orientifold involutions Ω̂ of dP1 with gauge groups U(N0)× U(N1).
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4.2. Unoriented Toric Singularities and their Mass Deformation

The beta functions of this model read

2β0 = N0 (2 + 2γ01 + γ0′0 + γ1′0) + 2ϵ0′0 (−7 + γ0′0 + 2γ1′0 + 4γ01) ,

2β1 = N0 (γ0′1 + 2γ01 + 2γ11′ + γ11′) + 2ϵ0′0 (9 + γ11′ + 2γ11′) + 2ϵ3
11′ (γ11′ − γ11′) , (4.34)

where γab are the anomalous dimensions of Xab and γ11′ is the anomalous dimension the third field
X3

11′ . Note that the parent theory is conformal [97–99] if N0 = N1 = N2 = N3, but the unoriented
theory suffers from gauge anomalies.

4.2.7 Orientifold of the Chiral Orbifold Z′
2 of the Conifold C (C/Z′

2)

We now pass to study the chiral orbifold of the Conifold, denoted by C/Z′
2 [81, 85, 95, 96], and its

orientifold. The theory has two dual phases, called “electric” and “magnetic”, with the same toric
diagram drawn in Fig. (4.10). Later, we will compare our results with those in C3/Z4 and its mass
deformation, with and without the orientifold.

Figure 4.10. The toric diagram of C/Z′
2.

Electric Phase of C/Z′
2

The super-potential reads

W = ϵpqϵp′q′Xp
01Xp′

12Xq
23Xq′

30 , (4.35)

with p, q = 1, 2 and p′, q′ = 1, 2 indices of SU(2)×SU(2)′, the group of mesonic symmetry enjoyed
by the model. By looking at the quiver present in Fig. (4.11) we see that, up to equivalence, we
have two possible unoriented projections: the first denoted by Ω which passes through the nodes 0
and 2, while the second is denoted by Ω̂ and passes only through fields.
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Figure 4.11. The quiver of the eletric phase of C/Z′
2 is shown on the left, while the corresponding dimer

is on the right.

Orientifold Ω of the Electric Phase of C/Z′
2

This orientifold acts as

3 = 1 , U(N0)→ USp/SO(N0) , U(N2)→ USp/SO(N2)
(4.36)

and the super-potential becomes

W Ω = ϵpqϵrsXp
01Xr

12Xq
21′X

s
1′0 . (4.37)

where the SU(2) indices refer now to the diagonal subgroup to which the mesonic symmetry
SU(2) × SU(2)′ is broken. Indeed, this unoriented projection is obtained by a fixed line in the
dimer as shown in Fig. (4.12) and it breaks the mesonic symmetries and thus it is a non-toric
involution. In the super-potential there are only three terms, since two are identified being the
transpose of each other. The sign of the fixed line determines the projection to SO or USp gauge
groups, and we must have ϵ0 = ϵ2. We denote the two involutions as Ω+ for USp and Ω− for SO,
following the sign convention for the quiver. The theory is anomaly-free if

N0 = N2 . (4.38)
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Figure 4.12. The orientifold involution Ω of C/Z′
2, whose quiver is drawn on the left and the dimer on the

center, while the toric diagram is shown on the right.

In this theory, the chiral fields acquire anomalous dimensions, that appear after the mass defor-
mation from C3/Z4 (see next subsection). With the anomaly-free condition, the beta functions
read

2β0 = 3N0 + 6ϵ0 − 2N1 (1− γ01) ,

β1 = 3N1 −N0(2− γ01 − γ12),
2β2 = 3N0 + 6ϵ2 − 2N1 (1− γ12) , (4.39)

From the super-potential before the orientifold, each field has R-charge 1/2 and the parent theory
is conformal if all γ = −1/2. The same reasoning yields again all γ = −1/2 for the involution Ω of
C/Z′

2. With these values for the anomalous dimensions, we can impose the beta functions to vanish
simultaneously: from the second beta function we need that N0 = N1. Then, if we start with a
conformal parent theory, after the unoriented projection we obtain

β0 = 3ϵ0 ,

β1 = 0 ,

β2 = 3ϵ0 (4.40)

Where we have used the fact that ϵ0 = ϵ2, since by construction the orientifold involution corre-
sponds to a fixed line on the dimer. We conclude that the unoriented projection Ω breaks conformal
invariance. We can still verify if the sum of the beta function vanishes. Summing the three equations
above with all γ = −1/2 we get

ϵ0 = −ϵ2 (4.41)

which is in contrast with the original condition ϵ0 = ϵ2. We conclude that this unoriented
projection spoils conformal invariance, it does not allow the fractional branes to recombine into a
single bulk brane and it also breaks toricity.

The results for the anomaly-free (but non toric and non conformal) theories are summarized in the
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4.2. Unoriented Toric Singularities and their Mass Deformation

following Tab. (4.4).

Orientifold Gauge groups Anomaly condition

Ω+ USp(N0)× U(N1)× USp(N2) N0 = N2

Ω− SO(N0)× U(N1)× SO(N2) N0 = N2

Table 4.4. The unoriented C/Z′
2.

Orientifold Ω̂ of the Electric Phase of C/Z′
2

This orientifold acts as

3 = 0 , 2 = 1 (4.42)

and the super-potential reads

W Ω = ϵpqϵp′q′Xp
01Xp′

11′X
q
1′0′X

q′

0′0 . (4.43)

This unoriented projection is obtained by four fixed points in the dimer as in Fig. (4.13) and it
preserves the mesonic symmetries. The product of the four τ charges must be positive.

N0

N1N2

N3

Xp
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Xp′

12

Xp
23

Xp′

30

Ω̂

1

1
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2

2

0

0

0

0

3

3

3

3

Figure 4.13. The orientifold projection Ω̂ of C/Z′
2, whose quiver is drawn on the left and the dimer on the

right.

60



4.2. Unoriented Toric Singularities and their Mass Deformation

Figure 4.14. The various toric involutions Ω̂ of C/Z′
2. The right figure shows the toric involution with a

non-compact O7, in the center a compact O7 and on the right a O3.

The anomaly cancellation conditions read

N0 = N1 + 2
(
ϵ
(1)
11′ + ϵ

(2)
11′

)
,(

ϵ
(1)
0′0 + ϵ

(2)
0′0

)
= −

(
ϵ
(1)
11′ + ϵ

(2)
11′

)
(4.44)

This means that we have various unoriented theories with gauge groups U(N0) × U(N1), with
N1 = N0 or N1 = N0 ± 4, summarized in Tab. (4.5).

Anomaly condition (X1
11′ , X2

11′) (X1
0′0, X2

0′0)

N0 = N1 + 4 (S, S) (A, A)
N0 = N1 − 4 (A, A) (S, S)

N0 = N1 (S, A) or (A, S) (S, A) or (A, S)
N0 = N1 (S, A) or (A, S) (A, S) or (S, A)

Table 4.5. The various unoriented projections Ω̂ of C/Z′
2, all of them with gauge groups U(N0)× U(N1).

Plugging in the anomaly cancellation condition, the beta functions of this model read

β0 = N1 (1 + γ01 + γ0′0) +
(
ϵ
(1)
11′ + ϵ

(2)
11′

)
(5 + γ0′0) ,

β1 = N1 (1 + γ01 + γ11′)−
(
ϵ
(1)
11′ + ϵ

(2)
11′

)
(3− γ11′ − 2γ01) , (4.45)

The anomalous dimensions of this unoriented theory are different from the ones of the parent theory
and still non-zero.

Magnetic Phase of C/Z′
2

This theory is the magnetic dual of C/Z′
2. The node 4 is the dual of the node previously called

node 0. There are four additional mesons, which are the fields Xpp′

31 , p, p′ = 1, 2, in Fig. (4.15). The
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4.2. Unoriented Toric Singularities and their Mass Deformation

super-potential reads

W = ϵpqϵp′q′Xpp′

31

(
Xq

14Xq′

43 −Xq′

12Xq
23

)
(4.46)

and the theory still enjoys an SU(2)×SU(2)′ mesonic symmetry. Again, there are two inequivalent
unoriented projections: the first denoted by Ω which passes trough the nodes 4 and 2, while the
second is denoted by Ω̂ and crosses only fields. Since the toric diagram is the same of the electric
phase, the involution on the toric diagram will be the same. Note that the R-charges and then the
anomalous dimensions at the conformal point are such that γ14 = γ43 = γ23 = γ12 = −1/2 and
γ31 = 1.

N4

N1N2

N3

Xp
14

Xp′

12

Xp
23

Xp′

43

(X31)pp′
3

3

3

4

3

11

2

2

2
2

4

Figure 4.15. The Seiberg dual, or magnetic, phase C/Z′
2 with dualization on node 0. The quiver is shown

on the left, while the corresponding dimer is on the right.

Orientifold Ω of the Magnetic Phase of C/Z′
2

This orientifold acts as

3 = 1 , U(N4)→ USp/SO(N4) , U(N2)→ USp/SO(N2)
(4.47)

and the super-potential becomes

W Ω = ϵpqϵlm

(
Xmp

1′1 X l
12Xq

21′ + Xpl
1′1Xm

14Xq
41′

)
. (4.48)

The field identifications Xp
14 ↔ Xp′

41′ and Xp′

12 ↔ Xp
21′ leaves only one SU(2) unbroken. The

symmetry is thus reduced to SU(2) × U(1)R and hence toricity is broken. We can see this also
from the corresponding dimer with a fixed line shown in Fig.(4.16). We denote with ϵ the sign
of the fixed line and with ϵ

(mp)
1′1 , m, p = 1, 2 the orientifold sign for the four fields X

(mp)
1′1 . Two of

the four fields are on top of the fixed line and are projected onto a symmetric or antisymmetric
representation, while the other two fields are identified with each other yielding one symmetric and
one antisymmetric field. We can see this from the superpotential as follows.
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Figure 4.16. The orientifold involution Ω of the magnetic C/Z′
2, whose quiver is drawn on the left and the

dimer on the center, while the toric diagram on the right.

Consider the first super-potential term and momentarily restore the gauge group indices as

W1 = ϵpqϵlm

(
Xmp

1′1
)i1 j1

(
X l

12

)l2

j1
I [l2m2]±

(2)
(
Xq

21′
)

m2 i1
, (4.49)

where I [l2m2]±
(2) is the two-index invariant tensor of the gauge group at the node 2 and ± indicates

whether it is symmetric (SO(N0)) or antisymmetric (USp(N0)) in the indices l2, m2. Due to the
presence of two ϵpq of SU(2), we can only have SO(N2) with a symmetric

(
Xmp

11′
)i1 j1 or USp(N2)

with an antisymmetric
(
Xmp

11′
)i1 j1 . But a symmetric X11′ means that we have 3 symmetric combi-

nations (mp)(i1j1) and 1 antisymmetric [mp][i1j1], thus ∑m,p ϵ
(mp)
1′1 = +2 with SO(N2), otherwise

the super-potential term vanishes. On the other hand, ∑m,p ϵ
(mp)
1′1 = −2 with USp(N2). If we let

the terms to vanish, there are no F-terms for X11′ yielding a no longer singular mesonic moduli
space. Since it is unlikely that the theory becomes free after the addition of the orientifold plane,
this scenario is implausible. The same line of reasoning holds for the second super-potential term.
Moreover, both super-potential terms contain Xmp

11′ , then groups at node 4 and 2 must be projected
in the same way, i.e. by the single sign ϵ of the fixed line.
The anomaly cancellation condition requires that

N4 + N2 = 2

N1 +
∑

m,p=1,2
ϵ
(mp)
1′1

 , (4.50)

with the constraint ∑m,p ϵ
(mp)
1′1 = ±2. The results are summarized in Tab. (4.6).

Gauge groups Anomaly condition (X11
31 , X12

31 , X21
31 , X22

31 )

SO(N4)× U(N1)× SO(N2) N4 + N2 = 2N1 + 4 (S, S, S, A)
USp(N4)× U(N1)× USp(N2) N4 + N2 = 2N1 − 4 (S, A, A, A)

Table 4.6. The orientifold involution Ω of the magnetic phase of C/Z′
2 without flavour branes.
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With the anomaly cancellation condition, the beta functions take the form

2β4 = 2N1 (2 + γ14)− 3N2 + 6ϵ + 6
∑

m,p=1,2
ϵ
(mp)
1′1 ,

β1 = N1 (−1 + 2γ14 + 2γ1′1) + N2 (γ12 − γ14) +
∑

m,p=1,2
ϵ
(mp)
1′1 (−3 + γ1′1 + 2γ14) ,

2β2 = 2N1(−1 + γ12) + 3N2 + 6ϵ . (4.51)

If we set Na = N for all a, i.e. the condition needed at the conformal point of the parent theory,
the unoriented projection Ω of the magnetic phase of C/Z′

2 has gauge anomalies.

Orientifold Ω̂ of the Magnetic Phase of C/Z′
2

This orientifold acts as

2 = 4 , 3 = 1 (4.52)

and the super-potential reads

W Ω = ϵpqϵp′q′Xpp′

1′1

(
Xq

14Xq′

41′ −Xq′

14′X
q
4′1′

)
(4.53)

This unoriented involution is obtained by four fixed points in the dimer as in Fig. (4.17) and it
preserves the mesonic symmetries. The four τ charges (τ1

1′1, τ2
1′1, τ1

1′1, τ2
1′1, ) project fields Xpp′

1′1
onto the symmetric (+) representation and antisymmetric (-) representantion. Their product is
constrained by Eq. (3.3) and must be positive, thus also the choices for the spectrum are constrained.
This reflects the choices for the ϵ

(I)
1′1, since the four of them project fields as the τ charges.
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Figure 4.17. The orientifold projection Ω̂ of C/Z′
2, whose quiver is drawn on the left and the dimer on the

right.

64



4.2. Unoriented Toric Singularities and their Mass Deformation

Figure 4.18. The various toric involutions Ω̂ of the magnetic phase of C/Z′
2. Since Seiberg duality does not

change the toric diagram, the possible involutions are the same as for the electric phase. The left figure
shows the toric involution with a non-compact O7, the center toric diagram represents a toric involution
with a compact O7, the right one a toric involution with an O3.

The anomaly cancellation condition reads

N4 = N1 +
4∑

I=1
ϵ
(I)
1′1 , (4.54)

The various unoriented theories with gauge groups U(N2)× U(N1) are summarized in Tab. (4.7).

Anomaly condition (X11
1′1, X12

1′1, X21
1′1, X22

1′1)

N2 = N1 + 4 (S, S, S, S)
N2 = N1 (A, A, S, S)

N2 = N1 − 4 (A, A, A, A)

Table 4.7. The various unoriented projections Ω̂ of the magnetic C/Z′
2, all of them with gauge groups

U(N2)× U(N1). “A” stands for “Antisymmetric representation”, while “S” for “Symmetric representa-
tion”.

The beta functions of this anomaly-free model read

β4 = N1 (1 + γ41 + γ14) + 3
4∑

I=1
ϵ
(I)
1′1 ,

β1 = N1 [−1 + γ14 + γ14′ + 2γ1′1] +
4∑

I=1
ϵ
(I)
1′1 (−3 + γ1′1 + γ14 + γ14′) . (4.55)

Note that at the conformal point of the parent theory, i.e. Na = N for all a, this unoriented theory
may have gauge anomalies depending on the spectrum, see Tab. 4.7.

4.2.8 Orientifold of N = 1 Orbifold C3/Z4, (1, 1, 2) and its Mass Deformation

We study orientifold actions on the chiral orbifold C3/Z4 [39, 96] and its mass deformation to the
unoriented C/Z′

2 [70]. We see that the conjugacy classes listed in Tab. (4.8) include a senior class.
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This corresponds to a compact 4-cycle around which, in the smooth resolved space, an O7 plane
can wrap. The crepant resolution of this model and its relation with the Generalized Kronheimer
Construction can be found in [14, 92].

(k1, k2, k3) Age= 1
4
∑

I kI Conjugacy class

(0, 0, 0) 0 Baby
(1, 1, 2) 1 Junior
(2, 2, 0) 1 Junior
(3, 3, 2) 2 Senior

Table 4.8. The conjugacy classes of the chiral orbifold model C3/Z4.

The associated field theory is described by the diagrams (quiver, dimer, toric) drawn in Fig. (4.19)
and the super-potential reads

W = ϵpq (X20Xq
01Xp

12 + X02Xq
23Xp

30 + X13Xq
30Xp

01 + X31Xq
12Xp

23) (4.56)

with mesonic symmetries SU(2)× U(1)× U(1)R.
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Figure 4.19. The quiver (left), the dimer (center) and the toric diagram (right) of C3/Z4.

The spectrum contains two vector-like fields, denoted by X13, X31 and X02, X20. As discussed
in [70], a pair of vector-like fields can be integrated out with a mass deformation of the theory,
see Sec. 2.4.1. In general, in the low energy theory toricity is lost but, in some cases, a suitable
redefinition of the fields can restore the toric symmetry. Performing this procedure for C3/Z4 the
resulting low energy theory is the chiral orbifold of the conifold C/Z′

2. It is very simple to see this
from the quivers, since Fig. (4.19) without vector-like fields it is exactly the quiver of (the electric
phase of) C/Z′

2 in Fig. (4.11). It is easy to see that their superpotential, after the deformation, are
the same: one starts with the super-potential of C3/Z4 Eq. (4.56) and adds a mass deformation

∆W = m (X31X13 −X20X02) . (4.57)
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The F-terms of WD = W + ∆W for the massive fields give

X02 = 1
m

ϵpqXq
01Xp

12 , X20 = 1
m

ϵpqXq
23Xp

30 ,

X13 = 1
m

ϵpqXp
12Xq

23 , X31 = 1
m

ϵpqXp
30Xq

01 . (4.58)

Plugging them back in WD the super-potential read

WD = 1
m

ϵpqϵlmXq
23Xm

30Xp
01X l

12 , (4.59)

which is indeed the super-potential of C/Z′
2. Note that the mesonic symmetries along the flow

have been enhanced from SU(2)×U(1)×U(1) to SU(2)×SU(2)×U(1), after integrating out the
massive fields. Furthermore, the presence of a mass scale changes the dimension of the fields.
On the toric diagram, the effect of the mass deformation corresponds to moving external nodes, as
drawn in Fig. (4.20).

