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To increase the attractiveness of wind energy, wind turbines are continuously scaling up, with diameters
now exceeding 200 m. If on the one hand, this trend guarantees an increased power production, on the
other hand, it imposes harsher aerodynamical and structural requirements – on the blades in particular –
that are difficult to characterise.

In particular, the significant size of the state-of-the-art wind turbines suggests a more relevant Fluid-
Structure Interaction (FSI) that could alter dramatically the operating life of the full machine. Given
the difficulties and the costs of measuring the phenomena occurring at significant scales, researchers
advocate the development of high-fidelity numerical models exploiting Computational Fluid and Structural
Dynamics (CFD-CSD models). For this reason, in this work we present a novel FSI model for wind turbines
combining our Large Eddy Simulation (LES) fluid solver with a modal beam-like structural solver. In the
first part of the work, we present the details of our FSI methodology, and we analyse the effects of different
coupling conditions. A loose algorithm couples the Actuator Line Model (ALM), which represents the
blades in the fluid domain by means of body forces, with the structural model, which represents the flexural
and torsional deformations. For a reference utility-scale wind turbine, we compare the results of three
sets of simulations. Firstly, we consider one-way coupled simulations where only the fluid solver provides
the structural solver with the aerodynamic loads; then, we consider two-way coupled simulations where
the structural feedback to the fluid solver is made of the out-of-plane and in-plane bending deformation
velocities only; finally, we add to the feedback also the torsional deformation.

However, to accurately reproduce the airloads, one should notice that the blades in particular are subjected
to many relevant sources of unsteadiness, e.g. tower shadowing, yawed and waked conditions, environmental
effects. Therefore, researchers have questioned the use of steady aerodynamics in the numerical fluid
and aeroelastic models used in wind energy that do not have the sufficient resolution to solve the flow
close to the blade, arguing that the use of tabulated airfoil coefficients could neglect effects that alter
the estimation of the turbine behaviour. Different unsteady aerodynamics models have been proposed to
account for these effects but have been mainly implemented in low-fidelity engineering models, which lack
the complete capability of describing the multiscale and multi-physics phenomena characterising the wind
turbine. For this reason, in the second part of the work, a 2D unsteady aerodynamics model is implemented
in the sectional estimation of the airloads of the Actuator Line Model. At each section of the blade, a
semi-empirical Beddoes-Leishman model includes the effects of additional noncirculatory terms, unsteady
trailing edge separation and dynamic stall in the dynamic evaluation of the aerodynamic coefficients of the
airfoils, used to determine the ALM body forces. Different inflow conditions and aeroelastic behaviours
are examined with the aim of examining the effects of the model, and thus of providing a deeper insight
into the unsteady characterisation of large wind turbines by means of a high-fidelity CFD-CSD model.

Keywords: Wind Energy, Fluid-Structure Interaction, Unsteady Aerodynamics, Large Eddy Simulation,
Actuator Line Model, Modal Structural Dynamics, CFD-CSD method
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In this chapter, we offer an overview of the background of this doctoral
thesis, whose aim is to present a novel high-fidelity aeroelastic tool for
wind energy applications.

At first, we introduce wind energy in the context of the larger family
of the renewable energy sources, with a particular focus on the tech-
nological trends driving the field. After having explained the rationale
behind the increase in the wind turbines’ size, we present the challenges
that this tendency poses. Thus, we concentrate on the importance of
the numerical aeroelastic modelling, and we present a broad literature
review particularly concerning high-fidelity models. Furthermore, we
stress the importance of a proper modelling of the unsteady aerody-
namics, and we present its main physical processes and the most widely
used models. Finally, we state the aim of the work, and we outline the
content of the thesis.

1.1 Wind of Change

With a global population exceeding almost 8 billion people [1]: United Nations (2019), The 2019
Revision of World Population Prospects

[1] and a
corresponding electricity demand going far beyond the limit of about
25.000 TWh [2]: Enerdata (2019), Electricity domes-

tic consumption.
[2], energy is, and still will be for many years, a critical

field for mankind.

In particular, given the increasing environmental concerns attempting
to shift energy generation from fossil fuels to sustainable sources, clean
power production is at the centre of the public debate. Moreover, as
attested by many reports [3]: Gencsu et al. (2019), Unlocking

the inclusive growth story of the 21st
century: accelerating climate action in
urgent times

[3], the development of the so-called renewables
improves health outcomes, reduces healthcare costs, and provides more
jobs than fossil fuels, besides contributing to the reduction of CO2

emissions and thus of climate impact.

The credits for the image above the chapter title go to Inga Spence (Alamy
Stock Photo) for National Geographic https://www.nationalgeographic.org/
encyclopedia/wind-energy/

https://www.nationalgeographic.org/encyclopedia/wind-energy/
https://www.nationalgeographic.org/encyclopedia/wind-energy/
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Figure 1.1: On the left, the total power generation capacity in the European Union in the period 2008-2018 according to the
2018 Wind Europe report. On the right, the renewable energy investments in 2018 (AC bn) [5].

According to recent statistics, in 2020, cost reductions allowed renew-
ables to reach almost 30% of the global electricity supply, halving
the gap with coal. The majority of this energy share, almost 90 %,
is nowaday sustained by hydropower, solar photovoltaic and wind. In
particular, wind power increased the most in absolute generation terms
among all the renewables and confirmed the trend in the total power
generation capacity observed in Europe in the period 2008-2018 (see
Figure 1.1)[4]: International Energy Agency (2020),

Global Energy Review 2020
[5]: Komusanac et al. (2018), Wind En-
ergy in Europe in 2018 – Trends and
statistics

[4, 5].

Although wind energy has been always leveraged by mankind, by means
of sailing vessels and later by means of windmills, it was only after the
oil crisis of the 1970s that a renewed interest in wind power generation
brought to the born and the commercial adoption of grid-integrated
wind energy systems. Research and technological innovations have
thus allowed the field to grow in maturity and to make wind energy
competitive even without subsidies[6]: Lantz et al. (2012), IEA Wind Task

26: past and future cost of wind energy
[6], by reducing the Levelised Costs

Of Energy (LCOE), i.e. the average revenue per unit of electricity
generated that would be required to recover the costs of building and
operating a generating plant during an assumed financial life and duty
cycle. Figure 1.2[7]: Lazard (2016), Lazard’s Levelized

Cost of Energy Analysis–Version 9.0
[7] reports the shrinkage of the costs per unit of energy

in the last decade for wind and solar energy: in many regions of the
world, wind energy is today the most convenient source of electricity.

Figure 1.2: Solar and wind energy
costs since 2009. Onshore wind power is
today the cheapest source of renewable
electricity generation in the majority
of places in the world [7].
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In the attempt of reducing even further the LCOE, to fulfill the L3

condition, i.e. low cost, long-lasting, and low service requirement power
stations, wind energy defines continuously new challenges that are
strictly related to the productive trends shown in recent years.

Productive trends of wind energy

According to Veers et al., 2019 [8]: Veers et al. (2019), ‘Grand chal-
lenges in the science of wind energy’

[8], the cost reduction of wind energy
has been and will be driven mainly by three “increasing” trends, that
are: increasing hub height, increasing power rating, and increasing rotor
diameter. The rationale behind these drivers can be clearly understood
observing the classical expression of the power production for a wind
turbine:

P =
1

2
ρCPAU

3
∞ (1.1)

where P is the instantaneous power generated, ρ is the air density, CP
is the power coefficient of the turbine, A is the area swept by the rotor,
and U∞ is the free-stream air velocity.
The benefits brought by the increasing trends are thus clear:

Hub height. The increase of the hub height allows turbines to operate
with faster wind speeds, more independent from the surface
friction.

Power rating. Technological innovations has led to larger generator
capacity coupled with more sophisticated power electronics, en-
abling variable-speed operations. Turbines are thus now able to
operate in a wide range of regimes constantly at peak power
coefficient CP , boosting the power production.

Rotor diameter. Advances in material science and rotor design has
made it possible to increase the length of the blades without
reaching impractical weights and costs (see Figure 1.3). Modern
blades are 90% lighter than the corresponding 1980s blades simply
scaled to current sizes

[9]: Manwell et al. (2010), Wind energy
explained: theory, design and applica-
tion

[9]. The larger swept area by the longer
blades increases the wind turbine capture and exploits fully the
wind resource.

To have an idea of such augmentation process, in 2020 the average
rated capacity of a newly installed wind turbine in Europe was 8.2 MW
for an offshore turbine and 3.3 MW for an onshore turbine, with huge
blades tipically longer than 80 m [10]: Komusanac et al. (2020), Wind

Energy in Europe - 2020 Statistics and
the outlook for 2021-2025

[10]. The latest prototype of General
Electric, the Haliade-X offshore wind turbine, has a rated power of 14
MW, a colossal rotor diameter of 220 m and a hub height of 260 m, for
a total height slightly smaller than that of the Empire State Building

[11]: Winters et al. (2018), ‘The Largest
Wind Turbine Ever’

[11].

Obviously, many other important solutions are catching on in order
to answer the large number of requirements asked to wind energy. For
example, large groups of turbines, the so-called wind farms, are built
more and more in the offshore configuration, with turbines bodies in
water. The higher and more stable offshore wind speeds compared
to onshore ones allow wind farms to generate more electricity per
amount of capacity installed at a now competitive price. Moreover, the
placement of the turbines far from inhabited lands guarantees a weaker
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Figure 1.3: Growth in wind turbine
size in the last 40 years and beyond.
[12]

NIMBY (Not In My Back Yard) opposition, which sometimes hinders
the development of large and intrusive projects.

Big wind turbines challenges

The presented trends delineates specific challenges for the wind energy
field. Some issues were already there, others are new, and others have
been exacerbated by the increase in size. A variety of questions for
the future of wind energy spans from the need for improved analysis
of the electricity conversion to the request of improved reliability and
uncertainty modelling, from the increased attention to societal and
economic aspects to the critical elements to characterise soil and floating
basements[13]: van Kuik et al. (2016), ‘Long-term

research challenges in wind energy –
a research agenda by the European
Academy of Wind Energy’

[13].

However, among all the aspects, Veers et al., 2019 [8] underlined three
of them as the principal challenges of big wind energy :

I The physics of the atmospheric flow needs an improved effort to
better understand, model and estimate the coupling between the
micro- and mesoscales defining the heterogeneous wind source.
Moreover, the now comparable dimensions of the turbines – and
of wind farms – with respect to the typical dimensions of the
Atmospheric Boundary Layer (ABL), question the usual assump-
tions adopted in fluid dynamics studies and introduces the need
to consider what Calaf et al., 2010

[14]: Calaf et al. (2010), ‘Large eddy
simulation study of fully developed wind-
turbine array boundary layers’

[14] calls the fully developed
wind turbine array boundary layer.

I The response of enlarged wind turbines is still an open challenge,
despite the separated advancements in the single physical fields
like aerodynamics, structural dynamics, and hydrodynamics. Cou-
pling phenomena between unsteady, nonlinear fluid and structural
dynamics, and also control systems, are increasingly important
and still neglected or misrepresented in the design process, where
they can potentially play a central role.

I In order to tackle the electricity demand in the best way, further
study is needed on the integrated optimisation and control of
fleets of wind plants within the larger electric grid system.

Given the above-mentioned trends, it is thus clear how the larger
dimensions take the technological and physical design of a single wind
turbine to an extreme. For instance, the design of new, grand wind
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Figure 1.4: The NREL Phase VI
wind turbine: a 10-metre diametre, two-
blade wind turbine tested in the NASA
Ames 24.4 by 36.6 metre wind tunnel
[15]. During the NREL NASA Ames
experiment the wind turbine was in-
strumented to chacterise both strutu-
ral and aerodynamic response of a full-
scale rotor. The wind tunnel is powered
by six 18,000 HP fans that produce test
section wind velocities up to 50 m/s,
and is primarily used to characterise
full-scale aircrafts and rotorcrafts.

turbines must reckon with the increase in weight of their components,
with the mutual interaction among the fluid fields of the turbines
in wind farms and the ABL, but also with the new crucial role of
fluid-structure-control interaction for the more flexible structures.

In fact, nowadays, the blades of the horizontal-axis wind turbines
are stiff enough to guarantee sufficient tower clearance and structural
properties. Increasing dimensions and keeping stiffness constant would
cause massive blades and expensive supports with huge nacelles and
towers, which would result in impractical and inconvenient solutions.
As a result, blades are going to be not only longer and slenderer, but
also more flexible, and hence aeroelasticity will have to be considered
during the design process to predict potential performance alterations
and possible new instability problems affecting the turbine operating
life.

Ideally, the entire energy conversion process for the overall operating life
of the machines should be evaluated a priori by means of appropriate
and well-validated experimental, theoretical and numerical modelling
to ensure reliability and predictability. However, each of these design
strategies presents, in each of the physical fields involved, its own
limitations and still needs further study to be able to tackle the complete
problem of big wind energy properly.

For example, the fluid dynamics of the wind turbines includes different
scales and phenomena, like wind shear, atmospheric turbulence, ground
effects, time and space changes in wind direction, wake interaction
on scales that range from the order of the metre to the one of the
hundreds of kilometres. Trying to study these phenomena by means of
controlled experiments (see Figure 1.4) has obviously a limited validity
and huge costs, while fields tests, even if possible for example with
Lidar technique [16]: Iungo et al. (2013), ‘Field mea-

surements of wind turbine wakes with
lidars’

[16], are limited due to costs and complexity. On the
other hand, simplified analytical or semi-empirical models have limiting
assumptions that restrict severely their validity and question their
applicability to real operating conditions for predicting purposes. At
last, numerical models would be ideal candidates to model the complete
response of the wind turbines, by means of increased-fidelity simulations
able to overcome the reduced-order models adopted in the industrial
practice and able to exploit the growing computational power and
advances. At the moment, however, a straightforward application of
Computational Fluid Dynamics (CFD) for the entire lifetime of the
wind turbine, but even for much shorter periods, is beyond the actual
capabilities of classic models.

As a result, a main scientific open challenge is about working out
rigorous modelling and methods to better represent this fascinating
multi-disciplinary engineering problem, considering also different re-
quirements and levels of fidelity of the various subsystems, whose mutual
couplings are intensified by the large scale of the wind turbines.
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of unsteady flows[35]: Spalart (2009), ‘Detached-eddy
simulation’

[35] can limit the accuracy of the results.
The Large Eddy Simulation (LES) methodology allows the simulation
of unsteady turbulent flows with reduced computational cost compared
to DNS but increased accuracy compared to RANS. However, the reso-
lution needed to deal with wall-bounded flows by means of appropriate
body-fitted meshes increases the computational requirements of the
method, which tend to the ones of the DNS method for high Reynolds
numbers[36]: Choi et al. (2012), ‘Grid-point re-

quirements for large eddy simulation:
Chapman’s estimates revisited’

[36].

An alternative approach that combines the advantages of CFD solvers
and blade-element methods is represented by the use of generalised
actuator disc models[37]: Mikkelsen et al. (2003), ‘Actuator

disc methods applied to wind turbines’
[37]: supplementary body forces are added to the

Navier-Stokes equations with the aim of mimicking the action of the
solid boundaries of the blades on the fluid, avoiding the resolution of the
exact surface geometry. In practice, a blade-element approach, using the
tabulated airfoil characteristics and the local flow kinematics, defines
the blades’ aerodynamic loading, while the 3D Navier-Stokes equations
describe the wake dynamics that results from that blades’ forcing. A
popular example of this family of methods is the Actuator Line Model
(ALM)[38]: Sørensen et al. (2002), ‘Numerical

modeling of wind turbine wakes’
[38], where the body forces are distributed along radial lines

taking the place of the blades and thus rotating with the angular rotor
speed. The method has been proved particularly adequate to predict
the flow features of wind turbines especially in LES frameworks[39]: Shen et al. (2012), ‘Actuator line/

Navier–Stokes computations for the
MEXICO rotor: comparison with de-
tailed measurements’
[40]: Sørensen et al. (2015), ‘Simula-
tion of wind turbine wakes using the
actuator line technique’
[41]: Xie et al. (2015), ‘Self-similarity
and turbulence characteristics of wind
turbine wakes via large-eddy simula-
tion’

[39–41],
combining model simplicity and accuracy.

For what concerns the structural modelling, the most important and
challenging components to consider in FSI are the blades, because
of their peculiar shapes and their mechanical properties stemming
from composite materials and because of the high stiffness of the
other components, like the tower and the shaft. The most widespread
structural mechanics numerical models in aeroelasticity are the Finite-
Element Method (FEM), the multi-body formulation and the modal
approach.

The well-known finite-element method allows the description of complex
deformation states and of complex geometries, with a potentially high
computational expense.
The modal approach instead offers a very cheap method to determine the
structural response with satisfactory results, based on the eigenmodes
of the structure.
Finally, the multi-body formulation is a good compromise between
the two methods above in terms of computational cost and allows
to consider large displacements by connecting rigid and/or flexible
subelements.

In general, however, three-dimensional structural models of the complete
machine in unsteady FSI simulations would mean adding a relevant
computational expense on the structural side that could affect negatively
the overall performance of coupling methods using already costly CFD
models for the fluid side. Hence, in wind energy aeroelasticity, blades are
commonly represented as a combination of one-dimensional equivalent
beams, given their high slenderness.

A final comment should be made about the available procedures adopted
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can be defective when calculating stalled rotor dynamic performance
[76]: Rasmussen et al. (1993), Response
of stall regulated wind turbines. Stall
induced vibrations

[76]. Although pitching control mechanisms reduce the importance of
the severe load fluctuations due to flow separation, Leishman, 2002 [69]
underlined that load hysteresis with respect to quasi-steady values is
observable also if the flow remains attached.

To quantify the degree of unsteadiness of the aerodynamic force F on
an airfoil of semi-chord b = c/2, oscillating at an angular frequency ω
in a flow with velocity U , the so-called reduced frequency k is usually
introduced. From dimensional analysis, the functional form of the force
is:

F

ρU2c2
= f (Re,M, k) , (1.2)

where Re is the Reynolds number, M = U/a is the Mach number, with
a being the speed of sound, and k is the reduced frequency, which is
typically defined in terms of the airfoil semi-chord b = c/2 as:

k :=
ωb

U
=
ωc

2U
. (1.3)

According to Leishman, 2006 [77]: Leishman (2006), Principles of
helicopter aerodynamics

[77], flow unsteadiness can not be neglected
if k > 0.05, with highly unsteady effects for k > 0.2.

Although the angular speed of the rotor is far smaller than the heli-
copters’s ones, where unsteady effects are critical for the design of the
blades, the values of the typical reduced frequencies for wind turbines
can still suggest the presence of unsteady phenomena. Vijayakumar et
al, 2019 [78]: Vijayakumar et al. (2020), ‘En-

hancement of Unsteady and 3D Aero-
dynamics Models using Machine Learn-
ing’

[78] reported the reduced frequency along the blades of three
wind turbines for two typical forcing conditions (Figure 1.7). For long
blades, flow unsteadiness is dominant, and severe phenomena occur
close to the hub. Moreover, induced structural vibrations could cause
further unsteadiness, resulting in a critical FSI.

Figure 1.7: Reduced frequency along
the span of the blades of three wind
turbines of increasing dimensions and
capacities [78]. Revolution frequency
(dashed lines) and three times the rev-
olution frequency (solid lines) are con-
sidered. The local velocity is used to
define the reduced frequency.

Finally, although the Mach number M = U/a is small and the char-
acteristic unsteadiness frequencies are much smaller than the sonic
velocity (M k << 1), the possibility of high-k phenomena and the
increase in the tip Mach number, due to rotor upscaling, [79]: Farsadi et al. (2020), ‘Classical

flutter analysis of composite wind tur-
bine blades including compressibility’

[79] also signal
the potential role of compressibility in UA.
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Despite its potential role especially for increasingly long blades, UA
is usually neglected in those state-of-the-art CFD solvers for HAWTs
that do not use the necessary resolution to solve explicitly the blades’
boundary layer, e.g. CFD-ALM solvers, leading to an incomplete de-
scription of the local aerodynamic response. Furthermore, the majority
of the studies of UA in wind energy is mainly focused on VAWTs[80]: Bachant et al. (2016), ‘Actuator

line modeling of vertical-axis turbines’
[80],

while few works studied explicitly the effect of UA for HAWTs and only
by means of low-order fidelity fluid methodologies[81]: Pereira et al. (2013), ‘Validation of

the Beddoes–Leishman dynamic stall
model for horizontal axis wind turbines
using MEXICO data’

[81].

Physical mechanisms

The numerical solution of the Navier-Stokes equations allows a proper
description of the non-uniform effects induced by the vorticity shed
in the wake of the turbine. However, the widely adopted approach of
using static tabulated airfoil data prevents a correct and complete rep-
resentation of the unsteady aerodynamic response of the blade section,
which should be associated with circulatory and noncirculatory flow
effects heavily depending on the complete history of the local incidence.
Here in the following, we present the main physical mechanisms of UA,
and we highlight how these are usually modelled in the literature.

2D Unsteady Aerodynamics

The physical unsteady phenomena occurring on a 2D airfoil can be
grouped and classified depending on whether the flow is attached, mildly
separated, or largely separated. We introduce below the main features
of 2D UA, and then the most widespread family of 2D UA models.

Attached Flow Notorious works[82]: Theodorsen et al. (1935), ‘General
theory of aerodynamic instability and
the mechanism of flutter’
[83]: Wagner (1924), ‘Über die Entste-
hung des dynamischen Auftriebes von
Tragflügeln’
[84]: Küssner (1935), The Present Stage
of Development of the Problem of Wing
Flutter
[85]: Karman et al. (1938), ‘Airfoil the-
ory for non-uniform motion’
[86]: Lomax et al. (1952), Two-and
three-dimensional unsteady lift prob-
lems in high-speed flight
[87]: Loewy (1957), ‘A two-dimensional
approximation to the unsteady aerody-
namics of rotary wings’

[82–87] provided the basis for UA
models of 2D airfoils under fully attached flow conditions, mostly in
the frequency domain, and showed that high-frequency fluctuations of
the incidence can produce significant differences in the airloads relative
to their corresponding quasi-steady values.

However, time domain formulations are more useful for a generic forcing.
According to the indicial response method, the loading response to a
generic history of the angle of attack is expressed as the superposition
of fundamental indicial aerodynamic responses. Once determined the
indicial response φ on a thin airfoil undergoing a transient step change in
the incidence, the resulting lift, containing all the information about the
history of the forcing, is calculated by means of the so-called Duhamel
integral.
For example, if a system with indicial response φ is forced by a generic
function f(t) for t ≥ 0, the output of the system can be written as:

y(t) = f(0)φ(t) +

∫ t

0

df

dt
φ(t− σ)dσ. (1.4)

In the case of the lift response, forced by the incidence α(t), the function
φ(t) is called Wagner function [83], whose complex analytical expression
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Figure 1.9: The nondimensional dis-
tance f locates the separation point
along the chord.

Figure 1.10: Different components of
the aerodynamic force F for a generic
airfoil. Fn and Fc are the normal and
tangent components, while Fl and Fd
are the lift and drag components. M
is the pitching moment.

Separated flow: trailing edge separation As the angle of attack
increases however, flow tends to separate unavoidably. Mainly two
kinds of separation are possible, depending on whether this takes place
at the leading or at the trailing edge. The formation, dynamics and
consequences of the leading edge vortex originating in the front region
of the airfoil are analysed in the following section.

As usually done in the literature, the degree of separation can be
quantified by the nondimentional distance f , which is such that cf
indicates the approximate position from the leading edge where the
separation starts (see Figure 1.9 at the side). Thus, if f = 1 the flow is
attached, while if f = 0 the flow is completely separated. Usually, f is
a specific function of the angle that is approximated analytically or is
inferred from the static airfoil data (see Section 2.5 for the practical
implementation).

On the one hand, if the flow is attached, the theory presented in the
section above describes the delayed development of the lift. On the
other hand, if the flow is separated, also the degree of separation f

needs some time to reach its steady value, affecting in turn the force
history.

In order to model the trailing edge separation, the Kirchhoff 2D plate
theory[92]: Thwaites (1960), Incompressible

aerodynamics
[93]: Gurevich (1966), The theory of
jets in an ideal fluid

[92, 93] is widely adopted. According to this model, for a generic
airfoil, the normal and chordwise force coefficients, Cn and Cc respec-
tively (see Figure 1.10), are expressed as

Cn = Cnα(α− α0)

(
1 +
√
f

2

)2

(1.8a)

Cc = ηeCnα(α− α0)
√
f tanα (1.8b)

where Cnα = ∂Cn/∂α|α=α0
is the slope of the linear portion of the

Cn − α curve, α0 is the incidence of zero normal force, and ηe is
a recovery factor in the range [0.85, 0.95] used to consider viscous
effects.

In order to take into account temporal effects, caused by the boundary
layer response, f is delayed relative to its instantaneous value corre-
sponding to the instantaneous effective incidence, and a first-order
model is adopted to define a new lagged value of f that can be finally
used in Equation 1.8a and Equation 1.8b.

Separated flow: leading edge separation Highly dynamic sepa-
ration can also start from the leading edge under certain conditions, as
can be seen in Figure 1.11. This phenomenon, which goes under the
name of dynamic stall, can influence dramatically the lifting proper-
ties of the airfoil, prolonging, for example, the linear region of the lift
curve beyond the static stall angle and causing large hysteresis cycle
characterised by a more abrupt, new stall.

Even though a complete understanding of dynamic stall is still missing,
and contrasting results come out also from CFD simulations, it is
widely accepted that dynamic stall occurs when the effective angle of
attack varies above and around the normal static stall angle, causing a
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Figure 1.11: Different phases of dy-
namic stall from CFD-based flow visu-
alisation [94]. Onset (a), build-up (b),
and detachment (c) of the leading-edge
vortex. A counter-rotating trailing-
edge vortex build up at (c) and leaves
the airfoil at (d).

Figure 1.12: Dynamic aerodynamic
polars, on the left, and vortical struc-
tures on the airfoil, on the right, during
dynamic stall for a 2D airfoil [69].

completely different dynamics of the airloads compared to the instanta-
neous and quasi-steady ones, and potentially exceeding the structural
fatigue limits too.

The main feature determining the different stages of the dynamic
stall, observable in Figure 1.12, is certainly the development of a
Leading-Edge Vortex (LEV). At high angles of attack, if a critical onset
leading-edge pressure is reached, the high adverse pressure gradient in
the region induces the formation of a concentrated vortex that travels
progressively along the suction side, prolonging the attached region,
until it leaves the trailing edge. The additional lift can produce even
100% overshoots in the maximum lift with an abrupt stall, and a large
hysteresis in flow reattachment.
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Methodology This part is divided into three chapters, presenting
the methodology adopted in the fluid solver (Chapter 2), in the
structural solver (Chapter 3), and in the coupling procedure
defined to join the two subsystems (Chapter 4).

Results This part is divided into three chapters. Chapter 5 describes
in detail the case under study, the computational setup adopted
for the final simulations and its validation. Chapter 6 describes
the results of a first campaign of simulations assessing the distinct
effects of flexibility for a utility-scale wind turbine. Chapter 7
describes instead a second set of simulations assessing the effects
of the unsteady aerodynamic modelling, in both rigid and coupled
simulations.

Conclusions This part contains Chapter 8, which includes a final
summary of the main findings of the work, highlighting advantages
and disadvantages of the proposed model, and outlining the
possible future developments.

Finally, Appendix A clarifies some additional details about the valida-
tion and the implementation of the unsteady aerodynamic model.
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This chapter presents the details of the fluid model in our FSI method.

At first, we present the physical model and its governing equations,
then we introduce the LES approach to solve the fluid equations. Next,
we report the numerical methodology used to discretise the governing
equations. Subsequently, we describe the modelling of the solid bodies
in the fluid domain and the turbine modelling adopted. Finally, we
present the modelling of the unsteady aerodynamics.

2.1 Physical Model and Governing
Equations

It is common practice in the literature to assume the flow around wind
turbines as incompressible.
Recent studies have started to take into account the effect of com-
pressibility, especially towards the tip of the blades of the big modern
turbines [79] [110]: Chaviaropoulos et al. (2003), ‘Vis-

cous and aeroelastic effects on wind
turbine blades. The VISCEL project.
Part I: 3D Navier–Stokes rotor simula-
tions’

[110]. However, under normal operating conditions, the
typical Mach number of the flow is low enough to reasonably justify
the neglection of compressibility effects in the fluid domain. Thus, we
decided to model the flow as incompressible.

The governing equations in differential form of the fluid model are
thus the incompressible Navier-Stokes equations together with the
incompressible continuity equation:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ f , (2.1)

∇ · u = 0, (2.2)

Smoke visualization of tip vortices in the New Mexico experiment.
The credits for the image above the chapter title go to Schepers and Schreck [109].
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Figure 2.1: Andrej Nikolaevič Kol-
mogorov (Tambov 1903 - Moscow
1987)

where u is the velocity vector, p is the pressure, f is a generic body
force acting on the fluid, ρ is the constant fluid density and ν is the
constant fluid kinematic viscosity.