Figure 4.20. Mass deformation on C3/Z4 (left) moves external nodes in the toric diagram, yielding C/Z′
2

(right).

In studying the unoriented projections of these two models, it is interesting to analyze the relation
between them. From the toric diagram of C3/Z4 shown in Fig. (4.21), we see that in the resolved
space there are three different types of orientifold: one with an O3, one with a compact O7 (which
wraps the compact 4-cycle) and one with a non-compact O7. On the other hand, from the quiver
one can note the existence of only two orientifolds: Ω crossing two nodes, and Ω̂ crossing fields,
only. We study both cases in that order.

Figure 4.21. The three toric orientifold projections on the toric diagram. The right one is performed by
an O3 plane, while the one on the left a non-compact O7, on the right a compact O7.
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Orientifold Ω of C3/Z4

As it is clear from the quiver in Fig. (4.22), the unoriented projection Ω acts as

3 = 1 , U(N0)→ USp/SO(N0) , U(N2)→ USp/SO(N2) , (4.60)

The superpotential reads

W Ω = ϵpq
(
X20Xq

01Xp
12 + X02Xq

21′X
p
1′0 + X11′Xq

1′0Xp
01 + X1′1Xq

12Xp
21′
)

. (4.61)
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Figure 4.22. The quiver and the corresponding dimer for the orientifold projection Ω of C3/Z4.

The anomaly cancellation condition gives

N0 = N2 + 2
(
ϵ
(3)
11′ − ϵ

(3)
1′1

)
. (4.62)

When ϵ
(3)
11′ = ϵ

(3)
1′1, the fields X11′ and X1′1 are projected in the same symmetric or antisymmetric rep-

resentation, with N0 = N2. When ϵ
(3)
11′ = −ϵ

(3)
1′1 they are projected in opposite ways and the anomaly

cancellation condition becomes N0 = N2 + 4ϵ
(3)
11′ . However, the various possible choices are con-

strained from the dimer and from the super-potential. Indeed, by looking at the dimer, where this
unoriented projection is obtained by fixed point involution, one can note that according to Eq. (3.3),
the product of the τ charges must be positive. Hence, this limits the possible cases to four choices
of the unoriented theory: the gauge groups can be USp/SO(N0)×U(N1)×USp/SO(N2) while the
fields X11′ , X1′1 can transform in the (S, S) or (A, A) representation, only. The second constraint
comes from the orientifold action on the super-potential, which imposes further conditions on the
spectrum: by momentarily restoring the gauge group indices and considering the super-potential
term with, for instance, the field X11′ :

W11′ = ϵpq (X11′)[i1j1]±
(
Xq

1′0
)j1

l0
I [l0m0]±

(0) (Xp
01) i1

m0
, (4.63)

where I [l0m0]±
(0) is the invariant tensor of the gauge group at the node 0 and ± indicates whether it is
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symmetric (SO(N0)) or antisymmetric (USp(N0)) in the indices l0, m0. The whole super-potential
term must be symmetric for the identification of groups 1 and 3 = 1′, thus, we can only have XS

11′

with USp(N0) or XA
11′ with SO(N0), otherwise the term vanishes. The same line of reasoning holds

for the super-potential term with X1′1 and the invariant tensor of the group at node 2. The results
are summarized in Tab. (4.9).

Gauge groups Anomaly condition (X11′ , X1′1)

SO(N0)× U(N1)× SO(N2) N0 = N2 (A, A)
USp(N0)× U(N1)× USp(N2) N0 = N2 (S, S)
USp(N0)× U(N1)× SO(N2) N0 = N2 + 4 (S, A)
SO(N0)× U(N1)× USp(N2) N0 = N2 − 4 (A, S)

Table 4.9. The various orientifold projections Ω of C3/Z4. “A” stands for “Antisymmetric representation”,
while “S” for “Symmetric representation”.

At this point it is natural to wonder if the unoriented involution Ω of C3/Z4 can be mass deformed
to the unoriented projection Ω of C/Z′

2. For the SO/USp(N0) × U(N1) × USp/SO(N2) it is not
possible to add a mass deformation term as X11′X1′1 since the two fields transform under different
representations, one symmetric and the other antisymmetric: the product of the two fields vanishes,
and the mass term is trivial. Besides, in this case the anomaly condition requires N0 = N2 ± 4, in
contrast to N0 = N2 for the case of O-plane for C/Z′

2.
On the other hand, the case with SO/USp(N0)×U(N1)× SO/USp(N2) has N0 = N2 and admits
a mass deformation. Integrating out massive fields one obtains

W Ω = 1
m

(
X1

12X2
21′X2

1′0X1
01 + X2

12X1
21′X1

1′0X2
01 −X2

12X2
21′X1

1′0X1
01 −X1

12X1
21′X2

1′0X2
01

)
(4.64)

and the first two terms are identified, since they are the transpose of each other. This is the super-
potential in Eq. (4.37) of the unoriented projection Ω for C/Z′

2, which is obtained by a fixed line on
the dimer and hence it is not toric, in agreement with the result of the mass deformation.
Let us discuss conformal invariance. Plugging in the anomaly cancellation condition, the beta
functions read

2β0 = 2N1 (−1 + γ01) + N2 (2 + γ02) + 6ϵ0 + 6
(
ϵ
(3)
11′ − ϵ

(3)
1′1

)
,

β1 = N1

(
2 + γ11′ + γ1′1

2

)
+ N2 (−2 + γ12 + γ01) + ϵ

(3)
11′ (−3 + 2γ01 + γ11′)

+ ϵ
(3)
1′1 (1− 2γ01 + γ1′1) ,

2β2 = 2N1 (−1 + γ12) + N2 (2 + γ02) + 6ϵ2 + 2ϵ
(3)
11′ (−1 + γ02) + 2ϵ

(3)
1′1 (1− γ02) . (4.65)
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Summing the above beta functions we get

2∑
i=0

βi = N1

(
γ01 + γ12 + γ11′ + γ1′1

2

)
+ N2 (γ02 + γ01 + γ12) + 3 (ϵ0 + ϵ2)

+ ϵ
(3)
11′ (−1 + 2γ01 + γ02 + γ11′) + ϵ

(3)
1′1 (−1− 2γ01 − γ02 + γ1′1) (4.66)

The unoriented theory is globally conformal (i.e. the sum of the above beta functions vanish) in
the large N-limit, with non-zero anomalous dimensions for ϵ0 = −ϵ2 and ϵ

(3)
11′ = −ϵ

(3)
1′1.

Orientifold Ω̂ of C3/Z4

The unoriented involution Ω̂ identifies

3 = 0 , 2 = 1 (4.67)

and the superpotential reads

W Ω = ϵpq
(
X1′0Xq

01Xp
11′ + X01′Xq

20′X
p
0′0 + X10′Xq

0′0Xp
01 + X0′1Xq

11′X
p
1′0′
)

, (4.68)

while the anomaly-free condition is

N0 = N1 + 2
(
ϵ
(1)
11′ + ϵ

(2)
11′

)
,(

ϵ
(1)
0′0 + ϵ

(2)
0′0

)
= −

(
ϵ
(1)
11′ + ϵ

(2)
11′

)
. (4.69)
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Figure 4.23. The quiver and the corresponding dimer for the orientifold involution Ω̂ of C3/Z4.

There are no constraints on the spectrum other than the anomaly cancellation condition. The
different choices are summarized in Tab. (4.10) and both lines show the same possibilities as for the
unoriented projection Ω̂ of C/Z′

2. Thus, both choices can be mass deformed with a mass term for
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4.2. Unoriented Toric Singularities and their Mass Deformation

X01′ , X1′0 and X0′1, X10′ . Integrating them out gives the toric super-potential

W Ω = 1
m

ϵpqϵlmXp
01X l

11′Xm
1′0′X

q
0′0 , (4.70)

which is also the super-potential of (C/Z′
2)/Ω̂, obtained with a toric involution.

Anomaly condition
(
X1

11′ , X2
11′
) (

X1
0′0, X2

0′0
)

N1 = N0 (S, A) or (A, S) (A, S) or (S, A)
N1 = N0 ± 4 (S, S) or (A, A) (A, A) or (S, S)

Table 4.10. The various unoriented projections Ω̂ of C3/Z4 with gauge groups U(N0)×U(N1). “A” stands
for “Antisymmetric representation”, while “S” for “Symmetric representation”.

Computing the beta-functions with the anomaly-free condition we have (with γ01′ = γ1′0 = γ0′1 =
γ10′)

β0 = N1

(
γ01 + γ01′ + γ

(1)
0′0 + γ

(2)
0′0

2

)
+ ϵ

(1)
0′0

(
−5− γ

(2)
0′0

)
+ ϵ2

0′0

(
−5− γ

(1)
0′0

)
,

β1 = N1

(
γ01 + γ01′ + γ

(1)
11′ + γ

(2)
11′

2

)
+

2∑
I=1

ϵ
(I)
11′ (−5 + 2γ01 + 2γ01′) +

2∑
I=1

ϵ
(I)
11′γ

(I)
11′ (4.71)

β0 + β1 = N1

(
2γ01 + 2γ01′ + γ

(1)
0′0 + γ

(2)
0′0 + γ

(1)
11′ + γ

(2)
11′

2

)

+
2∑

I=1
ϵ
(I)
11′

(
γ

(1)
11′ + γ

(2)
11′ + 2γ01 + 2γ01′

)
− ϵ

(1)
0′0γ

(2)
0′0 − ϵ

(2)
0′0γ

(1)
0′0 . (4.72)

When the anomalous dimensions are trivial, both beta functions vanish if ϵ
(1)
11′ = −ϵ

(2)
11′ , correspond-

ing to an O3 or a compact O7 in the smooth space, while for ϵ
(1)
11′ = ϵ

(2)
11′ the theory is not conformal

and the unoriented projection is given by a non-compact O7 in the resolved space.

4.2.9 Orientifold Projection of Non-chiral Orbifolds

All the examples we have discussed so far involve unoriented projection of chiral orbifolds. We are
going to study also non-chiral examples [19, 100–103], related via mass deformation to well known
theories as the Suspended Pinch Point (SPP), as well as the Conifold and its non-chiral orbifold.
The analysis follows closely what is done for chiral examples, thus it will be less detailed.
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4.2. Unoriented Toric Singularities and their Mass Deformation

Orientifold of N = 2 Orbifold C3/Z′
3, (1, 2, 0)

The non-chiral orbifold C3/Z′
3 with kI = (1, 2, 0) has only a junior class from the age classification,

hence there are no compact 4-cycles. In fact, the toric diagram has no internal points and the
unoriented projection is only given by O3 and non-compact O7 in the resolved space, see Fig. (4.24).
The unoriented projection Ω acts as

2 = 1 , U(N0)→ USp/SO(N0) , (4.73)

and the superpotential reads

W Ω = ϕ′
0 (X01′X1′0 −X01X10) + ϕ1 (X10X01 −X11′X1′1) + ϕ1′ (X1′1X11′ −X1′0X01′) , (4.74)

where ϕa are the adjoint fields at node a, ϕ′
0 is projected down to a symmetric or an antisymmetric

representation. The anomaly cancellation condition reads

ϵ11′ = ϵ1′1 . (4.75)
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X01

X12

X20 X10

X21
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Ω
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Figure 4.24. The various unoriented descriptions of C3/Z′
3. The upper figure shows the toric diagram and

the toric involution with a compact O3 (left) and a non-compact O7 (right). In the lower row: the left
side show the quiver and the Ω-line, whereas on the right side the dimer and the four fixed points in red.

From the dimer, Ω is obtained by fixed point involution and the product of τ charges is negative.
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4.2. Unoriented Toric Singularities and their Mass Deformation

Together with the anomaly-free condition, this means that a symmetric ϕ′
0 requires an USp(N0)

group and an antisymmetric ϕ′
0 requires an SO(N0) group. The beta functions with a non-trivial

anomalous dimension for the adjoint fields are

β0 = N0

(
1 + 1

2γ00

)
−N1 + 3ϵ0 − ϵ

(3)
00 (1− γ00) ,

β1 = N1 (1 + γ11)−N0 − 2ϵ
(1)
11′ (4.76)

and if we suppose γ00 = γ11 = 0 we get

β0 = N0 −N1 + 3ϵ0 − ϵ
(3)
00 ,

β1 = N1 −N0 − 2ϵ
(1)
11′ (4.77)

and the beta functions can vanish simultaneously when all the charges have the same sign
(ϵ0, ϵ00, ϵ11′ , ϵ1′1) = (±,±,±,±): this corresponds to an O3-plane. Furthermore one notes that
the sum of the beta functions with the same condition, namely

3ϵ0 = ϵ
(3)
00 + 2ϵ

(1)
11′ , (4.78)

In the following table we show the possible cases compatible with the anomaly cancellation condi-
tion.

Gauge groups ϕ′
0 (X11′ , X1′1′)

USp(N0)× U(N1) S (S, S) or (A, A)
SO(N0)× U(N1) A (S, S) or (A, A)

Table 4.11. The orientifold involution Ω of the non-chiral orbifold C3/Z′
3. “A” stands for “Antisymmetric

representation”, while “S” for “Symmetric representation”.

Orientifold of the Suspended Pinch Point (SPP)

In [104] it is shown that the SPP theory and its unoriented projections [81] may be obtained via
higgsing of the orbifold C3/ (Z2 × Z2), and in [70] it is shown the mass deformed C3/Z′

3 model flows
to the SPP. In the previous section, the same happens with mass deformation of the orientifold
involution. The final superpotential reads

W Ω = ϕ′
0 (X01′X1′0 −X01X01) + X11′X1′1X10X01 −X1′1X11′X1′0X01′ . (4.79)
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Figure 4.25. The various unoriented descriptions of the SPP: the quiver, the dimer with the four fixed
points in red, and the toric diagram with toric involution corresponding to a non-compact O7 or a non-
compact O7 and a O3, depending on how the toric diagram is triangulated.

The theory is anomaly free if ϵ11′ = ϵ1′1, which is the same condition as in the previous model. From
the dimer, the product of the τ charges is positive, then USp(N0) requires ϕ′

0 to be antisymmetric,
while SO(N0) requires a symmetric ϕ′

0. The beta functions with a non-trivial anomalous dimension
for the adjoint fields are

β0 = N0

(
1 + 1

2γ00

)
−N1 + 3ϵ0 − ϵ

(3)
00 (1− γ00) ,

β1 = 2N1 −N0 − 2ϵ11′ (4.80)

and if we assume γ00 = 0 we get

β0 = N0 −N1 + 3ϵ0 − ϵ00 ,

β1 = 2N1 −N0 − 2ϵ11′ . (4.81)

The beta functions can vanish separately if N1 = ϵ00+2ϵ11′−3ϵ0 and N0 = 2 (ϵ00′ + ϵ11′ − 3ϵ0). The
sum vanishes if N1 = ϵ00 + 2ϵ11′ − 3ϵ0. The following table summarizes the possibilities compatible
with conformal invariance. When all the fields transform in the same representation, the orientifold
involution is given by an O3.

Gauge groups ϕ′
0 (X11′ , X1′1′)

USp(N0)× U(N1) A (S, S) or (A, A)
SO(N0)× U(N1) S (S, S) or (A, A)

Table 4.12. The orientifold projection Ω of the SPP. “A” stands for “Antisymmetric representation”, while
“S” for “Symmetric representation”.
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4.2. Unoriented Toric Singularities and their Mass Deformation

Orientifold of N = 2 Orbifold C3/Z′
4, (1, 3, 0)

In this section we study the unoriented projections Ω and Ω̂ of the non-chiral C3/Z′
4 model with

kI = (1, 3, 0), whose conjugacy classes are only junior classes, from (1, 3, 0) and (2, 2, 0). There are
no compact 4-cycles, in agreement with the fact that the toric diagram has no internal point and
hence no compact O7 in the resolved space. The various diagrams are drawn in Fig. (4.26).
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Figure 4.26. The various unoriented descriptions of C3/Z′
4. The upper figure shows the toric diagram and

the toric involution with a non-compact O7 (left) and a O3 (right). The middle row shows the orientifold
involution Ω, on quiver (left) and dimer (right), while in the lower row are drawn the quiver (left) and
the dimer (right) for the Ω̂.
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Orientifold Ω of C3/Z′
4

The action of the involution is

3 = 1 , U(N0)→ USp/SO(N0) , U(N2)→ USp/SO(N2) , (4.82)

and the superpotential reads

W Ω = ϕ′
0 (X01X10 −X01′X1′0) + ϕ1 (X12X21 −X10X01)

+ ϕ′
2 (X21′X1′2 −X21X12) + ϕ1′ (X1′0X01′ −X1′2X21′) . (4.83)

The theory is anomaly-free without any relevant restriction on the gauge group ranks and on the
spectrum. From the dimer, this orientifold configuration is given by four τ charges whose product
is positive. The choices are displayed in Tab (4.13).

The beta-functions read

2β0 = N0 (2 + γ00)− 2N1 + 6ϵ0 − 2ϵ00 (1− γ00) ,

β1 = 2N1 (2 + γ11)−N0 −N2 ,

2β2 = N2 (2 + γ22)− 2N1 + 6ϵ2 − 2ϵ22 (2 + γ22) . (4.84)

In case of trivial anomalous dimensions, by imposing the simultaneous vanishing of the individual
beta functions we get a condition on the charges

3(ϵ0 + ϵ2) = ϵ22 + ϵ00 (4.85)

which can be satisfied only if ϵ0 = −ϵ2 and ϵ00 = −ϵ22. This corresponds to projecting the group
and the adjoint fields in opposite manner.
Their sum is ∑a β0 = 3 (ϵ0 + ϵ2)+ ϵ00 + ϵ22, which vanishes, again, only if ϵ0 = −ϵ2 and ϵ00 = −ϵ22.
This corresponds to an O3 plane, while other choices (for which ∑a βa ̸= 0) are given by a non-
compact O7.

Gauge groups ϕ′
0 ϕ′

2

USp(N0)× U(N1)× USp(N2) S/A S/A
USp(N0)× U(N1)× SO(N2) S/A A/S
SO(N0)× U(N1)× USp(N2) S/A A/S
SO(N0)× U(N1)× SO(N2) S/A S/A

Table 4.13. The orientifold projection Ω of C3/Z′
4. “A” stands for “Antisymmetric representation”, while

“S” for “Symmetric representation”.
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Orientifold Ω̂ of C3/Z′
4

The action of the involution is

3 = 0 , 2 = 1 , (4.86)

and the superpotential reads

W Ω = ϕ0 (X01X10 −X00′X0′0) + ϕ1 (X12′X2′1 −X10X01)
+ ϕ1′ (X1′0′X0′1′ −X1′1X11′) + ϕ0′ (X0′0X00′ −X0′1′X1′0′) . (4.87)

The anomaly-free condition gives

ϵ00′ = ϵ0′0 ,

ϵ11′ = ϵ1′1 , (4.88)

which is in agreement with the constraint from the dimer, since the product of the τ charges must
be positive. The choices are reported in Tab. (4.14).
The beta-functions read

β0 = N0 (1 + γ00)−N1 − 2ϵ00′ ,

β1 = N1 (1 + γ11)−N0 − 2ϵ11′ , (4.89)

whose sum vanishes at large N only if ϵ00′ = −ϵ11′ , which corresponds to an O3 plane, while the
other choice (for which ∑a βa ̸= 0) are given by a non-compact O7. The same condition holds for
each βa = 0, with N1 = N0 − 2ϵ00′ .

Gauge groups (X00′ , X0′0) (X11′ , X1′1)

U(N0)× U(N1) (S, S) or (A, A) (S, S) or (A, A)
U(N0)× U(N1) (S, S) or (A, A) (A, A) or (S, S)

Table 4.14. The unoriented involution Ω̂ of C3/Z′
4. “A” stands for “Antisymmetric representation”, while

“S” for “Symmetric representation”.

Orientifold of the Non-chiral orbifold of the conifold C/Z2

In [70] it is shown that the mass deformation of the non-chiral orbifold C3/ (Z2 × Z2) flows to the
non-chiral orbifold of the conifold C/Z2 [81, 105]. Also, the mass deformation of the adjoint fields
in the non-chiral orbifold C3/Z′

4 flows to C/Z2, as well as the orientifolds Ω and Ω̂, whose various
diagrams are drawn in Fig. (4.27). We now study them.
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Figure 4.27. The various unoriented descriptions of the non-chiral C/Z2. The upper figure shows a possible
toric diagram from which one can notice the presence of a non-compact O7 and a O3 or only a non-
compact O7, depending on how the toric diagram is triangulated. The middle row shows the orientifold
involution Ω, on quiver (left) and dimer (right), while in the lower row are drawn the quiver (left) and
the dimer (right) for the involution Ω̂.

Orientifold Ω of C/Z2

The action of the non-toric involution is

3 = 1 , U(N0)→ USp/SO(N0) , U(N2)→ USp/SO(N2) , (4.90)

and the superpotential reads

W Ω = X21X12X21′X1′2 −X1′2X21′X1′0X01′ + X01′X1′0X01X10 −X10X01X12X21 , (4.91)

where fields factors X12X21 and X01′X1′0 absorb the (1/m) coming from the mass deformation.
Being non-chiral, the theory is anomaly-free. From the dimer, this orientifold configuration is
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obtained by a fixed line involution, then the groups at nodes 0 and 2 are projected in the same way,
i.e. ϵ0 = ϵ2. The only choices are USp(N0)× U(N1)× USp(N2) and SO(N0)× U(N1)× SO(N2).
The beta-functions read

2β0 = 3N0 − 2N1 + 6ϵ0 ,

β1 = 3N1 −N0 −N2 ,

2β2 = 3N2 − 2N1 + 6ϵ0 . (4.92)

Their sum vanishes only if N1 = −6ϵ0 − 1
2(N0 + N2) and N0 + N2 < −12ϵ0, allowed only for SO

groups. Individually, the beta functions do not vanish simultaneously.

Orientifold Ω̂ of C/Z2

The action of the involution is

3 = 0 , 2 = 1 , (4.93)

and the superpotential reads

W Ω = X1′1X11′X1′0′X0′1′ −X0′1′X1′0′X0′0X00′ + X00′X0′0X01X10 −X10X01X11′X1′1 , (4.94)

As for the previous model, the anomaly-free condition gives

ϵ00′ = ϵ0′0 ,

ϵ11′ = ϵ1′1 , (4.95)

which is again in agreement with the constraint from the dimer, since the product of the four τ

charges must be positive. The choices are reported in Tab (4.14).
The beta-functions read

β0 = 2N0 −N1 − 2ϵ00′ ,

β1 = 2N1 −N0 − 2ϵ11′ , (4.96)

whose sum vanishes only if ϵ00′ = ϵ11′ = 1 from which N0 + N1 = 4, whereas β0 = 0 = β1 if
N0 = N1 = 2.

Gauge groups (X00′ , X0′0) (X11′ , X1′1)

U(N0)× U(N1) (S, S) or (A, A) (S, S) or (A, A)
U(N0)× U(N1) (S, S) or (A, A) (A, A) or (S, S)

Table 4.15. The orientifold projection Ω̂ of C/Z2.
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4.3 Seiberg Duality and Orientifolds

In the preceding sections we have shown the commutativity between mass deformation and orien-
tifold projection, as long as the deformation preserves the Z2 symmetry exploited by the orientifold.
In the following, we ask whether a similar relation holds between Seiberg duality and orientifold.
Recall that Seiberg duality relates two theories which have the same fixed point in the IR. When a
duality cascade occurs, the true IR is the end of the cascade. For this reason, it is meaningful to ask
whether the unoriented projection at the beginning of a duality cascade yields the same theory as
the unoriented projection at the end of the cascade. Duality cascades in unoriented quiver theories
have been studied in [88, 106], where each node is dualized and the theory flows from the UV to
the IR. In our case, nodes are dualized following the order (0, 2, 1, 3). We start again with the C/Z′

2
theory in Fig. (4.11) with N0 = N2 = N + M , N1 = N3 = N , where N is the number of regular
branes and M is the number of fractional branes and N > M in order to dualize the nodes. Along
the cascade, the number of fractional branes diminishes.
Before proceeding any further, recall that Seiberg duality for a gauge group USp(Nc) with Nf

fundamentals yields a magnetic theory USp(Nf − Nc − 4), Nf fundamentals and a singlet in
the antisymmetric ‘meson’ of the U(Nf ) ‘flavour’ group [59], Seiberg duality for a gauge group
SU(Nc) with Nf fundamentals and antifundamentals yields a magnetic theory SU(Nf −Nc), Nf

fundamentals and anti-fundamentals and a singlet ‘meson’ in the bifundamental of the U(Nf ) ×
U(Nf ) ‘flavour’ groups [58], whereas the magnetic dual of SO(Nc) with Nf quarks in the vector
representation is a theory with SO(Nf −Nc +4), Nf quarks and a singlet ‘meson’ in the symmetric
of the U(Nf ) ‘flavour’ group [60].
Let us denote the two ways of performing the projections as A and B.

• A: Orientifold + duality cascade.
Let us perform the projection Ω in Fig. (4.12) with ϵ0 = +1, which gives USp(N + M) at the
node 0, U(N) at the node 1 and USp(N +M) at the node 2. We dualize all nodes in the order
(0,2,1), with node 3 identified with 1 by the orientifold. First, at node 0 the gauge theory
changes as USp(N + M) → USp(N −M − 4) and there are four additional antisymmetric
mesons Mpq. The orientifold projection is Ω in Fig. (4.16). It is important to note that these
mesons are composite in terms of the electric quarks, namely

Mpq =
(

1′ , 0
)p (

0, 1
)q =

(
1, 0

)p (
0, 1

)q
, (4.97)

which transform under two of the groups. In order to make the combination antisymmetric we
get: [i0j0](l1m1)+(i0j0)[l1m1], where i0, j0 = 1, ...N0 run on the group 0 and l1, m1 = 1, ...N1

along the group 1. This gives the proper orientifold signs for the mesons, thus∑4
I=1 ϵ

(I)
1′1 = −2.

Besides, in this way the theory is anomaly-free. We can proceed to dualization of the node
2, whose gauge group becomes USp(N − M − 4). Furthermore, there are other mesons
with “opposite orientation” to the previous ones, since they transform under two conjugate
representations. Whenever that happens, we integrate them out. What remains is to dualize
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4.3. Seiberg Duality and Orientifolds

node 1 (and 3), with gauge group U(N−2M−8). This completes the first step in the duality
cascade, and the process can be repeated several times as long as the duality is allowed. After
k steps in the cascade the theory is USp(NA

0 )× U(NA
1 )× USp(NA

0 ) with

NA
0 = N − (2k − 1)M − 4k2 ,

NA
1 = N − 2kM − 4k(k + 1) (4.98)

and it represents the bottom of the duality cascade, namely the IR theory whose quiver is
shown in Fig. (4.28), if

N < M(2k + 1) + 4k(k + 2) (4.99)

and 
(2k − 1)M + 4k2 < N if M < 4k ,

2kM + 4k(k + 1) < N if M > 4k .

When these condition holds, no more dualities are allowed and the cascade stops.

NA
0 NA

1 NA
0

Figure 4.28. The theory at the end of the duality cascade of (C/Z′
2)/Ω. The orientifold projection is

performed before the cascade.

• B: duality cascade + orientifold.
We exchange now the order and study the orientifold involution at the end of a duality
cascade. We start with M ′ fractional branes and eventually we compare this with M of the
previous case. The order of dualization is (0,2,1,3), with all gauge groups U(N) and again
integrating out fields in two conjugate representations. The cascade stops after k′ steps when

2k′M ′ < N < M ′(2k′ + 1) . (4.100)

The unoriented projection over nodes 0 and 2 yields an anomaly-free theory USp(NB
0 ) ×

U(NB
1 )× USp(NB

0 ) at the IR with

NB
0 = N − (2k′ − 1)M ′ ,

NB
1 = N − 2k′M ′ , (4.101)

whose quiver is drawn in Fig. (4.29).
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NB
0 NB

1 NB
0

Figure 4.29. The unoriented theory at the end of the duality cascade of C/Z′
2. The orientifold projection

is performed after the cascade.

Comparing the theories in A and B at the bottom of the cascades, they are equal if

(2k′ − 1)M ′ = (2k − 1)M + 4k2 ,

2k′M ′ = 2kM + 4k(k + 1) , (4.102)

which leads to

M ′ = M + 4k ,

k′ = kM + 2k(k + 1)
M + 4k

. (4.103)

The solution in terms of integers p and q reads

k′ = p ,

k = q + p ,

M = 2
[

p

q
(p− 1)− q − 1

]
,

M ′ = M + 4(p + q) , (4.104)

with the condition p
q (p− 1) ∈ N and p

q (p− 1) ≥ q + 1.
Note that k = k′ is allowed only if k = k′ = 0 or k = k′ = 1, where the former stands for M = M ′

and no duality cascade is triggered and the latter describe a solution with M ′ = M + 4 and the
flow stops if

2M + 8 < N < 3M + 12 (4.105)

and 
M + 4 < N if M < 4 ,

2M + 8 < N if M > 4 .

If we perform the same process but with an unoriented projection giving SO gauge groups instead
of Sp, the path7 A stops at ranks

NA
0 = N − (2k − 1)M + 4k2 ,

NA
1 = N − 2kM + 4k(k + 1) , (4.106)

7Along the way, the mesons are symmetric and
∑4

I=1 ϵ
(I)
1′1 = +2.
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if
N < M(2k + 1)− 4k(k + 2) (4.107)

and 
(2k − 1)M − 4k2 < N if M < 4k ,

2kM − 4k(k + 1) < N if M > 4k ,

while B remains the same since the orientifold projection is performed at the end of the cascade.
The IR theories are the same if

M ′ = M − 4k ,

k′ = kM − 2k(k + 1)
M − 4k

, (4.108)

and in terms of integers p and q it is solved as

k′ = p ,

k = p− q ,

M = 2
[

p

q
(p− 1)− q + 1

]
,

M ′ = M + 4(p− q) , (4.109)

with conditions p
q (p− 1) ∈ N, p

q (p− 1) ≥ q − 1, p− q > 1.
In general, cascades A and B do not end at the same step since insisting that the theories are the
same in the IR gives k > k′ in the Sp case and k < k′ in the SO case. Starting instead from the
same theory in the UV, the IR theories are different. This is because the unoriented projection in
the UV changes the degrees of freedom even before the flow along the cascade. Thus, the order of
duality cascade and orientifold matters. Besides, the physical interpretation of cascade B, where
the orientifold projection is performed in the IR, is geometrically unclear, although in the (non-
perturbative) context of F-theory a certain geometric configuration could appear as an O-plane at
some distance, providing a possible physical scenario.

4.4 Discussion

Let us conclude and summarise our results. We have discussed unoriented theories arising from the
addition of O-planes on stacks of D3-branes probing toric Calabi-Yau singularities. We focused on
C3/Z3 and C3/Z4, both chiral and non-chiral, and their non-orbifold descendants obtained by means
of mass deformations [70] and higgsing/unhiggsing [71]. Examples of chiral non-orbifold theories
include dP1 [97] and the chiral Z2 quotient of the Conifold C/Z′

2 [107], while non-chiral models
include the Suspended Pinch Point (SPP) [104] and the non-chiral Z2 quotient of the Conifold
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C/Z2. When possible, we have simultaneously used both quiver and dimer descriptions in order
to spell out the conditions for anomaly cancellation and super-conformal invariance, sometimes
retrieved at the perturbative level after the inclusion of flavour branes [39]. For the unoriented
projection of C3 and C3/Z3 we have found the relation between the orientifold charges (ϵ0, ϵI),
which have a direct geometric interpretation, and the τ charges τ of the dimer [44, 81]. Orientifold
charges are given by the action of τ charges on basic mesonic operators but a general relation was
not evident before.
Moreover, by exploiting the combination of toric diagrams and the Ito-Reid Theorem [91], we have
addressed the problem of the distinction between O3-planes and compact/non-compact O7-planes
for orbifold singularities, in the resolved geometry. Although theories with flavour branes admit a
description in terms of bipartite graph on bordered Riemann surfaces [43, 45, 46], in general the
resulting super-potential does not satisfy the toric condition and it is not obvious to us how far
one can go with the use of toric and dimer diagrams in the context of unoriented projection. This
is one of the reasons why it has been important for us to recover a satisfactory quiver description
of unoriented CY singularities: it allows the inclusion of non-compact D7-branes. The quiver
description can be used, even in the presence of both flavour branes and orientifold planes, to easily
compute RR-tadpole cancellation conditions [93, 94] and the vanishing of beta functions, needed in
order to obtain an anomaly-free super-conformal field theory at the perturbative level. However, it
should be noted that the superpotential can be unequivocally determined from the dimer diagram.
We stress that the anomaly cancellation condition, initially derived for orbifold theories in [39], was
used also for non-orbifold models and we justified the procedure by means of mass deformation and
higgsing as long as they preserve the Z2 symmetry exploited by the orientifold.
We have illustrated how, in general, each quiver model admits more than one possible orientifold
projection. We have not explored non-perturbative phases that can be reached using S-duality
[81–85]. Yet, by generalizing the anomaly cancellation condition derived in [39], we have recovered
results already present in the literature. Furthermore, we have exploited the symmetries of the
invariant tensors of SO(N) and USp(N) and the symmetries induced by the action of the unoriented
projection on the fields present in super-potential in order to further constraint the spectrum and
interactions. Our analysis has also shown that some particular unoriented projections, combined
with the requirement of vanishing RR tadpoles, do not admit the existence of anomaly-free super-
conformal theories, barring non-perturbative sectors that may emerge at strong coupling in the IR
[84, 85].
Finally, we have studied the interplay between duality cascade and unoriented projections following
similar analyses [88, 99]. A first analysis shows that performing the unoriented projection in the
UV or in the IR yields similar theories, in the sense that the matter content are the same, but
different in the ranks of gauge groups, i.e. the degrees of freedom. The conclusion is that the two
operations do not commute, even though the duality preserves the Z2 symmetry of the orientifold.
This is a crucial difference with mass deformation, as the flow triggered by the relevant mass term
is preserved under the orientifold projection.
We have almost not touched the issue of non-perturbative corrections induced by stringy instantons
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[38, 89, 90, 108–112]. They may play an important role in correcting the geometry, as already
observed in some cases in [106, 113, 114]. Extending these analyses to the unoriented case with
flavour should be possible along the lines of [39]. In the present analysis, we have not considered
at all the issue of dynamical supersymmetry breaking in unoriented theories, which was recently
addressed in [115] and represents an interesting line of research.
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Chapter 5

Suspended Fixed Points

The orientifold projection of a toric theory gives rise to a rich structure, as the gauge group con-
tains symplectic and orthogonal factors, along with tensorial matter fields. After the orientifold
projection, we ask what is the fate of the conformal point. The factors we have just mentioned
introduce sub-leading elements in the beta function and hence it is believed that anomalous dimen-
sions receive at most sub-leading corrections. Moreover, in order to cancel gauge anomalies, usually
the ranks of the gauge factors must be shifted, signaling the presence of fractional branes. These
are seen as branes wrapping compact cycles, whose size introduce a scale in the theory. Then, it is
usually believed that orientifold projection breaks conformal invariance.
We have powerful tools at our disposal to determine the fixed point of a general N = 1 gauge
theory, a-maximization above all. We can implement the algorithm described in Chapter 2 for the
unoriented theories and determine whether a fixed point exists or not. We find useful to compare
the result with the central charge of the parent SCFT. Since the orientifold projection acts on the
spacetime as a reflection and exploits a Z2 symmetry, we expect that the projection roughly halves
the degrees of freedom, or better said, the degrees of freedom are halved at large ranks N . Recall
the form of the central charge a

a = 3
32
(
3Tr R3 − Tr R

)
, (5.1)

which depends on the R-symmetry. Denoting by aΩ the central charge of the projected SCFT and
by a the central charge of the parent theory, based on what we said we can classify the possible
outcomes into two scenarios

1. first scenario, when aΩ-maximization gives a conformal point and at large N the ratio aΩ/a =
1/2. The orientifold projection affects the anomalous dimensions γ, and consequently the R-
charges, by 1/N terms. At large N , the Z2 involution has effectively reduced the degrees of
freedom by half;

2. second scenario, when there is no conformal point, the allowed choices for the ranks for a
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5.1. SPP and its non-chiral orbifold Z′
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meaningful theory do not cancel the beta functions. In other words, one can not define a
non-anomalous R-symmetry. In some cases, the flow towards the infrared of the orientifolded
theory is described by a duality cascade [88], or conformal symmetry can be restored by the
inclusion of flavour branes [39].