It is possible to obtain a non-dimensional form of the governing equa-
tions by dividing all the dimensional quantities by appropriate reference
dimensions, typical of the problem under consideration:

u∗ =
u

U0
x∗ =

x

L0
t∗ =

tL0

U0
p∗ =

p

ρ0U2
0

, (2.3)

where the asterisk indicates the corresponding non-dimensional quanti-
ties and the subscript 0 indicates the reference quantities.
In such a way, we can express Equation 2.1 and Equation 2.2 as:

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ + f∗, (2.4)

∇∗ · u∗ = 0, (2.5)

where [∇∗]i = ∂
∂x∗i

and Re = U0 L0/ν0 is the so-called Reynolds num-
ber.

The Reynolds number is a non-dimensional group indicating the im-
portance of the inertial forces compared to the viscous forces and
is the only similarity parameter in the incompressible form of the
Navier-Stokes equations considered in our model. In non-dimensional
terms, flows with similar geometries and equal Reynolds numbers obey
the same equations and boundary conditions and thus have the same
non-dimensional solution (dynamic similarity principle[111]: Anderson Jr (2010), Fundamen-

tals of aerodynamics
[111]).

In the next sections of this chapter, we consider only the non-dimensional
governing equations, so we omit the asterisk on the variables for ease
of notation.

Large Eddy Simulation approach

A first approach to solve numerically the Navier-Stokes equations
consists in directly discretising the equations in a sufficiently large
domain on a fine mesh for a sufficiently long time with a fine temporal
resolution, to be able to describe all the possible scales relevant to
the flow under study. The so-called DNS approach can potentially
provide the most accurate results possible, but requires a relevant
computational cost. Indeed, it is possible to show that for Reynolds
numbers of interest for engineering applications, the computational
requirements exceed even the increased capabilities of today’s most
powerful supercomputers.

From the theory of homogeneous isotropic turbulence by Kolmogorov
[112], we know that the ratio between the largest and the smallest
representative scales of the flow is:

L

η
= O

(
Re3/4

)
, (2.6)
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where L is the integral scale of the flow and η is the Kolmogorov scale,
which is the smallest scale not directly dissipated by viscosity. Moreover,
the theory presents a similar estimation also for the characteristic time
scales, which is:

T

tη
= O

(
Re1/2

)
, (2.7)

where T is the integral time of the flow and tη is the Kolmogorov time.
In order to simulate a turbulent flow and to take a correct picture of
the full energy cascade, a well-resolved DNS should have a grid spacing
in each direction at most equal to the Kolmogorov scale η and a domain
size at least equal to the integral scale L. It follows that the direct
simulation of a 3D unsteady turbulent flow requires at least a number
of points NS ∼ Re9/4 for each time step. Moreover, if the time step is
at most equal to the Kolmogorov time scale tη and the total time of
the simulation is at least equal to the integral time T , the minimum
number of iterations should be NT ∼ Re1/2. As a consequence, the
total number of unknowns would be of the order of NS ·NT ∼ Re11/4.
For a modern wind turbine, characterised by a diameter D ≈ 100m

and a velocity U0 = U∞ ≈ 10m/s, the typical Reynolds number
Re = U0D/ν is of the order of 108, which makes it evident how
the requirements for DNS are too demanding even for the modern
supercomputing resources.

Another common approach to simulate turbulent flows is conceptually
opposite to DNS and involves a statistical description of turbulence by
mathematical models instead of the explicit resolution of all the scales.
By decomposing the velocity field in a mean and a fluctuating com-
ponent (the Reynolds decomposition) and by ensamble-averaging the
Navier-Stokes equations, it is possible to obtain the so-called Reynolds-
Averaged Navier-Stokes equations. These equations are formally equal
to the original governing equations, except for the fact that the new
variable is the mean velocity field and that in the right-hand side a new
term, the so-called Reynolds stress tensor, expresses the action of the
fluctuating turbulent scales on the resolved ones. Given the difficulties
to explicitly express the Reynolds stress tensor (the closure problem),
turbulence models are needed to shape the action of the turbulent
stresses. The modelling of the smallest scales dramatically reduces the
computational burden of the simulations, and allows researchers to
study flows with Reynolds numbers of practical interest. Satisfactory
results have been obtained also in the field of wind energy [113]: Sørensen (2008), ‘The EllipSys

2D/3D code and its application within
wind turbine aerodynamics’

[113].
However, despite the many models suggested, sources of uncertainty
are still significant and the “ideal model” suggested by Wilcox in 1998

[114]: Wilcox et al. (1998), Turbulence
modeling for CFD

[114] is still far from being achieved especially for separated flows. More-
over, the unsteady simulation of the Reynolds-Averaged Navier-Stokes
equations, has proved to be poorly accurate, highly sensitive to the
turbulence model and with higher computational cost compared to its
steady-state version [35].

The LES approach offers a method with intermediate requirements but
with higher accuracy compared to RANS.
The method consists in solving only the largest scales of motion, the
large eddies, which contain most of the energy of the flow and which
are directly linked to the peculiar features of the fluid under study.
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Considered the Kolmogorov hypothesis on local isotropy of small scales,
the unresolved scales are assumed to be universal and their effect on the
filtered variables is modelled through the resolved scales. At sufficiently
high Reynolds number, the small-scale turbulent motion (smaller than
the characteristic length l0 of the flow case under study) is assumed to
be statistically isotropic. Moreover, in every turbulent flow at sufficiently
high Reynolds number, Kolmogorov’s theory assumes that the statistics
of the motion at scale l<< l0 have a universal form that is uniquely
determined by the rate of dissipation of the energy ε and the viscosity
ν. The above-defined universal equilibrium range is subdivided into
two subranges, the dissipation range, where l approaches η and viscous
effects dominate, and the larger inertial subrange where viscous effects
are negligible. The scale range of the largest eddies is referred to as the
energy-containing range (Figure 2.2). As far as the Reynolds number is
larger, the scale separation increases and the energy cascade process is
“long”. Thus, it is reasonable to assume that the vortical structures lose
memory of the large anisotropic flow-dependent eddies in the cascade
towards small local isotropic eddies.

Figure 2.2: Turbulence Energy Spectrum Ê(κ) and regions of the turbulence energy cascade as a function of the wavelength
k = 2π/l for two different Reynolds number. a) Re`0 = 103, b), Re`0 = 105. It is visible as at low Reynolds numbers the inertial
subrange shrinks to vanish [115].

Although LES inherits the requirements of three-dimensional spatial
resolution and unsteadiness operations from DNS, the empiricism in-
troduced for the modelling of the new terms in the governing equations
reduces the computational burden, but still guarantees superior accu-
racy compared to RANS, especially for unsteady simulations.

Recent studies[116]: Breton et al. (2017), ‘A survey
of modelling methods for high-fidelity
wind farm simulations using large eddy
simulation’

[116] have demonstrated the validity of the use of LES
for the study of the fluid dynamics of the wind turbines and have shown
that this methodology can give unmatched accuracy and physical insight
compared to other approaches.

Filtered Navier-Stokes equations

In the following, we provide a brief description of the filtering procedure
on the Navier-Stokes equations to separate resolved and unresolved
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scales.

The filtering operation on a variable φ(x, t) is a convolution product
in space and time through a kernel function G∆̃,τ̃ , associated with a
length cut-off scale ∆̃ and a time cut-off scale τ̃ :

φ̃(x, t) :=

∫ +∞

−∞

∫ +∞

−∞
G∆̃,τ̃ (x− ξ, t− t′)φ(ξ, t′)dt′dξ, (2.8)

where φ̃(x, t) is the filtered resolved component of the variable φ(x, t).
The remaining unresolved part of the variable φ′(x, t) is called residual
or Subgrid-Scale (SGS) component, and is such that:

φ(x, t) = φ̃(x, t) + φ′(x, t). (2.9)

The filtering operation must verify the following properties [117]: Sagaut (2006), Large eddy simu-
lation for incompressible flows: an in-
troduction

[117]:

I conservation of constants: ã = a;
I linearity: φ̃+ ψ = φ̃+ ψ̃;
I commutation with derivation (spatially and temporally uniform

filter):

∇̃φ = ∇φ̃, ∂̃φ

∂t
=
∂φ̃

∂t
.

By applying the filtering operation to Equation 2.4-Equation 2.5 it is
possible to obtain the filtered governing equations, which are:

∂ũ

∂t
+ ũ · ∇ũ = −∇p̃−∇ · τR +

1

Re
∇2ũ+ f̃ , (2.10)

∇ · ũ = 0. (2.11)

While the continuity equation maintains its form, the filtered Navier-
Stokes equations differ from their non-filtered form only by the presence
of the term ∇ · τR, where τR is the so-called SGS or residual stress
tensor and is defined as:

τR := ũ⊗ u− ũ⊗ ũ. (2.12)

Similarly to the Reynolds-averaged equations, the filtered Navier-Stokes
equations need a closure model for the residual stress tensor, although
there are two main differences:

I the filtered fields in the equations are in general random, three-
dimensional and unsteady, even under conditions of statistical
stationarity or homogeneity;

I the stress tensor depends on the choice of the type and width of
the filter.

Subgrid-scale stress tensor

The subgrid-scale stress tensor τR arises from the non-linearity of the
convective term in Equation 2.4, and represents the interaction between
the unresolved scales and the resolved ones.
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In order to better understand the meaning of the residual stress tensor,
Leonard introduced the triple decomposition of τR that now brings
his name[118]: Leonard (1975), ‘Energy Cascade

in Large-Eddy Simulations of Turbu-
lent Fluid Flows’

[118]. By filtering the tensor product u⊗ u and by using the
decomposition in Equation 2.9, it can be easily proved that:

τR = L+ C+ R, (2.13)

where the Leonard stresses L are:

L := ˜̃u⊗ ũ− ũ⊗ ũ, (2.14)

the cross stresses C are:

C := ˜̃u⊗ u′ + ũ′ ⊗ ũ, (2.15)

and the SGS Reynolds stresses R are:

R := ũ′ ⊗ u′, (2.16)

By considering the decomposition in wavenumber space of the filtered
governing equations and by examining the triad interactions in the
nonlinear term[119]: Pope (2001), Turbulent flows [119], it is possible to interpret the physical meaning of
each component of the residual stress tensor:

I the Leonard stresses represent the contribution to the unresolved
scales from the interaction of the resolved scales;

I the cross stresses represent the contribution to the resolved scales
from the interaction between resolved and unresolved scales;

I the SGS Reynolds stresses represent the contribution to the
resolved scales from the interaction of the residual scales.

The Leonard decomposition is not the only possible one, and due to the
fact that two of its component stresses are not Galilean-invariant[120]: Speziale (1985), ‘Galilean invari-

ance of subgrid-scale stress models in
the large-eddy simulation of turbulence’

[120],
other researchers have proposed different solutions, like for example the
Galilean-invariant triple decomposition presented by Germano, 1986

[121]: Germano (1986), ‘A proposal for
a redefinition of the turbulent stresses
in the filtered Navier–Stokes equations’

[121].

In order to solve the closure problem of the filtered Navier-Stokes
equations, a model has to express the residual stress tensor as a function
of the resolved filtered velocity. Typically, only the anisotropic part of
the tensor is modelled, while the isotropic residual stress is included in
the definition of a modified filtered pressure:

p̃∗ := p̃+
1

3
tr(τR) (2.17)

where tr(τR) is the trace of the residual stress tensor. In some cases,
the difference p∗ − p could be relevant and a model to estimate the
residual kinetic energy kr = 1

2 tr(τR) would be necessary.

The eddy viscosity models are the most widespread family of SGS
models. These consider the action of the unresolved scales analogous to
the viscous mechanisms taking place at a molecular level in the fluid,
such as momentum or thermal exchanges. Hence, if on one hand a
molecular viscosity ν is associated to the microscopic dissipation and
is a material property of the fluid, on the other hand, an eddy viscosity
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νr is associated with the turbulent macroscopic motion and is a local
property of the resolved flow features.

According to this assumption, following the Boussinesq hypothesis [122]: Lesieur (2012), Turbulence in flu-
ids

[122],
the deviatoric part of the SGS stress tensor τRd in dimensional form is
determined as:

τRd = τR − 1

3
tr(τR)I =

= −2νrS̃ =

= −νr
(
∇ũ+∇T ũ

) (2.18)

where S̃ is the filtered strain-rate tensor, which is the symmetric part
of the filtered velocity gradient, and the superscript T indicates the
transpose operation. In such a way, the additional term in Equation
2.10 can be expressed as:

−∇ · τRd = ∇ ·
[
νr
(
∇ũ+∇T ũ

)]
= νr∇2ũ (2.19)

where we consider only the deviatoric part of the residual stress tensor.
The linear proportionality between τRd and S̃ makes the principal axes
of these tensors locally parallel. However, even if for many important
cases the assumption is reasonable, for some flows it is not valid.

Our fluid model adopts the widely-used Smagorinsky model [123]: Smagorinsky (1963), ‘General cir-
culation experiments with the primi-
tive equations: I. The basic experiment’

[123], which
assumes the eddy viscosity in Equation 2.18 to be:

νr = (Cs∆̃)2 S̃ = (Cs∆̃)2
√

2S̃ : S̃ (2.20)

where S̃ is the characteristic filtered strain-rate, ∆̃ is the filter width,
and the symbol : indicates the Frobenius inner product (A : B =∑
i,j AijBij). The Smagorinsky constant Cs is in general flow-dependent

and usually ranges between Cs ≈ 0.1 − 0.2. According to previous
works of our group on LES of wind turbines, we tuned the Smagorinsky
constant to the value of Cs = 0.09 [124]: Santoni et al. (2015), ‘Develop-

ment of a high fidelity CFD code for
wind farm control’

[124][106].

According to Equation 2.18, it is possible to demonstrate that the rate
of transfer of energy to the residual motion, ε = −τRd : S̃, is equal to
νrS̃

2 [119]. Given the fact that νr > 0, and thus the energy transfer can
take place only from the resolved scales to the residual ones (forward
energy cascade), the Smagorinsky model is not able to capture the
inverse energy cascade or backscatter, which can be important in some
particular processes.

The behaviour of the model in the near-wall region is the main problem
of the Smagorisky model. In fact, in the viscous wall region very close to
the wall, the eddy viscosity defined in Equation 2.20 does not vanish at
the wall, and thus leads to a non-zero residual viscosity and shear stress
at the wall. To solve this problem, the model uses a van Driest damping
function as proposed in Moin and Kim, 1982 [125]: Moin et al. (1982), ‘Numerical

investigation of turbulent channel flow’
[125], to artificially impose

a null value to Cs at the wall:

(Cs∆̃)damped = Cs∆̃

[
1− exp

(
y+

A

)]
(2.21)
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where A = 25 is the Van Driest’s constant, and y+ = uτy/ν. In the
definition of the friction velocity uτ =

√
τw/ρ, τw is the shear at the

wall and y is the distance from the wall.

The importance of the choice of the filter is well-known and several
filters can be applied explicitly. However, the explicit filtering procedure
is rarely performed, mostly because of its computational expense. More
commonly, an implicit filtering is operated by the mesh grid itself,
without any computational overhead. In fact, according to the Nyquist
theorem, the grid is equivalent to the application of a top-hat filter,
with cut-off wavenumber kc = π/∆x, that filters all the eddies smaller
that the grid spacing.

Because of this, the mesh size has to guarantee a cut-off wavenumber
including all the active scales of the flow, i.e. kc has to belong to
the dissipative range of the energy spectrum. To correctly define the
mesh and to avoid potential errors resulting from an improper cut-off
wavenumber, grid sensitivity studies have to be performed to assess
the independency of the results from the grid.

2.2 Numerical Method

In this section, we describe the discretisation procedure adopted to
numerically solve the physical and mathematical model presented in
Section 2.1.

The code, named UTD-WF code[105]: Santoni et al. (2020), ‘One-way
mesoscale-microscale coupling for simu-
lating a wind farm in North Texas: As-
sessment against SCADA and LiDAR
data’

[105], uses a second-order central
finite-difference approximation to evaluate spatial derivatives on a
Cartesian orthogonal grid. Time advances by means of a fractional step
method based on a low-storage third-order Runge-Kutta scheme for
the explicit treatment of the non-linear terms and on a Crank-Nicolson
scheme for the implicit treatment of the linear terms. To invert the
large sparse matrix obtained by the implicit treatment of the linear
terms in the filtered governing equations, the code uses an approximate
factorisation technique that reduces dramatically the computational
expense of the operation. A projection method corrects the velocity field
to guarantee the solenoidal constraint imposed by Equation 2.11, and
according to it, a new pressure field is estimated. For more details on
the discretisation procedure, the interested reader can look at Orlandi,
2012[126]: Orlandi (2012), Fluid flow phe-

nomena: a numerical toolkit
[126].

The grid is staggered, which means that the different flow variables
are referred to different positions in the computational grid. This
arrangement avoids the presence in the numerical solution of spurious
pressure modes that give rise to so-called checkboard patterns[127]: Fletcher (2012), Computational

techniques for fluid dynamics 2: Spe-
cific techniques for different flow cate-
gories
[128]: Ferziger et al. (2002), Computa-
tional methods for fluid dynamics

[127,
128]. Moreover, it makes the stencil used in the discretisation of the
derivatives compact, and thus increases the numerical accuracy of the
scheme. As shown in Figure 2.3, while the pressure field is located at
the centre of the cell, each velocity component in a certain direction is
defined at the centre of the first face of the cell whose normal is parallel
to the considered direction.
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The code is written in FORTRAN 77 and FORTRAN 90, and is paral-
lelised by means of the Message Passing Interface (MPI) paradigm.

Figure 2.3: Computational cell with
the position of the flow variables. The
pressure is evaluated at the centre of
the cell, while the velocity components
are referred to the centre of the corre-
sponding faces.

Discretisation schemes

In order to better focus on the different schemes adopted for the
discretisation of the filtered Navier-Stokes equations, Equation 2.10
can be recast in the following form:

∂ũ

∂t
= N (ũ) +L (ũ) + f̃(ũ) (2.22)

where N (ũ) includes all the non-linear terms:

N (ũ) = ũ · ∇ũ (2.23)

and L (ũ) includes all the linear terms:

L (ũ) =

(
1

Re
+

1

Rer

)
∇2ũ−∇p̃ (2.24)

where Rer is the Reynolds number based on the eddy viscosity.
In the remaining part of this section, we will neglect the term f̃(ũ)

and we will deal with its definition and discretisation in Section 2.4.

Non-linear terms

Because of the demanding computational cost of an implicit treatment
of the convective terms at each time step, the non-linear terms are
discretised in time by means of a low-storage third-order Runge-Kutta
explicit method, originally developed by Wray, 1986 [129]: Wray (1986), ‘Very low storage

time-advancement schemes’
[129]. The solution

advances of a time step ∆t from time tn to time tn+1 in three interme-
diate substeps which require only two memory spaces. In such a way,
the method is third-order accurate, but with the same memory storage
of a second-order accurate scheme.
According to the method, the updated solution of the intermediate step
l at point i, for a generic component ũ, is:

ũl+1
i = ũli + ρl∆tNi(ũ

l) + γl∆tNi(ũ
l−1) l = 0, . . . , 2 (2.25)
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where ũ0
i = ũni is the solution at the current time step tn, ũ2

i = ũn+1
i is

the solution at the following time step tn+1, and Ni(ũl) is the spatially-
discretised non-linear term defined by the velocity field at time l.
The coefficients ρl and γl are defined by the requirements of the method
[126], that are:

I no more than two memory locations must be used;
I the new approximation produced must be evaluated by a Taylor’s

series expansion;
I the operations must be cyclic, i.e. all the quantities necessary for

the following step are known at the end of the current time step.

Moreover, to have a self-starting method, i.e. it does not need any
information from time instants preceding the starting time tn, the
coefficient ρ0 must be zero.
The summation of Equation 2.25 for each substep l and the comparison
of the obtained expression with the Taylor’s expansion, bring to a
system of five unknown coefficients. The possible solution chosen for
this work is:

ρ0 = 0 ρ1 = −17

60
ρ2 = − 5

12
(2.26a)

γ0 = +
8

15
γ1 = +

5

12
γ2 = +

3

4
. (2.26b)

Linear terms

The linear terms are discretised in time by means of a Crank-Nicolson
implicit scheme centered at time tl+1/2 for each Runge-Kutta step l.

In order to synchronise the linear and the non-linear terms advancement,
the constants αl defining the time substeps (αl∆t = tl+1 − tl) must
satisfy the condition:

αl = ρl + γl (2.27)

The discretised filtered Navier-Stokes equations of the model are:

ũl+1
i − ũli

∆t
+ ρlNi(ũ

l) + γlNi(ũ
l−1) =

= −αl
δp

δxi

∣∣∣∣
l+1/2

+ αl

(
1

Re
+

1

Rer

)
Ljj

(
ũl+1
i + ũli

2

)
(2.28)

where δ
δxi

is the discrete gradient operator and Ljj is the discrete
Laplace operator, both using second-order finite difference approxima-
tion.

Complete scheme: approximate factorisation and pressure
correction

Direct integration of Equation 2.28 is not possible, because of the
estimation of the pressure gradient at time l + 1/2. Indeed, pressure is
only known at the first time instant tl, and if the solution was evaluated
by using pl a non-solenoidal velocity field û would result.



2.2 Numerical Method 35

Moin and Kim, 1982 [125]: Moin et al. (1982), ‘Numerical
investigation of turbulent channel flow’

[125] have proposed the so-called fractional step
method to solve this problem: the intermediate non-solenoidal velocity
field is estimated by using the known pressure field at the current time
instant, a pseudo-pressure field enforces the continuity equation and
projects the velocity field onto a solenoidal space; finally the pressure
field is updated.

If we substitute ũl+1 with û, and we introduce in Equation 2.28 the
new variable ∆ũi := ûi − ũli, we obtain:

∆ũi + αl∆t

(
1

Re
+

1

Rer

)
Ljj

(
∆ũi

2

)
=

= −αl∆t
δp

δxi

∣∣∣∣
l

−ρlNi(ũl)−γlNi(ũl−1)+αl∆t

(
1

Re
+

1

Rer

)
Ljj

(
ũli
)

(2.29)

that can be summarised in the form:[
δjj +

αl∆t

2

(
1

Re
+

1

Rer

)
Ljj

]
∆ũi = RHSi (2.30)

where RHSi includes all the terms in the right-hand side of Equation
2.29 and δjj is the Kronecker’s delta.

Because of the second-order stencil used to discretise the spatial deriva-
tives in the Laplace operator, the matrix of the linear system in Equation
2.30 is a seven-diagonal sparse matrix. The matrix inversion of such a
matrix for a problem with N points would involve N3 floating point
operations, which is a considerable number even for a coarse compu-
tational grid. In order to efficiently solve this linear system, the code
adopts an approximate factorisation technique in three steps, such that:

[
δjj +

αl∆t

2

(
1

Re
+

1

Rer

)
L11

]
∆ũ

i
= RHSi (2.31a)[

δjj +
αl∆t

2

(
1

Re
+

1

Rer

)
L22

]
∆ũi = ∆ũ

i
(2.31b)[

δjj +
αl∆t

2

(
1

Re
+

1

Rer

)
L33

]
∆ũi = ∆ũi (2.31c)

where Lii indicates the Laplace operator in the i-th coordinate direc-
tion, while ∆ũi and ∆ũ

i
are intermediate solutions. Now, the problem

involves the inversion of three three-diagonal matrices (one for each
direction), which can be efficiently inverted by means of the Thomas’
algorithm. The total cost thus becomes only 3N floating point oper-
ations, but the splitting operation reduces the time accuracy to the
second order.

At this point of the solving procedure, the non-solenoidal velocity field
(ûi = ∆ũi− ũli) is estimated. In order to enforce the continuity equation,
a scalar pseudo-pressure φ projects ûi onto the solenoidal space:

ũl+1 = û−∆t∇φ (2.32)

It is possible to obtain the Poisson equation for the pseudo-pressure by
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taking the divergence of Equation 2.32 and by imposing the solenoidal
constraint on the velocity at the new time step (∇ũl+1 = 0):

∇2φ =
1

∆t
∇ · û (2.33)

If we assume periodicity in the spanwise direction and an inflow-outflow
condition in the streamwise direction, Equation 2.33 is efficiently solved
by means of Fourier decomposition in direction x and z.

The continuity equation at the boundaries imposes homogeneous Neu-
mann boundary conditions for the Poisson equation, thus the solution
is determined up to constants. As in the case of the pressure field,
only differences are relevant to the behaviour of the fluid rather than
the absolute values. To resolve the mathematical indefiniteness of the
pseudo-pressure, the value of the mean pressure is subtracted at each
time step and point.

Once obtained the pseudo-pressure at the cell centers, for consistency,
it is possible to update the pressure field at time l+ 1. By substituting
Equation 2.32 in Equation 2.28, the pressure at the new time step is:

pl+1 = pl + φ− αl∆t

2

(
1

Re
+

1

Rer

)
Ljjφ (2.34)

The pressure-correction procedure highlights that the pressure in the
incompressible flows enforces the mass conservation, in order for the
discrete system to accurately represent the physical continuous model.

Accuracy and stability

The numerical scheme described in Section 2.2 is sometimes called
hybrid third-order Runge-Kutta/Crank-Nicolson scheme. While the
adopted Runge-Kutta method is third-order accurate in time, the
complete scheme is second-order accurate in time and space. Despite the
overall decrease in accuracy, the scheme is low-storage, thus requiring
a reduced additional amount of memory compared to a typical second-
order scheme.

However, the stability properties of this Runge-Kutta scheme are the
actual advantage of the method.
As a result of the explicit treatment of the convective terms, the
Courant-Friedrichs-Lewy (CFL) condition[130]: Courant et al. (1967), ‘On the

Partial Difference Equations of Mathe-
matical Physics’

[130] imposes that a particle
can travel in a time step at most a maximum distance proportional to
the mesh size:

CFL = max
i=1,...,3

∣∣∣∣ ũi∆t∆xi

∣∣∣∣ ≤ CFLmax. (2.35)

The limit Courant number CFLmax depends on the scheme and limits
the amplitude of the time step. As a consequence, the lower is CFLmax,
the lower must be the time step ∆t and the longer has to run a
simulation to reach a desired flow time. As a result, if the grid is refined,
the condition can be particularly critical.
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The multi-stage nature of the Runge-Kutta method allows an increased
stability margin. While for most of the explicit methods CFLmax ≤ 1,
in the case of the three-stage Runge-Kutta method, the limit CFLmax
estimated for a linear advection problem is:

CFLmax =
√

3 (2.36)

In practice, the presence of viscous terms helps the stability properties
of the Navier-Stokes solutions, and thus CFL values larger than

√
3

are normally used.

In our work, however, the main limitation for the CFL comes from the
turbine modelling described in Section 2.4.
As reported in different studies [131]: Martínez-Tossas et al. (2015),

‘Large eddy simulations of the flow past
wind turbines: actuator line and disk
modeling’
[132]: Troldborg et al. (2009), ‘Actua-
tor line modeling of wind turbine wakes’

[131, 132], it is suggested to limit the
CFL in a way that the blade tip does not move for more than a grid
cell in a single time step. This condition, related to the rotor revolution
velocity, could be particularly severe and would strictly impose:

CFL ≤ U∆t

∆x
=
U (∆x/ΩR)

∆x
=

1

TSR
(2.37)

where TSR = ΩR/U is the so-called tip speed ratio, Ω is the angular
velocity of the blades, R is the radius of the wind turbine and U is the
typical inflow velocity. However, the stability properties of the complete
scheme allows the use of larger values, even if the Courant number
rarely exceeds 2/TSR.

The implicit treatment of the viscous-like terms allows overcoming other
stability limitations, which can be particularly demanding especially at
low Reynolds numbers. For example, according to the viscous stability
restriction [133]: Peyret et al. (2012), Computa-

tional methods for fluid flow
[133]:

∆t

∆x2Re
≤ 1

2n
(2.38)

where n is the dimensionality of the problem, the information diffused
by viscous terms would not have been able to travel for more than ∆x

in one time step ∆t.

2.3 Solid Bodies Model:
Immersed Boundary Method

Our model uses the IBM [134]: Peskin (2002), ‘The immersed
boundary method’

[134] to represent the solid interfaces in the
fluid domain, such as the tower and the nacelle, without generating
computationally expensive body-fitted grids.

Previous works have extensively validated the methodology for many
applications and have proved its validity to derive a more physically
sound model also for the study of wind turbines [106].

The technique implementation consists in imposing a null velocity
field for the points inside the solid boundaries and in correcting the
discretisation of the space derivatives for the points closest to the
body (Figure 2.4). Instead of using the distance between the outside
and inside points, the discretisation of the derivatives uses the actual
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Figure 2.4: 2D sketch of the grid in
the region close to the body. Horizon-
tal and vertical velocity components
are indicated with arrows at the points
indicated with × according to the stag-
gered definition of the grid. Inside the
body (•), the velocity is set at zero,
while the derivatives of the points just
outside the body are corrected by using
the actual distances ∆x and ∆y from
the solid boundaries (•). Modification
of Santoni et al. [106]

distance between the surface of the “immersed body” and the points
immediately outside of it. This method prevents the representation of
the body by means of a fictitious stepwise geometry.

We have not used the IBM method to represent also the rotating blades
because this would have involved an extremely fine mesh to resolve the
complex geometry of the blade. Morevover, we would have needed a
moving IBM strategy to consider the unsteady revolution of the rotor

[135]: Kim et al. (2006), ‘Immersed
boundary method for flow around an
arbitrarily moving body’

[135]. Therefore, we decided to use the Immersed Boundary Method
only to model the bluff bodies in the domain and to adopt a more
efficient generalised actuator disc model to consider the rotor.