Note that from Gubser relation [68], the volume of the 5-dimensional Sasaki-Einstein manifold Y5

is related to the central charge of the SCFT by

VolY = π3

4
N2

a
, (5.2)

so in first scenario, assuming the orientifolded SCFT has a dual AdS side, the volume of the
corresponding Y Ω

5 is inversely proportional to aΩ. A meaningful comparison between VolΩ5 and
Vol5 requires that we take the spaces with the same radius. This radius1 is proportional to the
units of five-form flux supported by the compact space. However, in presence of orientifold planes
the units of five-form flux is (N/2) [116]. Hence, after the orientifold we should rescale the volume
as

VolΩY = π3

4

(
N

2

)2 1
aΩ . (5.3)

Note that in first scenario the ratio VolΩY /VolY = 1/2, as we should expect.
This Chapter, based on [3], explores a third possibility that we call third scenario: at large N the
ratio aΩ/a < 1/2, hence the degrees of freedom are more than halved, while the volume VolΩY results
larger than a half of VolY . We will see this mechanism is related to an U(1) becoming anomalous
and not mixing with other global abelian factors that give the superconformal R-symmetry. We
focus on orientifold projection (SPP/Z′

n)Ω and in general of La,b,a theories. These can be obtained
from mass deformation of C2/Z3n × C, which we dubbed C3/Z′

3n Surprisingly, the third scenario
leads to a new unoriented duality between theories with fixed lines orientifolds in firt scenario and
with fixed points orientifold in third scenario, as we shall see. The results are summarized in the
chart in Fig. 5.1, which serves as a guide for the reader.

5.1 SPP and its non-chiral orbifold Z′n
The Suspended Pinch Point (SPP) is a (non-isolated) toric singularity, that can be realized as an
affine variety in C4 with the relation

xy = z2w , (5.4)

1It is actually the fourth power of the radius of the horizon that is proportional to the units of five-form flux N .
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∏
τ = +1

ΩB

(±, ±, ∓, ∓)

aΩB = 81nN2p2τ0
16(p+2τ0)3

aΩB

a < 1
2

ΩA

(±, ∓, ±, ∓)
aΩA = 3

8nN2

aΩA

a = 1
2

∏
τ = −1

(±, ∓, ∓, ∓)
aΩ = 3

8nN2

aΩ

a = 1
2

(
C3/Z′

3n

)Ω

(SPP/Z′
n)Ω∏

τ = +1
(±, ±, ∓, ∓)

(
Ln̄,n̄+1,n̄

)Ω∏
τ = +1

(±, ±, ∓, ∓)

Mass
Deformation

(SPP/Z′
n)Ω∏

τ = +1
(±, ±, ∓, ∓)
aΩ

a < 1
2

(
Ln̄,n̄,n̄

)Ω
Fixed lines
(±,∓)
aΩ

a = 1
2

n even
n̄ = 3n/2(
τ0 , τ00 , τn̄ , τn̄,n̄

)
n odd
n̄ = (3n− 1)/2(
τ0 , τ00 , τn̄,n̄+1 , τn̄+1,n̄

)

Mass Deformation

aΩ = 81
256nN2

aΩ

a < 1
2

aΩ = 81
256nN2

p = 2τ0

Figure 5.1. The web of unoriented dualities found between C3/Z′
3n, SPP/Z′

n and Lk,n−k,k.

Figure 5.2. The toric diagram of the SPP singularity.
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0

12
Ω

Figure 5.3a: The quiver diagram for SPP. The line
Ω represents the orientifold projection.

Figure 5.3b: The dimer of the SPP theory, the
four fixed points of the orientifold projection are
drawn in red.

0

12

Figure 5.4a: The quiver diagram for C3/Z′
3. Giving

mass to the adjoint fields represented by dashed
lines yields SPP.

Figure 5.4b: The brane tiling for C3/Z′
3.

with x, y, z, w ∈ C4. The singularity is represented by the toric diagram in Fig. 5.2, which has
no internal points, signalling that the associated gauge theory is non-chiral. The gauge group is
U(N0)× U(N1)× U(N2), while the matter content corresponds to six chiral fields denoted by Xij

(i ̸= j), transforming under the fundamental representation of U(Ni) and the anti-fundamental
of U(Nj), together with the chiral field X00, that we denote by ϕ0,2 in the adjoint on the group
U(N0). We draw the quiver and the dimer of the theory in Figs. 5.3a and 5.3b. The superpotential
reads

WSPP = ϕ0 (X02X20 −X01X10) + X12X21X10X01 −X21X12X20X02 , (5.5)

as can be deduced from the dimer.
The SPP theory can be obtained by mass deformation of another toric theory, the non-chiral
orbifold of flat space C3/Z′

3 [70]. Its graphical representation as dimer and quiver is shown in
Fig. 5.4a-5.4b. The superpotential reads

2In general we denote adjoint chiral fields Xii by ϕi.
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W
C3/Z′

3
= ϕ0 (X02X20 −X01X10) + ϕ1 (X10X01 −X12X21) + ϕ2 (X21X12 −X20X02) (5.6)

which reduces to the superpotential of SPP adding the mass term

∆W
C3/Z′

3
= M

2
(
ϕ2

1 − ϕ2
2

)
(5.7)

and integrating the massive fields out. Plugging F-terms into the superpotential and redefining
fields as

X ′
21X ′

12 = 1
M

X21X12 ,

ϕ′
0 = ϕ0 + 1

2M
(X01X10 −X02X20) (5.8)

gives the superpotential of SPP.
We now review how the R-charges and the central charge a of the conformal SPP theory are
determined using a-maximization. We denote the R-charges of Xij by

Rij = rij + 1 , (5.9)

where rij is the R-charge of the fermionic field in the multiplet. First, we impose the constraint
R(W ) = 2, that gives

r01 + r10 + r00 = −1 ,

r12 + r21 − r00 = −1 ,

r20 + r02 = r01 + r10 . (5.10)

This constraint implies that all the r’s must satisfy −1 < r < 1, otherwise some field, say X01,
must have zero or negative R-charges and corresponding gauge-invariant operators, as Tr X01X10,
will have conformal dimension below the unitarity bound. The Z2 symmetry of the quiver implies
r12 = r21, r02 = r01 and r20 = r10. The condition that the beta functions vanish (which in turn is
equivalent to the R-symmetry being anomaly-free) gives

r00 (2N0 −N1 −N2) = − (2N0 −N1 −N2) ,

r00 (N1 −N2) = (2N1 −N0 −N2) ,

r00 (N0 −N1) = (2N2 −N1 −N0) , (5.11)

where we have used Eq. (5.10). We note that 2N0 −N1 −N2 ̸= 0 would imply r00 = −1, violating
unitarity. We therefore impose N0 = N1 = N2 = N , which leaves r00 undetermined. Note that
Eq. (5.10) is invariant under the exchange rji ↔ rij , then we put them equal. This is inherited
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from the N = 2 C3/Z′
3 and its superpotential before mass deformation. Hence, we have a one-

parameter family of solutions, corresponding to the fact that there is one non-anomalous U(1)
flavour symmetry that can in principle redefine the R-charge. The superconformal R-charge is
then determined by a-maximization. In particular, defining r01 = x, the a-charge3 at leading order
in N

aSPP = 9
32Tr R3 = 9N2

32
[
(−1− 2x)3 + 4 (x)3 + 2(−1− x)3 + 3

]
(5.12)

has a local maximum at [117]

r00 = 1− 2√
3

, r12 = − 1√
3

, r01 = r10 = −1 + 1√
3

, (5.13)

which gives the superconformal a-charge

aSPP = 3
√

3
8 N2 . (5.14)

5.1.1 Non-chiral orbifold SPP/Z′
n

Starting from the SPP geometry, one can construct additional models by considering abelian orb-
ifolds SPP/Γ. A particular Z2 orbifold results in the PdP3c geometry, which we are going to study
in the next chapter. There is another Z2 involution that can be performed, resulting in the toric
geometry denoted by L2,4,2 in the literature, and whose toric diagram is given in Fig. 5.5a. As
will be discussed in the next section, this geometry leads to two different toric phases, and we are
interested in particular in the one corresponding to the quiver in Fig. 5.5b, which can be seen as
arising from a Z2 involution on the SPP gauge theory. The resulting gauge theory has six unitary
gauge groups, it is non-chiral, and we denote it by SPP/Z′

2. The superpotential is

W
SPP/Z′

2
= ϕ0 (X05X50 −X01X10) + ϕ3 (X32X23 −X34X43) + X10X01X12X21

−X21X12X23X32 + X43X34X45X54 −X54X45X50X05 , (5.15)

and it can be explicitly obtained from the Z′
2 action on the SPP superpotential in Eq. (5.5).

The non-chiral Z′
2 orbifold discussed above belongs to an infinite family of non-chiral models

SPP/Z′
n, whose quivers correspond to a sequence on n copies of the structure of nodes and ar-

rows in Fig. 5.6, giving in total 3n unitary gauge groups, n of which have matter in the adjoint.

3Observe that Tr R = 0 at leading order in N for holographic theories.
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Figure 5.5a: The toric diagram of SPP/Z′
2,

a.k.a. L(2,4,2), where fixed points of the
orientifold projection are drawn in red.

0

1

2

3

4

5

Ω
Figure 5.5b: The quiver of SPP/Z′

2, a.k.a.
L(2,4,2). The dashed line represents the ori-
entifold projection.

0

1

2

3

3n− 1

Figure 5.6. Blue nodes form the recursive structure of the quiver SPP/Z′
n.

The associated geometry is known as Ln,2n,n in the literature. The superpotential reads

W
SPP/Z′

n
=

n−1∑
i=0

ϕ3i (X3i, 3i−1X3i−1, 3i −X3i, 3i+1X3i+1, 3i)

+
n−1∑
i=0

(X3i+1, 3iX3i, 3i+1X3i+1, 3i+2X3i+2, 3i+1

−X3i+2, 3i+1X3i+1, 3i+2X3i+2, 3i+3X3i+3, 3i+2) , (5.16)

where it is understood that the group labels of the fields are defined modulo 3n.
In order to determine the R charges and a charge of the SPP/Z′

n theory at the conformal fixed
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point, we impose the constraints coming from the condition that the R charge of the superpotential
be equal to 2.

r3i,3i+1 + r3i+1,3i + r3i,3i = −1 ,

r3i,3i−1 + r3i−1,3i + r3i,3i = −1 ,

r3i+1,3i + r3i,3i+i + r3i+1,3i+2 + r3i+2,3i+1 = −2 ,

r3i+2,3i+1 + r3i+1,3i+2 + r3i+2,3i+3 + r3i+3,3i+2 = −2 . (5.17)

with i = 0, ..., n − 1. As discussed in the previous subsection, r3i,3i+1 = r3i+1,3i. The symmetry
of the quiver also allows to impose various constraints on the charges. First of all, the charges
are invariant under shifts in i. Besides, the Z2 symmetry around each adjoint node implies that
r3i−1,3i = r3i+1,3i, r3i,3i−1 = r3i,3i+1 and r3i+1,3i+2 = r3i+2,3i+1. Finally, the condition that all the
beta functions vanish is solved imposing that all the gauge groups have equal rank N . Putting all
this together, one can show that the a charge is simply n times the a charge of the SPP theory. In
particular, performing a maximization gives [117]

r3i,3i = 1− 2√
3

, r3i+1,3i+2 = − 1√
3

, r3i,3i+1 = −1 + 1√
3

(5.18)

as in Eq. (5.13), and the corresponding maximized a-charge reads

a
SPP/Z′

n
= n aSPP = n

3
√

3
8 N2 . (5.19)

As a consequence of the orbifold involution, we see that the d.o.f. of the field theory increase with
n.

5.2 Mass Deformation of C3/Z′3n

As we have already seen, the SPP theory can be obtained via mass deformation of C3/Z′
3, giving

mass to two of the adjoints. This is more general and we can recover SPP/Z′
n via mass deformation

of C3/Z3n, giving mass to more pairs of adjoints. In particular, starting with the superpotential

W
C3/Z′

3n

=
3n−1∑
i=0

ϕi (Xi, i−1Xi−1, i −Xi, i+1Xi+1, i) (5.20)

and deforming it with

∆W
C3/Z′

3n

=
n−1∑
i=0

M

2
(
ϕ2

3i+1 − ϕ2
3i+2

)
, (5.21)

94



5.2. Mass Deformation of C3/Z′
3n

Figure 5.7a: The toric diagram for L3,3,3.
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Figure 5.7b: The quiver for L3,3,3, obtained by
mass deformation of all of the adjoints in C3/Z′

6.

below the scale M the effective theory reads

W =
n−1∑
i=0

ϕ3i (X3i, 3i−1X3i−1, 3i −X3i, 3i+1X3i+1, 3i)

+
n−1∑
i=0

(X3i+1, 3iX3i, 3i+1X3i+1, 3i+2X3i+2, 3i+1

−X3i+2, 3i+1X3i+1, 3i+2X3i+2, 3i+3X3i+3, 3i+2) , (5.22)

which is the superpotential of SPP/Z′
n. Recall that SPP is the toric geometry L1,2,1. In [70], it is

pointed out that giving mass to contiguous k pair of adjoint fields in C3/Z′
3n, one obtains the toric

theory Lk,3n−k,k.
If we perform a mass deformation such that the highest number of pairs of adjoints are integrated
out, the resulting theory depends on whether n is even or odd. In fact, for n even we can integrate
out all the adjoint fields, with k = 3n/2, to obtain L

3n
2 , 3n

2 , 3n
2 , whose toric diagram is a rectangle.

In Fig. 5.7b-5.7a we show an example for n = 2. The final superpotential reads

W 3n
2 , 3n

2 , 3n
2

=
3n−1∑
i=0

(Xi+1, iXi, i+1Xi+1, i+2Xi+2, i+1

−Xi+2, i+1Xi+1, i+2Xi+2, i+3Xi+3, i+2) . (5.23)

On the other hand, for n odd at most we can integrate out n−1
2 pair of adjoints and we are left with

a single adjoint field, which we can choose to be on node 0 without loss of generality. In this case
we are left with L

3n−1
2 , 3n+1

2 , 3n−1
2 , whose toric diagram is a trapezoid, see Fig. 5.8a. The resulting
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Figure 5.8a: The toric diagram for L4,5,4.

0

1

2

3

45

6

7

8

Figure 5.8b: The quiver for L4,5,4, obtained by
mass deformation of all but one of the adjoints
in C3/Z′

9.

superpotential reads

W 3n−1
2 , 3n+1

2 , 3n−1
2

= ϕ0 (X0, 3n−1X3n−1, 0 −X01X10)

+
3n−3∑
i=0

(Xi+1, iXi, i+1Xi+1, i+2Xi+2, i+1

−Xi+2, i+1Xi+1, i+2Xi+2, i+3Xi+3, i+2) . (5.24)

5.2.1 Web of Seiberg dualities

As we have just shown, from C3/Z′
3n we can reach SPP/Z′

n by mass deforming pairs of adjoint
fields in a particular pattern, which is the one given in Eq. (5.21). On the other hand, toricity is
preserved as long as we give mass to an adjacent pair of adjoint fields, that is two adjoint fields
whose gauge groups are connected in the quiver. As an example, for the case of C3/Z′

6 (i.e. n = 2)
if we give mass to two adjacent pairs of adjoints we have two possibilities, up to symmetries: we
can either give mass to the adjoints of the groups 1,2,4 and 5 or to the adjoints of 1,2,3 and 4. The
resulting theories are two different toric phases of L2,4,2, with the former being SPP/Z′

2. If instead
we give mass to a single pair or to all the adjoints, there is clearly only one possibility in each case,
corresponding to L1,5,1 and L3,3,3 respectively.
This can be generalized to any n. Starting from C3/Z′

3n, we have one possibility if we give mass to
a single pair, which corresponds to L1,3n−1,1, while if we give mass to two pairs we have

[
3n
2

]
− 1

different L2,3n−2,2 gauge theories. It is a combinatorial exercise to determine all possible theories
that one obtains giving mass to k pairs. If k = n one gets Ln,2n,n, which contains SPP/Z′

n. If n is
even, one can remove all adjoint fields giving mass to 3n

2 pairs, which gives the L
3n
2 , 3n

2 , 3n
2 theory.
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a− 1

a

a + 1

a− 1

a

a + 1

a− 1

a

a + 1

Figure 5.9. Performing Seiberg duality on node (a), while node (a − 1) has an adjoint, results in moving
the adjoint from (a− 1) to (a + 1). Dashed lines are mesons, while gray lines represent fields that have
been integrated out in the process.

If n is odd, one reaches the L
3n−1

2 , 3n+1
2 , 3n−1

2 theory giving mass to 3n−1
2 adjacent pairs.

We now explicitly show that these Lk,3n−k,k gauge theories for a given k are related by Seiberg
duality, which in turn means that they are dual phases of the same toric diagram. In particular, we
perform Seiberg duality on a gauge group with no adjoint fields. Suppose that (a) is such a node.
There are two possibilities: either both nodes (a − 1) and (a + 1) have no adjoint, or one of the
two, say (a− 1), has an adjoint. In the former case, Seiberg duality gives a theory with an adjoint
on both the (a− 1) and the (a + 1) node. The latter case is the interesting one. Suppose the group
at node a has rank Na. The usual rules for the Seiberg dual give Ña = Na+1 + Na−1 −Na and if
Na = N for all a then Ña = N . The matter content includes dual bifundamental fields and mesons.
Integrating the massive fields out one obtains the dual magnetic theory. Note that the net result is
to move an adjoint field from node (a− 1) to (a + 1), as displayed in Fig. 5.9. This is represented
as the operation in Fig. 5.10 from the dimer perspective. Repeating the process, one can construct
all possible theories with 3n−2k adjoints and non-adjoint nodes all in pairs. In particular, one can
choose to dualise both nodes (a) and (n− a), realizing a theory that is Z2-symmetric. This will be
useful in the case of orientifold projections.

5.3 Orientifold of SSP/Z′n
In this section we study the orientifold projection Ω of the non-chiral orbifold SSP/Z′

n and in
particular we seek the conformal point of the unoriented theory. We first discuss the cases with
n = 1 and n = 2 and then general n.
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Figure 5.10. Seiberg duality on node (a), whereas node (a−1) has an adjoint field, from the perspective of
the dimer. As a result of integration of massive fields, the exagon (a− 1) collapses into a square, while
the a pair of extra edges transform the square (a + 1) into an exagon, generating the adjoint fields.

5.3.1 Unoriented SPP

Let us perform the orientifold projection Ω with four fixed points, see Fig. 5.3b, whose signs are
denoted by τ0 and τ00 for the gauge group and the adjoint field, and τ12 and τ21 for the projected
bifundamental fields. The anomaly cancellation condition imposes τ12 = τ21. Since half the number
of terms in the supepotential is even, the sign rule requires ∏ τ = +1. The superpotential of the
unoriented theory reads

W Ω
SPP = −ϕ0X01X10 + X12X21X10X01 . (5.25)

The condition R(W ) = 2 remains as in Eq. (5.10), while the cancellation of the R-symmetry
anomaly gives

r00 (N0 −N1 + 2τ0) = − (N0 −N1 − 2τ0) , (5.26)
r00 (N0 −N1 − 2τ12) = − (N0 −N1 + 2τ12) .

At the conformal point of the parent theory, N0 = N1 = N , the orientifold projection gives
r00 = +1, violating unitarity. On the other hand, imposing N1 = N0 − 2τ0 = N0 + 2τ12 we obtain

r00 = 0 , τ0 = −τ12 , (5.27)

fixing r01 = r12 = −1/2. The superconformal R-charges are already determined, as the only
remaining global abelian factors are baryonic and, since Tr U(1)B = 0, they do not mix with the
R-symmetry, see Tab. 5.1. Hence, the a-charge at large N = N0 ≃ N1 reads

aΩ
SPP = 81

256N2 . (5.28)
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USp/SO(N0) SU(N1) U(1)R U(1)B1 U(1)B2

ϕ0 / 1 1 0 0
X01

1
2 1 0

X10
1
2 -1 0

X
S/A
12 1 / 1

2 0 +1

X
S/A
21 1 / 1

2 0 -1

Table 5.1. The matter content and relative charges of (SPP)Ω.

The ratio between the a-charge of the parent and of the unoriented theory

aΩ
SPP

aSPP

= 9
√

3
32 ≃ 0.4871 (5.29)

is less than a half. From a geometrical perspective, the volume of the horizon is less than halved,
if compared with the parent one with the same radius

V Ω
SPP

VSPP

= 8
√

3
27 ≃ 0.5132 . (5.30)

The third scenario occurs here, where the R-charges after the orientifold projection are different
from those of the parent theory already at leading order, in contrast with the first scenario. This can
be traced back to the fact that the number of abelian symmetries that mix with the R-symmetry is
less than in the parent theory, for the r00 being already fixed, which in turn fixes all the rij before
a-maximization. In contrast, in the parent theory the rij are determined by a-maximization. The
same mechanism, the breaking of an abelian symmetry, is discussed in [2]. This is the reason
behind the values in Eqs. (5.29) and (5.30): since the R-charges are related to the Reeb vector, the
consequence is that the geometry of the horizon is different between the first and the third scenario.
One last solution is allowed for the R-charges. Imposing in Eq. (5.26) that N0 −N1 + 2τ0 ̸= 0 and
N0 −N1 − 2τ12 ̸= 0 and N0 −N1 = p ̸= 0, we have

r00 = −p− 2τ0
p + 2τ0

= −p + 2τ12
p− 2τ12

, r01 = − 2τ0
p + 2τ0

, r12 = − p

p + 2τ0
. (5.31)

which requires τ0 = −τ12. They yields

aΩ
SPP = 27

8 N2 pτ0

(p + 2τ0)3 (p + τ0) , (5.32)

for τ0 = −1 and −N1 < p < 0, or τ0 = +1 and N0 > p > 0, considering unitarity and aΩ > 0,
N0 > 0, N1 > 0. Note that if p = 2τ0 we recover the previous case, then this is a more general
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solution.
To sum up, for the unoriented SPP the result would seem to naively suggest the existence of a
whole family of conformal theories with τ0 = τ00 = −τ12 = −τ21 and parametrized by p, the shift
between ranks N0 and N1, i.e. the number of fractional branes. They would all belong to the third
scenario, since a U(1) is anomalous and at the fixed point the R-charges differ from those of the
parent already at leading order. The fact that any value of p could in principle yield a conformal
point is somewhat surprising, so the existence of this family of solution must be investiged more.
We are going to discuss this point further.
We should worry about operators that may become free and decouple before the theory reaches the
conformal point and correct the central charge a as in Eq. (2.13). In applying this analysis, we look
at several operators potentially dangerous. Operators which contain mesons in the superpotential
never become free, however other can be constructed. Since τ0 = τ00

O0,j = Tr ϕj
0 , j > 1 ,

Mm = (X12X21)m , m ≥ 1 ,

M̃0,lk = ϕl
0 (X01X10)k , l ≥ 0 , k ≥ 1 (5.33)

are allowed and their R-charge reads

R
(j)
O = j

4τ0
p + 2τ0

,

R
(m)
M = m

4τ0
p + 2τ0

,

R
(lk)
M̃

= 4τ0
p + 2τ0

(l − k) + 2k . (5.34)

The singlet with j = 1 vanishes in the unoriented theory. In the parent theory this parametrizes the
movement of fractional branes along a curve of singularity, but this mode is projected out by the
orientifold plane since fractional branes are stuck at the orientifold singularity. The configuration
will be explicit in the elliptic model (see Sec. 5.5).
Clearly, these operators may decouple depending on the value of p. We stress that each value of p

defines an independent theory and we are not describing an RG-flow parametrized by p.4 Let us
focus on the case with τ0 = τ00 = +1 and 0 < p < N0, the opposite choice is similar. The operator
Oj becomes free for

j
4

p + 2 ≤
2
3 , (5.35)

4In principle, one could perform a duality cascade, under which the theory is self-similar and after a number of
Seiberg dualitites it goes back to its original structure. This is not possible in this case, as one eventually needs to
dualize a gauge group with tensorial matter and the superpotential does not meet the known dualities.
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p

0.40

0.45

0.50

0.55

a
˜

/a

(SPP) , 0=+ 00

Figure 5.11. The ratio ãΩ
SPP

/aSPP vs p = N0 −N1. The green points signal that there are no correction to
the central charge, on orange points (X12X21)m becomes free, while on red ones operators Tr ϕj

0 start
to decouple.

so, for all integers j ≤ j̄ = (p + 2)/6 an operator decouples and the a-charge gets corrected. For
example, Tr ϕ2

0 decouples for p = 10 (at which the correction is zero though), while for p = 16 both
Tr ϕ2

0 and Tr ϕ3
0 decouple. As for M̃0,lk hits R

(lk)
M̃

= 2/3 only for p = 1 and the correction to the
a-charge is zero. On the other hand, Mm is free for m ≤ (p + 2)/6 and the first correction enters
for p = 4, where it is zero. In Fig. 5.11 we can see that the corrected ratio ãΩ

SPP/aSPP . It increases
and approaches the value 0.5, beyond which we doubt the existence of the conformal theory at all:
it is the Z2 projection of SPP. From Eq. (2.13), we also note that for p > 4 Tr R ̸= 0 at leading
order, due to the correction itself. Hence, beyond this point the holographic duality may not hold
or perhaps not in its simple form. The existence of the conformal point can be bound to p ≤ 4,
for which the third scenario always occurs. Moreover, applying the analysis of [118] we find that
for p = 1 all terms in the superpotential should be removed, posing doubts on the existence of the
conformal point. We exclude p = 1 from the allowed range.
A hypothetical magnetic theory could confirm the existence of the conformal point and maybe select
only one value of p. Unfortunately, for this case there is no known Seiberg duality compatible with
the superpotential of the unoriented toric theory. As we shall see, this is not the case when n > 1.

5.3.2 Unoriented SPP/Z′
2

Let us now focus on the case with n = 2, the first with unitary nodes with no tensorial matter,
as can be seen from the quiver in Fig. 5.5b. Depending on the τ ’s, gauge groups at node zero
are orthogonal or symplectic, with a bifundamental hypermultiplet and tensorial matter. The
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superpotential reads

W Ω
SPP/Z′

2
= −ϕ0X01X10 + X12X21X10X01 −X21X12X23X32 + ϕ3X32X23 . (5.36)

Proceeding as before, we solve the constraints for the R-charges. Along with Eq. (5.10), r00 = r33

and 2r01 = 2r23 = −1− r00, we have

r00 (N0 −N1 + 2τ00) = − (N0 −N1 − 2τ0) ,

r00 (N0 −N2) = 2N1 −N0 −N2 ,

r00 (N3 −N1) = 2N2 −N3 −N1 ,

r00 (N3 −N2 + 2τ33) = − (N3 −N2 − 2τ3) . (5.37)

From the projected nodes we may either have τ0 = −τ00 and τ3 = −τ33 and shift between the first
and last pair of ranks determined, or τ0 = τ00 and τ3 = τ33. We denote them as solution A and B,
respectively.

Solution A

USp/SO(N0) SU(N1) SU(N2) SO/USp(N3) U(1)R

ϕ0 / 1 1 1 1
X01 1 1 1

2

X10 1 1 1
2

X12 1 1 1
2

X21 1 1 1
2

X23 1 1 1
2

X32 1 1 1
2

ϕ3 1 1 1 / 1

Table 5.2. The matter content and the superconformal R-charges of (SPP/Z′
2)Ω solution A.

Consider the case τ0 = −τ00 and τ3 = −τ33. Denoting rank shifts as N0 − N2 = p, N1 − N2 = q

requires that q = p− 2τ0 and τ0 = −τ3. Then one gets

N1 = N0 − 2τ0 ,

N2 = N0 − p ,

N3 = N0 − p− 2τ0 , (5.38)
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along with

r00 = 1− 4τ0
p

, r01 = −p− 2τ0
p

, r12 = −2τ0
p

. (5.39)

Thus, at large N

aΩ
SPP/Z′

2
= 27

8 N2
(
− τ0

p3

)(
4− p2

)
(5.40)

and the ratio w.r.t. the parent reads

aΩ
SPP/Z′

2

a
SPP/Z′

2

= 3
√

3
2

(
− τ0

p3

)(
4− p2

)
, (5.41)

with τ0 = +1 and 2 < p < N0 − 2, or τ0 = −1 and 2 < −p < N3 − 2, from unitarity and positivity
of Na.
Some operators are dangerous, in the sense that may decouple and correct the computation of the
central charge a. Since τ0 = −τ00 there are no operators of the form Tr ϕj

0 or Tr ϕj
3. However, the

following gauge-invariant operators

Mm = (X12X21)m , m ≥ 1 ,

M̃0,lk = ϕl
0 (X01X10)k , l ≥ 0 , k ≥ 1

M̃3,lk = ϕl
3 (X32X23)k , l ≥ 0 , k ≥ 1 (5.42)

with R-charges

R
(m)
M = 2m

p− 2τ0
p

,

R
(lk)
M̃

= 2p− 2τ0
p

(l − k) + 2k (5.43)

may decouple. Operator Mm becomes free only for m = 1 and p = 3, where the correction to a

vanish. Instead, operators M̃0,lk and M̃3,lk become free for l = 0, k ≤ p/6 and p ≥ 6 and the
a-charge gets corrected for p > 6. The final ratio aΩ

SPP/Z′
2
/a

SPP/Z′
2

is displayed in Fig. 5.12. As
before, the existence of the conformal point is bound to p ≤ 6, where holography still holds and
the third scenario occurs.
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Figure 5.12. The ratio ãΩ
SPP/Z′

2
/a

SPP/Z′
2

vs p = N0 −N2 in Solution A. The green points signal that there

are no correction to the central charge, while on red points operators ϕl
0 (X01X10)k and ϕi

3 (X32X23)k

start to decouple.

Solution B

USp/SO(N0) SU(N1) SU(N2) SO/USp(N3) U(1)R

ϕ0 / 1 1 1 1
X01 1 1 1

2

X10 1 1 1
2

X12 1 1 1
2

X21 1 1 1
2

X23 1 1 1
2

X32 1 1 1
2

ϕ3 1 1 1 / 1

Table 5.3. The matter content and the superconformal R-charges of (SPP/Z′
2)Ω solution B.

This solution is obtained for τ0 = τ00 and τ3 = τ33 and N0 ̸= N1 − 2τ0, N3 ̸= N2 − 2τ3. Denoting
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the shifts as N0 −N1 = p, N1 −N2 = q, N2 −N3 = s leads to q = 2τ0, p = s, τ0 = −τ3 and

N1 = N0 − p ,

N2 = N0 − p− 2τ0 ,

N3 = N0 − 2p− 2τ0 , (5.44)

along with

r00 = −p− 2τ0
p + 2τ0

, r01 = −2 τ0
p + 2τ0

, r12 = − p

p + 2τ0
. (5.45)

This family of solutions generalizes the one discussed for SPP and for p = 2τ0 it gives r00 = 0, and
it will appear again for general Z′

n. In order to impose unitarity, −1 < r00 < 1 holds for τ0 = +1
and 0 < p < (N0 − 2)/2, or for τ0 = −1 and −(N3 − 2)/2 < p < 0.
The a-charge and the ratio read

aΩ
SPP/Z′

2
= 27

4 N2 pτ0

(p + 2τ0)3 (p + τ0) ,

aΩ
SPP/Z′

2

a
SPP/Z′

2

= 3
√

3
(p + 2τ0)3 pτ0 (p + τ0) . (5.46)

In this case operators of the form

O0,j = Tr ϕj
0 , j ≥ 1 ,

O3,j = Tr ϕj
3 , j ≥ 1 , R

(j)
O = j 4τ0

p+2τ0
,

Mm = (X12X21)m , m ≥ 1 , R
(m)
M = m 4τ0

p+2τ0
,

M̃0,lk = ϕl
0 (X01X10)k , l ≥ 0 , k ≥ 1 ,

M̃3,lk = ϕl
3 (X32X23)k , l ≥ 0 , k ≥ 1 , R

(lk)
M̃

= 4τ0
p+2τ0

(l − k) + 2k ,

(5.47)

may decouple and the central charge must be corrected as in Eq. (2.13). The corrections are the
same as those discussed in SPP/Ω and the corrected central charge is displayed in Fig. 5.13. As
in the Ω projection of SPP and its solution with r00 ̸= 0, for p > 4 it turns out that Tr R ̸= 0 and
the conformal theory may exist only for p ≤ 4, where it realises the third scenario, as can be seen
from Fig. 5.13.