2.4 Turbine Model

To model the blades of the rotor inside the fluid domain, the code adopts
the widely used generalised actuator disc model proposed by Sørensen
and Shen, 2002[38]: Sørensen et al. (2002), ‘Numerical

modeling of wind turbine wakes’
[38]: the Actuator Line Model. The aerodynamic forces

that the blades impose on the flow are determined with a blade element
approach and are then distributed as body forces along rotating lines
in correspondence of the position of the blades.

According to a blade element analysis, for a 2D airfoil located at distance
r from the hub center, the lift force Fl and the drag force Fd per unit
length are

Fl =
1

2
ρU2

rel cCl(α)F and Fd =
1

2
ρU2

rel cCd(α)F , (2.39)

where ρ is the air density, Urel is the local relative velocity in the plane
of the profile, c is the local chord length of the airfoil, Cl(α) and Cd(α)

are the lift and drag coefficients for a certain local angle of attack α,
and F is a modified Prandtl correction factor.
For example, if the structure of the wind turbine is rigid, at the generic
section r of the blade (Figure 2.5), the local relative velocity and
incidence are:

Urel =
√
ũ2

1 + (ũθ − Ωr)2 (2.40)

α = arctan

(
ũ1

ũθ − Ωr

)
− φ (2.41)
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Figure 2.6: Schematic representation
of the Actuator Line Model. The Gaus-
sian kernel η spreads the aerodynamic
forces around the actuator lines.

ε should be a function of ∆, whereas for grid spacing smaller than the
chord, ε should be a function of c. In our simulations, even if for the
finest cases ∆/c was smaller than 1, we preferred to use a spreading
value depending on the grid spacing, according to the classic condition
ε/∆ = 2, since we observed numerical instabilities when decreasing
further the spreading radius.

Finally, to estimate the aerodynamic pitching moment acting on the
blades necessary for the structural dynamics, a blade element approach
is followed similarly. Thus, the pitching moment per unit length referred
to the airfoil quarter of chord is equal to:

Maero = −1

2
ρU2

relc
2Cm(α)F , (2.45)

where Cm(α) is the local pitching moment coefficient. The minus sign
takes into account that, by convention, the pitching moment coefficient
is positive when it pitches the airfoil in the nose-up direction, and thus
induces a negative rotation around the radial axis pointing towards the
tip of the blade (see Section 4.1).

Time discretisation

For what concerns the discretisation in time of the nonlinear body force
vector field f̃ , the vector explicit approximation at time tn is used.
In order to treat this term implicitly, the code would have needed to
estimate the non-linear aerodynamic forces from the unknown local
velocity field at the time tn+1, which would have complicated the matrix
at the left-hand side of Equation 2.30.
Alternatively, the code could have solved the velocity field at each time
step iteratively, by introducing at every iteration a new approximation
of the forces determined with the new local velocity. However, this
would have increased relevantly the computational cost of the full
scheme.
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Figure 2.7: Typical behaviour of the
steady-state power curve of a small tur-
bine. In region I, the turbine is stopped
or is starting up. In region II, a variable-
speed turbine tries to maximise the
energy capture. In region III, mechani-
cal and electrical safety imposes a lim-
ited power up to the high wind cut-out
[140].

Rotor dynamics

The low-shaft angular speed Ω advances in time according to the
single-DOF model equation:

IdΩ̇ = Taero − Tgen , (2.46)

where Id is the drivetrain rotational inertia, which includes the combined
inertia of the rotor and the generator, Taero is the torque due to the
aerodynamic forces acting on the blades, and Tgen is the generator
torque.

In this study, we considered a variable-speed turbine operating in region
II (see Figure 2.7), for which the standard quadratic control law [140]: Johnson et al. (2006), ‘Control of

variable-speed wind turbines: standard
and adaptive techniques for maximiz-
ing energy capture’

[140]
holds and is such that:

Tgen = kgenΩ2 , (2.47)

where the torque gain kgen is a function of the optimal conditions of
the wind turbine.

2.5 Unsteady Aerodynamics Model

Given its wide use, its demonstrated capabilities and the research and
industry community support, we decided to implement in our code the
semi-empirical model of Beddoes and Leishman [98] to describe the
unsteady aerodynamics. The model is postdictive, since it is not derived
from a precise theoretical model for unsteady flows and as such has
some limitations in its predictive capabilities. Moreover, predetermined
constants in the first-order differential equations of each subsystem
should be tuned to match experimental data, when available. Despite
this and other limitations that are presented below, the model is
able to limit the complexity of the description and to hold a physical
meaning of each submodule, with a complete and sufficiently accurate
representation of the thorough unsteady aerodynamics.

The method includes compressibility effects, and it is made by three
subsystems (see Figure 2.8):
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Figure 2.8: Schematic flowchart of
the Beddoes and Leishman model [69].

1. a model for the unsteady aerodynamics for attached flow, based
on Duhamel superposition;

2. a model for the unsteady aerodynamics with dynamic trailing
edge separation, based on the Kirchhoff model;

3. a criterion to determine the dynamic stall onset and a dynamic
stall model for the airloads induced by LEV.

In the literature, several works showed that the model has some deficien-
cies, like the ones reported in Sheng, 2008[141]: Sheng et al. (2008), ‘A modified

dynamic stall model for low Mach num-
bers’

[141], such as: an early stall
onset strongly depending on the empirical constants; a missing stalled
flow convection on the upper surface in the reattachment process; an
underpredicted normal force hysteresis at low Mach numbers. To solve
these problems, various models have been proposed [94, 96, 141]. How-
ever, also these models depend on additional empirical constants that
should be tuned on experimental measurements on the different kinds of
motion, such as pitching, plunge or mixed ones, for the different kinds
of airfoil. Unfortunately, there is not such a complete experimental
database for the specific airfoils of the turbine that will be studied, and
thus it is difficult to consider these models in our methodology. On
the other hand, the empirical constants of the specific airfoils used in
this work for the original BL model have been tuned for the NREL
AeroDyn15 module[142]: Damiani et al. (2019), The Un-

steady Aerodynamics Module For FAST8
[142], and have been already used in the literature

with satisfactory results [99].

Although the mentioned inconsistencies limit the accuracy of the air-
loads estimation, we believe that our simulations are still able to assess
the effects of some form of unsteadiness in the aerodynamics on the
performance of the turbine and most of all on the aeroelastic response
of the blades, thus providing in any case an improved physical insight
on the phenomena taking place.
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Before presenting the equations that define the particular implementa-
tion of the BL model chosen for this work and based on the reference
paper of Damiani and Hayman [142], we present some useful definitions
for the remaining sections. In particular, according to the definition of
the force components in different frames of reference (see Figure 1.10),
we have that:

Cl = Cn cosα+ Cc sinα (2.48)

Cd = Cn sinα− Cc cosα+ Cd0 (2.49)

and

Cn = Cl cosα+ (Cd − Cd0) sinα (2.50)

Cc = Cl sinα− (Cd − Cd0) cosα (2.51)

where Cd0 is the 2D drag coefficient at zero lift.

Finally, we define the angle of attack and the pitch rate. The nondi-
mensional pitch rate q is defined as:

q =
α̇c

U
≈ Kαnc

U
with Kαn =

αn − αn−1

∆t
(2.52)

where the time derivative of the angle of attack is approximated by a
backward finite difference approximation and the index n denotes the
n-th time step. As suggested in the reference paper, the angle of attack
and the pitch rate are low-pass filtered, given the fact that for small
time steps, the backward finite differences of the incidence and of the
pitch rate could be subjected to significant numerical noise. The simple
infinite impulse response filtering procedure that we adopt is defined
as follows:

αLPn = CLPαLPn−1 + (1− CLP )αn , (2.53a)

qn =

(
αLPn − αLPn−1

)
c

Un∆t
, (2.53b)

qLPn = CLP qLPn−1
+ (1− CLP )qn , (2.53c)

Kα,LPn =
qLPnUn

c
, (2.53d)

Kqn =
qn − qn−1

∆t
, (2.53e)

Kq,LPn = CLPKq,LPn−1
+ (1− CLP )Kqn , (2.53f)

where the subscript LP indicates the corresponding low-pass filtered
quantities and CLP = exp (−2π∆tζLP ) is the low-pass filter constant
defined by a low-pass-filter frequency cutoff ζLP . Hereinafter, the LP
subscript is dropped, implicitly assuming that the quantities indicated
have been filtered.

Unsteady attached flow

As anticipated, the unsteady response of the attached flow to a generic
forcing is considered in the BL model as a superposition of indicial
response functions to steps variation in the forcing. In general, the
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indicial responses of this model are composed of two distinct parts:
the noncirculatory part, derived from piston theory and acoustic wave
theory, and the circulatory part, originating from the evolution of
the circulation around the airfoil. Both parts are expressed as expo-
nential functions that approximate the exact and complex analytical
formulations.

In the following, we present in detail the formulation for the normal force,
the chordwise force and the pitching moment coefficients according to
the indicial response method. For additional information please refer
to Leishman, 2006 [77].

Normal force component

The variation of the normal force coefficient ∆Cn following a step
change in the angle of attack ∆α and in the pitch rate ∆q is expressed
by Leishman, 1989 [98] as:

∆Cn(s) =

[
Cnα
βM

φcα +
4

M
φncα

]
∆α+

1

M
φncq ∆q (2.54)

where the function φcα is the circulatory part of the indicial response
function related to a step change in the angle of attack (and pitch rate,
in the lumped approach described below), φncα is the noncirculatory part
of the indicial response function related to a step change in the angle
of attack, and φncq is the noncirculatory part of the indicial response
function related to a step change in the pitch rate.

According to Leishman and Beddoes, 1989 [98] and Johansen, 1999
[143]: Johansen (1999), Unsteady air-
foil flows with application to aeroelas-
tic stability

[143], the response functions for the normal force component are:

φcα = 1−A1 exp
(
−b1β2

Ms
)
−A2 exp

(
−b2β2

Ms
)
, (2.55)

φncα = exp (−s/T ′α) , (2.56)

φncq = exp
(
−s/T ′q

)
, (2.57)

where the first expression is the Jones’ approximation of the circulatory
response function in Equation 1.5, whereas T ′α and T ′q are the time
constants regulating the separate decays of the noncirculatory impulsive
responses to a step increase in incidence or in pitch rate. According
to the exact results of Lomax, 1952 [86] for 0 ≤ s ≤ 2M/(M + 1), the
constants are defined according to the following equations:

Tα(M) = 0.75
c

2Mas
T ′α = 0.75kα(M)TI (2.58)

Tq(M) = 0.75
c

2Mas
T ′q = 0.75kq(M)TI (2.59)

where as is the speed of sound, TI = c/as, the factor 0.75 takes into
account 3D effects, and

kα(M) =
[
(1−M) + 0.5CnαM

2β2
M (A1b1 +A2b2)

]−1
, (2.60)

kq(M) =
[
(1−M) + CnαM

2β2
M (A1b1 +A2b2)

]−1
. (2.61)
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Given its indicial response function, the circulatory part of the normal
force component from the Duhamel integral Ccnα,q , could be defined
analogously to Equation 1.7 as:

Ccnα,q = Ccnα(M)

[
α(s0)φcα(s) +

∫ s

s0

dα(σs)

dσs
φcα(s− σs,M)dσs

]
=

=
Ccnα
βM

αe , (2.62)

where a lumped approach is adopted, defining an effective incidence
αe at 3/4-chord, summarising all the time history information of the
shed vorticity and taking into account step variations in both α and
q, i.e. no separate Ccnα and Ccnq contributions. As can be seen, the
numerical solution of the integral above would require storing the entire
history of the incidence, which is unfeasible from a practical point of
view. However, by further manipulating the Duhamel integral, it is
possible to obtain the following recursive solution for the effective angle
of attack at time n:

αen = (αn − α0)−X1n(∆s)−X2n(∆s) (2.63)

where α0 is the zero-lift angle of attack, ∆s = 2U∆t/c is the reduced
time step, and X1n , X2n are the so-called deficiency functions defined
as:

X1n = X1n−1
exp

(
−b1β2

M∆s
)

+A1 exp

(
−b1β2

M

∆s

2

)
∆αn , (2.64)

X2n = X2n−1
exp

(
−b2β2

M∆s
)

+A2 exp

(
−b2β2

M

∆s

2

)
∆αn . (2.65)

where ∆αn is the variation of the angle of attack.
These functions represent the “deficiency” in the angle of attack due to
the UA effects and contain all the information about the time history
of the shed wake effects on the airloads [98].

The idea of considering deficiency functions that adjust the instanta-
neous quantities according to history effects is crucial for the BL model
and will be used again for several quantities in the model. However,
our method couples the UA module to an LES solver, which already
explicitly solves the shedding of the vorticity and thus already includes
its effects in the local kinematics of the flow used to determine the
instantaneous angle of attack. For this reason, even if the theoretical
explanation above is essential to understand the rationale of the entire
model, the effective incidence used at this stage of our model is the
geometric one, evaluated from the local kinematics of the flow from the
CFD solver like in the steady case, i.e. X1n = X2n = 0.

After having defined the circulatory component, the noncirculatory
part is considered. In this case, a lumped approach is not possible, and
so the two contributions resulting from step changes in α and q, Cncnα
and Cncnq respectively, have to be defined separately. According to the
reference model, carrying out the Duhamel integration and considering
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Equation 2.54, one obtains that:

Cncnα =
4Tα
M

(Kα −K ′α) , (2.66)

K ′αn = K ′αn−1
exp

(
−∆t

Tα

)
+
(
Kαn −Kαn−1

)
exp

(
− ∆t

2Tα

)
, (2.67)

Cncnq = −Tq
M

(
Kq −K ′q

)
, (2.68)

K ′qn = K ′qn−1
exp

(
−∆t

Tq

)
+
(
Kqn −Kqn−1

)
exp

(
− ∆t

2Tq

)
, (2.69)

The final expression of the normal force coefficient is given by the sum
of the terms from Equation 2.62, Equation 2.66 and Equation 2.68:

Cpotn = Cpot,cn + Cpot,ncn = Ccnα,q + Cncnα + Cncnq . (2.70)

where the superscript pot indicates that these are contributions related
to the attached module.
As one can notice, however, the noncirculatory terms in Equation 2.66
and Equation 2.68 tend to infinite when the Mach number goes to
zero. To avoid too large concentrated forces possibly causing numerical
instabilities and given the small velocities in particular close to the
hub, we substituted the aforementioned terms with the corresponding
expressions from the incompressible Theodorsen theory[144]: Bisplinghoff et al. (2013), Prin-

ciples of aeroelasticity
[144]. In the

latter case, the absence of compressibility effects makes the added mass
terms instantaneous and related only to the time derivatives of the
incidence and the pitch rate, without the need to take into account
exponential response functions.

The theory states that the added mass terms in the normal force
coefficient – the lift coefficient for small angles of attacks – for arbitrary
free-stream velocity fluctuations[145]: Wall et al. (1994), ‘On the influ-

ence of time-varying flow velocity on
unsteady aerodynamics’

[145] can be expressed as:

Cncn =
πb

U2

(
ḧ+

d(Uα)

dt
+
b

2
α̈

)
. (2.71)

Assuming that for our case the plunge acceleration ḧ is null, and
adopting a backward finite-difference approximation, it is possible to
evaluate the above noncirculatory contributions from a variation in the
angle of attack and in the pitch rate at time n as follows:

Cncnα,q =
πb

Un

(
Kαn +

Kqn

4

)
+

π

∆sn

(
1− Un−1

Un

)(
αn−1 +

qn−1

4

)
,

(2.72)
where the terms include also the effect of the time variation in the
free-stream velocity.

Chordwise force component

Given the fact that the noncirculatory part is not relevant for drag [77],
and that in potential flow the D’Alambert paradox imposes a null drag,
and so one has that Cc = Cn tanα, the chordwise force resulting from
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the attached flow module is defined as:

Cpotc = Cpot,cn tan(αe + α0) . (2.73)

Pitching moment

The situation is more complex for the pitching moment coefficient,
which needs a treatment similar to the one of the normal force. As
in the case of the normal force response to a step change in angle of
attack and pitch rate (Equation 2.54), the pitching moment coefficient
variation can be expressed as:

∆Cm(s) =

[
−Cnα
βM

φcα(x̂ac − 0.25)− 1

M
φncm,α

]
∆α+

+

[
− Cnα

16βM
φcm,q −

7

12M
φncm,q

]
∆q + Cm0 (2.74)

where φncm,α and φncm,q are the noncirculatory indicial response functions
to step changes in α and q, while φcm,q is the circulatory indicial response
function to a step change in ∆q. Finally, x̂ac is the aerodynamic center
position from the leading edge, regulating the circulatory response to a
step change in α, and Cm0 is the pitching moment coefficient at zero
lift. The pitching moment is positive when pitches up the airfoil.

The procedure for the noncirculatory step response to q is similar to
the normal force. The indicial response function is defined as:

φncm,q = exp

(
− s

T ′m,q

)
, (2.75)

in which the Mach-dependent time constant is defined as:

Tm,q(M) = 0.75
c

2Mas
T ′m,q = 0.75km,q(M)TI , (2.76)

where
km,q(M) =

7

15(1−M) + 1.5CnαA5b5β2
MM

2
. (2.77)

By further developing the terms in the Duhamel’s integral, one ob-
tains, similarly to the corresponding contribution to the normal force
coefficient in Equation 2.66 and in Equation 2.68:

Cncmq = −
7k2
m,qTI

12M
(q −K ′′q ) , (2.78)

K ′′qn = K ′′qn−1
exp

(
− ∆t

k2
m,qTI

)
+ (Kqn −Kqn−1

) exp

(
− ∆t

2k2
m,qTI

)
∆qn .

(2.79)

For the other noncirculatory component from a step change in α,
Leishman and Baddoes, 1986 [146]: Leishman et al. (1986), ‘A gen-

eral model for airload unsteady behav-
ior and dynamic stall using the indicial
method’

[146] found that φncm,α = φncα , and so that:

Cncmα = −
Cncnα

4
. (2.80)

Finally, for what concerns the circulatory component Ccm,q, according
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to Johansen, 1999 [143], one has that:

Ccmq = − Cnα
16βM

(q −K ′′′q ) , (2.81)

K ′′′qn = K ′′′qn−1
exp

(
−b5β2

M∆s
)

+A5 exp

(
−b5β2

M

∆s

2

)
∆qn . (2.82)

with A5 and b5 being two constants set at 1 and 5 respectively from
an experimental tuning in Leishman, 2006 [77]. As a result, the total
unsteady pitching moment for attached flow at 1/4-chord is given by:

Cpotm = Cpot,cm + Cpot,ncm =

= Cm0 −
Cnα
βM

φcα(x̂ac − 0.25) + Cncmα + Ccmq + Cncmq . (2.83)

Consistently with the formulation of the lift, and after having verified
that the original formulation produced a too large contribution caused
by the small Mach number, we decided to express also the noncirculatory
contributions of the pitching moment according to the incompressible
Theodorsen theory.

In general, the added-mass terms of the pitching moment, referred to
the quarter of the chord, are:

Cncm =
π

2

[
− bḧ

2U2
− 3

8

b2α̈

U2
+
ḣ

U
+ α

]
. (2.84)

In our case ḧ = ḣ = 0, since we are only interested in the contributions
related to variations in the angle of attack and in pitching rate. For
what concerns the term πα/2, being it present for the steady case
(α̈ = α̇ = 0), it is already included in the static measurements of the
airfoils, and so it is not included as a separate distinct term but rather
is considered to be inherently contained in the separation functions f
introduced in the following section. As a result, the only term surviving
is the one related to α̈ (Cncmα = 0), that can be recast as:

Cncm = Cncmq = −3

8
Cncnq . (2.85)

Unsteady trailing edge separation

The BL model describes the dynamic flow separation at the trailing
edge by means of the widely adopted Kirchhoff’s theory framework,
described by Equation 1.8a and Equation 1.8b.

A critical parameter for this model is the separation point distance
f as a function of α. The original model of Beddoes and Leishman
proposed an analytical curve depending on four coefficients derived
from a best-fit on the static measurements. Even if this approach
provides quite satisfactory results, it still lacks the ability to reproduce
in the limit the exact static data. Moreover, the use of a single f(α)

curve, derived from the normal coefficient data only, has proved to
provide unsatisfactory results for the estimation of the chordwise force
coefficient. To attempt to solve this problem, Moriarty and Hansen,
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2005 and later Liu et al., 2020 [147]: Moriarty et al. (2005), AeroDyn
theory manual
[148]: Liu et al. (2020), ‘An improved
dynamic stall model and its effect on
wind turbine fatigue load prediction’

[147, 148] proposed to invert both
Equation 1.8a and Equation 1.8b, using Cn and Cc experimental data,
to define two different separation functions fn and fc. Figure 2.9 shows
the difference of the two curves obtained for a DU25 A17 profile, where
it is possible to notice the differences between the two functions.

Figure 2.9: Separation point curves
for a DU25 A17 airfoil: fn curve ob-
tained inverting the normal coefficient
Kirchhoff formula (solid line), fc curve
obtained inverting the chordwise coef-
ficient Kirchhoff formula (dashed line).

Moriarty and Hansen pointed out also that for large angles of attack, an
always-positive square root of f is not able to reproduce all the static
aerodynamic polars. For this reason, to reproduce the entire aerody-
namic polars, the sign of the effective separation point is preserved and
introduced in the equations of the Kirchhoff theory, which are modified
as follows:

Cn = Cnα(α− α0)

(
1 + sign(fn)

√
abs(fn)

2

)2

, (2.86)

Cc = ηeCnα(α− α0) sign(fc)
√

abs(fc) tanα . (2.87)

Normal force component

According to the original BL model, the circulatory force needs some
modifications to include the effect of the lagged boundary layer response,
whose details and dynamics cannot be solved accurately by the grid
resolutions generally used by the generalised actuator disc models in
CFD simulations.

As a first step, an effective location of the separation under unsteady
conditions is interpolated on the α− fn curve in correspondence of an
effective incidence αf incorporating the unsteady pressure response.
For this purpose, an effective C ′n is evaluated by means of a first-order
lag on Cpotn :

C ′n = Cpotn −Dp , (2.88)

Dpn = Dpn−1
exp

(
−∆s

Tp

)
+
(
Cpotn ,n − C

pot
n ,n−1

)
exp

(
−∆s

2Tp

)
,

(2.89)

where Dp is the deficiency function of the normal force coefficient, and
TP is the time constant that regulates the leading-pressure gradient
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response, i.e. the boundary layer time constant, and its value should
be extracted from a tuning on experimental data, if available.

After having evaluated C ′n, the effective incidence αf can be expressed
as:

αf =
C ′n

Ccnα/βM
+ α0 . (2.90)

Given the effective value of the separation point f ′ = fn(αf ), a definitive
separation point location f ′′ is then used in Equation 2.86. Its expression
is found by considering the additional delays in the boundary layer
response given by the deficiency function Df and regulated by the time
constant Tf , which is associated with the separation point motion along
the airfoil. Analogously to previous steps, one has:

f ′′ = f ′ −Df , (2.91)

Dfn = Dfn−1
exp

(
−∆s

Tf

)
+
(
f ′n − f ′n−1

)
exp

(
− ∆s

2Tf

)
. (2.92)

Even if only a starting value Tf0 is provided to the model, the time con-
stant Tf is modified, depending if the flow is separating or reattaching,
by means of the variable σ1, as follows:

Tf =
Tf0

σ1
. (2.93)

The modifications of σ1 are the ones indicated in the reference paper
[142] and are illustrated in the Appendix A.

Finally, the total normal force coefficient including the effect of the
trailing edge separation is given by:

Cfsn = Cfs,cn + Cpot,ncn =

= Cpot,cn

(
1 + sign(f ′′)

√
abs(f ′′)

2

)2

+ Cpot,ncn . (2.94)

Chordwise force component

As stated above, to correctly estimate the chordwise force coefficient, a
different separation curve fc is used. Once the final delayed effective
value of the separation point f ′′ is estimated, one should invert the fn
curve in correspondence of the f ′′ value, to finally evaluate the value
of the fc curve in correspondence of the angle α(f ′′) = f−1

n (f ′′).

However, given the fact that the full fn(α) function is not injective (it is
approximately symmetric around the zero-lift angle), a local inversion
in the region close to the central maximum is problematic. We tried to
implement different iterative procedures to extract the effective delayed
angle of attack in correspondence of f ′′ , on the actual side of the
curve, but all proved to be rather unstable and unreliable. To overcome
this critical issue, inspired by the work of Sheng et al., 2008 [141], we
defined a first-order lag acting directly on the effective angle αf , in the
same fashion of the rationale behind all the model. We thus defined an



2.5 Unsteady Aerodynamics Model 51

angle α′′ such that:

α′′ = αf −Dα , (2.95)

Dαn = Dαn−1
exp

(
−∆s

Tf

)
+
(
αfn − αfn−1

)
exp

(
− ∆s

2Tf

)
. (2.96)

where Tf is the same time constant regulating the boundary layer delay
in Equation 2.91. We thus assumed that, locally, the approximation
α(f ′′) ≈ α′′ holds and that also the dynamics of the delayed effective
angle of attack is controlled by Tf .
The method provides a stable estimate of the real delayed effective
angle of attack and has proved to provide accurate results, when tested
in the regions in which the α-oscillations take place entirely in injective
regions of the f(α) function.

Alternative procedures define distinct effective separation points for
the normal and chordwise components and for the pitching moment by
means of formulations similar to Equation 2.91. However, in these cases,
new time constants need to be defined to control the delay dynamics
of the auxiliary separation variables, and additional uncertainty is
introduced by additional tuning of the new semi-empirical constants.

Once obtained the value of the chordwise-defined separation point
location f ′′c = fc(α

′′), the total chordwise force coefficient is:

Cfsc = ηeC
pot
c ηe sign(f ′′c )

√
abs(f ′′c ) . (2.97)

Pitching moment

To determine the total value of the pitching moment, including the
effects of the unsteady separation at the trailing edge, we decided to
adopt the method proposed by Leishman, 2011 [149]: Leishman (2011), Final report:

assessment of ‘Aerodyn’ theory basis
including unsteady aerodynamics mod-
ules

[149], according to
which, the expression in Equation 2.83 remains unaltered except for
the value of the aerodynamic centre xac, that is substituted by the
position from the leading edge of the centre of pressure x̂cp. However,
instead of using a best-fit curve from experimental data, we decided to
use a look-up table defined by the static aerodynamic data, according
to the relation:

x̂cp = 0.25− Cstm − Cm0

Cstn
, (2.98)

where the subscript st denotes the tabulated airfoil data. The use of
such a defined parameter allows the model to recover also the data of
the pitching moment coefficient in steady cases, without noncirculatory
effects.

Also in this case, given the non-injectivity of the x̂cp(α) function, the
model uses the angle α′′ to interpolate the delayed effective centre
of pressure position. As a result, the expression of the total pitching
moment becomes:

Cfsm = Cfs,cm + Cpot,ncm =

= Cm0 −
Cnα
βM

φcα(x̂cp − 0.25) + Cncmα + Ccmq + Cncmq . (2.99)
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Dynamic stall

The final module includes the effects induced by the formation of a
leading-edge vortex that originates, convects along the airfoil, and then
detaches.

First of all, a criterion to establish when the vortex starts to build
up is needed. Although different conditions have been proposed in the
literature [141], we decided to maintain the criterion defined in the
original work of Beddoes and Leishman. According to it, the vorticity
starts to accumulate and its contribution to the aerodynamic response
starts to be present, when the following conditions are satisfied:

C ′n > Cn1 for α ≥ α0 , (2.100)

C ′n < Cn2 for α ≤ α0 , (2.101)

where Cn1 and Cn2 are airfoil-dependent parameters, that are taken
in this work equal to the value of the static normal force data in
correspondence of the break of the chordwise force at the onset of stall.
Usually, these values are close to the normal force at the positive and
negative stalls.

Once determined that the leading-edge separation is taking place, a
nondimensional time variable τV is introduced to track the position of
the vortex along the upper surface of the airfoil from a certain time t0
to time t:

τV =
1

c/2

∫ t

t0

Udt . (2.102)

This variable is such that if τV = 0, the vortex is at the leading edge;
if τV = TV L, the vortex is at the trailing edge; if τV > TV L, the vortex
has been shed in the wake, and so vorticity is no longer accumulated.
The time constant TV L regulates the vortex advection and represents
the nondimensional time that it takes for the vortex to travel from
the leading edge to the trailing edge of the airfoil. Although its value
should be tuned, as the other parameters, on the basis of experimental
measurements, it has been demonstrated that the vortex convection
speed is quite general and approximately equal to one-half/one-third
of the free-stream velocity [94, 146], which makes the time constant
belonging to the range TV L ∈ [6, 13].

Finally, it is important to underline that multiple shedding can take
place at a certain shedding frequency, that is defined in the original
BL model by the Strouhal number whose Mach-independent value is
Stsh ≈ 0.19. According to the model, the nondimensional time constant
τV should be reset to null value, each time it reaches the value TV L+Tsh,
where the period Tsh is defined as:

Tsh = 2
1− f ′′

Stsh
(2.103)

Despite being questioned in the recent literature[150]: Rocchio et al. (2020), ‘A simple
model for deep dynamic stall condi-
tions’

[150], the model
provides a simple, effective, and widely used approach to determine
the conditions for multiple shedding. For these reasons, we decided to
maintain these indications also in our methodology.