Seiberg duality for SPP/Z′
2

The solutions with r00 ̸= 0 discussed in the previous subsections are somewhat difficult to interpret.
The central charge a must be corrected by the contribution of those operators which decouple along
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Figure 5.13. The ratio ãΩ
SPP/Z2

/aSPP/Z2
vs p = N0 − N1 in solution B. The green points signal that there

are no correction to the central charge, on orange points (X12X21)m becomes free, while on red points
operators Tr ϕj

0 and Tr ϕj
3 start to decouple.

the flow towards the IR, where the conformal point in the third scenario stays. A side-effect of these
corrections is that Tr R ̸= 0 at leading order, then once they contribute, the holographic duality
may not hold anymore. All one can say is that this reasoning bounds the number of fractional
branes p, up to 6 in solution A and up to 4 in solution B (as in the SPP case), for the theory to
have a gravity dual. Beyond this limiting value, the ratio between the corrected a-charge and the
parent one in no more significative for the existence of the conformal point. As a consequence, the
distinction between first and third scenario no longer holds.
It is puzzling that the conformal point exists only for a range of number of fractional branes.
Seiberg duality may help in finding a clear evidence for the very existence of the conformal point.
From this point of view, we perform Seiberg duality on an SU node in SPP/Z′

2 and look for the
conformal point in the magnetic theory, then compare it with the electric theory. The two must be
the same.
First, let us focus on the quiver theory in Fig. 5.5b with solutions A for the r-charges, τ0 = −τ00 =
−τ3 = τ33, with ranks given in Eq. (5.38). Performing Seiberg duality on gauge group SU(N1), the
resulting magnetic node has rank

Ñ1 = N0 + N2 −N1 = N0 − p + 2τ0 , (5.48)

while mesons and dual quarks are constructed as discussed in Sec. 5.2.1. The final quiver is shown
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Ω

Figure 5.14. The quiver for the orientifold projection of magnetic SPP/Z′
2.

in Fig. 5.14 and the superpotential reads

W̃ Ω
SPP/Z′

2
= ϕ3X32X23 − X̃12X̃21X̃10X̃01 + M2

(
X̃21X̃12 −X23X32

)
. (5.49)

The conformal point is given by r22 = 0 and p = 4τ0. At these values, none of the gauge invariant
operators decouples, neither in the electric nor in the magnetic theory. The a-charge does not
change in the magnetic theory, hence, there is only one value for the number of fractional branes
so that the conformal point exists and it features the third scenario.
The matter content and superpotential for solution B remains unchanged, while orientifold signs
are τ0 = τ00 = −τ3 = −τ33 and ranks given in Eq. (5.44) and the dual gauge node has rank
Ñ1 = N0−2τ0. For the fixed point, it must be r22 = 0 and p = 2τ0 and, again, the central charge a

gets no correction both in the electric and magnetic theory. We conclude that this is the conformal
point, in third scenario, we looked for. We notice that in both cases the fixed point exists only for
r00 = 0.

5.3.3 Unoriented SPP/Z′
n

As we have seen in Sec. 5.1.1, the parent gauge theory SPP/Z′
n has a recursive structure that allows

us to solve the set of equation for the R-charges. The computation for the unoriented theory is
similar, with some modifications due to the Ω projection. The Z2 maps two sides of the quiver and
we keep nodes from 0 to n̄, the latter being

n̄ = 3
2n n even ,

n̄ = 3n− 1
2 n odd . (5.50)
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Figure 5.15. Blue nodes form the recursive structure of the quiver SPP/Z′
n.

Half the superpotential is projected out and it reads

W Ω
SP P/Z′

n
= −ϕ0X01X10 +

⌊ n
2 ⌋∑

i=1
ϕ3i (X3i, 3i−1X3i−1, 3i −X3i, 3i+1X3i+1, 3i)

+
n̄−1∑
i=0

(X3i+1, 3iX3i, 3i+1X3i+1, 3i+2X3i+2, 3i+1

−X3i+2, 3i+1X3i+1, 3i+2X3i+2, 3i+3X3i+3, 3i+2)

+

 ϕn̄Xn̄,n̄−1Xn̄−1,n̄ , n even

X
S/A
n̄,n̄+1X

S/A
n̄+1,n̄Xn̄,n̄−1Xn̄−1,n̄ , n odd

(5.51)

The gauge group at node 0 and its adjoint field are projected by the orientifold involution, with
signs τ0 and τ00, respectively. Depending on the parity of n, the other projected elements are the
gauge group at node n̄ and its adjoint if n is even, with signs τn̄ and τn̄,n̄. On the other hand, if n

is odd, fields Xn̄,n̄+1 and Xn̄+1,n̄ are projected onto symmetric or anti-symmetric representations
by τn̄,n̄+1 and τn̄+1,n̄. In this case, the anomaly-cancellation condition is not trivial and requires
that τn̄,n̄+1 = τn̄+1,n̄. From the sign rule, this means that τ0 = τ00.
Let us look at the constraints on the R-charges. Eq. (5.10) still holds and recursion yields

r00 = r3i,3i ,

2r3i,3i+1 + r00 = −1 ,

2r3i+1,3i+2 − r00 = −1 . (5.52)
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Using Eq. (5.52), anomaly-free R-symmetry gives

r00 (N0 −N1 + 2τ00) = − (N0 −N1 − 2τ0) , (5.53)

r00 (2N3i −N3i−1 −N3i+1) = − (2N3i −N3i−1 −N3i+1) , (5.54)

r00 (N3i −N3i+2) = 2N3i+1 −N3i −N3i+2 , (5.55)

r00 (N3i+3 −N3i+1) = 2N3i+2 −N3i+3 −N3i+1 , (5.56)

r00 (Nn̄ −Nn̄−1 + 2τn̄n̄) = − (Nn̄ −Nn̄−1 − 2τn̄) , (5.57)

r00 (Nn̄ −Nn̄−1 + 2τn̄,n̄+1) = − (Nn̄ −Nn̄−1 − 2τn̄,n̄+1) . (5.58)

If we impose that Ni = N for all i, we obtain

r00 = τ0
τ00

= ±1 , (5.59)

but both choices of signs would violate unitarity. Thus, the conformal point of the parent theory
is excluded. Allowing for different ranks gives, from the second equation,

r00 = −1 , if 2Nn̄ −Nn̄−1 + Nn̄+1 ̸= 0 (5.60)

and again R00 = 0, violating unitarity. On the other hand, if we impose the right hand sides to
vanish, we get

r00 = 0 , (5.61)

Ni = N0 − i 2τ0 , 0 ≤ i ≤ n̄ ,

τ0 = −τn̄ , n even ,

τ0 = −τn̄,n̄+1 , n odd . (5.62)

Note that the sign rule restricts the possible choices for the τ signs, such that only
(τ0, τ00, τn̄, τn̄,n̄) = (±, ±, ∓, ∓) are allowed, both for n even and, mutatis mutandis, for n odd.
Before the orientifold projection there are 3n nodes, while all R-charges can be expressed in terms
of one of them, say r01, due to the recursive structure. In case of n even (the odd case is similar),
after the Z2 involution there are 2 projected nodes and 3n/2 − 1 not projected. The condition
r00 = 0 ensures that r01 = r12 = −1/2, then there are 3n fields carrying r-charge (−1/2). We
obtain, at large N ,

aΩ
SPP/Z′

n
= 81

256nN2 , (5.63)
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which holds also for n odd. The volume of the horizon is

V Ω
SPP/Z′

n
= π

n

64
81 . (5.64)

The ratio with the a-charge at the conformal point before the orientifold projection is

aΩ
SPP/Z′

n

a
SPP/Z′

n

= 9
√

3
32 ≃ 0.4871 . (5.65)

This solution exists for all non-chiral orbifold Z′
n with n ≥ 1, where for n = 1 and n = 2 it is part

of the more general family of solution we found. Note that a solution with τ0 = −τ00 is allowed
only for n = 2, because for n > 2 nodes with adjoint fields prevent the solution to exist.

5.3.4 Seiberg duality for Unoriented SPP/Z′
n

The a-maximization procedure for unoriented SPP/Z′
n shows that there is a conformal point for

r00 = 0. For this value of the R-charges, none of the gauge-invariant operators decouples. Then, the
conformal point is determined without any ambiguities in the electric theory. As a further check,
we study the dual magnetic theory and look for the conformal point. Due to the recursive structure,
we have two options: first, for n > 1, we can dualize only the first unitary gauge group and compute
the maximal central charge a. Second, we can dualize the first node of each fundamental structure,
along all the quiver for even n or all but the last unitary group for odd n. This is because the
last unitary group has tensorial matter and we do not know how Seiberg duality works in this case
with the toric superpotential, the same problem as in SPP. However, in this second method we
just obtain the first one recursively repeated. Note that for all dualized node the rank remains the
same, as

Ñi = Ni−1 + Ni+1 −Ni = Ni , (5.66)

where we have used Eq.(5.61).
Then, proceeding as in the first case, the resulting gauge groups, matter and superpotential is the
same as for the magnetic SPP/Z′

2, with the remaining quiver and superpotential unchanged:

W̃ Ω
SPP/Z′

n
= M2

(
X̃21X̃12 −X23X32

)
− X̃12X̃21X̃10X̃01 + ϕ3 (X32X23 −X34X43) + . . . . (5.67)

Solving the constraints for the R-charges, we find that for those bifudamental fields transforming
under gauge groups which have also an adjoint field

ri, i+1 + ri+1, i = −1− r22 , (5.68)
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for example r12 + r21 = −1− r22, since in the magnetic theory the second node has an adjoint. For
the adjoints along the quiver ri,i = r22. On the other hand, for those bifundamental transforming
under gauge groups which do not have an adjoint

ri, i+1 + ri+1, i = −1 + r22 , (5.69)

for example r01 + r10 = −1 + r22 in the magnetic theory. For the R-symmetry to be anomaly-free,
the only solution is r22 = 0, as for the electric theory. The central charge a gets no correction, since
no operators decouple. We conclude that the conformal point of SPP/Z′

n is the one with r22 = 0,
τ0 = τ00 = −τ3 = −τ33 and central charge, in the third scenario,

aΩ
SPP/Z′

n
= 81

256nN2 ,

aΩ
SPP/Z′

n

a
SPP/Z′

n

= 9
√

3
32 ≃ 0.4871 , (5.70)

as for the electric theory.

5.4 Orientifold projection of C3/Z′3n and deformations

All parent theories we have been studying in this chapter can be obtained from C3/Z′
3n by mass

deformation. As we are interested in the conformal point after the orientifold projection and to
compare it with the parent one, we should analyze the orientifold of C3/Z′

3n to get insights on
the RG flow to the unoriented (SPP/Z′

n)Ω and the unoriented
(
Lk,n−k,k

)Ω
. The strategy for the

computation of the fixed point follows closely the one adopted in the previous sections. The only
difference is that in this case adjoint fields are present at all nodes and the superpotential has only
cubic interactions. Then one finds

r00 = rii , 2r01 = 2ri,i+1 = −1− r00 , ∀i . (5.71)

For the parent theory, the constraints on the R-charges give Ni = N for all i and

a
C3/Z′

3n

= 3
4nN2 . (5.72)

The orientifold projection we want to study is given by four fixed points, but their signs depend
on n being even or odd. If n is even ∏ τ = (−1)NW /2 = +1, whereas if n is odd ∏ τ = −1. Let us
first focus on the case with n odd. The anomaly cancellation condition imposes τn̄,n̄+1 = τn̄+1,n̄,
where n̄ = (3n− 1)/2 is the last node in the orientifolded quiver. Then, it follows that τ0 = −τ00.
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One finds a solution for the R-charges at Ni = N0 − i 2τ0, 0 ≤ i ≤ n̄, τ0 = −τn̄,n̄+1, with

r00 = r01 = −1
3 ,

aΩ
C3/Z′

3n

= 3
8nN2 , (5.73)

so the theory belongs to the first scenario.
We turn to n even, in which case the last node n̄ = 3n/2 is projected by the orientifold plane.
There is no condition for anomaly cancellation, thus two distinct choices are allowed: solution A
with τ0 = −τ00 and solution B with τ0 = τ00.5 For solution A, one finds that Ni = N0 − i 2τ0,
0 ≤ i ≤ n̄, τ0 = τn̄ and the same values of Eq. (5.73), so again the theory realises the first scenario.
On the other hand, for solution B one gets Ni = N0 − i p, 0 ≤ i ≤ n̄, τ0 = −τn̄, pτ0 > 0 and

aΩ
C3/Z′

3n

= 81
16nN2 p2τ0

(p + 2τ0)3 ,

(
aΩ

a

)
n even

= 27
4

p2τ0

(p + 2τ0)3 , (5.74)

which is always less than 1/2, hence the theory belongs to the third scenario. For some values of
p there are gauge-invariant operators that decouple before reaching the conformal point. In this
case, they are

Oi,j = Tr ϕj
i , j > 1 ,

M̃i,lk = ϕl
i (Xi,i+1Xi+1,i)k , l ≥ 0 , k ≥ 1 , (5.75)

whose R-charges read

R
(j)
O = j

4τ0
p + 2τ0

,

R
(lk)
M̃

= 4τ0
p + 2τ0

(l − k) + 2k . (5.76)

While the second operator hits the unitary bound only for p = 1, l = 0 and k = 1 with vanishing
correction to the central charge, operators Oi,j start to decouple at p = 10. The corrected central
charge is shown in Fig. 5.16. Interestingly, at p = 2τ0, none of the gauge-invariant operators
decouple and the central charge aΩ results to be equal to that of SPP/Z′

n, n even. Moreover, the
pattern of mass deformation needed to flow from C3/Z′

3n to SPP/Z′
n enjoys the Z′

2 required for
the orientifold projection, so this flow is preserved under the orientifold involution. That is not the
case for the Seiberg dual phases. In fact, the phases that are not Z2 symmetric are projected out

5Note that the same choices are allowed for (SPP/Z′
2)Ω.
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(C3/Z3 n) , Solution B: 0=+ 00

Figure 5.16. The corrected central charge a for the unoriented C3/Z′
12 solution B, where operators Tr ϕj

i

start to decouple at p = 10.

Figure 5.17. The brane tiling for L3,3,3, where fixed lines represent the orientifold projection.

by the orientifold.
The deformation where the highest number of pairs of adjoints become massive allow for the
orientifold involution, so the class of theories

(
L

3n
2 , 3n

2 , 3n
2
)
,
(
L

3n−1
2 , 3n+1

2 , 3n−1
2
)

can be reached in
presence of orientifold planes. Their difference in the toric diagrams is crucial, since for n even we
can perform the orientifold projection we are interested in only with fixed lines6. See Fig. 5.17 for
the brane tiling of n = 2, namely L3,3,3. On the contrary, for n odd fixed lines are not allowed, as
can be seen from the toric diagram. An example of such a case on the brane tiling is n = 1, namely
SPP, in Fig. 5.3b.
Let us find and compare the conformal point both for the parent and the unoriented theories.
Consider first the case with n even, where all adjoints have been integrated out. The constraints

6The related brane tiling is made only of squares and a fixed point can not lie on a square, because it must map
nodes with different colors.
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for the R-charges [117] read

ri, i+1 = −1
2 ,

Ni = N , i = 0, . . . , n− 1 , (5.77)

and the central charge a is

an even = 81
128nN2 . (5.78)

Performing the orientifold projection, with fixed lines, we find Ni = N0− i 2τ0, 0 ≤ i ≤ n̄, τ0 = −τ3,
where τ0 and τ3 are the sign of the two fixed lines. At large N , the a-charge reads

aΩ
n even = 81

256nN2 . (5.79)

Clearly, for n even the theory realizes the first scenario, since aΩ/a = 0.5 and the R-charges are
the same both for parent and unoriented ones, at leading order.

USp/SO(N0) SU(N1) SU(N2) SO/USp(N3) U(1)R

X01 1 1 1
2

X10 1 1 1
2

X12 1 1 1
2

X21 1 1 1
2

X23 1 1 1
2

X32 1 1 1
2

Table 5.4. The matter content and the superconformal R-charges of (L3,3,3)Ω, dual to (SPP/Z′
2)Ω.

However, for C3/Z′
3n with n odd, after mass deformation the presence of the adjoint field ϕ0 in the

parent theory gives [117]

2r2i, 2i+1 = −1− r00 ,

2r2i+1, 2i+2 = −1 + r00 ,

Ni = N , i = 0, . . . , n− 1 . (5.80)
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Figure 5.18. The ratio
(

aΩ

a

)
for n odd, which asymptotically approaches 0.5 .

Maximization of the central charge yields

r00 = n−

√
1 + 3n2

3 ,

a
n odd = 9

64

3n
(
1− n2

)
+
(
1 + 3n2

)√1 + 3n2

3

 . (5.81)

For the orientifold projection, Ni = N0− i 2τ0, 0 ≤ i ≤ n̄, τ0 = τ00 = −τn̄,n̄+1 = −τn̄+1,n̄. Since it is
required that r00 = 0, the R-charges and the central charge a are the same of n even in Eq. (5.79).
The ratio between the central charges reads

(
aΩ

a

)
n odd

= 9
4n

3n
(
1− n2

)
+
(
1 + 3n2

)√1 + 3n2

3

−1

, (5.82)

which asymptotically tends to 0.5, as shown in Fig. 5.18. This case belongs to the third scenario.
Hence, for the unoriented case there is no distinction between n even or odd and both show the
same central charge a of the unoriented SPP/Z′

n. But, for n odd L
3n−1

2 , 3n+1
2 , 3n−1

2 features the
third scenario and the orientifold projection is performed with fixed points. For n even L

3n
2 , 3n

2 , 3n
2

features the first scenario and its orientifold projection is performed with fixed lines. In L
3n
2 , 3n

2 , 3n
2

the fact that fixed lines are needed for the orientifold projection is crucial: fixed lines breaks a U(1)
mesonic symmetry, part of the toric U(1)2 × U(1)R. On the contrary, the orientifold projection
with fixed points does not break toricity, but at the conformal point r00 = 0 and, as a consequence,
r01 = r122 = −1/2. Thus, the number of nodes and flavour symmetries matches, and ’t Hooft
anomalies do as well.
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Figure 5.19. Two dual theories: on the left, SPP/Z′
2 with fixed points and, on the right, L3,3,3 with fixed

lines.

The superpotential and the matter content are however different and equivalence of the supercon-
formal index must be checked. Contributions to the index come from matter fields Xij and vector
multiplets Vi as7

iX(t, s) =
∑ tRij χXij

− t2−Rij χ
Xij

(1− ts) (1− ts−1) ,

iV (t, s) =
3n−1∑
i=0

[
2t2 − t

(
s + s−1)]

(1− ts) (1− ts−1)χadji , (5.83)

where the first sum runs over all matter fields, χXij
, χ

Xij
are the characters of the representation

of Xij and its conjugate, t and s are the fugacities for R-charge and (twice the) spin, respectively.
When matter fields ϕi are present, either in the adjoint or in the anti/symmetric representation,
in the unoriented models Rii = 1 at the conformal fixed point and their contributions to the
superconformal index vanish. The remaining contributions are equal for unoriented model with the
same number of gauge groups.
Hence, the central charge aΩ, ’t Hooft anomalies and the superconformal index of (SPP/Z′

n)Ω

match that of
(
L

3n
2 , 3n

2 , 3n
2
)Ω

and of
(
C3/Z′

3n

)Ω with p = 2τ0 for n even, while for n odd the same

quantities match between (SPP/Z′
n)Ω and

(
L

3n−1
2 , 3n+1

2 , 3n−1
2
)Ω

. We want to stress that, for n even,
the former theory is an orientifold with fixed points in the third scenario, while the latter is an
orientifold with fixed lines in the first scenario, as shown in Fig. 5.19. The reader is invited to go
back to Fig. 5.1, where the full web of relations that we find is summarized.

7Recall that Rij = rij + 1 in our notation.
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Figure 5.20. Two dual theories: on the left, SPP/Z′
3 and, on the right, L4,5,4, both with fixed points.

5.5 Elliptic models

The models described above arise as the supersymmetric gauge field theory living on the world-
volume (WV) of D3-branes at a toric CY singularity. We mentioned that, after two T-dualities,
one may recover a system of NS5-branes and D5-branes wrapped along a torus and generating the
brane tiling. Both descriptions are defined in type IIB string theory. However, performing one
T-duality one can construct another useful description of the brane system in type IIA, as D4-
branes suspended between NS5 branes. In particular, the D4-branes are wrapped along a compact
direction, say x6, while NS5s can extend along directions x4, x5 or x8, x9. In the former case they
are called simply NS5, in the latter NS5′. Both types split the WV of D4-branes. See [107] for the
construction of such theories. The configuration is summarized in Tab. 5.5, where also O6-planes
are included, yielding the Ω projection.

0 1 2 3 4 5 6 7 8 9

D4 − − − − −
NS5 − − − − − −
NS5′ − − − − − −
O6± − − − − − − −

Table 5.5. The T-dual picture with D4-branes, NS5 and NS5′-branes. The direction x6 is compact.

A simple example that can be obtained from this configuration is the SPP, where two NS and one
NS′ 5-branes, located at different positions on x6, divide the WV of D4-branes into three stacks,
which we label by 0,1 and 2, see Fig. 5.21. Bifundamental fields X01, X01, X12, X12 and X20, X02

arise at the intersections between D4s and a 5-brane. The stack denoted by 0 is suspended between
two parallel NS5 branes and D4-branes can be moved along them. This generates an adjoint field
X00 = ϕ0, which completes an N = 2 vector multiplet. In fact, locally the physics resembles
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Figure 5.21. The brane system in type IIA which corresponds to the SPP singularity. The circular direction
is x6.

N = 2. D4-branes between two orthogonal 5-branes generate a quartic superpotential term of the
form ±XijXjiXij′Xj′i, taken with positive sign if an NS5 lies at the left of the D4. When D4s are
suspended between two parallel 5-branes, a cubic term as ϕi

(
XijXji −Xij′Xj′i

)
is generated.

The geometry of the singularity can be described in C4 as the locus

xy = zw2 . (5.84)

This construction can be generalized to the case of r NS5 and s NS5′, whose geometry reads

xy = zswr . (5.85)

Adjoint fields arise between parallel 5-branes of the same type, but a relative rotation corresponds
to giving them a mass, and the effective field theory is obtained below the mass scale. Thus, we
can start with a system of 3n NS5s, corresponding to C3/Z′

3n, and rotate the NS5 in an alternating
scheme. If 3n is even, we can give mass to all the adjoints fields and integrate them out, whereas in
case of 3n odd two 5-branes remain always parallel. This is exactly the process we have described
in the previous section, and we end up with L

3n
2 , 3n

2 , 3n
2 or L

3n−1
2 , 3n+1

2 , 3n−1
2 , see for example L3,3,3 in

Fig. 5.22.
When a pair of O6± planes is present in the system, it induces a Z2 indentification among 5-branes
and stacks of D4. For n odd, one of the orientifold planes lies in correspondence of a 5-brane which
separates a stack of D4 labelled by i and another one labelled by j. In this case, fields Xij , Xji

are projected onto symmetric or antisymmetric representations, both in the same one in case of
an NS5, in opposite ones for an NS5′8. The other O6± lies on a stack of D4, projecting the gauge
group onto SO/Sp and the adjoint field onto a symmetric or antisymmetric representation. This
happens also for n even, where both orientifold planes act in this way. Note that the mode of
fractional branes along parallel 5-branes is projected out, since the D4s are stuck at the orientifold
singularity: they can not be moved along x4, x5 since the orientifold plane does not wrap these
directions.
In these elliptic models, Seiberg duality is described as the reordering of the 5-branes [107, 119].
Consider, for example, the situation in which node (a− 1) has an adjoint and we want to dualize

8This is because the NS5′ divide the O6 into two regions. Crossing the 5-branes, the RR-charge changes sign.
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Figure 5.22. The brane system in type IIA which corresponds to the L3,3,3 singularity. The circular
direction is x6.

node (a). As described in Sec. 5.2.1 and Figs. 5.9-5.10 the adjoint moves from node (a − 1) to
(a + 1), while the rest of the quiver remains untouched. Let us look at the process in the ellipctic
model, where the same configuration corresponds to a stack of D4 labelled by (a − 1) delimited
by two parallel 5-branes, say two NS5. The stack (a) is delimited then by an NS5 and an NS5′,
and finally (a + 1) by an NS5′ and an NS5, in this order. Seiberg duality on (a) means that one
exchanges the 5-branes at its ends, so no adjoint field is generated. On the other hand, the 5-branes
delimiting (a− 1) are now orthogonal, whereas for (a + 1) the 5-branes are parallel, explaining the
presence of the adjoint field in the magnetic theory.
This construction explains why Seiberg duality picks the conformal point of (SPP/Z′

2)Ω at p = 4τ0

for solution A (τ0 = −τ00) and at p = 2τ0 for solution B (τ0 = +τ00). In fact, moving the NS5
towards the NS5′ and eventually crossing it, results in the dual configuration where the number
of D4 does not change [107, 119], since in the system no D6 are present9. For the field theory
associated to (SPP/Z′

2)Ω, this means that dualizing either node 1 or 2 yields N1 = Ñ1 or N2 = Ñ2,
which is true only for p = 4τ0 in solution A (see Eq. (5.38)) and p = 2τ0 in solution B (see
Eq. (5.44)). The same mechanism of reordering of 5-branes occurs in dualizing a gauge node in
(SPP/Z′

n)Ω, which results in Ñi = Ni, as already noted in Sec. 5.3.4. For n > 2 the electric theory
has the unique solution at r00 = 0, value obtained also for solution B of (SPP/Z′

2)Ω at p = 2τ0.
Note that this solution has the same choice for τ signs as for n > 2.
In theories without an orientifold plane and each gauge node connected to the adjacents by a chiral
and an anti-chiral field, the condition that, after Seiberg duality, the rank of the gauge group
remains the same is quite natural. In fact, the electric theory is conformal when all ranks of the
gauge factors are equal, hence, in the conformal window Ñi = Ni for the magnetic theory. On
the other hand, the presence of an orientifold plane shifts the ranks of gauge factors, for anomaly
cancellation, and the condition for the ranks to remain equal is no longer obvious.
The message from (SPP/Z′

n)Ω with n ≥ 2 is that for theories where each gauge factor has both
chiral and anti-chiral matter and in presence of orientifold planes, the conformal window is given
by the condition that the magnetic dual theory yields Ñi = Ni, as for theories without orientifold.
Moreover, it seems that in this class of unoriented theories at the conformal point r00 = 0.
Checking these statements for SPPΩ is quite complicated, both on the elliptic model and on the field

9If we add D6-branes along directions 0123789 in between the 5-branes, new D4-branes are created while ex-
changing the position of the 5-branes, in order to preserve supersymmetry [119].
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theory side. In the former, we can either move an NS5′ brane and its image towards the orientifold
plane or deal with an NS5 at the position of the orientifold plane. From the field theory perspective,
we may construct a magnetic dual theory by means of the deconfinement trick [84, 120–123], in
which the tensorial matter is deconfined into fundamental fields of an auxiliary gauge group, leaving
the original unitary group with only (anti)fundamental fields. Applying this technique in SPPΩ

with antisymmetric matter, the extra gauge group is symplectic. Indeed, for r00 = 0 the rank of the
Seiberg dual of SU(N1) remains unchanged, as in the previous cases, while this does not happen
with symmetric matter and an orthogonal extra group. However, after the duality the auxiliary
group can not be confined back. While most of the family (SPP/Z′

n)Ω have the conformal point
at r00 = 0, all we can say for SPPΩ is that we are not able to exclude fixed points with r00 ̸= 0.
From the result we got for (SPP/Z′

n)Ω, in which we have analytical tools, we expect that the same
should hold also for SPPΩ, namely, that the conformal point exists only for a specific value of p for
which r00 = 0.

5.6 Discussion

In this chapter we have found an infinite class of pairs of non-chiral unoriented theories whose
conformal fixed points have the same central charge aΩ, ’t Hooft anomalies and superconformal
index. These theories are (SPP/Z′

n)Ω and the orientifold Ω of L
3n−1

2 , 3n+1
2 , 3n−1

2 for n odd or L
3n
2 , 3n

2 , 3n
2

for n even, whose parent theories can be constructed from the non-chiral orbifold C3/Z′
3n by mass

deformation of pairs of adjoint fields [39].
For n odd, we find that both theories in each pair belong to the third scenario, whereby the
orientifold projections, realised with fixed points on the dimer, break the conformal invariance of
the parent theories even at large N , and they flow to a new conformal fixed point in the infrared.
For n = 1 the two theories are actually the same, namely (SPP)Ω. Imposing that all β-functions
vanish, it seems that for any value of the number of fractional branes p the theory has a fixed
point. However, for some values of p, the central charge a must be corrected taking into account
operators that decouple before reaching the conformal point. The effect is that the ratio aΩ/a

tends to increase. Considering that the Ω projection is a Z2 involution of the parent theory, any
point at which aΩ/a > 1/2 seems difficult to interpret. Moreover, for p ≥ 5, Tr R ̸= 0 already at
leading order, spoiling the holographic duality, at least in its simple form. Being the parent theory
a holographic theory, beyond this value the comparison with the a charge of the parent theory is
unreliable. A possibility is that for p ≥ 5 the field theory has a conformal point, with no gravity
dual. Furthermore, following the prescription in [118], for p = 1 all the terms in the superpotential
must be eliminated. Eventually, for n = 1 all we can say from the field theory side is that in the
range 2 ≤ p ≤ 4 a-maximization yields a maximum in the third scenario.
For n even, while for SPP/Z′

n the orientifold involution is performed with fixed points and belongs
to the third scenario, for L

3n
2 , 3n

2 , 3n
2 it is performed by fixed lines and belongs to the first scenario.

This is a stronger evidence of the fact that the conformal points that we find are physically relevant.
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5.6. Discussion

For n = 2, apparently conformal invariance does not fix the relative rank p of the gauge groups,
but Seiberg duality selects the value of p = 2τ0, which yields r00 = 0. Interestingly, for n even the
orientifold projection of the theory C3/Z′

3n belongs to the third scenario and only for p = 2τ0 it
shares the same central charge aΩ, ’t Hooft anomalies and superconformal index of the unoriented
SPP/Z′

n and, in turn, L
3n
2 , 3n

2 , 3n
2 .

On the gravity side, all these theories can be described in Type IIA by means of elliptic models [107]
where the geometry of the singularity depends on the configuration of NS5-branes, while stacks
of D4-branes suspended between them provide the field theory. Rotating the 5-brane, one gives a
geometric meaning to mass deformation and the flow to SPP/Z′

n and Lk,n−k,k mentioned above. In
this context, Seiberg duality gives a clearer picture of the conformal point. Reordering the 5-branes
does not change the number of D4, since no D6-branes are present. Back on the field theory side,
this means that the ranks in the magnetic theory remain unchanged, and this happens only for the
unique value of p that gives r00 = 0. Nonetheless, we have not been able to fully understand why
one should pick that unique value in the case of n = 1, an issue related to the presence of tensorial
matter. We leave this as an open problem.
The fact that each pair of theories share the same central charge aΩ, ’t Hooft anomalies and
superconformal index, along with the fact that they share the same global symmetries, may imply
that they are connected by an exactly marginal deformation. Since the endpoints of this exactly
marginal deformation are orientifold projections of toric theories, one can conjecture that the two
theories are actually dual and the two unoriented geometries are the same. The actual geometric
interpretation of this infrared duality is presently lacking, but having found an infinite class of non-
chiral theories in which this duality is realised gives hope that a geometric picture could emerge.
In particular, the metrics of the parent theories of all these models are known. In the next chapter,
we are going to discuss the only chiral example, at the best of our knowledge, that shows this
mechanism. The metric for the associated geometry is not known.
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Chapter 6

Infrared duality in unoriented Pseudo

del Pezzo

The study of orientifold projection of brane tiling and toric theories has lead us to a new infrared
duality between unoriented theories, descendants via mass deformation of the non-chiral orbifold
of C3. We have constructed two infinite families that are in some sense dual and part of them
belong to the third scenario. The importance of the results presented in the previous chapter is
then two-fold. However, all of these families are non-chiral and up to this point one could think
that perhaps those results are possible only for non-chiral models.
Searching for a chiral example is computationally hard, as one usually loose the recursive structure
of the systems of anomaly-free conditions, for gauge and global symmetries, so examples with large
quiver are difficult to solve analytically after the orientifold projection, whereas most of the small
do not belong to the third scenario. We can restrict the models we should look for noticing that
one of the families in the last chapter is La,b,a and their non-chiral orbifolds, so maybe the answer
is among their chiral orbifold involutions.
In this chapter, based on [2], we discuss the only chiral example we could find that belongs to the
third scenario and that is dual to an unoriented theory in first scenario. It is the case of the chiral
orbifold SPP/Z2, known also as Pseudo del Pezzo 3c, PdP3c. It is obtained by successive blow-
ups [107, 124–126] of del Pezzo singularities. In particular, from dP2, corresponding to the complex
cone over the del Pezzo surface obtained by the blow-up of two generic points pf P2, we obtain dP3

or, if the blow-up is non-generic [125, 126], either PdP3b or PdP3c. The latter two theories, whose
toric diagrams are drawn in Fig. 6.1, are the ones we are interested in. In Fig. 6.3-6.4 we draw the
dimers of these two theories. By looking at the diagrams we see that the two theories have different
superpotentials but share the same quivers, given in Fig. 6.2.
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Chapter 6. Infrared duality in unoriented Pseudo del Pezzo

Figure 6.1. The toric diagram of PdP3b on the left and the toric diagram of PdP3c on the right.

35

6 2

1

4
Ω

Figure 6.2. The quiver of theories PdP3b and PdP3c. The dashed gray line labelled as Ω represents the
orientifold projection, which identifies the two sides of the quiver and projects fields and gauge groups
that lie on top of it.
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6.1. Parent Pseudo del Pezzo 3b and 3c

6.1 Parent Pseudo del Pezzo 3b and 3c

Let us introduce the parent gauge theories of interest. We begin with PdP3b [32, 125, 126], whose
quiver and dimer are drawn in Fig. 6.2 and 6.3. There are 6 gauge groups ∏6

a=1 SU(Na) and the
matter fields are bifundamentals Xab corresponding to the edges in the dimer. For instance, X12

transforms in the fundamental representation of SU(N1) and in the anti-fundamental of SU(N2)
and is the edge between faces 1 and 2 in the dimer. The global symmetries of this model are
U(1)2×U(1)R as mesonic symmetry and U(1)5 as baryonic one, of which U(1)2 is anomalous. The
superpotential of the theory reads

W3b = X13X34X41 −X46X61X14 + X45X51X14

−X24X41X12 + X62X24X46 −X35X51X13

+ X23X35X56X61X12 −X23X34X45X56X62 . (6.1)

The gauge anomalies vanish imposing the following relation between the ranks of the gauge groups:

N1 + N6 −N3 −N4 = 0 ,

N2 + N3 −N5 −N6 = 0 . (6.2)

We find the superconformal fixed point and the corresponding R-charges Rab for the fields Xab

maximizing the a-charge. Requiring that the β-functions vanish, equivalent to non-anomalous
R-symmetry, we have ∑

a

(Rab − 1)Na = −2Nb , (6.3)

where the sum is over gauge groups a connected to b by a bifundamental field Xab. Together with
the condition that the R-charge of the superpotential is R(W ) = 2, we have a system of equations
with a priori eight independent R-charges. This can be seen also from the quiver, which enjoys
a Z2 symmetry. The a-charge is a two-variable function, namely, a global symmetry U(1)2 mixes

4
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4

1

4

4

2

3

5

6

4

1

4

1

4

4

2

3

5

6

-

+

Figure 6.3. The dimer of PdP3b, where the dashed green line delimits the fundamental cell. The two red
fixed lines and their signs represent the orientifold projection that yields the unoriented PdPΩ

3b.
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6.1. Parent Pseudo del Pezzo 3b and 3c

1

1

1

1
4

4

6

6
2

2

5
3

Figure 6.4. The dimer of PdP3c, where the dashed green line delimits the fundamental cell. The four red
fixed points (τ1, τ2, τ3, τ4) represent the orientifold projection, where (+,−,−, +) corresponds to PdPΩ1

3c

and (−, +,−, +) corresponds to PdPΩ2
3c .

with the R-symmetry. The local maximum yields [32]

Rb
23 = 7− 3

√
5 ,

Rb
13 = Rb

14 = Rb
24 = 3−

√
5 ,

Rb
12 = Rb

34 = Rb
35 = Rb

62 = 2
√

5− 4 , (6.4)

a3b = 27
4 N2

(
5
√

5− 11
)

,

Vol(PdP3b) = π3

27
(
5
√

5− 11
) , (6.5)

where Na = N ∀a = 1, . . . , 6 since this condition gives the only solution that respects the unitarity
bound. Note that the expression of the a-charge is given at leading order in N .
The second theory we study is PdP3c [32, 125, 126], whose dimer is drawn in Fig. 6.4. As in the
previous case, the gauge group is ∏6

a=1 SU(Na) and the global symmetries are U(1)2 × U(1)R as
mesonic symmetry and U(1)5 as baryonic one, of which U(1)2 is anomalous. The matter fields are
also the same of the PdP3b theory and indeed the two models share the same quiver in Fig. 6.2.
Nonetheless, they have a different dimer and therefore interact differently. In fact, the superpoten-
tial reads

W3c = X12X24X41 + X45X51X14 −X13X34X41

−X46X61X14 + X13X35X56X61 + X46X62X23X34

−X12X23X35X51 −X45X56X62X24 . (6.6)

The gauge anomalies vanish imposing the condition in Eq. (6.2) as before. Computing the R-charges
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6.2. Unoriented PdP3b and PdP3c

which maximize the a-charge we find [32]

Rc
14 = 2− 2

√
3

3 ,

Rc
23 = Rc

35 = Rc
62 = 1−

√
3

3 ,

Rc
12 = Rc

13 = Rc
24 = Rc

34 =
√

3
3 , (6.7)

a3c = 3
√

3
4 N2 ,

Vol(PdP3c) = π3

3
√

3
, (6.8)

where again Na = N ∀a = 1, . . . , 6 is the only solution that respects the unitarity bound. Note
that the difference in the R-charges arises from the condition R(W ) = 2. It is crucial to note that
in this case the a-charge is a three-variable function, namely, the non-R symmetry which mixes
with the R-charge is U(1)3.