2.5 Unsteady Aerodynamics Model 53

Once defined the physical conditions identifying the different stages
of the dynamic stall, we define in the following the values assumed
by the force and moment coefficients according to the parameters
introduced.

Normal force component

When dynamic stall is taking place and the vortex is on the profile, i.e.
C ′n condition satisfied and τV ∈ [0, TV L], the normal force component
receives an additional contribution regulated by another first-order time
lag and depending on the accumulated vorticity at the leading-edge
vortex. This contribution, always of the same sign of Cfsn , is expressed
as:

Cvn,n = Cvn,n−1 exp

(
−∆s

TV

)
+ (CVn − CVn−1

) exp

(
− ∆s

2TV

)
, (2.104)

where the term CV represents the additional normal force contribution,
proportional to the difference between the circulatory components of
the normal force in the attached and the separated conditions:

CV = Cpot,cn − Cfs,cn = Cpot,cn

1−

(
1 + sign(f ′′)

√
abs(f ′′)

2

)2
 ,

(2.105)
and with TV being the time constant related to the decay of the vortex
lift. As in the case of Tf , the initial value of this time constant TV 0 is
modified, depending on the different phases of the vortex evolution, by
means of a variable σ3, as follows:

TV =
TV 0

σ3
. (2.106)

The modifications of σ3 are the ones indicated in the reference paper
[142] and are illustrated in the Appendix A.

On the other hand, when dynamic stall is not taking place or when the
vortex has left the airfoil, τV > TV L, no additional contribution to the
normal force should be considered, and an accelerated decay should
be imposed on Cvn, taking into account the missing vorticity from the
eventual previous leading-edge vortices. Under these conditions, the
dynamic stall contribution must be written as:

Cvn,n = Cvn,n−1 exp

(
− ∆s

TV 0/σ3

)
with σ3 = 2 , (2.107)

where the halved time constant considers the accelerated vorticity decay,
at twice the original pace, when there is no vorticity accretion.

In the end, the final total normal force coefficient is given by the sum:

Cn = Cfsn + Cvn . (2.108)
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Chordwise force component

The original work of Beddoes and Leishman does not provide a for-
mulation for the Cvc component. Different models have been proposed
during the years, even by Beddoes and Leishman themselves, but, in
order to avoid the definition of additional best-fit curves for Cc, as done
in some works, we preferred to adopt the method presented by Pierce,
1996[151]: Pierce (1996), ‘Wind turbine load

prediction using the Beddoes-Leishman
model for unsteady aerodynamics and
dynamic stall’

[151] and also adopted in the reference paper [142], in which:

Cvc = Cvn tan(αe)

(
1− τV

TV L

)
. (2.109)

In the end, the final total chordwise force coefficient is given by the
sum:

Cc = Cfsc + Cvc . (2.110)

Pitching moment

Finally, to express the additional contribution from the dynamic stall
process to the pitching moment with respect to the quarter of chord,
Leishman, 2011 [149] proposed a simple and efficient model expressing
the pitching moment during the vortex advection as:

Cvm = −x̂vcpCvn , (2.111)

where the distance x̂vcp of the centre of pressure from the quarter of
chord is given by:

x̂vcp = ¯̄xcp

[
1− cos

(
πτV
TV L

)]
, (2.112)

with ¯̄xcp being an airfoil-dependent constant, usually set at 0.2.

In the end, the final total pitching moment coefficient is given by the
sum:

Cm = Cfsm + Cvm . (2.113)
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This chapter presents the details of the structural model we adopt in
our FSI method.

Our interest was to implement a model of FSI more concerned with
fluid mechanics rather than with a detailed structural dynamics. Hence,
we have decided to describe the structural behaviour by observing
the dynamics of the blades only. We modelled them as independent
cantilevered beams, whose roots are fixed in time at the hub, under the
effects of gravity, inertia and aerodynamics. The model does not take
into account the motion of the other parts of the structure, because
blades are the most relevant components in the wind turbine structural
response for what concerns the interaction with the fluid, as suggested
in other studies [74] [152]: Hansen (2007), ‘Aeroelastic in-

stability problems for wind turbines’
[152], and also the most flexible ones.

In the following, as a start, we derive the governing equations of
the structural dynamics from the Cauchy’s equation, without inertial
effects. We then take into account the effects of the inertia forces, as
prescribed by the principle of D’Alembert. Later, we consider beam
elemental shape functions for a linear description of the structural
dynamics, in accordance with the procedure of the Finite Element
Method (FEM), and we deduce the expressions for the generalised
loads. Then, we present the modal method and we derive the inertial
coupling terms according to it, including also the effect of the centre of
mass offset. Next, we make a brief comment on the linearity assumptions
that limit the structural configuration and the definition of the loads.
Finally, we present some of the most widespread numerical methods
that we considered for the time advancement of the structural dynamics,
explaining why we have chosen the generalised-α method.

The LM 107.0 P is one of the biggest single-components ever built. It will be
installed on GE’s Haliade-X 12-MW offshore wind turbine. The credits for the
image above the chapter title go to LM Wind Power.
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Figure 3.1: Augustin-Louis Cauchy
(Parigi 1789 - Sceaux 1857)

3.1 Structural Dynamics Model

We derive here the general equations for a body undergoing deforma-
tion under dynamic loading by means of the weak formulation of the
Cauchy’s equation[153]: Morino et al. (1977), ‘FCAP—A

new tool for the performance and struc-
tural analysis for complex flexible air-
craft with active control’

[153], also known as virtual work principle.
An alternative procedure that starts from first principles, and uses the
Lagrange’s equations for an elastic body, can be carried out and it
brings to the same final equations[154]: Przemieniecki et al. (1968), The-

ory of matrix structural analysis
[154].

By multiplying the Cauchy’s equation by a virtual displacement δx,
we obtain the fully-coupled equations of rigid-body and structural
dynamics for a flexible body:∫∫∫

Vs

ρsas · δx dV=

∫∫∫
Vs

ρsfs · δx dV+

∫∫
Ss

ts · δx dS+

−
∫∫∫

Vs

T s : δE dV, (3.1)

where ρs is the body density, as is the body acceleration, fs and ts
are the external forces per unit volume and surface, T s is the stress
tensor in the body, and δE is the virtual strain increment tensor.
From now on in this chapter, we neglect for ease of notation the pedix
s, which states that the quantities are referred to the structure.

We then express the virtual displacement δx for an unconstrained
flexible body as:

δx = δxG + δθ × r +

∞∑
n=1

δqnψ
n, (3.2)

where δxG + δθ × r is the virtual rigid-body motion of a general point
at distance r from the centre of mass xG, made up of a translational
part and a (rigid) rotational part. The last contribution is given by
the virtual elastic deformation δd, described as a linear combination
of shape functions ψn(x), regulated by the generalised coordinates
δqn(t).

By introducing Equation 3.2 in Equation 3.1, the arbitrary virtual
rigid-body displacement gives the translational and rotational rigid-
body motion dynamics equations, which include in general the coupling
with the elastic motion and are:

m
dvG
dt

= fT , (3.3)

dhG
dt

= mG, (3.4)

with m being the total mass of the body, vG being the velocity of
the centre of mass, fT and mG being the total external forces and
moments and hG being the angular momentum of the flexible body.

In the definition of our wind turbine structural model, we did not
consider the first equation and we considered only a simplified version
of the rotational equilibrium for the entire rotor.
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In fact, we neglected the full two-way coupling between rigid-body mo-
tion and structural dynamics, by assuming a fixed polar mass moment
of inertia in the time derivative of the angular momentum (see Equation
2.46). As a result, we decided to ignore the influence of the flexibility
on the angular momentum in the rotational equation, to obtain a sim-
pler one-way coupling model, which is meaningful for typical values of
angular speed and angular acceleration of the wind turbines’ rotor, and
still capable of sensing the inertial forces in the elastic dynamics.

The assumptions of linearity in the constitutive and the kinematic
relationships allow us to reduce the elastic part of the Cauchy’s equation
to the classic equation of the linear structural dynamics:

Mq̈ + Cq̇ + Kq = e, (3.5)

where M is the mass matrix, C is the damping matrix, K is the stiffness
matrix, e are the generalised loads and q are the generalised coordinates
that describe the structure according to the relation:

d(x, t) =

∞∑
n=1

qn(t)ψn(x), (3.6)

with d(x, t) being the three-dimensional displacement vector of the
continuous structure.

3.2 Uncoupled Structural Dynamics

As a start, we derive the formulation of the structural dynamics for an
elastic body without the coupling with the rigid-body motion. In these
conditions, the structure does not feel any inertial effect, and the only
acceleration of the body is due to the time variation of the deformation.
In the following, we present the formulation of each of the terms in
Equation 3.5.

Mass matrix

In this case, by ignoring the rigid contribution to the virtual dis-
placement, we can express the body acceleration as only due to the
deformation Dv/Dt =

∑∞
m=1 q̈mψ

m, and so we have that:∫∫∫
V

ρa · δd dV=

∞∑
n=1

δqn

∫∫∫
V

ρ
Dv

Dt
·ψn dV=

=

∞∑
n=1

δqn

∞∑
m=1

(∫∫∫
V

ρψm ·ψn dV

)
q̈m =

=

∞∑
n=1

δqn

∞∑
m=1

Mmnq̈m,

(3.7)

where Mmn is the (m,n)-th element of the mass matrix M and we
neglected all the time and space dependencies for ease of reading.
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It is evident, because of the properties of the scalar product, that
the mass matrix satisfies the condition of symmetry Mmn = Mnm.
Moreover, the matrix must satisfy certain properties such as:

Conservation. At least the total element mass should be conserved,
in order for the linear momentum to be conserved by applying a
uniform translational velocity.

Positive definiteness. The mass matrix is definite positive, or at
least it must be non-negative, given the fact that we can express
the kinetic energy as one half of the quadratic form qTMq, that
is zero only for q = 0.

Physical symmetry. The existence of some kind of symmetry must
be evident also in the mass matrix elements.

Stiffness matrix

Similarly to the procedure carried out for the mass matrix, we have
that: ∫∫∫

V

T : δE dV=

∞∑
n=1

δqn

∫∫∫
V

T : ∇ψn dV. (3.8)

Because of the symmetry of T , only the symmetric part of ∇ψn is
filtered by the Frobenius inner product.

If the body is made of an elastic material, the internal energy is given
by the elastic energy e(E) only, and it is possible to show that Equation
3.8 can be expressed as:

∞∑
n=1

δqn

∫∫∫
V

T : ∇ψn dV=

∞∑
n=1

δqn
∂

∂qn
E, (3.9)

where E= 1
2

∫∫∫
V
τijεij dV is the total elastic energy.

If we consider a linear elastic material, the stress tensor τij is pro-
portional to the deformation tensor τij = Cijkmεkm by means of the
fourth-order stiffness tensor Cijkm and so Equation 3.9 becomes:∫∫∫

V

T : δE dV=

∞∑
n=1

δqn
∂

∂qn
E=

=

∞∑
n=1

δqn

∞∑
m=1

∫∫∫
V

1

4

(
ψni,j + ψnj,i

)
Cijkl

(
ψmk,l + ψml,k

)
dV=

=

∞∑
n=1

δqn

∞∑
m=1

Knmqm,

(3.10)

where ψni,j is the j-th derivative of the i-th component of the n-th shape
function and Knm is the (n,m)-th component of the stiffness matrix
K.

Also the stiffness matrix must satisfy some properties:

Matrix Symmetry. Given the symmetry of the fourth-order tensor
Cijkl for the elastic bodies, the expression in Equation 3.10 is
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completely symmetric with respect to the indices n and m. Thus,
the matrix K is symmetric.

Positive Semi-Definiteness. Given the definition of the stiffness
matrix, it is easy to show that, in the case of linear elastic
material, the total elastic energy is one half of the quadratic form
qTKq. This is always positive, except in the case of rigid body
motion, which does not produce strain energy. Thus, the stiffness
matrix is only semi-definite positive.

Physical symmetry. As in the case of the mass matrix, any sort of
physical symmetry of the system must be observable also in the
structure of the stiffness matrix.

Generalised loads

For what concerns the first and the second term of the right-hand side
of Equation 3.1, we can group them in a single term. Hence, we have a
contribution from the surface loads, e.g. the aerodynamic loads, and
another one from the volume forces, e.g. the gravity load. Thus, we
have that:∫∫∫

V

ρf · δx dV+

∫∫
S

t · δx dV=

=

∞∑
n=1

δqn

(∫∫∫
V

ρf ·ψn dV+

∫∫
S

t ·ψn dS

)
=

=

∞∑
n=1

δqnen.

(3.11)

The projection en of the surface and volume forces on the n-th shape
function is called generalised load.

Damping matrix

In general, for a viscoelastic material, the stress tensor can be divided
into two parts: a part that is responsible for the reversible deformation
described by the stiffness matrix, and another part that is related to
the structural damping.

Several models exist to describe the behaviour of the inner viscous
forces, and they can be taken into account generally by adding to the
equation of the structural dynamics a damping matrix D acting on the
time derivative of the generalised DOFs. As a result, the principle of
virtual displacement finally becomes:

∞∑
n=1

δqn [Mnmq̈m + Dnmq̇m + Knmqm − en] = 0. (3.12)

By virtue of the universality of the virtual displacement δqn, the general
equation of the uncoupled structural dynamics in matrix form are:

Mq̈ + Dq̇ + Kq = e. (3.13)
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Uncoupled structural eigenproblem

Neglecting at first the structural damping, it is possible to associate to
Equation 3.13 the generalised eigenproblem:

KZn = λnMZn, (3.14)

where λn and Zn are respectively the n-th eigenvalue and eigenfunc-
tion.

Given the properties of positivity and symmetry of the mass and stiffness
matrices, it is possible to demonstrate that the eigenvalues are all real
and positive (zero only for rigid-body motion) and the eigenfunctions
are all real. Finally, it is possible to show that the eigenfunctions are
M- and K-orthonormal, i.e.

ZmTMZn = δmnmn, ZmTKZn = δmnkn. (3.15)

It is possible to normalise the eigenfunctions in several ways. Among
them, the mass normalisation approach transforms the mass matrix
in an identity matrix and the stiffness matrix in a diagonal matrix in
which the terms on the diagonal are the eigenvalues:

ZmT
√
mn

M
Zn
√
mn

= δmn,
ZmT
√
mn

K
Zn
√
mn

= δmnλn. (3.16)

The symbols M and K denote the mass and stiffness matrices trans-
formed by the eigenfunctions.

3.3 Inertially-Coupled Structural Dynamics

In the case of a moving flexible body, it is convenient to define an
inertial Frame of Reference (FOR) (Re) and a relative FOR (RE),
moving with respect to the inertial frame with certain angular speed
Ω, angular acceleration Ω̇ and translational velocity vO′ . For example,
in the case of the rotating blade of a wind turbine, it is convenient to
define a relative FOR rotating about the center of the hub, and whose
origin is the root of the blade. In this last FOR, the relative velocity
and acceleration are only related to the deformation of the body and
are described by the time derivatives of the displacement in Equation
3.6.

Following the approach described in Saltari et al., 2017 and Reschke,
2005[155]: Saltari et al. (2017), ‘Finite-Element-

Based Modeling for Flight Dynamics
and Aeroelasticity of Flexible Aircraft’
[156]: Reschke (2005), ‘Flight loads anal-
ysis with inertially coupled equations
of motion’

[155, 156], we derive in the following the modified equations for
the structural dynamics in the case of a body undergoing deformation
under a dynamic loading in a relative FOR, by means of the weak
formulation of the Cauchy’s equation.

In accordance with the assumption of neglecting the full two-way
coupling of structural dynamics with rigid-body motion, we considered
the projection of the Cauchy’s equation on the elastic virtual – relative
– displacement only. However, we take into account the effect of the
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inertial forces by fully expressing the absolute acceleration of a generic
point of the structure in Equation 3.1, as:

a = arel︸︷︷︸
Relative acc.

+ aO′︸︷︷︸
O’ acc.

+ Ω× (Ω× rrel)︸ ︷︷ ︸
Centrifugal acc.

+ Ω̇× rrel︸ ︷︷ ︸
Euler acc.

+ 2Ω× vrel︸ ︷︷ ︸
Coriolis acc.

,

(3.17)
where rrel, vrel and arel are respectively the position, the velocity
and the acceleration of a generic point in RE , aO′ is the acceleration
of the origin O′ of RE with respect to the origin of Re, Ω× (Ω× rrel)
is the centrifugal acceleration, dΩ

dt × rrel is the Euler acceleration, and
2Ω× vrel is the Coriolis acceleration.
So, we finally have:∫∫∫

V

ρ

[
arel + aO′ + Ω× (Ω× rrel) + Ω̇× rrel + 2Ω× vrel

]
· δd dV=

=

∫∫∫
V

ρf · δd dV+

∫∫
S

t · δd dS−
∫∫∫

V

T : δE dV.

(3.18)

In the case of a wind turbine blade, rrel = RO′P + d, vrel = ḋ, and
arel = d̈, where RO′P is the relative position of a point in the reference
configuration and d is the instantaneous displacement with respect to
the rotating reference configuration.

Furthermore, our angular momentum model allowed us only to observe
angular accelerations parallel to the original angular speed vector
Ω̇ = Ω̇Ω̂, where Ω̂ is the fixed angular speed versor, orthogonal to the
rotor plane.

For what concerns the right-hand side of the equation, it is exactly the
same of Equation 3.1, except for the fact that here δd = δrrel, and
forces and deformations are in this case relative to the moving FOR
and so have to be described in RE .

In the following section, we focus on each single term in the left-hand
side of Equation 3.18 to obtain the final elastic equations. A fictitious
force corresponds to each of them, according to the D’Alambert’s
principle, which states that:

Principle 3.3.1 (D’Alambert’s principle) The sum of the differences
between the forces acting on a system of mass particles and the time
derivatives of the momenta of the system itself projected onto any
virtual displacement consistent with the constraints of the system is
zero.

The definition of the inertial generalised forces here follows.

Corollary 3.3.2 (D’Alambert’s prin. (Inertial Generalised Forces))
One can transform an accelerating body into an equivalent static
system by adding the so-called inertial force and inertial moment.
The inertial force must act through the center of mass and the inertial
moment can act anywhere. The system can then be analysed exactly
as a static system subjected to this inertial force and moment and
the external forces and moments.
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For the sake of brevity, hereinafter we adopt the following notation:

〈a〉 =

∫∫∫
V

ρ adV. (3.19)

Relative acceleration

Given the fact that Equation 3.6 decomposes the virtual elastic displace-
ment by means of the shape functions, and that the relative acceleration
in RE is ascribable to the second derivative of the displacement only,
the contribution of the relative acceleration can be expressed in the
same form of the uncoupled structural dynamics case:

〈arel · δd〉 =

∞∑
n=1

δqn

∞∑
m=1

Mnmq̈m. (3.20)

Mnm is the (n,m)-th element of the mass matrix in Equation 3.7.

Origin O′ acceleration

The generic acceleration of the origin O′ of RE in Re is:

aO′ =
drO′

dt
= Ω̇× rO′ + Ω× (Ω× rO′) (3.21)

where rO′ is the vector OO′ that points the point O′ from O.
Given the distributive property of the vector product over addition, we
grouped the two terms of the origin acceleration with the centrifugal
and the Euler accelerations, and so we consider r = rO′ + rrel instead
of rrel in the next sections.

Centrifugal acceleration

The contributions from the centrifugal acceleration is:

〈Ω×(Ω× r) · δd〉 =

= −
∞∑
n=1

δqn {Ω · sym〈(r ·ψn)I− r ⊗ψn〉Ω} =

= −
∞∑
n=1

δqn {Ω · sym〈(ROP ·ψn)I−ROP ⊗ψn〉Ω +

+

∞∑
m=1

[Ω · sym〈(ψm ·ψn)I−ψm ⊗ψn〉Ω] qm} =

=

∞∑
n=1

δqn

(
−ecn +

∞∑
m=1

Kc
nmqm

)
,

(3.22)

where ROP is the undeformed position of the generic point P, ecn is
the centrifugal generalised load and Kc

nm is the (n,m)-th element of
the centrifugal stiffening matrix.
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Proof. We start by decomposing the virtual elastic displacement as:

〈Ω×(Ω× r) · δd〉 =

=

∞∑
n=1

δqn〈Ω× (Ω× r) ·ψn〉.

At this point, we leverage the vector triple product formula stating
that

a× (b× c) = (a · c)b− (a · b)c,

and, adopting the Einstein notation, we obtain:

〈Ω× (Ω× r) ·ψn〉 =

= 〈ΩiriΩj (ψn)j − ΩiΩirj (ψn)j〉 =

= 〈ΩiΩjri (ψn)j − ΩiΩjδijrj (ψn)j〉.

Considering that ΩiΩjAij = (Ω⊗Ω) : A = (Ω⊗Ω) : sym(A) because
Ω⊗Ω is symmetric, we have that:

〈Ω× (Ω× r) · δd〉 =

∞∑
n=1

δqn Ω · sym〈r ⊗ψn − (r ·ψn)I〉Ω.

To finally obtain Equation 3.22, the integral above is divided into two
parts, given the fact that r is the sum of ROP and

∑∞
m=1 qmψ

m. �

From the expression of the matrix elements, it is evident that Kc is
symmetric. Therefore, if we consider a structural eigenproblem with a
modified stiffness matrix K + Kc, this will still be symmetric and so
the eigenvalues and eigenfunctions will still be real and orthonormal.

Moreover, as we expected, the contribution of the centrifugal inertia
forces is made of a centrifugal load related to the reference configuration
and a stiffening effect related to the angular speed, represented by the
symmetric matrix Kc.

Finally, it is possible to demonstrate, similarly to what is done in Saltari
et al., 2017 [155], that the contribution of the centrifugal acceleration
to the structural dynamics equations can be written as:

〈Ω× (Ω× r) · δd〉 = −
∞∑
n=1

δqn Ω ·YnΩ, (3.23)

where Yn = 1
2
∂J
∂qn

is the sensitivity tensor, with respect to the n-th
generalised coordinate, of the inertia tensor of the body in the deformed
configuration JO, referred to the absolute origin O:

JO := 〈(r · r)I− r ⊗ r〉. (3.24)
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Euler acceleration

We can expand the Euler acceleration contribution by means of the
triple product expression:

a · (b× c) = b · (c× a) = c · (a× b) . (3.25)

Considering the equation above and the displacement decomposition,
we have that:

〈
(
Ω̇× r

)
· δd〉 =

=

∞∑
n=1

δqn

[
Ω̇ · 〈(ROP + d)×ψn〉

]
=

=

∞∑
n=1

δqn

[
Ω̇ · 〈ROP ×ψn〉 + Ω̇ ·

∞∑
m=1

〈ψm ×ψn〉qm] =

=

∞∑
n=1

δqn

[
Ω̇ · 〈ROP ×ψn〉 − Ω̇ ·

∞∑
m=1

bnmqm] =

=

∞∑
n=1

δqn

[
−eEun +

∞∑
m=1

KEu
nm qm

]
,

(3.26)

where bnm := 〈ψn × ψm〉, eEun is the n-th component of the load
from the Euler acceleration, and KEu

nm is the (n,m)-th element of the
stiffening matrix that stems from the Euler acceleration.

Coriolis acceleration

For the contribution of the Coriolis acceleration, given Equation 3.25
and the displacement and velocity decomposition, we have that:

〈2 (Ω× vrel) · δd〉 =

=

∞∑
n=1

δqn

∞∑
m=1

〈2 (Ω×ψmq̇m) ·ψn〉 =

=

∞∑
n=1

δqn

∞∑
m=1

2 Ω · 〈ψm ×ψn〉q̇m =

=

∞∑
n=1

δqn

∞∑
m=1

[−2 Ω · bnm] q̇m =

=

∞∑
n=1

δqn

∞∑
m=1

DCo
nmq̇m,

(3.27)

where DCo
nm is the (n,m)-th element of the damping matrix from the

Coriolis acceleration.

Given the properties of the cross product, the Coriolis damping matrix is
a skew-symmetric matrix related to the gyroscopic forces. According to

[157]: Zhuravlev (2009), ‘Spectral prop-
erties of linear gyroscopic systems’

[157], for a general linear vibration mechanical system characterised by
symmetric and positive mass and stiffness matrices, the skew-symmetry
property of the damping matrix guarantees that all the roots of the
associated eigenproblem are still real.
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General equations of the structural dynamics

By considering Equation 3.20, Equation 3.22, Equation 3.26 and Equa-
tion 3.27, we obtain the general equations of the structural dynamics
for a flexible body, under linear elasticity assumptions, in the case of
coupling with rigid-body motion of the body itself.
Given the universality of the virtual displacement δqn, one obtains:

M q̈ +
[
D + DCo (Ω)

]
q̇ +

[
K + Kc (Ω) + KEu(Ω̇)

]
q =

= e+ ec + eEu. (3.28)

We indicate with DI := D + DCo (Ω) the total damping matrix, with
KI := K + Kc (Ω) + KEu(Ω̇) the total stiffness matrix, and with
eI := ec + eEu the inertial additional loads.

In the end, the resulting system is similar in the form to the one related
to the uncoupled dynamics in Equation 3.13. However, the inertial
effects are included in new terms that do not affect the mass properties,
but only the damping and stiffening behaviour of the body. Moreover,
additional inertial loads act on the structure, due to the fact that RE

is a non-inertial FOR, moving with certain velocity and acceleration.
By using the introduced notation, we finally have:

M q̈ + DI q̇ + KI q = e+ eI . (3.29)

3.4 Discretisation Procedure

In the previous section, we derived the equations of the structural
dynamics by means of the weak form of the Cauchy’s equation and
by expressing the virtual elastic displacement as a linear combination
of shape functions. As yet, we did not consider any simplifying as-
sumption in the finite representation of the problem, except for general
assumptions regarding the physics of the problem, such as linearity and
elasticity of the material.

However, for the practical study of a structural problem, only a finite
number of DOFs can be considered according to the method chosen.
In this way, an infinite-dimensional linear problem for a continuous
structure is transformed into a system of second-order differential
equations, which in turn can be solved as an algebraic linear system by
means of numerical methods.

In the general Gal’́erkin method, at first the structure is divided into
finite subvolumes, the finite elements in which the weak equations
are valid; then, the analytical shape of the basis functions, the shape
functions ψn, is defined according to modelling assumptions that reflect
the problem under study. This implicitly defines the generalised coordi-
nates, that thus become the real unknowns of the differential problem.
Once solved the equations for a discrete dimension approximation of
the global problem, the knowledge of both the generalised coordinates
and the shape functions is sufficient to reconstruct the displacement
field on the structural mesh and in between the nodal grid points.
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The Finite Element Method (FEM) is probably the most widespread
procedure in the study of complex structures. According to this method,
the generalised coordinates are the nodal displacements of the descrete
structure’s nodes. In a general 3D space, each node of a discretised
structure has 3 translational DOFs, but also 3 rotational DOFs. Hence,
a structure with N nodes has 6N DOFs.

Following the definition of the generalised coordinates, the shape func-
tions have to describe the generic deformation in a finite element once
given the nodal displacements only. This is done by using tent functions
that are equal to 1 in the position of the node and 0 otherwise, so that
they extract the nodal displacement or rotation of a single node when
its position is considered.

In some occasions, it is more convenient to define the structural matrices
in a certain local FOR, e.g a frame of principal axes, that is not
coincident with the global FOR used for the description of the full
structure. In these cases, an intermediate step is necessary to convert
the local matrices and forces into global ones, by means of rotation
matrices.

Once defined the elemental quantities, given the structural data and
the topology, an assembling procedure is necessary. In fact, a single
edge node is shared by at least two elements, and so some form of
compatibility must be enforced to finally obtain a single and unique
displacement. After this procedure, given a structure with N nodes, one
obtains 6N × 6N -matrices and 6N -arrays that describe the structural
dynamics.

In the final step before the numerical solution of the discrete second-
order differential system, essentials or Dirichlet boundary conditions
on the displacements are considered by removing the equations relative
to the known displacements. In these last equations, the real unknowns
are the generalised constraint reactions enforcing the constraints on
the displacement.

The FEM procedure is thus summarised below (see also Figure 3.2):

1. Definition of the element type.
2. Definition of the local element structural matrices and of the local

nodal forces.
3. Definition of the global element structural matrices and of the

global nodal forces.
4. Definition of the assembled structural matrices and nodal forces.
5. Application of the boundary conditions.
6. Solution of the structural dynamics equations.

It is important to describe the Finite Element Method and its as-
sumptions, regardless of the approach that will be carried out for the
structural dynamics, because, even if we used a modal approach, the
definition of the modes comes out from a finite-element model of the
structure (steps 1 to 5).

In the following sections, we outline the finite-element model we defined
for the description of each wind blade, by taking into consideration
mass and stiffness matrix only.
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Element Type

Structure Topology

Structural Data

Element Matrices 
(Local Coord.)

Element Matrices 
(Datum Coord.)

Assembled
Matrices

Reduced
Matrices

Local 
Coordinates

Direction 
Cosines

Nodal/Concentrated
Forces Nodal Forces External Forces Reduced Forces

Reactive Forces
Assembly 
matrix

Boundary 
Conditions

Figure 3.2: Outline of the steps of the Finite Element Method.

Definition of the element type

Different types of element are available in the literature to best fit
the structure and its modelling. In the case of the highly slender wind
turbine blade, it is common practice to describe its flexural behaviour
as the one of an Euler-Bernoulli beam.

The Euler-Bernoulli beam theory is a simplification of the linear theory
of elasticity which provides a means of calculating the load-carrying
and deflection characteristics of beams for a one-dimensional problem
equivalent to the three-dimensional one. The theory describes the case of
beamlike structures subject to lateral loads only under the assumption
of small deflections, and it is thus a special case of the Timoshenko
beam theory, valid for low values of the slenderness ratio.1 1: The slenderness ratio is the quo-

tient between the beam thickness of the
radius of gyration and the span. The
radius of gyration is equal to rgyr =√
J/A, where J is the second area mo-

ment of the cross section and A is the
beam section area.

The main differences between the two most widespread beam theories
are that in the Euler-Bernoulli beam theory:

I shear effects are neglected, whereas in the Timoshenko beam
theory they are considered;

I beam sections remain perpendicular to the so-called elastic line,
which is the line that connects the elastic centers of each section
along the span of the beam, see Figure 3.3. On the other hand, in
the Timoshenko beam theory, the shear deflection is not known
a priori;

I only the flexural displacements are needed, because the rotations
of the sections are defined by the derivatives along the span of
the displacements, in accordance with the hypothesis of plain
sections remaining plain. In the Timoshenko beam theory, the
shear deflection, approximated by the slope of the deflection, is
an additional variable.

Other than the flexural behaviour in both flapwise and edgewise di-
rections, the complete beam element includes also axial and torsional
DOFs that are taken into account in the classical engineering beam
theory with simplified models [154].

In the following, we define separately the torsional, flexural and axial
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Figure 3.3: Schematic of a cross-
section of an Euler-Bernoulli beam,
with the neutral axis in evidence.

shape functions for the fundamental 1D beam element of length l and
cross-section area A. The element is characterised by two edge nodes,
whose DOFs are defined as in Figure 3.4. The local coordinate that
locates the generic section on the beam axis is called x.

Figure 3.4: Degrees of freedom of a
beam element.

1D axial beam element

The axial displacements in correspondence of the two nodes are the
only two parameters available to describe the axial displacement for
the generic section at position x of an axial beam element. This means
that:

ψeax =
[
1− x

l

x

l

]
. (3.30)

It follows that d1(0) is the axial displacement of the first node and
d1(l) is the axial displacement of the second node. Moreover, given
Equation 3.7, one obtains that:

Me
ax = ρAl

[
1/3 1/6

1/6 1/3

]
. (3.31)

To obtain the axial stiffness matrix, one has to consider the generalised
constitutive relationship σe = Eεe to express the total elastic energy,
where σe is the axial element force N , εe is the generalised deformation





70 3 The Structural Model
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The flexural mass matrix is thus:

Me
fl =

ρAl

420


156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l2

−13l −3l2 −22l2 4l2

 . (3.39)

To obtain the flexural stiffness matrix, one has to consider the gener-
alised constitutive relationship σe = EIεe to express the total elastic
energy, where σe is the bending moment M in the considered plane,
EI is the bending stiffness, and εe is the generalised deformation, the
curvature χ in the plane under study.
Given Equation 3.10, and given the fact that the curvature is the second
derivative of the displacement in the plane of the bending, one has for
the plane x− y:

Ke
fl =

EI

l


12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l2 4l2

 (3.40)

For the plane x− z the signs of the elements (2, 1), (3, 2), (4, 1), (4, 3)

and the symmetric ones, are opposite because of the opposite sign in
Equation 3.37.

Local elemental matrices: the complete beam
element

Once derived the elemental matrices for each single problem of the
beam, we can define a complete element state vector as:

(qe)
T

= [(d1)1 , (d2)1 , (d3)1 , (θ1)1 , (θ2)1 , (θ3)1 ,

(d1)2 , (d2)2 , (d3)2 , (θ1)2 , (θ2)2 , (θ3)2 ] (3.41)

where the external subscript 1 indicates all the DOFs related to the
first edge node of the element, and the external subscript 2 indicates
those related to the second edge node.

The complete elemental stiffness matrix thus becomes Equation 3.42.
On the other hand, the complete consistent elemental mass matrix
becomes Equation 3.43.
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To simplify the mass matrix expression, the use of the so-called lumped-
mass representation is widespread in the structural research and in-
dustrial community. According to this idealisation, the mass is not
distributed uniformly in the element, but instead concentrated masses
are located in correspondence of the nodes, where the considered DOFs
are located.

The material of the element is redistributed at the edge nodes of the
element, and it is assumed that dynamic cross-coupling between the
element displacement components and in the resulting mass matrix is
neglected. This results in a diagonal elemental mass matrix, that must
still satisfy the properties stated in Section 3.2.

Even if, for a limited number of nodes, the use of a lumped-mass matrix
produces less accurate results than the case with the full consistent
mass matrix, the diagonality of the matrix allows a fast and efficient
inversion of the mass matrix.

The lumping process of the mass matrix allows the definition of the
following elemental mass matrix for the complete beam element:

Me = ρAl



1
2 0 0 0 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0 0 0 0

0 0 0 Mθ

2 0 0 0 0 0 0 0 0

0 0 0 0 l
24 0 0 0 0 0 0 0

0 0 0 0 0 l
24 0 0 0 0 0 0

0 0 0 0 0 0 1
2 0 0 0 0 0

0 0 0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 0 0 0 Mθ

2 0 0

0 0 0 0 0 0 0 0 0 0 l
24 0

0 0 0 0 0 0 0 0 0 0 0 l
24



.

(3.44)

Global elemental matrices

The expressions we obtained for the elemental matrices are relative
to a convenient FOR, which is the one formed by the principal axes
passing through the centre of mass of the cross section. Moreover, we
implicitly assumed that the centre of mass and the elastic centre of the
sections are coincident.

In general, however, the convenient frame for the element description
is not the global datum one that is used for the description of the
complete structure. For example, we divide the wind turbine blade
into a certain number of chunks, each constituting a beam element. A
typical blade has a structural twist angle that varies along the span.
So, we assume that the datum rotating frame has its axis coincident
with the principal axes of the tip section. In doing so, however, all the
other elements have a different orientation that must be considered to
take into account the coupling between the flapping in the plane and
out of the plane of the rotor.
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To take into account a general orientation between the local elemental
FOR REe and the datum (rotating) FOR RE , we introduce the co-
ordinate transformation matrix Ξe such that (qe)Ee = Ξe (qe)E . The
subscript of a certain array indicates the FOR in which the coordinates
of that array are expressed (for further information about coordinate
transformation and FORs see Chapter 4). From linear algebra, the
matrix transforming the coordinates of a physical 3D vector between
two FORs is equal to a 3×3 matrix defined by (Ξ)i,j = Eei ·Ej , where
i, j = 1, 2, 3 are the versor indices of the respective FORs. Thus, for
the complete elemental state vector including all the translation and
rotation components of the two nodes, we have that:

Ξe =


Ξ 0 0 0

0 Ξ 0 0

0 0 Ξ 0

0 0 0 Ξ

 . (3.45)

Given this change of coordinate, the structural dynamics equation for
an element described in a datum FOR are:[

ΞeT (Me)Ee Ξe
]

(q̈e)E +
[
ΞeT (Ke)Ee Ξe

]
(qe)E = ΞeT (ee)Ee ,

(3.46)
where the matrices (Me)Ee and (Ke)Ee , and the array (ee)Ee are
expressed in the local elemental FOR.
From now on, we implicitly assume the local-to-datum coordinate
transformation for each element, and we redefine the above equations
as:

Meq̈e + Keqe = ee, (3.47)

In the case of our wind blades, given the structural twist angle φ(x) for
each element, the fundamental coordinate transformation matrix is:

Ξ =

1 0 0

0 cosφe sinφe

0 −sinφe cosφe

 , (3.48)

where φe is the structural twist angle, which is assumed to be constant
in the element and equal to the average value of φ(x) along the same
element.

It is important to underline that, up to now, we have still assumed
the lumped masses to be located at the position of the nodes, and
the centre of mass to be coincident with the elastic centre for each
cross-section.

Assembly of the global matrices

According to FEM, we can approximate the continuous structure as a
discrete union of subelements characterised by a specific behaviour.
Once the constituting elements are defined, we have to assemble them
in a coherent way, such that the boundary displacements and stresses
are compatible at least at the common nodes among the elements.
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To combine the elemental problems into a single problem, the elemental
arrays and matrices are assembled into global ones, where the gener-
alised coordinate vector is now composed of all the DOFs of all the
nodes of the assembled structure:

qT = [(d1)1 , (d2)1 , (d3)1 , (θ1)1 , (θ2)1 , (θ3)1 , ...

(d1)N , (d2)N , (d3)N , (θ1)N , (θ2)N , (θ3)N ] , (3.49)

where N is the number of nodes, and the coordinates are referred to
the global datum coordinate system.

Therefore, for each element, a rectangular matrix Te is defined, made
of all zeros, except for the unit terms whose positions identify the DOFs
of the considered element in the complete state vector in Equation 3.49,
such that:

qe = Teq. (3.50)

Considering the principle of virtual work for the complete structure
subdivided into elements, it follows that:

Ne∑
e=1

{
(δqe)

T
[Meq̈e + Keqe − ee]

}
= 0

=⇒
Ne∑
e=1

{
(δq)

T
TeT [MeTeq̈ + KeTeq − ee]

}
= 0

=⇒ (δq)
T

[ Ne∑
e=1

TeTMeTe

︸ ︷︷ ︸
M

q̈ +

Ne∑
e=1

TeTKeTe

︸ ︷︷ ︸
K

q −
Ne∑
e=1

TeTee︸ ︷︷ ︸
e

]
= 0.

(3.51)

where M, K and e are respectively the global mass matrix, the global
stiffness matrix and the global nodal loads array for the entire structure.
The number of the elements is indicated as Ne.

Given the universality of the virtual displacement, one has that:

Mq̈ + Kq = e. (3.52)

The operation to evaluate the global features in Equation 3.51 is
equivalent to placing the elemental matrices or arrays in their correct
position in the larger framework of the global item, and then summing
all the overlapping terms. A similar procedure for the definition of the
global structural damping matrix can be carried out.
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Loads projection and boundary conditions

For the forces acting on each single element, we define the generalised
loads acting on an element as:

ee = P e︸ ︷︷ ︸
Concentrated Loads

+

∫∫∫
V

ρf ·ψe dV︸ ︷︷ ︸
Equivalent Volume Loads

+

∫∫
S

t ·ψe dS︸ ︷︷ ︸
Equivalent Surface Loads

.

(3.53)
We assumed to work with one-dimensional elements and with forces
that are only dependent on the span direction. Hence, we can define
the surface forces per unit length t2D and the volume forces per unit
length f2D, such that:

ee = P e +

∫ l

0

ρf2D ·ψe dx+

∫ l

0

t2D ·ψe dx. (3.54)

Furthermore, we assume the forces per unit length to have constant
values inside the element, named as f2D and t2D.
The final expression for the elemental loads array in the local FOR is:

ee = P e + Ieψ

(
f2D + t2D

)
, (3.55)

where Ieψ :=
∫ l

0
(ψe)

T
dx.

For the beam element, using Equation 3.30, Equation 3.38 and consid-
ering the order of the DOFs provided by Equation 3.41, the integration
gives:

Ieψ =



l
2 0 0 0 0 0

0 l
2 0 0 0 −1

0 0 l
2 0 1 0

0 0 0 l
2 0 0

0 0 − l2

12 0 0 0

0 l2

12 0 0 0 0
l
2 0 0 0 0 0

0 l
2 0 0 0 1

0 0 l
2 0 −1 0

0 0 0 l
2 0 0

0 0 l2

12 0 0 0

0 − l2

12 0 0 0 0



. (3.56)

Once defined the local forces acting on the elements, it is possible
to assemble them in the datum FOR by means of the coordinate
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transformation matrix Ξ:

e =

Ne∑
e=1

TeT (ee)E =

=

Ne∑
e=1

TeTΞT (ee)Ee =

=

Ne∑
e=1

TeTΞT
[
(P e)Ee + Ieψ

(
f2D + t2D

)
Ee

]
=

=

Ne∑
e=1

TeT
[
(P e)E + ΞbT IeψΞb

(
f2D + t2D

)
E

]
,

(3.57)

where Ξb is the top-left 6× 6 block of the coordinate transformation
matrix.

The forces acting on the structure, however, include also the reaction
forces and are thus not independent. From the overall equilibrium of
the complete blade, it is evident that there are six dependent equations
related to the six rigid-body DOFs. Therefore, in order to eliminate
the following singularity in the stiffness matrix, the essential boundary
conditions must be considered in a way that rigid-body motion is
assigned or restrained. In the case of our cantilever blades, we eliminated
the equations corresponding to the fixed displacements at the hub by
eliminating the rows and columns of the corresponding DOFs, thus
removing the equations of the differential system including the reaction
forces.

3.5 Modal Approach

In Equation 3.6, we saw that it is possible to express the displace-
ment vector as a linear combination of shape functions regulated by
generalised coordinates.

In many occasions, it is general practice to leverage the knowledge of the
eigenfunctions of the structural problem, coincident its physical modes,
to create reduced-order models. In fact, given the initial orthogonal
shape functions ψn, and the modes Zm, it is possible to define the new
modal shape functions ψ

m
, by representing the mode shape by means

of the old shape functions (see Figure 3.5):

ψ
m

=

∞∑
n=1

Zmn ψ
n. (3.58)

Correspondingly, the new modal coordinates q̄m are defined so that:

d(x, t) =

∞∑
n=1

qn(t)ψn(x) =

∞∑
m=1

q̄m(t)ψ
m

(x). (3.59)

The modal coordinates are thus related to the old coordinates by means
of the relation:

q = Zq, (3.60)
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where the matrix Z is the eigenfunctions matrix, whose generic n-th
column Zn is a vector containing the nodal representations of the n-th
mode.

Figure 3.5: Finite element descrip-
tion of a modal shape, by means of the
tent functions here indicated as ψ̂

n

and the FEM coordinates q̂n.

If we use the modal basis to describe the undamped and uncoupled
structural problem, it is possible to demonstrate that Equation 3.52
becomes:

ZTMZ︸ ︷︷ ︸
M

q̈ + ZTKZ︸ ︷︷ ︸
K

q = ZTe︸︷︷︸
e

, (3.61)

where the new mass and stiffness matrices, M and K, are diagonal,
according to the properties of the eigenvectors, and the loads projections
on the modes are called e.

If the eigenvectors are mass-normalised, the new mass matrix is the
Nm×Nm identity matrix and the stiffness matrix is a Nm×Nm diagonal
matrix whose elements are the eigenvalues λn, where Nm is the number
of modes used to describe the problem.

In the modal approach, a reduced number of modes can be used, which
means that the number of modal DOFs considered in the new problem
is reduced too. However, neglecting some modes means approximating
the representation of the structural behaviour, and so the contribution
– at the corresponding eigenfrequencies – of the neglected modes to
the structural response is inevitably lost. The possible computational
advantage of the modal approach is thus evident, given the lower
dimension of the problem and its diagonalisation, despite the loss in
accuracy due to the approximation of a finite number of modes.

Moreover, while FEM is highly dependent on the model chosen for the
description of the structure (element type and shape functions choice),
the modal description is more general. In fact, we can accurately obtain
the natural modes of a structure as complicate as desired from any
commercial structural software; once obtained the natural modes, the
structural equations in the modal basis are formally the same for models
of different complexity and also of different structures.

Because of the described advantages, we decided to adopt a modal
structural solver for the description of the blades’ structural dynamics.
Hence, after presenting the model for the structural damping adopted,
we express in the following sections also the inertial coupling terms
by means of the modal basis, but leveraging also the knowledge of
mass and inertia information from the finite element model of the
structure.
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Structural modal damping

As seen in Section 3.1, the structural damping is of paramount impor-
tance to describe the response of a viscoelastic structure. In this work,
we adopt the so-called modal damping or Rayleigh-Basile damping
model, according to which the modal damping matrix C is:

C = ZTCZ = diag (2 ζrωrmr) (3.62)

where diag(•r) indicates a diagonal matrix with generic element •r,
ζr is the damping coefficient of the r-th mode, ωr =

√
λr is the r-th

natural angular frequency and mr is the r-th modal mass.
The model is widely accepted for metallic structures with low modal
density or, in general, for low-damped structures. Typical values of ζr
are in the range 0.01÷ 0.1[158]: Craig et al. (2006), Fundamen-

tals of structural dynamics
[158].

As a result of the diagonal structure also of the damping matrix, the
structural problem in the modal basis becomes a set of uncoupled
equations, each describing a mass-spring-damper mechanical system
with a single DOF: the r-th modal displacement.

3.6 Modal Inertial Coupling Terms

Up to this moment, we neglected the inertial coupling terms, which in
Section 3.3 were expressed in terms of the generic shape functions ψ.
To consider also the effect of these terms, in modal basis, the inertial
coupling coefficients can be discretised as done in Saltari et al., 2017
[155]. However, in our case the origin of the main FOR is not centred
in the centre of mass of the entire structure, but in a fixed point, i.e.
the root of each single blade.

The methodology is completely general and leverages the structural
data from a generic finite element model. Moreover, the discretisation
is defined for a generic continuous structure, and so, the form of all
the contributions from the inertial forces does not vary with the finite
element model.

The steps of the method are the following:

I The structural domain is divided into a set of complementary
subvolumes Vi with i going from 1 to the number of nodes N .
Hence, the total volume integral becomes a sum of subvolumes’
integral. The centre of mass of the subvolume Vi is indicated as
rgi in the relative FOR andRgi = rO′+rgi in the absolute one. A
generic material point in the element is identified by R = Rgi +ζ

in the absolute FOR.
I We define the mass mi and the inertia tensor Jgi

with respect to
the centre of mass of the i-th subvolume as:

mi := 〈1〉i =

∫∫∫
Vi

ρdV, (3.63)
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Jgi
:= 〈(ζ · ζ) I− ζ ⊗ ζ〉i =

∫∫∫
Vi

ρ (ζ · ζ) IdV+ Jδgi , (3.64)

where we indicate with 〈•〉i the mass integration in the i-th
subvolume, and we define the tensor Jδgi as the inertia tensor Jgi

minus one half of its trace.
One can derive these quantities from any finite element model.
In the case of the lumped mass representation, mass and inertia
information of the i-th subvolume is available in the diagonal of
the 6× 6 mass matrix block corresponding to the i-th node.

I We assume that, locally, the displacement field of the n-th modal
shape function can be described as a rigid-body motion:

ψ
n
∣∣∣
x

= ψ
n

t

∣∣∣
gi

+ ψ
n

r

∣∣∣
gi
× ζ, (3.65)

where ψ
n

t

∣∣∣
gi

= ψ
n

t (rgi) and ψ
n

r

∣∣∣
gi

= ψ
n

r (rgi) are respectively

the displacement and the rotation associated to the n-th mode
at the i-th centre of mass rgi .

The terms reported below results from the application of the described
procedure for the discretisation of Equation 3.22, Equation 3.26 and
Equation 3.27. For the sake of brevity, in the remaining part of this
section we omit the subscript gi of the modal displacement and rotation;
moreover, we indicate the skew-symmetry operator3 3: The skew-symmetry operator A ap-

plied on a certain vector v is such that:[
(Av)e

]
ij

= εijk [(v)e]k

with the symbols
Am := Aψmr

and An := Aψnr
.

I Centrifugal terms:

Kc
nm = −Ω · sym

〈(
ψ
n ·ψm

)
I−ψn ⊗ψm

〉
Ω =

≈ −Ω ·
N∑
i=1

1

2

{
mi

[
2
(
ψ
n

t ·ψ
m

t

)
I−ψnt ⊗ψ

m

t −ψ
m

t ⊗ψ
n

t

]
+

−2
[
An :

(
Am Jδgi

)]
I−An Jδgi Am −Am Jδgi An

}
Ω

(3.66)

ecn = −Ω · sym
〈(
ROP ·ψ

n
)

I−ROP ⊗ψ
n
I
〉

Ω =

≈ Ω ·
N∑
i=1

1

2

{
mi

[
2
(
Rgi ·ψ

n

t

)
I−Rgi ⊗ψ

n

t −ψ
n

t ⊗Rgi

]
+

+ An Jδgi − Jδgi An
}

Ω

(3.67)

I Euler terms:

KEu
nm = −Ω̇ · bnm =

≈ −Ω̇ ·
N∑
i=1

[
miψ

n

t ×ψ
m

t − Jδgi

(
ψ
n

r ×ψ
m

r

)] (3.68)
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eEun = −Ω̇ · 〈ROP ×ψn〉 ≈ −Ω̇ ·
N∑
i=1

[
miRgi ×ψ

n

t

]
(3.69)

I Coriolis terms:

DCo
nm = −2 Ω · bnm =

≈ −2 Ω ·
N∑
i=1

[
miψ

n

t ×ψ
m

t − Jδgi

(
ψ
n

r ×ψ
m

r

)] (3.70)

3.7 Effect of the Centre of Mass Offset

Modes are usually described by means of the generalised coordinates
in correspondence of the structural nodes. Thus far, we implicitly
assumed the centres of mass of the elements to be coincident with their
elastic centres and both the centres to be coincident with the nodes’
locations. Therefore, in the lumped representation used for the inertial
coupling terms, we were allowed to locate the elementary masses in
correspondence of the finite element model grid nodes.

However, this is not always the case, and in many occasions, the centre
of mass of an element has an offset with respect to the elastic centre.
As a result, the lumped mass must have an offset, which changes the
inertia of the element with respect to the elastic line.

This offset can be taken into account by expressing the modes at the
mass location as:

ψ
n

t

∣∣∣
gi

= ψ
n

t

∣∣∣
i
+ ψ

n

r

∣∣∣
gi
× si,

ψ
n

r

∣∣∣
gi

= ψ
n

r

∣∣∣
i
,

(3.71)

where si is the offset vector, which goes from the i-th node to the
i-th centre of mass; ψ

n

t

∣∣∣
gi

and ψ
n

r

∣∣∣
gi

are the translation and rotation

corresponding to the n-th mode at the i-th centre of mass; ψ
n

t

∣∣∣
i
and

ψ
n

r

∣∣∣
i
are the translation and rotation corresponding to the n-th mode

at the i-th node.

By using Equation 3.71 to express the modal shape functions in the
mass matrix in Equation 3.20, and by following the same procedure
carried out for the inertial coupling terms, we obtain a modification
of the diagonal mass matrix that considers the mass offsets correctly
[156]:

〈arel·δd〉 =

∞∑
n=1

∞∑
m=1

δqn

N∑
i=1

ψmt
∣∣∣
i

ψ
m

r

∣∣∣
i

T [ miI −miAsi
miAsi Ji

]ψnt
∣∣∣
i

ψ
n

r

∣∣∣
i


︸ ︷︷ ︸(

Ms

)
nm

q̈m,

(3.72)
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where Asi is the skew-symmetric matrix associated with the offset
vector, Ji = Jgi

+miA
T
siAsi is the local inertia tensor with respect to

the grid point, and
(
Ms

)
nm

is the (n,m)-th element of the modified
mass matrix.

Proof. The virtual displacement and the relative acceleration in Equa-
tion 3.20 are decomposed by means of the modal decomposition:

〈arel · δd〉 =

∞∑
n=1

∞∑
m=1

δqn

〈
ψ
n
(x) ·ψm(x)

〉
q̈m.

Then, we divide the structure in N elementary volumes and we repeat
the discretisation procedure carried out for the inertial coupling terms.
So we have:

∞∑
n=1

∞∑
m=1

δqn

〈
ψ
n ·ψm

〉
q̈m =

∞∑
n=1

∞∑
m=1

δqn

N∑
i=1

〈(
ψ
n

t

∣∣∣
gi

+ ψ
n

r

∣∣∣
gi
× ζ
)
·
(
ψ
m

t

∣∣∣
gi

+ ψ
m

r

∣∣∣
gi
× ζ
)〉

q̈m =

∞∑
n=1

∞∑
m=1

δqn

N∑
i=1

〈(
ψ
n

t

∣∣∣
gi
· ψmt

∣∣∣
gi

)
+

(
ψ
n

r

∣∣∣
gi
× ζ · ψmr

∣∣∣
gi
× ζ
)

︸ ︷︷ ︸
Jgi

〉
q̈m,

where we removed the null quantities related to 〈ζ〉, because these are
proportional to the position of the centre of gravity of the i-th element
with respect to its centre of gravity itself.
Finally, we substitute Equation 3.71 in the equation above, and we
recast it in the form expressed in Equation 3.72. �

If one observes the structure of the resultant mass matrix Ms in the
modal basis referred to the grid points, it is evident that we could
have obtained it equivalently by properly modifying the finite element
lumped mass matrix and then pre- and post-multiplying it by the
eigenvector matrix Z, as done in the diagonalisation procedure.

Therefore, it is possible to consider the effects of the centre of mass
offset by modifying directly the finite-element mass matrix obtained
with the lumped-mass representation. The original diagonal matrix
thus becomes a block-diagonal matrix: each 6× 6 block becomes equal
to the initial correspondent FEM block plus the off-diagonal symmetric
terms and the Huygens-Steiner transport term for the local inertia
tensor:4 4: We paid attention to the expression

of the coordinates of the offset vector.
The modifications to the mass matrix
take place after the assembling proce-
dure and so the right coordinates are
the global ones, (si)E , which include,
for example, the effect of the structural
pre-twist of the blade.

[
miI3×3 03×3

03×3 Jgi

]
+

[
03×3 −miAsi
miAsi miA

T
siAsi

]
, i = 1, . . . N. (3.73)

In this way, the modified structural eigenproblem that includes the
centre of mass offset is associated to eigenvectors that diagonalise the
new block-diagonal mass matrix, and still describe the modes by means
of generalised coordinates that are referred to the nodal positions.
Moreover, the modifications in the mass matrix correct also the inertial
behaviour for the estimation of the inertial coupling terms.
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3.8 On the Model Linearity

To evaluate the loads acting on the structure, especially for the aero-
dynamic loads, the precise statement of the structural configuration
considered is fundamental.

In the reality, the forces are determined and applied on the basis of
the deformed configuration, and thus the actual deformation is the
composition of progressive and cumulative structural updates. For the
case of the aerodynamic loads, which are follower in nature, the config-
uration is particularly important, given the fact that it determines the
orientation of the profiles, and thus affects importantly the aerodynamic
actions in turn.

If the deformations are large enough to modify considerably the body
geometry, a more rigorous approach would be necessary for which the
equations of the dynamics are written with respect to the deformed
configuration. In the case of small deformations and large displace-
ment or in the case of large deformations, geometrical nonlinearities
modify the equations introducing new terms and modifying radically
the theoretical and numerical framework of the structural dynamics
(see Holzapfel, 2000[159]: Holzapfel (2000), Nonlinear Solid

Mechanics: A Continuum Approach
for Engineering

[159]). In particular, for a general finite motion
state, the actual body configuration is unknown and furthermore, the
actual configuration determines the internal stress state by means of a
dependency that is not linear in the general case and depends also on
the history of the finite deformation.

Moreover, also the response of the material can be nonlinear, with
complex constitutive relations for nonlinearly elastic and plastic or
viscoelastic materials.
The design of the wind turbine blade is complex and includes an exterior
part, mainly determined on the basis of aerodynamic arguments, and an
interior part, mainly determined on the basis of structural arguments.
These parts are made of composite materials since the 1970s. Fiberglass
in polyester resin and other laminates are the most common choises,
but the increase in size of the wind turbines and the concerns about the
blade recyclability are pushing the research for new, light and resistant
materials whose response is hardly linear.

Additionally, the blades are here considered as straight, without pre-cone
and without pre-sweep angles, and geometrical taper is only considered
indirectly by means of the sectional aggregated data of the blade. Recent
studies[160]: Migliaccio et al. (2020), ‘Beam-

like models for the analyses of curved,
twisted and tapered horizontal-axis wind
turbine (HAWT) blades undergoing
large displacements’
[161]: Migliaccio et al. (2021), ‘The in-
fluence of an initial twisting on tapered
beams undergoing large displacements’

[160, 161] showed that the classic beam theory is inadequate
to describe non-prismatic and curved beams, due to the non-uniform
geometry of the cross sections or the initial curvature of the centerline,
and that for large displacements more complex nonlinear models are
more appropriate, like the Geometrically-Exact Beam Theory (GEBT)
proposed by Hodges, 2006 [21].

The model we described and implemented in our FSI is linear and cannot
fully capture the high-order effects described above. The configuration
adopted to determine the loads and on which the loads are applied is
the reference, undeformed one, and there are not terms in the structural
dynamics equations explicitely considering the actual and instantaneous
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deformed configuration, except for the linear aeroelastic effects in the
aerodynamic forces that are presented in Chapter 4.