6.2 Unoriented PdP3b and PdP3c

The orientifold projection of a quiver gauge theory is represented as a line which identifies the two
sides of the quiver and projects the groups and the fields that are mapped onto themselves, as
discussed in Chapter 3. For the PdP3b and PdP3c theories, the involution is the Ω line in Fig. 6.2.

6.2.1 Unoriented PdP3b

We consider the orientifold involution of PdP3b with two fixed lines and we choose the configuration
with signs (−, +), as in Fig. 6.3. As a consequence, the gauge group SU(N5) is identified with
SU(N3) and SU(N6) with SU(N2), while SU(N1) becomes USp(N1) and SU(N4) becomes SO(N4)
since they lie on top of the fixed lines. The resulting theory has gauge groups USp(N1)×SU(N2)×
SU(N3) × SO(N4), where the fields XA

35 and XS
62 belong to the antisymmetric and symmetric

representations of the gauge groups SU(N3) and SU(N2) respectively. The superpotential reads

W Ω
3b = X13X34X41 −X24X41X12 + XS

62X24X46

−XA
35X51X13 + X23XA

35X56X61X12

−X23X34X45X56XS
62 (6.9)
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6.2. Unoriented PdP3b and PdP3c

and the anomaly cancellation condition is

N1 + N2 −N3 −N4 + 4 = 0 . (6.10)

As in the parent theory, there are eight a priori independent Rab. The condition for the β-functions
to vanish changes slightly due to the orientifold involution. In fact, one has

∑
a

(Rab − 1)Na = −(Nb ± 2) , (6.11)

if the group labelled by b is orthogonal (−) or symplectic (+). Likewise, for unitary gauge groups
one has ∑

a

(Rab − 1)Na + (Rb − 1)(Nb ± 2) = −2Nb , (6.12)

where Rb is the R-charge of the symmetric (+) or the antisymmetric (−) field charged under
SU(Nb). Imposing conformal invariance, consistency with the unitarity bound requires N2 = N3 =
N1 + 2 = N4 − 2 = N . One then finds the flavour symmetry is U(1)2 and the R-charges are the
same as the ones of the parent theory in Eq. (6.4) up to O(1/N) corrections. This implies that this
orientifold realizes what we have described in the introduction as the ‘second scenario’, in which
there is a fixed point, and the orientifold induces corrections to the R-charges that vanish at large
N . Taking this limit, the value of the a-charge is

aΩ
3b = 27

8 N2
(
5
√

5− 11
)

. (6.13)

Note that the central charge a is half the one of the parent theory. This is expected since the
degrees of freedom have been halved. Besides, also the volume of the PdP3b after the orientifold is
half the volume of the parent space. To see this, consider that the orientifold acts as a Z2 projection
on the geometry. As a consequence, the number of units of 5-form flux is N/2 [116]. Thus, the
proper ratio between the volumes reads

Vol(PdPΩ
3b)

Vol(PdP3b)
= 1

2 . (6.14)

This is similar to the case of the Zn orbifold of flat space, where the volume is a fraction n of the
volume of the sphere S5.

6.2.2 Unoriented PdP3c

Let us turn to the orientifold of PdP3c. As shown in Fig. 6.4, the dimer admits only the projection
with fixed points, whose signs (τ1, τ2, τ3, τ4) project the group SU(N1), the group SU(N4), the field
X35 and the field X62, respectively. The parent theory has NW = 8, thus ∏4

i=1 τi = +1. The two
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6.2. Unoriented PdP3b and PdP3c

inequivalent choices are Ω1 = (+,−,−, +) and Ω2 = (−, +,−, +).
First, we focus on Ω1. The unoriented theory has gauge groups SO(N1) × SU(N2) × SU(N3) ×
USp(N4), where fields XA

35 and XS
62 are antisymmetric and symmetric representations of SU(N3)

and SU(N2) respectively. The superpotential reads

W Ω1
3c = X13XA

35X56X61 −X45X56XS
62X24

+ X12X24X41 −X13X34X41 (6.15)

and the anomaly cancellation condition remains as Eq. (6.10). The superconformal fixed point
of this unoriented model has the same R-charges of the parent theory in Eq. (6.7) up to O(1/N)
corrections, with the flavour U(1)3 symmetry mixing with R-symmetry, and thus the second sce-
nario described in the introduction is again realized as in the PdP3b case. In the large N limit, the
a-charge is

aΩ1
3c = 3

√
3

8 N2 , (6.16)

where N1 = N2 = N3 − 2 = N4 − 2 = N is the only consistent solution. Again, the a-charge is
halved because of the orientifold projection, and the ratio between the volumes is 1/2 as before.
The unoriented theory obtained from Ω2 = (−, +,−, +) has gauge groups USp(N1) × SU(N2) ×
SU(N3) × SO(N4), where fields XA

35 and XS
62 are unchanged w.r.t. the previous case. The su-

perpotential W Ω2
3c is formally identical to W Ω1

3c in Eq. (6.15) and again the anomaly cancellation
condition remains as Eq. (6.10). The a-maximization in this case is more subtle. If one took
naively the limit N → ∞ before solving the equation for vanishing β-functions and R(W ) = 2,
one would obtain the R-charges and half the a-charge of the parent theory, with non-R flavour
U(1)3. On the other hand, we find that for any finite value of N , the only consistent solution is
N2 = N3 = N1 + 2 = N4 − 2 = N exactly as in PdPΩ

3b, with one flavour U(1) broken and the
remaining U(1)2 mixing with R-symmetry. This has the crucial effect of giving at leading order in
1/N the value of the superconformal R-charges as

RΩ2
23 = 7− 3

√
5 ,

RΩ2
13 = RΩ2

14 = RΩ2
24 = 3−

√
5 ,

RΩ2
12 = RΩ2

34 = RΩ2
35 = RΩ2

62 = 2
√

5− 4 , (6.17)

which are different from the R-charges of the parent theory in Eq. (6.7), and the aΩ2
3c -charge takes

the value

aΩ2
3c = 27

8 N2
(
5
√

5− 11
)

, (6.18)

which is smaller than the value of aΩ1
3c in Eq. (6.16). Consequently, the ratio between aΩ2

3c and that
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of the parent theory is
aΩ2

3c

a3c
= 3
√

3
2
(
5
√

5− 11
)
≃ 0.47 , (6.19)

while the ratio between the volumes is

Vol(PdPΩ2
3c )

Vol(PdP3c)
≃ 0.53 . (6.20)

The fact that aΩ2
3c is less than halved w.r.t. the central charge a3c of the parent theory can be taken

as a sign of an RG flow towards the IR. Thus, a natural question is what is the endpoint of this
RG flow. Surprisingly, the R-charges and the a-charge in Eqs. (6.17) and (6.18) are exactly those
of PdPΩ

3b given in Eqs. (6.4) and (6.13). This suggests the two theories are dual at the conformal
fixed point. In other words, the RG flow is going from PdPΩ2

3c in the UV to PdPΩ
3b in the IR.

To further support this conjecture we investigate the 1/N corrections to the R-charges. Remarkably,
imposing that the β-functions vanish yields exactly the same solutions at any finite N , which implies
that the charges w.r.t. all the global symmetries of the two theories are the same. The values of
these charges are reported in Tab. 6.1, where Q1 and Q2 are associated to the flavour symmetry
U(1)1 × U(1)2, while R0 is an allowed non-superconformal choice of the R-charge.

Q1 Q2 R0

X12 −N+2
N

1
2

1
2

X13 0 −1
2

1
2

X24
1
N −1

2
1
2

XS
62 − 4

N 1 1
X23

N+2
N −1 0

X34 −1 1
2

1
2

X41 1 0 1
XA

35 0 1 1

Table 6.1. The values of the charges Q1, Q2 and R0 for the fields of PdPΩ
3b and PdPΩ2

3c , which are the
same. Q1 and Q2 refer to the charges under the flavour symmetry U(1)1×U(1)2, while R0 is an allowed
non-superconformal choice of the R-charge.

6.3 Discussion

We have shown that the value of the a-charge of the superconformal fixed point of the unoriented
PdPΩ2

3c is smaller than expected and this gives strong evidence that there is an RG flow from the
UV to the IR. On the fixed point in the IR, the R-charges and a-charge are exactly those of the
unoriented PdPΩ

3b. Moreover, the two theories share the same field content and have identical
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6.3. Discussion

charges under the same global symmetry for any finite N . As a consequence, ’t Hooft anomalies
match in the IR as well as the superconformal index and thus we conjecture that in the IR the two
unoriented theories describe the same physics.
A natural question that one can ask is whether the PdPΩ

3b and PdPΩ2
3c theories are connected by an

exactly marginal deformation. A hint in this direction comes from the fact that the two theories
differ only because of superpotential terms. This implies that if one turns on in the PdPΩ2

3c theory
a deformation α(W Ω

3b−W Ω2
3c ), the resulting theory must have a superconformal fixed point for any

value of α, with the same value of the R-charges. While for α = 0 and α = 1 the theory results
from an orientifold projection, it would be very interesting to investigate the origin of the other
superconformal theories.
As far as the gravity side of the AdS/CFT correspondence is concerned, the mechanisms known
in the literature to produce RG flows in the context of holographic field theories do not seem to
explain our result. In particular, the flow described above is not due to mass deformations [1, 70],
to a Higgs mechanism [125] or to the introduction of fractional branes [127]. We can expect some
kind of kink solution interpolating between two asymptotic geometries like in [128], but the metrics
of the CY complex cones over PdP3b and PdP3c are unknown and thus we do not have control
of the bulk theory. Progress on the gravity side of the orientifold theories discussed in this letter
would also allow one to investigate holographically the marginal deformation discussed above.
The picture from the orientifold analysis is thus that the configuration of branes and orientifold
planes in the PdPΩ2

3c theory breaks the conformal symmetry in the UV, but makes the theory flow
to a different IR fixed point that is the one of the PdPΩ

3b theory, with which PdPΩ2
3c shares all the

symmetries. In the bulk, we can thus expect form fluxes that make the volume increase so that
only asymptotically the metric is AdS. The scale associated to the flow might be identified with
the size of the cycles wrapped by the branes that generate the fluxes.
Another direction that can be explored is the possibility that the duality is a consequence of the
PdP3b and PdP3c parent theories being connected by specular duality [32, 129], which in general
is a map between theories with the same master space. In the case of theories whose toric diagram
has only one internal point, like the ones we are discussing, specular duality exchanges mesonic
and anomalous baryonic symmetries. The chain of maps that relate the two parent theories is
more precisely a specular duality followed by a Seiberg duality [58] and again another specular
duality. One could even investigate the possibility that a chain of Seiberg dualities relates the two
unoriented theories. Seiberg dualities in the case in which (anti-)symmetric fields are present have
been considered in [120, 121], where one describes them as mesons of a new confining symplectic
or orthogonal gauge group. The problem of this approach is that one needs to add a gauge group
going towards the UV and that can not describe the flow from PdPΩ

3b to PdPΩ2
3c .

Finding other chiral examples would allow us to understand the physical origin of this infrared
duality. However, as the number of gauge groups increases, it becomes computationally harder to
find the exact local maximum of the a-charge. To give more evidence that the unoriented PdPΩ2

3c

flows to PdPΩ
3b in the IR, we plan to study the moduli spaces of the two unoriented theories.

Another possible line of investigation would be to check whether S-duality and strong coupling
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effects are involved, along the lines of [82–85].
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Conclusions

Over the previous chapters, we have constructed N = 1 gauge theories from orientifold projections
of toric models and used the tools for supersymmetric theories in order to determine their conformal
point, if any. In Chapter 4, we saw that the relevant mass deformation triggers a flow in the parent
toric theory A, which ends on a different toric model B. In principle, the orientifold may spoil the
relation between the two models, as its action is non-trivial, both on geometry and field theory. It
introduces fixed points and both AΩ and BΩ will have real groups and/or tensor representations,
not present in the parent models. First of all, the orientifold requires a Z2 symmetry and this
already projects out some connections and models. But even when this Z2 symmetry is preserved,
the orientifold involutions change the properties from A to AΩ and any connection to B and BΩ

is not granted. An example is given by Seiberg duality cascade from A to a confined phase B, as
happens for the conifold or its chiral orbifold [64, 65]. In presence of orientifold, the duality cascade
from AΩ to BΩ has different features than in A to B, both in the UV and in the IR [88]. Thus,
there is no reason to expect a priori that AΩ and BΩ are still connected. Nonetheless, in Chapters
4 and 5 mass deformations of pairs of fields, in suitable chosen patterns, preserve the connection in
presence of orientifold and we are able to move from AΩ to BΩ. However, this flow is qualitatively
different than in the parent theories, as before the orientifold a relevant deformation triggers the
flow, whereas for the unoriented models symmetry requires that they are connected by an exactly
marginal deformation, and we conclude that they live on the same conformal manifold.
Going more into details, in Chapter 5 we have focused on La,b,a theories and this entire non-chiral
family can be obtained by mass deforming the orbifold theory C2/Z3n × C. A precise pattern
of mass deformation leads to SPP/Z′

n, instead another one to Ln,n,n with n = 3n/2 or Ln,n+1,n

with n = (3n − 1)/2. This is preserved by the orientifold projection, as long as the pattern is Z2

symmetric. After the orientifold projection, (SPP/Z′
n)Ω and

(
Ln,n+1,n

)Ω
belong to the so-called

third scenario. For these models, the orientifold projection breaks the conformal point of the parent
theory, meaning that the R-charges of the parent, at leading order, yield an anomalous symmetry.
In the flow towards the infrared, a new conformal point is developed, where the R-charges are
modified already at leading order in N . In principle, this mechanism could be dangerous, as it
may happen that accidental symmetries are generated. We took into account that gauge-invariant
operators may decouple and it turns out that, at least for n > 1, they do not spoil the new conformal
point. However, something else might happen, over which we dot have control.
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6.3. Discussion

The case for n even is interesting, let us discuss why starting from the mother
(
C2/Z3n × C

)Ω. We
found two possible orientifold projections, ΩA that yields a N = 2 and ΩB that gives a N = 1
instead. The ratio between the central charges aΩ is 27/32 and this usually happens by mass
deforming a N = 2 that eventually flows to a N = 1 in the IR [130]. However, if we mass deform
ΩA, depending on the precise pattern we choose we end up with (SPP/Z′

n)Ω or
(
Ln,n,n

)Ω
, modulo

Seiberg dualities. We found that these two have the same central charges aΩ, ’t Hooft anomaly
and superconformal indices as ΩB, for which it is crucial the presence of fields with superconformal
R = 1. Hence, we conjecture that these unoriented theories are dual, in the sense that they live on
the same conformal manifold. The fact that

(
Ln,n,n

)Ω
actually belongs to the first scenario and its

R-charges are the same as its parent model, at leading order, puts the existence of the conformal
manifold and of the duality on more solid grounds.
An enlightening description of what is the nature of the duality is given in [131], where they use the
IIA elliptic models with orientifold planes to enlarge the family of theories that enjoys this duality,
which in turn manifests itself as an inherited S-duality at work. The picture they give is clear:
starting from N = 2 elliptic model with orientifold planes, one can give mass to pairs of adjoint
fields, and the theory flows to a N = 1 SCFT. This can be marginally deformed thanks to the
fields with R = 1, whose quadratic term is marginal and S-duality acts on the coupling, exploring
the same conformal manifold.
While for non-chiral models the field theory description of the duality seems quite clear, the unique
chiral example described in Chapter 6 is somewhat cryptic, as mass deformation does not seem
to be involved and none of the fields carry R = 1. More cases should allow us to generate a
picture also for chiral models. Along this line, we are already analyzing orbifold C3/ (Zm × Zn)
and their orientifold projections, and this will lead us to the construction of more chiral examples,
with a similar mechanism that exploits the interplay between mass deformation and orientifold for
C3/ (Z2 × Z2n) and

(
La,b,a/Z2

)
. In the future, we will consider the orientifold projection of [87]

with no fixed loci.
In light of the AdS/CFT correspondence we expect that for all of these unoriented cases, both chiral
and non-chiral, a geometric counterpart of the duality exists, explaining how different oriented
geometries are the same after the orientifold projection. While this is still unclear to us, we are
confident that in the future a picture will emerge.
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