However, the same studies highlighting the importance of enhanced
structural models showed also that the geometrical nonlinearities start
to be particularly noteworthy for very long blades with significant
initial curvatures. Moreover, various studies [61] [162]: Riziotis et al. (2008), ‘Identifi-

cation of structural non-linearities due
to large deflections on a 5MW wind
turbine blade’

[162] showed that for
characteristic blades around 70 m of length (which is typical for the
average installed wind turbines), the high stiffness of the structure is
still able to keep the displacement relatively small, which justifies for
state-of-the-art, utility-scale wind turbines the linearity assumptions
in the structural model, both in the material response and in the
geometrical configuration.

Of course, when considering larger wind turbines like the 14 MW
Haliade-X or the 16 MW MySE 16.0-242, with their diameters respec-
tively of 220 m and 242 m, the complex structural nonlinearities will
probably prevent a correct estimation of the vibratory dynamics of the
blades.

3.9 Time Integration

In the previous sections, we described the initial-value problem defined
by the semidiscrete equations for the structural dynamics, which is:

Mq̈ + Cq̇ + Kq = e, (3.74a)

q(0) = q0, (3.74b)

q̇(0) = v0, (3.74c)

where q is the generalised coordinate vector. M, C, and K are, respec-
tively, the corresponding mass, damping and stiffness matrices, while e
is the corresponding generalised load vector. The initial conditions are
specified by the initial generalised displacement q0 and by the initial
generalised velocity v0.

Modal or finite element bases can be used to describe the displacement
and, correspondingly, the structural matrices assume different forms.
In particular, as already stated, the modal representation has the
advantage of providing more compact matrices and of making reduced-
order models possible. Additionally, in the definition of the stiffness
and damping matrices, as well as of the generalised load vector, inertial
coupling terms can be included, without changing the general form of
the equations.

Especially for a time-varying loading, as the one acting on a wind
turbine blade in a turbulent wind field, solving analytically the initial-
value hyperbolic problem of Equation 3.74a-Equation 3.74c is practically
impossible. Therefore, a numerical integration in time of the structural
dynamics equations is necessary.

Several algorithms have been presented during the years (see [163]: Hughes (2012), The finite ele-
ment method: linear static and dynamic
finite element analysis

[163]
for a description of the most widespread numerical methods in the
structural dynamics community), and although there is not a unanimous
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consensus, it is agreed that a structural algorithm must have the
following properties:

I unconditional stability for linear problems;
I second-order accuracy;
I self-starting capabilities;
I controllable algorithmic dissipation in the higher modes, to damp

out their spurious participation to the structural response;
I no more than one set of implicit equations to be solved at each

time step (one-step methods are preferred).

We present briefly the methods we considered for this work in the
following sections.

Newmark method

One of the classic family of methods used for structural dynamics is
the Newmark method family[164]: Newmark (1959), ‘A Method of

Computation for Structural Dynamics’
[164], according to which equations are

discretised as follows:

dn+1 = dn + ∆tvn +
∆t2

2
[(1− 2β)an + 2βan+1] , (3.75a)

vn+1 = vn + ∆t [(1− γ)an + γan+1] , (3.75b)

Man+1 + Cvn+1 + Kdn+1 = F n+1, (3.75c)

where a, v and d are the numerical approximations for the acceleration,
the velocity and the displacement, F is the force vector, ∆t is the time
interval, β and γ are constant parameters, and the subscripts n and
n+1 indicate the time to which the quantities are referred. The methods
of the family are one-step methods, because the solution at the future
instant depends only on the solution at the present instant, and three-
stage methods, because the definition of the solution is characterised
only by dn, vn and an.

A particular case in the family is the well-known average acceleration
method.55: The method is also called trape-

zoidal rule method, because we can de-
rive it also by applying the trapezoidal
rule to the first-order form of the sys-
tem in Equation 3.74a, where the state
vector is given by {q|q̇}

It is possible to obtain it by imposing β = 1/4 and γ = 1/2,
which means that the acceleration is approximated by the average
between its value at time n and n+ 1. This method is implicit, second-
order accurate and unconditionally stable. The starting conditions are:

d0 = q0, (3.76a)

v0 = v0, (3.76b)

a0 = M−1 (F (0)−Cv0 −Kd0) , (3.76c)

The Newmark algorithm satisfies all the properties asked to a structural
dynamics algorithm, except for the property of controllable numerical
dissipation for higher frequency modes. This point is fundamental
because, in a finite element model, the poor spatial resolution of these
modes can affect the validity of the entire solution.
In fact, the numerical solution of some test cases we performed, imposing
a periodic forcing acting on a wind turbine blade, revealed the presence
of small, spurious, high-frequency oscillations.
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In order to correct this behaviour, researchers have developed dissipative
algorithms. Among them, two of the most widely used methods are the
HHT-α method and the generalised-α method.

HHT-α method

The Hilber-Hughes-Taylor method or HHT-α method [165]: Hilber et al. (1977), ‘Improved
numerical dissipation for time integra-
tion algorithms in structural dynamics’

[165] is a one-step,
three-stage time integration method of the Newmark family in which
Equation 3.75c is substituted with:

Man+1 + (1−α)Cvn+1 +αCvn + (1−α)Kdn+1 +αKdn = F n+1−α,

(3.77)
where α is a control parameter and tn+1−α = tn+1 − α∆t. The force
F (tn+1−α) is usually taken equal to (1− α)F (tn+1) + αF (tn).

It is evident that if α = 0, the HHT method reduces to the classic
Newmark method. The control parameter α is introduced to add some
numerical dissipation in the system. Increasing α increases the dissipa-
tion for frequencies above 1/(2∆t). However, the introduction of the
numerical dissipation could affect the accuracy of the solution and, in
fact, the method remains second-order accurate and unconditionally
stable only if the parameters abide by the relationships:

α ∈ [0, 1/3] , (3.78a)

β =
1

4
(1 + α)

2
, (3.78b)

γ =
1

2
+ α. (3.78c)

The numerical solutions for several unsteady test cases we performed,
revealed that even by adopting the parameters suggested above, spuri-
ous high-frequency oscillations can appear in the solution, albeit with
improved results with respect to the Newmark method. For this reason,
we implemented and tested another, last, dissipative method.

Generalised-α method

The generalised-α method or gen-α method [166]: Chung et al. (1993), ‘A Time In-
tegration Algorithm for Structural Dy-
namics With Improved Numerical Dis-
sipation: The Generalized-α Method’

[166] is a family of one-step
three-stage time integration methods for the structural dynamics, and
is the method we chose for the advancement in time of our structural
module.

It is unconditionally stable, second-order accurate and characterised
by an optimal combination of high-frequency and low-frequency dissi-
pation: for a user-defined damping of the high-frequency modes, the
low-frequency modes dissipation is minimised.

It contains as special cases the HHT-α method and also another member
of the Newmark’s method, the WBZ-α method [167]: Wood et al. (1980), ‘An alpha

modification of Newmark’s method’
[167], where a modified

expression for the acceleration is used in Equation 3.75c.
The gen-α method is recommended for long simulations, has shown
smaller errors than the other dissipative schemes in many different cases
in the literature, and finally has been used in all the structural modules
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for FSI in wind energy presented in Chapter 1. Moreover, the method
performed better than the Newmark and the HHT-α methods in all
our test cases, and suppressed with success the spurious oscillations
observed with the other methods.

The equations for the generalised-α method are:

dn+1 = dn + ∆tvn +
∆t2

2
[(1− 2β)an + 2βan+1] , (3.79a)

vn+1 = vn + ∆t [(1− γ)an + γan+1] , (3.79b)

Man+1−αm + Cvn+1−αf + Kdn+1−αf = F (tn+1−αf ), (3.79c)

d0 = q0, (3.79d)

v0 = v0, (3.79e)

a0 = M−1 (F (0)−Cv0 −Kd0) , (3.79f)

where:

dn+1−αf = (1− αf )dn+1 + αfdn, (3.80a)

vn+1−αf = (1− αf )vn+1 + αfvn, (3.80b)

an+1−αm = (1− αm)an+1 + αman, (3.80c)

tn+1−αf = (1− αf )tn+1 + αf tn, (3.80d)

and the parameters are such that:

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, (3.81a)

β =
1

4
(1− αm + αf )2, (3.81b)

γ =
1

2
− αm + αf . (3.81c)

The parameter ρ∞, the so-called spectral radius, specifies the numerical
dissipation for the high frequencies modes. In all our simulations, we
adopted a spectral radius ρ∞ = 0 that guarantees asintotic annihilation,
i.e. spurious high frequencies are eliminated after one time step.
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In this chapter, we present the Fluid-Structure Interaction methodology
that we propose to join our fluid and structural solvers.

After having presented the different Frames of Reference (FORs) defined
to describe the rotor, the blades and the airfoils’ position and orientation,
we explain the staggered approach that we implemented, and finally
we highlight its advantages and disadvantages.

4.1 Frames of Reference

In the description of the structural dynamics of a wind turbine blade,
it is possible to define different frames of reference. The different direc-
tional quantities in the blade kinematics and dynamics have sometimes
easier representations in specific frames and can be seen in other frames
by means of coordinates transformations.

Coordinates transformation operator

In the following, we use the same notation introduced in the previous
chapter to describe the coordinates of a directional quantity v in a
certain FOR RE , defined by the versors of its basis Ei:

(v)E =

v ·E1

v ·E2

v ·E3

 =

v1

v2

v3



Over the past decade, the wind energy industry has achieved significant improve-
ments in energy production and cost efficiency, driven in part by increased turbine,
blade, and tower sizes. The recent study of the so-called “supersized” turbines
involves a growing interest in the characterization of the interaction between the
fluid and the inherently more flexible structural components. The credits for the im-
age above the chapter title go to DNV-GL. https://www.dnvgl.com/publications/
r-d-pathways-supersized-wind-turbine-blades-142666

https://www.dnvgl.com/publications/r-d-pathways-supersized-wind-turbine-blades-142666
https://www.dnvgl.com/publications/r-d-pathways-supersized-wind-turbine-blades-142666
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We introduce a coodinate transformation operator R, such that, given
two FORs, Re and RE , we have that:

(v)E = Re→E (v)e (4.1)

where Re→E is the transformation matrix from Re to RE corresponding
to R. From linear algebra, the corresponding matrix is given by:(

Re→E)
ij

= Ei · ej (4.2)

and is such that, if the bases Ei and ej are orthonormal (Ei ·Ej = δij
and ei · ej = δij),

RE→e =
(
Re→E

)−1
=
(
Re→E

)T
. (4.3)

Orientation angles

In general, the orientation of a wind turbine blade without cone angle,
is given by:

The yaw angle or yaw error Ψ(t). It is individued by the normal-
to-rotor directionEΨ2

and the streamwise direction of the wind e1.
A non-zero yaw error entails an asymmetry in the load distribution
on the turbine and larger fatigue loads in turn. Moreover, the
effective area of the rotor disk is reduced and power production
drops as well.
If included, the eventual yaw angle is oriented in a way that a
positive angle rotates the disk according to the right-hand rule
around the vertical inertial axis y, EΨ3

= e2.
The azimuthal angles Θi(t). They are individued by the radial vec-

tors that describe the span axis of each single blade EΘ1i
(t) and

a reference coordinate direction in the rotor plane. The azimuthal
angles describe the revolution of each blade for given angular
speed Ω and acceleration Ω̇. The dynamics of the azimuthal
angle is defined by the angular momentum balance between the
aerodynamic and the generator torques in Equation 2.46. The
angles Θi(t), for a three-blade wind turbine, are related each
other by the trivial relation:

Θi = Θ1 + (i− 1)
2

3
π, i = 1, 2, 3. (4.4)

The azimuthal angle is defined with an orientation that is op-
posite to the right-hand rule around the vector EΘ2 , which is
normal to the rotor and points in the direction of the flow. As a
result, the angular speed vector is Ω = −Θ̇iEΘ2

and the angular
acceleration is Ω̇ = −Θ̈iEΘ2

. Hence, our wind turbine rotates
counterclockwise, if seen from an upwind frontal plane (see Figure
4.5).

Locally then, to describe the effect of the deformation on the orientation
of a certain profile, the coordinates need a transformation according
to the deformation angles from the structural dynamics solver. We
call θi(t) the rotation angles around the i-th axis of the undeformed
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configuration, according to the right-hand rule. These angles define
the orientation of the planes composing the blades, in a proper “beam”
fashion.

Finally, given the fact that the blades have a fixed structural twist that
varies along the span, to describe the orientation of a profile laying
on a certain radial section plane, a coordinate transformation matrix
has to consider also the variable pre-twist φ, and depends only on the
radial position.
We decided to orient the pre-twist angle according to the right-hand
rule around the deformed radial axis, such that a positive pre-twist
rotates the leading edge downward.

In defining the coordinates transformation with the angles Ψ, Θ, θi,
and φ, we decided at first to orient the relative FORs at the initial time
instant such that the reference blade is parallel to the fixed spanwise
axis z, i.e. blade 1 with θ1 = 0 at t = 0. In order to make coherent the
orientation of the different FORs and the following transformations, an
auxiliary coordinate FOR Rβ is defined, such that:

Eβ1
:= e3

Eβ2
:= e1

Eβ3
:= e2

(4.5)

Coordinates transformation matrices

Once decided the conventions for the angles orientation, we can define
the coordinates transformation matrices accordingly.

FOR Re to FOR Rβ This change of coordinates is characterized by
the combination of two perpendicular rotations that bring to the
right-handed coordinates FOR in Equation 4.5. Looking at Figure
4.1, we have:

Rβ := Re→β =

0 0 1

1 0 0

0 1 0

 . (4.6)

Figure 4.1: FOR Re to FOR Rβ .

FOR Rβ to FOR RΨ This change of coordinates is characterized by
a rotation around the axis EΨ3 = Eβ3 of an angle Ψ, as shown
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in Figure 4.2. Thus, we have:

RΨ := Rβ→Ψ =

 cosΨ sinΨ 0

−sinΨ cosΨ 0

0 0 1

 . (4.7)

Figure 4.2: FOR Rβ to FOR RΨ.

FOR RΨ to FOR RΘ This change of coordinates is characterized
by a right-hand rotation around the axis −EΘ2

= −EΨ2
of an

angle Θ, as shown in Figure 4.3. Thus, we have:

RΘ := RΨ→Θ =

 cosΘ 0 sinΘ

0 1 0

−sinΘ 0 cosφ

 . (4.8)

We call the FOR RΘ also as RE . This FOR is the one used in the

Figure 4.3: FOR RΨ to FOR RΘ.

structural dynamics, since the structural twist is already consid-
ered in the local-to-datum elemental coordinates transformations.
The displacements and their derivatives from the structural solver
have hence the directions of the coordinate directions Ei of the
FOR RE , which considers the change of orientation β, the yaw
angle Ψ and the azimuthal angle Θ.
We group these first transformations in the rigid coordinates
transformation matrix RE describing the rotation of the radial
axis of the blade (i.e. the actuator line), at a certain time instant.
Thus, we have:

RE := RΘ · RΨ · Rβ =

 sΨ cΘ sΘ cΨ cΘ
cΨ 0 −sΨ

−sΨ sΘ cΘ −cΨ sΘ

 , (4.9)
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where we indicate with sµ and cµ, respectively, the sine and cosine
of the generic subscript angle µ.

FOR RΘ to FOR Rε We call Rε the configuration that considers
the change in orientation of the wind turbine blade sections after
the elastic rotational deformation. We can define the coordinates
transformation matrix Rel using the deformation angles from the
structural solver with respect to the undeformed configuration
and the undeformed axes defined by RE .
In general, the elastic transformation can be seen as a combination
of the three ordered finite rotations θ1, θ2 and θ3. For the single
rotations, the transformation matrices are thus:

R1 =

1 0 0

0 c1 s1

0 −s1 c1

 , R2 =

c2 0 −s2

0 1 0

s2 0 c2

 , R3 =

 c3 s3 0

−s3 c3 0

0 0 1

 ,
(4.10)

where we indicate with ci and si, respectively, the cosine and
sine functions for the angle θi. From their ordered combination
(θ1 → θ2 → θ3), we have that:

Rel = RE→ε = R3 · R2 · R1 =

=

 c2 c3 c2 s3 − s2

−c1 s3 + s1 s2 s3 c1 c3 + s1 s2 s3 s1 c2
s1 s3 + c1 s2 c3 −s1 c3 + c1 s2 s3 c1 c2

 .
(4.11)

More precisely, the final configuration depends on the order in
which the three finite rotations are considered. However, under
the hypothesis of infinitesimal rotations, where cosine and sine
functions are linearised, the commutative property holds, and we
have that:

Rel =

 1 θ3 −θ2

−θ3 1 θ1

θ2 −θ1 1

 (4.12)

It is important to notice that the assumption of infinitesimal rota-
tions is perfectly in line with the linearity assumptions inherently
included in our structural model.
Moreover, at this stage, we have neglected the effect of the dis-
placement in the FSI coupling. Its inclusion would mean changing
the position of the velocity sampling points needed for the actu-
ator line and changing the position of application of the forces,
with a fully-deformable actuator line. Unfortunately, the resolu-
tion needed to describe adequately the structural deformation in
the fluid domain, would mean having a cell size in the fluid grid
much smaller than 1 m. As a result, this would mean either a
really computationally expensive simulation or a fine simulation
with a reduced extent of the domain size, which could lead to
errors in the boundary conditions and a reduced extent of the
analysable wake behind the wind turbine.
Furthermore, the linear structural model developed in this study
is not able to describe adequately the follower nature of the load
on structures with large deformations, and so the inclusion of the
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Figure 4.4: Ladder-like scheme of the
two-way coupling method for Runge-
Kutta (RK)-steps n and n + 1. The
fluid state F is indicated on the left,
the structural state S is indicated on
the right. The aerodynamic loading Φ
and its estimations are indicated in the
middle; udef is the local deformation
velocity, and θ is the local vector of
the deformation angles.
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displacement would question the validity of the adopted structural
modelling itself.

FOR Rε to FOR RΣ Once derived the orientation of the planes of
the airfoils according to the yaw error, the blade position and
the elastic deformation, in order to finally derive the geometrical
configuration used to derive the incidence, we must include an
additional rotation induced by the structural pre-twist, which
defines the effective orientation of the airfoil on the radial planes
along the span.
This change of coordinates is characterised by a rotation around
the versor Eε1 = EΣ1

tangent to the deformed blade’s centerline
of an angle φ. Thus, we have:

Rφ = Rε→Σ =

1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 . (4.13)

4.2 FSI Coupling Method

In the classic implementation of the ALM, the model assumes that the
actuator lines move as rigid bodies and evaluates the local angle of
attack only on the basis of the fluid velocity in correspondence of the
actuator lines and of the rotational velocity at each section, as reported
in Section 2.4.

The schematic rationale of the algorithm adopted in our two-way
coupling aeroelastic model is shown in Figure 4.4. The model is based
on two independent or partitioned solvers exchanging information once
per time substep, in a loose partitioned coupling approach [46].
At the beginning of each RK time substep n, the distribution of the
effective angle of attack αn is estimated along each blade from the fluid
state Fn (consisting of the velocity field), the angular speed Ωn, and the
elastic state Sn. In particular, the latter can include the instantaneous
information of both the deformation velocity udef and the local vector of
the deformation angles θ (torsion and bendings). Given the aerodynamic
look-up tables of the airfoils or the unsteady aerodynamics history, a
blade element approach determines the distributions of the aerodynamic
forces and moments per unit length Φn, then used in the ALM. In
order to estimate the structural state at the following instant Sn+1, the
external loading at time n+ 1, required by the generalised-α method
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Figure 4.5: Different FORs defined for the description of the FSI problem of wind energy. The frame RE rotates rigidly
around the hub centre O, with E2 constantly pointing at the positive streamwise direction (in case of null yaw error, Ψ = 0). At
a generic section at point P along the blade, the blade pre-twist φ and the instantaneous angular deformation (only torsion
is shown in figure) define the local FOR RΣ, where the effective angle of attack is defined. The velocity vectors show the
combination of the different components in the plane of a generic profile.

for ρ∞ = 0, is approximated by the available aerodynamic loading Φn

at each RK substep.

We implemented, therefore, a so-called parallel staggered algorithm
[44], given the fact that we did not correct exactly the prediction of the
structural deformation after the final evaluation of the fluid state, but
instead we limited inter-field communications only at the beginning
of each RK substep, and we used the consecutive approximations of
the aerodynamic forces available at those instants. This allows us
to leverage the knowledge of the aerodynamic loading from the fine
temporal resolution of the fluid RK scheme to increase the accuracy
of the structural scheme, without re-evaluating the forces and the
structural state in correspondence of the new fluid state, and thus
preserving the overall efficiency of the code.

The method is at least first-order accurate, even if the inter-field
parallelism is obtained at the expense of possible amplified errors in
the mutual interaction and response of the single fields [44]. However,
without subcycling the fluid computations, i.e. using the same time
(sub)step for the solid and the fluid dynamics, it has been demonstrated
that a non-negligible amplification of the errors appears only in the
case of critical conditions like flutter or similar strong instabilities, and
that by adopting a reduced time step the error produced is limited
and even smaller than with other more sophisticated parallel staggered
algorithms. In fact, we adopt a very fine temporal resolution because of
the time step limitations in our LES simulations required by the ALM
to obtain an accurate description of the wind turbine flow field (see
Section 2.2).

Because of the presence of different FORs, the relative velocity and
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the effective angle of attack in Equation 2.39 and Equation 2.45 are
defined by means of a matricial notation. To better point out the
transformations adopted, we use in this section the convention according
to which (see Figure 4.5):

I the lower-case subscript indices refer to the components in the
inertial FOR Re;

I the upper-case subscript indices refer to the components in the
FOR RE rigidly rotating with each blade;

I the lower-case greek subscript indices refer to the components in
the local FOR RΣ, defined by the instantaneous orientation of
each airfoil.

According to the method presented, the relative velocity uP,rel of a
point P belonging to an actuator line is expressed as:

uP,rel = uP,abs − uP,def −Ω×OP , (4.14)

where uP,abs is the absolute fluid velocity sampled at point P, uP,def

is the deformation velocity of the blades described by the modal com-
position of q̇ (see Chapter 3), and Ω×OP is the rotational velocity
component at the same point. To determine the local flow at each
section, assuming null yaw error, the relative velocity in RΣ can be
expressed in Einstein notation as follows:

uP,relσ = Re→Σ
σj uP,absj − RE→Σ

σJ uP,defJ − Re→Σ
σj εjkmΩkOPm. (4.15)

According to the notation introduced in the previous sections, and
assuming for simplicity a null yaw error, it follows that:

Re→Σ = RE→Σ RΘ =
(
Rφ Rel

)
RΘ =

=

1 0 0

0 cosφ sinφ

0 −sinφ cosφ

  1 θ3 −θ2

−θ3 1 θ1

θ2 −θ1 1

 0 sinΘ cosΘ

1 0 0

0 cosΘ −sinΘ


(4.16)

In accordance with the definition of the coordinate directions of RΣ,
the effective angle of attack and the relative velocity in Eqs. 2.39 for
the generic point P on the actuator line are expressed as:

α = atan

(
−
uP,relσ2

uP,relσ3

)
and Uref =

√(
uP,relσ2

)2

+
(
uP,relσ3

)2

,

(4.17)
where we consider only the components in the plane of the local profile
on directions σ2 and σ3, see Figure 4.5.

By means of the described model, we are able to consider the effects
of various levels of complexity in the coupling configuration. In the
two-way coupled simulations reported in this work, we consider only
the effects on the incidence of the flap- and edgewise deformation
velocities without any angular deformation (uP,defJ 6= 0 in Eq. 4.15
and θ1 = θ2 = θ3 = 0 in Eq. 4.16), and also the effect of the torsional
angle θ1 (uP,defJ 6= 0 in Eq. 4.15 and θ1 6= 0, θ2 = θ3 = 0 in Eq. 4.16),
given the fact that the contributions of the other degrees of freedom
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are less relevant in the cases under study with respect to the included
degrees.

4.3 Advantages and Disadvantages

The main advantage of our simplified aeroelastic method is that it
exploits the sectional 1D formulation of the Actuator Line Model to
avoid the difficulties in the fluid-solid interface treatment. In the body-
conformal approaches, the interface between the solid and the fluid
domain involves the imposition of kinematic and traction conditions as
mutual boundary conditions on moving surfaces. In our case, the struc-
tural motion and the aerodynamic forces on the blades are interpolated
by simple 1D polynomial interpolation functions.

Moreover, the reduced computational cost of the modal structural
solver, but also the inter-field parallel algorithm implemented, allow
the preservation of the computational efficiency of our simulations,
which is already dominated by the relevant burden of the Large Eddy
Simulation methodology.

On the other hand, as in all the cases of loose coupling, the accuracy
and the stability of the method is difficult to characterise. In particular,
some studies have pointed out the possible limitations of the parallel
staggered algorithm adopted and different implementations could be
considered for future works, such as the classic conventional-serial
staggered algorithm or other improved parallel algorithms [47].

More complex algorithms would need consecutive re-evaluations to
improve the estimation of the aerodynamic forces and of the elastic
state. However, we stress once again that the time step required by
the fluid methodology is much smaller than the one required by the
typical structural unsteadiness of the blades (mainly related to the first
structural eigenmodes), and is certainly smaller than the requirements
for stability and accuracy of the complete FSI algorithm.
Just to give a practical example of the order of magnitude of the
quantities involved, a typical fluid time step of our simulations is
∆tF ≈ 0.0021 s, which means, for a fluid three-stage RK scheme, that
the average time step of the structural dynamics is about ∆tS ≈ 0.0007 s

with an associated sampling frequency of 1429Hz, far beyond the last
natural frequency of the blades considered in this study f20 ≈ 20Hz

and even further from the frequencies of the first six modes, which are
the most relevant ones for the overall structural response.
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Table 5.1: Gross properties of the
NREL 5 MW wind turbine [51].

Rating 5 MW
Rotor Orient. Upwind
Rotor Config. 3 Blades
Control Var. Speed
Hub Diam. Dhub 3 m
Rotor Diam. D 126 m
Hub height h 90 m
Cut-In Wind Speed 3 m/s
Rated Wind Speed 11.4 m/s
Cut-Out Wind Speed 25 m/s
Rated Wind Speed 80 m/s
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This chapter presents the setup used in the simulations that we carried
out for this work.

At first, we present the features of the wind turbine considered in
our study, focusing in particular on the structural and aerodynamic
properties of its blades. Then we describe the fluid setup, providing
information about the fluid domain of our LES simulations, on the grid
used, and on the inflow prescribed. Hence, we describe the structural
setup, providing information about the blades discretisation and the
modes of the structure. Finally, we present an overview of all the
simulations carried out, each with its own specific inflow, coupling and
aerodynamic conditions.

5.1 Wind Turbine

In order to use realistic and standard input data for our study, we
decided to take into account the 5 MW baseline wind turbine model
developed by the National Renewable Energy Laboratory (NREL). The
NREL 5 MW wind turbine is a conceptual wind turbine, i.e. for which
no real model has been built physically, whose essential features are
well described by tabulated data representative of a typical utility-scale
wind turbine [51].
Because of the availability and representativeness of its aerodynamic,
structural and control features, the NREL 5 MW is probably the most
widely used wind turbine in the aeroelasticity studies, as can be seen
from the literature review in Section 1.3. The main gross properties of
the wind turbine are reported in Table 5.1.

Four of the turbines on a TransAlta Renewables wind farm in Alberta, Canada.
Wind turbines simulation involve challenging computational requirements related
to the large separation of the scales of the problem. The computational setup is
thus critical and must guarantee a good resolution of both the small flow scales
close to the blades and the large flow scales of the wakes.
The credits for the image above the chapter title go to Calgary Drone Photography.
https://news.stanford.edu/2019/07/01/steering-wind-power-new-direction/

https://news.stanford.edu/2019/07/01/steering-wind-power-new-direction/
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Figure 5.1: Sketch of the NREL 5
MW wind turbine geometry used in
this work.

In our study, in order to simplify the representation of the blades,
precone is not considered. Moreover, given the absence of precise speci-
fications in this regard, we assumed the nacelle to be a parallelepiped,
with dimensions inferred from one of the original references used to
define the NREL 5 MW wind turbine[168]: Lindenburg et al. (2002), Aeroe-

lastic modelling of the LMH64-5 blade
[168]. Figure 5.1 shows a detailed

sketch of the geometry specifications reported in the reference manual.
The wind turbine control system is made of a conventional variable-
speed, variable pitch-to-feather mechanisms. In this configuration, a
generator-torque controller maximises the power production below the
rated conditions, while a blade-pitch controller regulates the generator
speed to preserve the machine safety above the rated conditions. As
stated in Section 2.4, all the simulations of this work were carried out
in conditions of optimal power capture, where the blade-pitch controller
is not active and the generator-torque controller guarantees an optimal
tip speed ratio. By using a simple BEM algorithm, it is possible to
estimate the behaviour of the CP and CT coefficients as functions
of the operating conditions represented by the tip speed ratio TSR.
These curves provide easily the rotor power and thrust coefficients and
are inherently dependent on the specific turbine considered and on
the airfoils defining the blades. Figure 5.2 shows the TSR − CP and
TSR− CT curves of the NREL 5 MW wind turbine. The peak power
coefficient of CmaxP = 0.486 is reached at TSRopt ≈ 7.5, for a thrust
coefficient equal to CT = 0.786.
To complete the description of the turbine, we report in the following
the structural and aerodynamic properties of the NREL 5 MW blades.
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Figure 5.2: Power and thrust coeffi-
cients of the NREL 5 MW wind tur-
bine as a function of the tip speed ratio.
The dotted vertical line indicates the
optimal tip speed ratio.

NREL 5 MW blades

Both the structural and the aerodynamic properties of the NREL 5
MW wind turbine blades are slight modifications of the ones of the
DOWEC blades [168], which are longer and larger.

Figure 5.3 reports the plots of the distributed structural properties
along the nondimensional radial undeformed structural axis X1/L, with
L being the length of the blade. These are respectively:

1. the structural twist φ;
2. the distributed blades section mass per unit length ρA;
3. the principal flapwise section stiffness EI2;
4. the principal edgewise section stiffness EI3;
5. the blade torsion stiffness GJ ;
6. the blade extensional stiffness EA.

The pitch axis is assumed to pass through each airfoil at the quarter of
their own chords. The relative position of the edgewise centre of mass
offset and the aerodynamic centre with respect to the quarter of chord
is shown in Figure 5.4. The overall integrated blade mass of 17740 kg

is distributed along the blade span of 61.5 m.

Finally, the aerodynamic properties of the NREL 5 MW blades are
defined by eight unique airfoils distributed as reported in Figure 5.4.
After two span sections made of cylindrical regions, six wind energy
airfoils of the DU and NACA families define the aerodynamic response
of the turbine. In the case of steady aerodynamics, the tabulated data
of the airfoil coefficients define at each instant the lift, drag and moment
per unit of length (see Figure 5.5); on the other hand, in the case with
UA, the dedicated dynamic module determines the sectional forces. The
tabulated data, used for the static aerodynamics and in the derivation
of the UA parameters, have been originally corrected to account for
the three-dimensional behaviour of the airfoils.

We highlight that in the original model described in the reference
manual [51], and adopted in this work, the passage from an airfoil
kind and an another is abrupt, and so there is no guarantee about the
continuity of the aerodynamic forces along the span, especially for the
pitching moment coefficient which at the same angle of attack can have
different values from airfoil to airfoil, as can be seen from Figure 5.5.
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Figure 5.3: Distributed structural properties of the NREL 5 MW wind turbine blade along the radial undeformed axis X1.

Figure 5.4: Aerodynamic centre (red), centre of mass (blue) and aifoils of the NREL 5 MW wind turbine blade.

Figure 5.5: Aerodynamic coefficients of the six airfoils of the NREL 5 MW wind turbine.
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5.2 Fluid Setup

To define a sound geometrical domain, able to capture the physics of
the wake behind the wind turbine, and to adopt a reasonable resolution,
balancing accuracy and computational cost, we performed a preliminary
study to establish the fluid setup for our simulations.

When Large Eddy Simulations with the Actuator Line Model are
adopted to study the flow field produced by the wind turbines, generally
large domains are considered to minimise the undesired effects of the
boundary conditions. Sarlak et al., 2016 [169]: Sarlak et al. (2016), ‘Assessment

of blockage effects on the wake charac-
teristics and power of wind turbines’

[169] define un upper limit
for the blockage ratio BR, i.e. the ratio between the area swept by
the rotor πD2/4 and the frontal section of the computational domain
L2L3, in correspondence with the optimal TSR equal to approximately
0.05. For larger values of the BR ratio the small computational domain
starts to affect also the mean velocity of the wake. Moreover, from
previous works in our groups, we noticed that using a reduced extent
of the fluid domain in the direction normal to the wall (L2) can affect
the results too, even if the overall blockage ratio is below the Sarlak’s
threshold.

For this reason, the starting point of the study of our setup configuration
was a mesh with L2 = 10D and L3 = 5.76D (BR = 0.013). The fluid
domain streamwise extension of L1 = 9D is probably smaller than the
usual longitudinal extensions used in similar simulations, but it proved
to be sufficient to study the phenomena of interest for this work, and
allowed faster simulations with the final fine resolution adopted. After
a first set of coarse simulations with 50 points per diameter, we reduced
the later extension of the domain to L3 = 2.88D (BR = 0.027) and we
increased the number of points to obtain a uniform resolution of 150

points per diameter in the region of the rotor.

Figure 5.6 shows the two-point autocorrelation in the spanwise direction
of the three velocity components Ruiui(ζ) at the hub height in a region
close to the inlet. The decay of the curves proves that the reduced lateral
extension is still sufficient to avoid most of the undesired confinement
effects of the large-scale structures from the periodic lateral boundary
conditions. As a result, the chosen spanwise extension seems to be a
good compromise between computational cost and sufficient domain
width.

Figure 5.6: Two-point autocorrela-
tion in the spanwise direction of the
velocity components at hub height and
close to the inlet (Ru1u1 –, Ru2u2 –,
Ru3u3 –).
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Figure 5.7: Percentage difference of the phase-averaged results of one of the coupled simulations (ALM/IV, see Section 5.4)
with respect to the uncoupled simulations (ALM) results (see Chapter 6 for further explaination). The first row reports the
difference for the incidence, the aerodynamic moment, the out-of-plane and in-plane aerodynamic force for the case with 50
points per diameter, the second row reports the corresponding plots for the case with 150 points per diameter.

For what concerns the grid sensitivity study, the change in resolution
between 50 and 150 points did not produce particular changes except
for an obvious increased resolution in the description of the fluid field
and the aerodynamic forces. However, the aeroelastic behaviour that
will be presented in Chapter 6 did not show relevant changes (see
Figure 5.7). We then tried to increase further the resolution to 200

points per diameter, with fixed domain geometry, but even in this
case no particular change was observable in the physical description
despite a relevant increase in the computational cost of the simulations.
For this reason, we opted for the final resolution of 150 points per
diameter, which represents a good compromise between accuracy and
computational cost. Moreover, such a resolution is far beyond the grid
requirements suggested by Troldborg et al., 2009 [132], which indicates
in 50 points per diameter the minimum resolution required by the
Actuator Line Model.

The final fluid computational domain, shown in Figure 5.8, was thus
equal to 9.00D × 10.00D × 2.88D in the streamwise, wall-normal and
spanwise inertial directions respectively. We discretised the domain
by means of a structured orthogonal mesh of 1297× 433× 433 points.
While the streamwise and lateral discretisations are uniform, after 300

equally-spaced points covering the lowest portion of the domain (to
obtain an isotropic grid in the rotor region), we stretched the grid in the
wall normal direction as shown in Figure 5.9, in order to better optimise
the grid in the y direction and to limit the overall grid requirements.
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Figure 5.8: Typical fluid domain
of our simulations with the adopted
nomenclature.

Figure 5.9: Vertical grid distribution.
Nondimensional grid point coordinate
yn/D as a function of the node index
jn (left). Nondimensional cell centre
coordinate yc/D (left axis) and cell
number jc (right axis) as a function
of the corresponding cell spacing ∆y
(right). More than the half of the points
is concentrated in the rotor region.

The wind turbine is located at the spanwise centre of the domain
and at a streamwise distance of approximately 3D from the inlet.
Additional tests where the wind turbine was located further downstream
from the inlet did not produce relevant differences in the considered
computational domain (Figure 5.10).

Finally, we prescribed periodic boundary conditions at the lateral
boundaries, free-slip boundary condition at the top surface, and radia-
tive boundary conditions at the outlet. Van Driest damping functions
[125] correct the behaviour of the flow close to the no-slip bottom wall.
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Figure 5.12 shows the comparison of the premultiplied spectra of the
streamwise velocity fluctuations obtained from the precursor simulation
results, the Mann model and also the theoretical Von Kármán model for
the incompressible isotropic turbulence [173]: Von Karman (1948), ‘Progress

in the statistical theory of turbulence’
[173]. The a priori imposition

of the spectral quantities makes the Mann model spectrum well defined
for the entire wavenumber range. On the other hand, the precursor is
able to reproduce the typical −5/3 law, although the limited tempo-
ral sampling adopted to extract the velocity inflow, then fed to the
main simulations, produces an undersampling error observable in the
high-wavenumber range. However, the simulation is able to provide
a physically sound field without particular limiting assumption on
the mean field, as in the theoretical models, and with the accuracy
in the fluid dynamics description stemming from a high-fidelity LES
simulation of the boundary layer.

Finally, Table 5.2 reports a synthetic overview of the main features
of the mean fields and of the turbulent fluctuations for the inflow
sets adopted in this work. In particular, we report the imposed mean
velocity at the hub Uhub and the shear exponent α that define the
mean shear, the nondimensional integral length scales l1/D derived
from the autocorrelation of the streamwise velocity fluctuations at the
hub, and the weighted average of the streamwise turbulence intensity
TI% = 100σu/U on the rotor area. In order to distinguish in the table
the different inflows, we indicate with LAM the case of the laminar
uniform inflow, with T1 the case of the first turbulent inflow with the
lower turbulence intensity, and with T2 the case of the second turbulent
inflow with the higher turbulence intensity.

Acronym Uhub α l1/D TI%

LAM 10 m/s 0.00 – 0
T1 10 m/s 0.14 1.0 2
T2 10 m/s 0.20 2.3 10

Table 5.2: Overview of the main fea-
tures of the fluid inflows adopted.
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(a) u′1 (b) u′2 (c) u′3

Figure 5.11: Instantaneous fluctuations of the velocity components from the precursor simulation on a vertical slice at a
generic time instant.

Figure 5.12: Comparison of the pre-
multiplied spectra of the streamwise
velocity component at hub height. Pre-
cursor data –, Mann model –, Von Kár-
mán isotropic turbulence.
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5.3 Structural Setup

To define the setup of the structural solver, we also carried out a
preliminary study, to decide the proper number of modes and structural
nodes for the problem.

As a first thing, we verified that the spatial resolution of the structural
model used to carry out the modal analysis was sufficient to obtain
converged results in terms of eigenfrequencies. We thus repeated the
modal analysis for four different discretisation charaterised by a number
of nodes equal to N = 40, 80, 160, 320 and we compared the results of
the eigenproblem with a fine solution obtained with N = 500 nodes.
Figure 5.13 shows the percentage relative difference of the first ten
eigenfrequencies as a function of the grid uniform spacing with respect to
the results of the fine case. It is possible to observe that a discretisation
of N = 80 points is sufficient to obtain a relative percentage error
much smaller than 1 %, although already 40 points guarantee a relative
error below 4 %. In order to validate the structural model built for
the blade, we compared the results of the eigenproblem also with the
ones obtained by a modal analysis in MSC Nastran, and the results
are almost identical.

Figure 5.13: Percentage relative dif-
ference of the first ten eigenfrequen-
cies as a function of the grid uniform
spacing with respect to the reference
fine case results. The number of nodes
N corresponding to the grid spacings
taken into consideration is reported on
the x axis instead of the spacing itself.
In red the average relative difference.

Figure 5.14 shows a comparison of the final natural frequencies of the
blade structural model compared to similar results from the literature
(only the first six modes are usually available). Table 5.3, instead,
reports the dominant nature of the first fifteen eigenmodes together
with the numerical values of the corresponding eigenfrequencies.

As an example, the behaviour of the 6 DOFs for the first 6 natu-
ral modes of the blades is reported in Figure 5.15 - Figure 5.20. A
three-dimensional representation, with amplified magnitude, of the first
flapwise, edgewise and torsional modes is reported instead in Figure
5.21 - Figure 5.23.



110 5 The Simulations Setup

Figure 5.14: Comparison of the first
six eigenfrequencies obtained with sev-
eral results from the literature.

Table 5.3: Eigenfrequencies and main
features of the first 15 modes. # fn [Hz] Mode

1 10.6763 1st flapwise
2 11.0858 1st edgewise
3 11.9485 2nd flapwise
4 14.0037 2nd edgewise
5 14.5167 3rd flapwise
6 15.5837 1st torsional
7 18.0219 4th flapwise
8 19.3914 3rd edgewise
9 19.7606 2nd torsional
10 12.5399 5th flapwise
11 14.5479 1st axial
12 14.7693 3rd torsional
13 17.1275 4th edgewise
14 18.1003 6th flapwise + 4th torsional
15 20.1605 4th torsional + 6th flapwise
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Figure 5.15: Mode 1 DOFs.
dmax1 = 3.61e− 08, dmax2 = 3.36e− 02, dmax3 = 3.81e− 03, θmax1 = 1.66e− 04, θmax2 = 1.20e− 04, θmax3 = 1.32e− 03.
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Figure 5.16: Mode 2 DOFs.
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Figure 5.17: Mode 3 DOFs.
dmax1 = 4.89e− 07, dmax2 = 4.20e− 02, dmax3 = 3.29e− 03, θmax1 = 2.09e− 04, θmax2 = 2.24e− 04, θmax3 = 3.99e− 03.
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Figure 5.18: Mode 4 DOFs.
dmax1 = 3.01e− 05, dmax2 = 1.36e− 02, dmax3 = 3.57e− 02, θmax1 = 3.70e− 04, θmax2 = 2.62e− 03, θmax3 = 1.94e− 03.
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Figure 5.19: Mode 5 DOFs.
dmax1 = 1.13e− 05, dmax2 = 4.59e− 02, dmax3 = 1.07e− 02, θmax1 = 4.51e− 03, θmax2 = 9.19e− 04, θmax3 = 7.27e− 03.
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Figure 5.20: Mode 6 DOFs.
dmax1 = 2.90e− 06, dmax2 = 7.60e− 03, dmax3 = 1.39e− 03, θmax1 = 3.44e− 02, θmax2 = 1.45e− 04, θmax3 = 8.51e− 04.
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Figure 5.21: First flapwise mode (amplified magnitude).

Figure 5.22: First edgewise mode (amplified magnitude).

Figure 5.23: First torsional mode (amplified magnitude).
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We then tried to carry out a “static” and “dynamic” study of the
convergence also of the eigenmodes, in the attempt of establishing the
number of nodes and modes to be adopted in the structural model of
our simulations. In order to do this, we have considered the following
issues:

I the structural resolution defined by the number of nodes along the
blade, should not be much different from the fluid one. As already
pointed out, several studies in the literature [132, 137] suggest
that a discretisation of the actuator line with at least 25 points
would be necessary to capture the fluid flow behind the wind
turbine. This represents, thus, a lower limit for the structural
discretisation too, in order not to lose the spatial accuracy in
the airloads distribution provided by the fluid solver. However,
this resolution could not be sufficient to obtain convergence and
accuracy of the structural dynamics and additional considerations
should be taken into account.

I A poor resolution in space of the structure deteriorates the accu-
racy in space of the eigenmodes from the modal analysis and thus
can also compromise the modal projection of the loads, affecting
the overall estimation of the structural dynamics.

I The number of structural nodes should be able to actually de-
scribe the modal shape and to avoid spatial aliasing for high
frequency – and wavenumber – eigenmodes. As a matter of fact,
higher frequency modes are characterised by a higher wavenumber
content that is fundamental if one wants to attempt to capture
the eventual high wavenumber content of the loads acting on the
structure. Modal forces are space projections of the nodal loads,
given by the convolution of the load distribution along the span
and the modal shapes. As a result, an erroneous estimation of the
wavenumber spectral content of the modes due to a poor number
of nodes, can be highly detrimental for the correct projection of
those loads that vary considerably along the blade.

I Finally, the range of eigenfrequency considered defines the struc-
tural response in time. Hence, the number of modes should be
such that the considered eigenfrequencies are able to describe
the typical characteristic frequencies of the loads. Given the typ-
ical spectra of the moment reactions (see Figure 5.24), it can
be seen that most of the energy content of the forcing is in the
low-frequency range, below 4 Hz. Hence, for our structure and
its eigenfrequencies (Table 5.3), a minimum number of modes
Nm = 4 is necessary to describe the essential dynamics of the
structure.

Given these considerations, we examined the solution of a reference test
case with four different numbers of nodes N = 40, 50, 80, 100 and five
different numbers of corresponding modes Nm = 4, 8, 12, 16, 20. The
case consisted in the unsteady response of the blade for a rotor revolu-
tion, under the sinusoidal gravity loading and a constant aerodynamic
loading in the flapwise, edgewise and torsional directions. The results
obtained were then compared with a reference solution derived with
a discretisation of N = 400 points and a number of modes Nm = 40.
The norm of the difference between all the degrees of freedom of the
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Figure 5.24: Power spectra of the in-plane (left) and out-of-plane (right) bending moments at the blade root. [174]

Figure 5.25: Sensitivity map report-
ing the error of the test case solution
obtained with given N and Nm with re-
spect to a reference fine solution. Each
of the – percentage – values of the con-
tour is determined as the L2-norm of
the difference, for all the degrees of
freedom, between the solution obtained
with the corresponding N and Nm and
the reference solution, divided by the
L2-norm of the reference solution itself.
Regions of N and Nm producing inad-
equate description of the modal shapes
(black) and of their wavenumber spec-
tra (grey) have been removed.

solutions considered and the ones of the reference solution is reported,
with respect to the norm of the reference solution itself, as a function
of N and Nm in Figure 5.25. As it can be noticed, we considered an
increased minimum number of modes equal to Nmin

m = 6, given also
the large error produced by the use of too few modes. Moreover, we
have excluded from the maps the regions for which the number of nodes
adopted is not able to produce an adequate description of the modal
shapes and of their wavenumber spectra, according to errors’ thresholds
that have been tuned manually.

In the end, in order to obtain a reduced error and to use a reduced
number of nodes and modes, we chose a number of modes Nm = 15 and
a structural discretisation of the blades given by N = 80 equally-spaced
nodes. As proved also in the next chapter, this setup is sufficient to
capture the most important features of the structural dynamics of the
blades.

5.4 Summary of the Simulations

At last, we report a brief overview of the simulations that we analyse
in the following chapters in Table 5.4. For the sake of brevity, we define
some acronyms to identify the set of simulations performed in terms of
FSI coupling and aerodynamics model. In particular, we have:
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ALM One-way FSI coupled simulations with steady aerodynamics.
The fluid solver sees the blades as rigid and the structural solver
evaluates at runtime the blades’ deformation on the basis of the
actuator line aerodynamic forces provided only by the fluid solver
using the static tabulated data of the airfoils.

ALM/IV Two-way FSI coupled simulations with steady aerodynamics.
In these simulations, the structural feedback to the fluid solver is
made only of the instantaneous bending deformation velocities of
the blades provided by the structural solver at runtime.

ALM/IVT Two-way FSI coupled simulations with steady aerody-
namics. In these simulations, the structural feedback to the fluid
solver includes also the instantaneous torsional deformation of
the blades in the definition of the local incidence.

ALM-UA One-way FSI coupled simulations with UA. The fluid solver
does not include any structural feedback to determine the local
incidence, but adopts a UA model to determine dynamically the
airfoil force and moment coefficients.

ALM/IV-UA Two-way FSI coupled simulations with UA. The instan-
taneous local incidence includes the effect of the blades structural
motion and the UA model determines dynamically the aerody-
namic coefficients.

We ran each simulation set for a Reynolds number based on the rotor
diameter and the hub velocity Re = 8.5 × 107, for approximately 60

revolutions, corresponding to almost 300 s, after the initial transient.

Table 5.4: Outline of all the simula-
tions carried out. # Name Inflow Def.Vel. Torsion UA

1 ALM T1 No No No
2 ALM/IV T1 Yes No No
3 ALM/IVT T1 Yes Yes No
4 ALM LAM No No No
5 ALM/IV LAM Yes No No
6 ALM-UA LAM No No Yes
7 ALM/IV-UA LAM Yes No Yes
8 ALM T2 No No No
9 ALM/IV T2 Yes No No
10 ALM-UA T2 No No Yes
11 ALM/IV-UA T2 Yes No Yes
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This chapter presents the analysis of the results of the first three
sets of simulations, ALM, ALM/IV and ALM/IVT, under T1 inflow
conditions. The aim of the comparison is to assess the capabilities of
our novel model to represent the aeroelastic response of our reference
wind turbine and to evaluate the effect of the flexibility on its overall
behaviour.

At first, we consider the power and thrust coefficients. Next, we discuss
the structural dynamics in terms of displacement and deformation
velocity components. Then, we analyse the change of the aerodynamic
forces and the dynamics of the root reaction. Finally, we present a
fluid flow analysis presenting mean field slices and visualisations of the
coherent structures in the domain.

Before proceeding further, we inform the reader that hereinafter, we
indicate the time average with an overbar symbol • and the phase
average with angle brackets 〈•〉. The phase average of a generic quantity
χ defined for each azimuthal position Θ(t) is defined as:

〈χ〉
(
Θ
)

= E(χ|Θ(t) = Θ) with Θ ∈ [0, 2π), (6.1)

where we indicate with E(χ|Θ = Θ) the conditional average of the
variable χ given the sampling variable Θ. For ease of notation, we
simply indicate the sampling variable of the phase average with Θ.

6.1 Power and Thrust Coefficients

From the time history of the power coefficient CP and the thrust
coefficient CT , normalised by means of the mean hub velocity Uhub,

The GE Haliade-X prototype is the world’s most powerful wind turbine operating
to date. It operates at a 13 MW power output and has a 220-metre rotor diameter.
It is reasonable to believe that for similar wind turbines, the structural deformations
can affect the normal operating conditions.
The credits for the image above the chapter title go to GE Renew-
able Energy. https://www.ge.com/renewableenergy/wind-energy/offshore-wind/
haliade-x-offshore-turbine

https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
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Figure 6.1: Phase average of the power and thrust coefficients. ALM —, ALM/IV —, ALM/IVT —, BEM [51] - -. Horizontal
straight lines indicate the corresponding time-averaged values.

Table 6.1: Comparison of the statistics of the power and thrust coefficients between the cases considered. The last two columns
report the percentage difference of the statistics for the ALM/IV and ALM/IVT cases with respect to the ALM one.

BEM ALM ALM/IV ALM/IVT ∆ALM/IV ∆ALM/IV T

CP 0.4860 0.4812 0.4807 0.4551 - 0.1 % - 5.4 %
CT 0.7860 0.7975 0.7975 0.7117 0.0 % - 10.8 %
σCP – 0.0167 0.0128 0.0133 - 23.3 % - 20.4 %
σCT – 0.0165 0.0130 0.0133 - 21.2 % - 19.4 %

we computed the phase-averaged behaviour reported in Figure 6.1, to
filter out the instantaneous fluctuations due to the turbulent inflow.

The periodic passage of the blades in front of the tower induces a
tower shadow effect with a drop in the power and thust coefficients
by about 10 %. The blade vibration influences the aerodynamic forces
especially when the blade passes in front of the tower, consistently with
previous observations [56]. In particular, the addition of the aeroelastic
coupling reduces the amplitude of the oscillations, and thus the standard
deviation of the two coefficients (Table 6.1). The time-averaged power
and thrust coefficient obtained with rigid ALM and ALM/IV are almost
identical (see Table 6.1 and the horizontal lines in Figure 6.1), despite
the differences observed before in the instantaneous value of the forces.
However, when we also consider the torsion of the airfoil section, the
power is significantly reduced, by approximately 5 % with respect to the
other two cases. Similarly, the thrust is about 10 % smaller, which could
also affect a possible a posteriori estimation of the tower deflection[175]: Feliciano et al. (2018), ‘Gener-

alized analytical displacement model
for wind turbine towers under aerody-
namic loading’

[175].
In general, this seems to imply that simulations perfomed considering
the blades as infinitely rigid overestimate the power coefficient and also
the momentum deficit behind the turbine.

Figure 6.2 presents the Power Spectral Density (PSD) obtained from the
time signals of the coefficients, to assess if the coupling procedure affects
the frequency content of the power and thrust signals. The periodic
passage of the three blades and the tower shadow effect induces distinct
peaks observable at the frequencies multiple of 3P , with P being the
rotational frequency. The spectral content of the ALM/IV case is almost
the same as the one of the ALM case, whereas in the ALM/IVT case,
the direct influence of the torsional deformation on the aerodynamic
forces adds a small, but distinct, contribution of the first torsional
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Figure 6.2: PSD of the power and thrust coefficients signals. The peaks at multiples frequencies correspond to the multiples of
3P , highlighted by vertical dashed lines, given the periodicity of the signal and of the passage of the blades. The vertical blue
line indicates the first torsional natural frequency of the blade f = 5.58 Hz and underlines the peak of the PSD in the ALM/IVT
case, especially for the thrust coefficient. ALM —, ALM/IV —, ALM/IVT —.
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Figure 6.3: Polar plots of the phase-averaged power and thrust coefficients fluctuations. ALM —, ALM/IV —, ALM/IVT —

natural frequency of the blades f = 5.58 Hz (see Table 5.3), typical of
the torsional vibration, especially to the thrust coefficient.

To investigate the specific effect of the torsional dynamics in addition
to the mean value reduction, Figure 6.3 compares the coefficients
fluctuations for the three cases in a polar plot. The plots show that the
torsional dynamics, and in particular the oscillation of the torsional
angle caused by the tower, produces also a modification in the region
between the two following minima of the coefficients compared to the
ALM/IV case.

In Figure 6.4, we also report the probability density function (pdf) of
the two coefficients, showing how the coupling procedures redistribute
in different ways the torque and the thrust. Obviously, all the results
show the presence of an asymmetrical negatively skewed distribution
with a peak close to the time-averaged values of the coefficients, related
to the undisturbed aerodynamic forces, and a longer tail below the
main peak, related to the drops in the coefficients caused by the tower
shadow effect. Except for the different averages, Figure 6.4 shows that
the two-way coupled cases have a mean closer to the mode, i.e. the value
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Figure 6.4: Probability density function of the power and thrust coefficients. Vertical lines indicate the respective time-averaged
values. ALM —, ALM/IV —, ALM/IVT —.

that appears most often in a set of data values, and a more compact
tail below the mean. The absence of the fluctuations in the coefficients
that are caused by the aeroelastic coupling makes the tower shadow
effect sharper for the ALM case. In fact, the pdf of the one-way coupled
case can be considered in the limit as a sort of bimodal distribution
with one major peak, related to the condition with no blades in front
of the tower, and an other minor peak, related to the condition with
one blade in front of it.

6.2 Structural Dynamics:
Displacement and Deformation Velocity

In this section, the structural dynamics of the blades is analysed.
Figure 6.5 and Figure 6.6 report the phase-averaged displacements and
deformation velocities of the six DOFs in correspondence of the free
edge of the blades. The figures show that the axial (Figure 6.5a) and
edgewise (Figure 6.5c and Figure 6.5e) structural dynamics are mainly
dominated by gravity, as also reported in other works [54], and thus that
they are only slightly affected by the aeroelastic coupling procedure.
On the other hand, the flapwise (Figure 6.5b and Figure 6.5f) and the
torsional (Figure 6.5d) dynamics are influenced considerably by the
aerodynamic forces, and especially by the presence of the tower, which
represents the main source of unsteadiness for the structural response
of these two DOFs. The local reduction in the aerodynamic loading,
which produces also the observed drops in the power and the thrust
coefficients, breaks the low-frequency structural vibrations just after
the position of the tower at Θ = 270◦, given the fact that the structure
does not react instantaneously to the sudden change in the forcing, and
that the tower has a certain width.
As a consequence of the larger influence of the aerodynamic forces on
the flapwise and torsional structural dynamics, it is evident that these
DOFs are considerably influenced both in the unsteady and the mean
distributions by the instantaneous aeroelastic interaction.

The contribution of the deformation velocity in the definition of the
angle of attack dampens the structural response ascribable to the first
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Figure 6.5: Phase-averaged tip deformation velocity. The curves represent the averages on the three blades. ALM —, ALM/IV
—, ALM/IVT —.
The maximum absolute values of the phase-averaged fluctuations used for the normalisations are: |〈v1〉|max = 0.0031m/s,
|〈v2〉|max = 2.42m/s, |〈v3〉|max = 0.71m/s, |〈ω1〉|max = 5.29 deg/s, |〈ω2〉|max = 1.22 deg/s, |〈ω3〉|max = 7.72 deg/s
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Figure 6.6: Phase-averaged tip displacement. The curves represent the averages on the three blades. ALM —, ALM/IV —,
ALM/IVT —. The maximum absolute values of the phase-averaged fluctuations used for the normalisations are: |〈d1〉|max =
0.015m, |〈d2〉|max = 5.45m, |〈d3〉|max = 1.06m, |〈θ1〉|max = 2.55 deg, |〈θ2〉|max = 1.75 deg, |〈θ3〉|max = 12.00 deg
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Figure 6.7: Normalised PSD of the
flapwise deformation velocity compo-
nent v2 in logarithmic scale. Light
green vertical lines denote the first
twelve multiples of the mean rotor an-
gular frequency, and indicate the influ-
ence of the periodic motion of the rotor.
Dark green vertical lines denote the
first seven natural frequencies of the
modes with dominant flapwise bend-
ing features. ALM —, ALM/IV —,
ALM/IVT —. f [Hz]
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Figure 6.8: Sketch to highlight the
different aerodynamic damping mecha-
nisms for flapwise and edgewise motion.
On the left, a generic initial condition
with positive deformation velocity com-
ponents is reported. On the right, we in-
crease the flapwise (top) and edgewise
(bottom) deformation velocity compo-
nents, and we indicate in blue and red
respectively the new kinematics. While
in the first case both incidence and
relative velocity magnitude decrease,
in the second case only incidence de-
creases whereas the relative velocity
magnitude increases. Moreover, espe-
cially towards the tip of the blade, the
rotational velocity dominates the edge-
wise motion, while the flapwise defor-
mation velocity remains comparable to
the streamwise flow velocity through-
out blade revolution.
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structural mode, which is essentially a flapwise bending mode with a
mild influence on torsion, as also shown in the spectrum of the flapwise
deformation velocity v2 in Figure 6.7. As a matter of fact, it is known
in the literature [152] that the aerodynamic damping in the flapwise
direction is relatively high when the flow is attached, in contrast to the
small aerodynamic damping that characterises the edgewise motion. As
shown in Figure 6.8, a positive flapwise deformation velocity, caused by
a positive flapwise airload, induces a negative variation of the angle of
attack and of the relative velocity magnitude that finally reduces the
aerodynamic forces, and vice versa. Moreover, as shown in Figure 6.5b,
peaks of 〈v2〉 reach relevant values, approximately 20 % of the mean
hub velocity, exactly in the region where the presence of the tower
and also the sheared mean velocity profile reduce the local absolute
wind velocity in correspondence of the airfoils. As a result, it is clear
that the flapwise motion plays a key role in the definition of the local
aerodynamic forces and that the one-way coupling approach is unable
to describe the resulting flapwise aerodynamic damping.
Conversely, a positive edgewise motion would reduce the angle of
attack, but would increase the relative velocity magnitude (Figure 6.8).
However, given the large values of the rotational tangential velocity
compared to the small edgewise velocities provided by the structural
dynamics, the damping effect of the edgewise motion is much smaller
than the flapwise one.
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(I) (II)

(III) (IV)

Figure 6.9: Time-averaged aerodynamic quantities along the blades: I) local incidence; II) aerodynamic moment; III) flapwise
aerodynamic force; IV) edgewise aerodynamic force. ALM —, ALM/IV —, ALM/IVT —, � HAWC2, � Heinz, 2013 [46]. The
ALM curves are not visible because they are exactly behind the ALM/IV curves.
The maximum absolute values of the time-averaged quantities used for the normalisations are: |α|max = 60 deg, |M |max = 2550N ,
|F 2|max = 6090N/m, |F 3|max = 622N/m.

Finally, the blades show a nose-down torsion (Figure 6.6d) mainly
affected by the tower unsteadiness and by the first torsional mode,
observable in the high frequency vibrations. The introduction of the
torsional deformation in the angle of attack thus reduces in general
the aerodynamic forces and, as a consequence, the mean deformations
(Figure 6.6). However, except for the mean value of the deformations,
the torsional dynamics of the ALM/IV and ALM/IVT cases exhibits
only minor differences in the first and last quarters of rotation, when
the blades rise after having passed in front of the tower.

6.3 Aerodynamic Forces

Figure 6.9 displays the time-averaged aerodynamic quantities along
the span of the blades: the local incidence in Figure 6.9-I, the aero-
dynamic pitching moment in Figure 6.9-II, the flapwise aerodynamic
force component in Figure 6.9-III, and the edgewise aerodynamic force
component in Figure 6.9-IV. The results obtained without torsion agree
well with the analogous quantities reported in Heinz, 2013 [46] for
the same mean hub velocity. In fact, the ALM and ALM/IV curves
show that the coupling by means of the deformation velocity reduces
only slightly the mean incidence, and thus that the induced vibra-
tions of this case have almost a net zero effect for what concerns the
aerodynamic forces. On the other hand, the torsional deformation in
ALM/IVT, mainly ascribable to the first torsional mode, imposes a
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(I) (II)

(III) (IV)

Figure 6.10: Normalised standard deviation of the aerodynamic quantities along the blades: I) local incidence; II) aerodynamic
moment; III) flapwise aerodynamic force; IV) edgewise aerodynamic force. ALM —, ALM/IV —, ALM/IVT —.
The maximum values of the standard deviations used for the normalisations are: σmaxα = 4.70 deg, σmaxM = 102N , σmaxF2

=

435N/m, σmaxF3
= 104N/m.

monotonically increasing nose-down torsion, which significantly reduces
the aerodynamic forces towards the tip of the blade.

Despite the mild influence of the two-way coupling procedures on the
time averages, the standard deviation of the aerodynamic quantities
along the blades in Figure 6.10 suggests that the FSI modifies the local
statistics of the aerodynamic forces, and that the structural motion
reduces the dispersive effect of the turbulent fluctuations, especially in
the outward region of the blades where the structural vibrations are
more important.

To better understand the local behaviour of the aerodynamic loading,
we evaluated the phase-averaged quantities, better suited than the
time-averaged ones for describing the effect of the aeroelasticity.
Figure 6.11a reports the percentage difference of the phase-averaged
aerodynamic quantities of the ALM/IV case with respect to the ones of
the ALM case, normalised by the local values of the ALM case itself.9

9: For the generic quantity χ of the
generic case ALM/x, we have reported
the local quantity, for each r and Θ:

100 ·
(
〈χ〉ALM/x(r,Θ)

〈χ〉ALM (r,Θ)
− 1

)
(6.2)

The contours show that, while the net effect of the fluctuations is null,
a relevant variation takes place in the fourth, and last, quadrant of
revolution. The sudden and abrupt fluctuation of the flapwise deforma-
tion velocity, induced by the presence of the tower, causes a relevant
change in the local angle of attack, which affects the aerodynamic forces
and moment in turn. In fact, by looking at the sign of the flapwise
deformation velocity at the tip in Figure 6.5b and at the sign of the
relative difference of the incidence in Figure 6.11a-I, it can be seen that
the azimuthal regions in which the difference is positive correspond
to the regions with negative flapwise deformation velocity, which is in
accordance with the physical explanation reported in Figure 6.8.



6.3 Aerodynamic Forces 125

−30.0 0.0 30.0
%∆〈α〉/〈αALM 〉

(a) I

−5.0 0.0 5.0
%∆〈M〉/〈MALM 〉

(a) II

−10.0 0.0 10.0
%∆〈F2〉/〈F

ALM

2
〉

(a) III

−35.0 0.0 35.0
%∆〈F3〉/〈F

ALM

3
〉

(a) IV

−45.0 0.0 45.0
%∆〈α〉/〈αALM 〉

(b) I

−15.0 0.0 15.0
%∆〈M〉/〈MALM 〉

(b) II

−25.0 0.0 25.0
%∆〈F2〉/〈F

ALM

2
〉

(b) III

−30.0 0.0 30.0
%∆〈F3〉/〈F

ALM

3
〉

(b) IV

Figure 6.11: Phase-averaged contours of the percentage differences of the aerodynamic quantities between: a) ALM/IV and
ALM case; b) ALM/IVT and ALM case. Differences are normalised with respect to the local values of the ALM case. Iso-lines
for null differences are indicated in black. I) Local incidence; II) aerodynamic moment; III) flapwise aerodynamic force; IV)
edgewise aerodynamic force.

The distribution of the pitching moment (Figure 6.11a-II) follows the
behaviour imposed by the angle of attack, especially in the bottom part.
However, some differences are present. First of all, radial discontinuities
reflect the transition from one type of airfoil to the other along the
span, given the discontinuous features in terms of pitching moment
of the different airfoils, as shown also in Heinz, 2013 [46]. Second of
all, an opposite behaviour is shown in the top part. Here, the lower
aerodynamic forces opposing the fluid in the two-way coupled cases
allow slightly larger velocities. Given the fact that the variation of
incidence in that region is limited and that the corresponding variation
of the pitching moment coefficient is small, the effect of the local increase
in the velocity prevails according to Equation 2.45 and produces a slight
increase in 〈M〉 in the end.

Figure 6.11b reports the analogous percentage differences for the
ALM/IVT case with respect to the ALM case. In general, the be-
haviour is similar to the one reported in Figure 6.11a, and the most
significant variations are in correspondence of the passage of the blades
in front of the tower and in the following quadrant, although the
nose-down torsion causes a general reduction of all the aerodynamic
quantities. Moreover, the reduced angular velocity of the ALM/IVT
case, caused by the smaller loading of the blades, increases slightly the
local angle of attack (Figure 6.11b-I). This is particularly evident in
the root region, where the nose-down torsion is still small and thus
there is a net increase in the local incidence compared to the ALM
case. However, proceeding towards the tip, the torsional deformation
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Figure 6.12: Phase-averaged incidence and flapwise aerodynamic force at radial positions from the hub X1/L = 0.75 and
X1/L = 0.91. ALM —, ALM/IV —, ALM/IVT —

becomes more important and affects relevantly the distribution of the
angle of attack. This causes a significant decrease in the aerodynamic
forces in the outer part of the blades, which are the parts contributing
the most to the the aerodynamic torque and thrust.

Finally, Figure 6.12 reports the phase-averaged angle of attack and
aerodynamic flapwise force for some radial sections. Apart from the
mean value, the figure reveals also that the more complete structural
state of the ALM/IVT case introduces another small contribution to
the general dynamics of the problem, as shown by the different recovery
of the curves from the minimum in correspondence of the tower angle.

6.4 Reactions

To complete the structural analysis of the results, we analyse the be-
haviour of the root reactions. In particular, we name Ri the reaction
force along the i-th axis of the structural FOR RE , and MR

i the re-
action moment around the same axis, with sign defined in accordance
with the right-hand rule (see Figure 4.5).
Figure 6.13 reports the phase-averaged reactions and their correspon-
dent time averages for all the 6 DOFs in correspondence of the root. The
curves confirm the predominance of the gravitational force on the axial
and edgewise DOFs (Figure 6.13a, Figure 6.13c and Figure 6.13e respec-
tively), in spite of the torsional and flapwise ones (Figure 6.13d, Figure
6.13b and Figure 6.13f respectively) which are more affected by the
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Figure 6.13: Phase-averaged root reaction components. Horizontal lines indicate the corresponding time-averaged values. ALM
—, ALM/IV —, ALM/IVT —.
The maximum absolute values of the phase-averaged quantities used for the normalisations are: |〈R1〉|max = 5.95 · 105 N ,
|〈R2〉|max = 2.18 · 105 N , |〈R3〉|max = 2.00 · 105N , |〈MR

1 〉|max = 9.77 · 104 N m, |〈MR
2 〉|max = 4.58 · 106N m, |〈MR

3 〉|max =
8.69 · 106N m,

aerodynamic forces, and thus are more influenced by the FSI coupling.
Furthermore, the high mean value of the axial reaction component
reveals the almost constant centrifugal force acting radially.

In addition to generally reduced values because of the diminished
aerodynamic loads, the ALM/IVT case presents also a small phase
shift after the tower azimuthal position, where the torsional dynamics
imposes a faster recovery of the aerodynamic loads than in the ALM/IV
case (see also Figure 6.3). Finally, the time-averaged values differ only
in the ALM/IVT case, and are in line with other studies with similar
flow conditions [67], confirming the general validity of our model.

Given the highly unsteady loads imposed by the fluctuating wind
conditions, it is critical to evaluate the fatigue properties of the structure
and to assess the effect of the aeroelastic coupling procedures on them.
Among the different possible characterisations, a widely used measure
of the impact of the fatigue loads on the structure is the Damage
Equivalent Load (DEL) [176]: Sutherland (1999), On the fa-

tigue analysis of wind turbines
[176], which represents the amplitude of the

single constant-rate alternating load that produces the same total
damage of the real load spectrum.
We evaluated the DELs for the reactions of each case by means of the
post-processing tool MCrunch [177]: Buhl (2008), MCrunch user’s

guide for version 1.00
[177], adopting fatigue-life calculations

that conforms to the IEC 61400-1 Ed.3 standard [172]. The tool counts
the cycles by means of the popular rainflow counting algorithm [178]: Downing et al. (1982), ‘Simple

rainflow counting algorithms’
[178],

adopts the Palmgren-Miner linear rule i.e. the Miner’s rule, for damage
accumulation [179]: Miner (1945), ‘Cumulative fa-

tigue damage’
[179], and uses a standard S-N fitting curve to characterise

the material behaviour, for which we chose a constant slope typical of
composite materials.
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According to the linear Palmgren-Miner rule for damage accumulation,
the total cumulative damage D sustained by a structure is given by:

D =

M∑
i=1

ni
Ni
, (6.3)

where ni is the number of cycles at stress level σi estimated from the
actual stress signal, Ni is the number of cycles to failure at stress level
σi, and M is the number of stress levels observed. The number of cycles
to failure Ni represents the endurance to stress cycles of the particular
material considered. Usually, for composite materials the standard S-N
fitting curve is used to represent the fatigue behaviour, stating that:

σ = σuN
−1/m, (6.4)

where N is the number of cycles to failure at stress level σ, σu is the
ultimate stress level, and m is the so-called fatigue exponent, which for
composite materials is typically equal to 10.

The Miner’s rule assumes that the cumulative damage brings to failure
if the total damage D is equal to 1. To this end, two different loading
histories are equivalent if the total damage produced is the same. From
here follows the definition of the Damage Equivalent Load (DEL),
according to which a single sinusoidal load, with given frequency f0,
produces the same damage of the real spectrum for the total time
covered by the load spectrum T . Hence, one has that:

nDEL
NDEL

=

M∑
i=1

ni
Ni
. (6.5)

where nDEL and NDEL are the number of equivalent cycles and the
DEL number of cycles to failure respectively. Given Equation 6.4 and
that nDEL = f0 T , one obtains that:

DEL =

[
1

f0T

M∑
i=1

ni (σi)
m

]1/m

. (6.6)

The stress level is characterised by a mean stress σm and a stress
amplitude σa, and it is usually assumed that the mean stress is constant.
Finally, by means of the simplified method of Freebury and Musial,
2000[180]: Freebury et al. (2000), ‘Deter-

mining equivalent damage loading for
full-scale wind turbine blade fatigue
tests’

[180], the actual procedure to determine the Damage Equivalent
Load remains unaltered, but no conversion to stresses from the actual
load signal, i.e. the root reaction signal, is needed, and an equivalent
M −N curve is used such that:

Ma = MuN
−1/m (6.7)

where Ma is the load (moment or force) amplitude in one load cycle,
Mu is the ultimate load of the blade, which is assumed to be equal to
1.5− 4.5 times the maximum characteristic load recorded in the real
load spectrum, while N and m have the same meaning as in Equation
6.4. The effect of the mean load on the DEL is usually not considered.

Table 6.2 reports the percentage differences ∆Ri % of the two-way
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Table 6.2: Percentage difference of root reaction DELs for the ALM/IV and ALM/IVT cases with respect to the ALM case.

DEL ∆R1 % ∆R2 % ∆R3 % ∆MR
1 % ∆MR

2 % ∆MR
3 %

ALM/IV 0.00 % −14.19 % +0.31 % −23.33 % +0.74 % −15.57 %
ALM/IVT −0.17 % − 8.68 % +0.03 % − 7.28 % +0.41 % −11.58 %

coupled cases with respect to the one-way coupled case, defined as:

∆Ri% = 100 ·
DELRi −DELALMRi

DELALMRi

, (6.8)

where DELRi is the Damage Equivalent Load of the two-way coupled
case considered, and DELALMRi

is that of the one-way coupled case.
The results show that, in general, the one-way coupled simulation
overestimates the fluctuations of the loads, and that the aerodynamic
damping caused by the introduction of the deformation velocity limits
the low-frequency fluctuations of the blade loading. Furthermore, the
ALM/IVT case shows only a slightly larger DEL than the ALM/IV case,
especially in the torsional root reaction component, i.e. DEL(MR

1 ). In
fact, the direct influence of the high-frequency/small-amplitude tor-
sional oscillation in the ALM/IVT case induces fluctuations that are
slightly more relevant for this component, as shown in Figure 6.13d.
However, the small amplitude of the torsional angle fluctuations is in-
sufficient to affect the low frequency unsteadiness of the gravity and the
aerodynamic loads in edgewise and flapwise directions respectively.

6.5 Fluid Flow

As a final step, we analyse the fluid variables. Figure 6.14 shows the
time-averaged streamwise velocity component on a vertical slice through
the turbine centre and on a horizontal slice at hub height for the three
cases. In the vertical plane, it can be seen that the action of the
blades decelerates the flow, while the tower induces a recirculation
region behind the turbine, which thus breaks the symmetry of the flow
between the bottom and the top part of the rotor. In particular, the
region of reversed flow is divided into three parts: a lower part, behind
the section of the tower uncovered by the blades, an intermediate part,
behind the section of the tower covered by the external half of the
rotor, and a higher part, behind the nacelle and the section of the tower
covered by the internal half of the rotor. While the bottom part is only
affected by the undisturbed flow, the intermediate part is influenced
by the presence of the blades, and indeed its longitudinal extent is
reduced by the upstream deceleration imposed by the rotor to the fluid.
Finally, the higher part has again a larger extent, because of the larger
longitudinal size of the nacelle compared to the tower, and because of
the higher fluid velocity at hub height and above.

Furthermore, an asymmetric behaviour of the wake is shown also in
the horizontal plane. In fact, the tower and the nacelle obstruct the
flow and induce a Von Kármán vortex street, which is tilted by the
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(a) ALM - x− y plane (b) ALM - x− z plane

(c) ALM/IV - x− y plane (d) ALM/IV - x− z plane

(e) ALM/IVT - x− y plane (f) ALM/IVT - x− z plane

Figure 6.14: Time-averaged streamwise velocity on a vertical slice through the wind turbine centre (left) and on a horizontal
slice at hub height (right).

helical motion given by the revolution of the blades, as already shown
in Santoni et al., 2017 [106].

However, from the comparison of the three cases, no significant differ-
ence can be observed, except for some very small quantitative changes
in the ALM/IVT case caused by the reduced aerodynamic forces.

Finally, we compare the instantaneous coherent structures of the flow
for a generic instant with Θ = 90◦, represented by means of the Q-
criterion[181]: Dubief et al. (2000), ‘On coherent-

vortex identification in turbulence’
[181] in Figure 6.15. The root vortices generated close to the

hub are promptly disrupted by their interaction with the wake of the
nacelle, whereas the tip vortices are dissipated after approximately one
diameter from the tower. As expected, the mild wind shear imposed,
and thus the different convection velocity of the vortices at different
heights, causes only a modest change in slope of the helical structures
in the wake that is slightly visible from the lateral views. On the
horizontal slice at the tower base instead, it is possible to appreciate
the trace of the induced Von Kármán vortex street generated by the
tower obstruction. The comparison of the isosurfaces in Figure 6.15
shows that the three cases under study are essentially similar. However,
as we already commented, the reduced forces along the blades in the
ALM/IVT case cause thinner and less intense tip vortices. Moreover,
the reduced angular velocity increased the pitch of the helical wake
structure.

Ultimately, we can conclude that our simulations suggest that from
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the point of view of the fluid dynamics, the aeroelastic coupling for the
wind turbine under study has a small effect, limited to the very near
wake only.
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(a) ALM

(b) ALM/IV

(c) ALM/IVT

Figure 6.15: Instantaneous isosurface of the Q-criterion variable coloured by the streamwise velocity. Three-point perspective
projection of the field on the left, and lateral view on the x− y plane on the right.
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This chapter presents the analysis of the results of the last eight sets
of simulations. The aim of the comparison is to evaluate the effect of
the unsteady aerodynamics on the response of the NREL 5 MW wind
turbine.

In the following, we consider the behaviour of the power and the
thurst, of the aerodynamics loads, of the structural response and of the
reactions. Then, we examine some of the variables introduced by the
UA model, and finally, we analyse the fluid flow behaviour.

As in the previous chapter, we indicate the time average with •, the
phase average with 〈•〉, and the average on the rotor area with 〈•〉A.
Table 7.1 reports the simulations considered in this chapter.

# Name Inflow FSI UA

1 L-ALM Uniform No No
2 L-ALM/IV Uniform Yes No
3 L-ALM-UA Uniform No Yes
4 L-ALM/IV-UA Uniform Yes Yes
5 T-ALM Turbulent No No
6 T-ALM/IV Turbulent Yes No
7 T-ALM-UA Turbulent No Yes
8 T-ALM/IV-UA Turbulent Yes Yes

Table 7.1: Outline of the simulations
taken into consideration in this chapter.
Inflow can be uniform or sheared tur-
bulent. Classic ALM with rigid blades
is used when FSI is not considered,
whereas tabulated airfoil data are used
when UA is not considered. Different
colours indicate the different cases.

The photograph from 1915 shows an airfoil with separated flow, and attests the
long-standing interest of fluid dynamicists for unsteady aerodynamics.
The credits for the image above the chapter title go to DLR. http:
//www.dlr.de/100Jahre/DesktopDefault.aspx/tabid-3300/5149_read-7460/
gallery-1/gallery_read-Image.37.2921/

http://www.dlr.de/100Jahre/DesktopDefault.aspx/tabid-3300/5149_read-7460/gallery-1/gallery_read-Image.37.2921/
http://www.dlr.de/100Jahre/DesktopDefault.aspx/tabid-3300/5149_read-7460/gallery-1/gallery_read-Image.37.2921/
http://www.dlr.de/100Jahre/DesktopDefault.aspx/tabid-3300/5149_read-7460/gallery-1/gallery_read-Image.37.2921/
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7.1 Power and thrust

At first, we compare the fluctuations relative to the mean value of
the phase-averaged normalised power and thrust. Since power and
thrust are obviously affected by the velocity of the flow impacting the
wind turbine, in the turbulent cases these quantities show large scale
fluctuations, overlapped to local oscillations that are more associated
with the tower shadowing, the aeroelastic interaction and the unsteady
aerodynamics (see Figure 7.1). To verify if the period considered for the
averaging is sufficient to filter out the large scale turbulent fluctuations,
we high-pass filtered the power and thrust signals of the turbulent
cases to remove the large scale fluctuations, and we then derived the
corresponding phase averages.1111: The generic filtered signal Af is

the subtraction from the original sig-
nal A of the low-pass filtered signal ob-
tained by means of a 1-D digital FIR
filter [182].

Given the large computational cost of
the simulations, the time period considered is limited, however the good
agreement between the filtered and non-filtered phase averages for the
turbulent cases (Figure 7.2) demonstrates that the period considered is
sufficient to filter out the large scale fluctuations. Hence, we assume
that it is reasonable to compare the phase-averaged results relative to
the laminar and turbulent cases.

From Figure 7.2, reporting the above presented fluctuations, we can see
that the unsteady aerodynamics has a limited effect on power and thrust,
and thus that the local loads’ fluctuations have a zero mean around
the corresponding steady-state values, and also that their distribution
does not affect the integration of the loads along the blades’ span. On
the other hand, the introduction of the aeroelastic feedback induces
the peculiar patterns shown also in the previoius chapter. In general,
the passage of the blades in front of the tower triggers their structural
vibration. The structural feedback introduced with the deformation
velocity (especially the flapwise component) induces load fluctuations,
that account for the oscillations of the power and thrust after the drops
due to tower shadowing.

The distribution of the phase-averaged coefficients differs from the
laminar, uniform cases and the turbulent, sheared cases. Laminar cases
have sharp transitions between the distinct states that characterise
the signal, which are the tower shadowing dips, the undisturbed top
value (clearly visible in the one-way coupled cases), and the vibration-
induced peaks (for the two-way coupled cases only). On the other
hand, the influence of mean wind shear and turbulence makes the
transition between the different states smoother and the amplitude of
the fluctuations weaker.
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(a) 〈U−1D〉A/U∞

(b) P−P
1/2 ρ∞U3

∞A

Figure 7.1: Time history of the rotor-averaged streamwise velocity at one diameter from the hub 〈U−1D〉A/U∞ and of the
normalised power fluctuations for the L-ALM and the T-ALM cases. The corresponding low-pass filtered signals are indicated in
grey and cyan respectively.
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Figure 7.2: Phase-averaged fluctuations with respect to the mean value of the normalised power (top) and thrust (bottom) for
the laminar case (left), the turbulent case (centre), the filtered turbulent case (right). Colours from Table 7.1. Pref = 1/2 ρ∞U3

∞A
and Tref = 1/2 ρ∞U2

∞A.
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7.2 Aerodynamic forces

Figure 7.3 reports the time average of the aerodynamic forces in the
flapwise and edgewise direction, F2 and F3 respectively, and of the
pitching moment, M , along the blades’ span. The distributions, that
match well the results of Heinz [46] for the same case, show that the
time average of the aerodynamic forces is the same for the same inflow.
FSI and UA preserve the mean loads, which thus can be estimated
by one-way coupled simulations with classic sectional aerodynamics.
A slight increase in the airloads can be noticed for the turbulent case,
due – most likely – to a slightly higher mean velocity at the inlet.
Moreover, the results confirm the capability of the UA model to recover
the steady-state values of the averaged forces.

However, the standard deviation of the airloads along the blade in Figure
7.4 starts to unveil the differences in the data set. The cases using the
UA model exhibit a relevant increase in the airloads variability in the
first half of the blade, whereas the cases with two-way FSI coupling
exhibit a slight reduction towards the tip, as shown in our previous
works. These effects are dominant in the laminar cases, where the root
values can reach five – or even more – times the values towards the tip,
while their importance is reduced in the turbulent simulations. For the
latter, even if the first half of the blade still presents larger standard
deviations, these remains comparable with the tip values. Moreover,
the structural feedback lowers the load variance towards the tip and
slightly increases it towards the hub.

From here, we can start to observe the division of the blades in two
regions: the tip portion, mostly affected by the aeroelastic interaction,
since here the deformations and the vibrations are more important,
and the root portion, mostly affected by the unsteady aerodynamics
effects. In fact, in the inner region of the blade, the fluctuations of α are
substantial and the velocity is small. This makes the local flow highly
unsteady and hence the airloads of the hub sections highly sensitive
to the noncirculatory mechanisms and to other hysteresis phenomena
strongly depending on α̇ (Equation 2.71).

The pitching moment deserves careful scrutiny. The increase of the
moment variability with the UA model is particularly high with both
inflows. We will see that special attention must be devoted to the
improvement of the description of the torsional moment. As a matter of
fact, the modelling of the pitching moment dynamics is often disregarded
in the literature, and also semi-empirical procedures used to determine
it are not unambiguous compared to the descriptions of the normal
force components, and thus their accuracy can be questioned.
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Figure 7.3: Time-averaged airloads per unit length along the blade span. Scatter data from Heinz [46]: � HAWC2 (one-way
coupled simulations) � HAWC2-FSI (two-way coupled simulations). Colours from Table 7.1. F ref2 = 6510 N/m, F ref3 = 669 N/m,
Mref = 2760 N.
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Figure 7.4: Standard deviation of the airloads per unit length along the blade span. Colours from Table 7.1. σrefF2
= 1320 N/m,

σrefF3
= 315 N/m, σrefM = 2430 N.
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Figure 7.5: Phase-averaged airloads per unit length in the turbulent cases at 25% (DU35_A17 airfoil, top row) and 90%
(NACA64_A17, bottom row) of the blade (left). Colours from Table 7.1.

To inspect the local airloads, Figure 7.5 reports the phase-averaged
airloads in the turbulent cases for two sections of the blade, respectively
at 25% (DU35_A17 airfoil) and 90% (NACA64_A17 airfoil). From
the plots, the distinction of the two regions of influence is even clearer.
For the root region, the faster and larger fluctuations of α with low
incoming velocity induce sharp variations of the aerodynamic forces
around the corresponding steady-state values obtained without UA.
In particular, in correspondence of Θ = 270 deg, the passage of the
blade in front of the tower produces the largest variations of the loads.
On the other hand, the effect of the structural vibrations close to the
clumped hub is practically null, and thus there is no relevant difference
between the one-way and the two-way coupled cases. For the tip region,
instead, the velocity is higher and the fluctuations of the incidence are
smaller. The contributions from the UA model to the airloads is thus
almost null, except a small increase in the mean values due also to small
compressibility effects (Mmax ≈ 0.2 at 90% of the blade). Conversely,
the structural vibrations are here mostly important, and affect the
behaviour of the airloads, especially in the last quarter of revolution.
In the IV cases, it has been demonstrated in the previous chapter
that the incidence and absolute value of the velocity are primarily
influenced by the flapwise deformation velocity component v2 of the
structure. In particular, a positive increase of v2 induces a reduction of
both the incidence and the velocity magnitude, which thus lowers the
aerodynamic forces, and vice versa. Thus, when comparing the ALM
and ALM/IV cases, the differences are determined by the behaviour of
v2: if v2 increases, the aerodynamic loads in the ALM/IV case decrease
compared to the ALM case; if v2 decreases, the aerodynamic loads
in the ALM/IV case increase compared to the ALM case. Moreover,
the ALM/IV and ALM/IV-UA cases do not show relevant differences,
confirming that the effects of UA and FSI remain separated.

The local distribution of the phase-averaged pitching moment (Figure
7.5c) explicitly shows the very large and abrupt fluctuations deducible
from the standard deviation. In fact, if small – but noticeable – fluc-



7.2 Aerodynamic forces 139

tuations are present even at the tip, which do not affect the overall
phase behaviour, high fluctuations, related to the noncirculatory nor-
mal force coefficient (see Section 7.5), alter completely the unsteady
aerodynamic response, with severe overshoots compared to ALM and
ALM/IV results with traditional tabulated airfoil data.

Finally, Figure 7.6 shows the instantaneous and phase-averaged airloads
as a function of the instantaneous incidence at 25% and 90% of the
blade for the T-ALM/IV and T-ALM/IV-UA cases. The phase-averaged
values are coloured on the basis of the corresponding azimuthal position
of the blade. In this way, we can observe the aggregated hysteresis of
the loads, including not only the hysteresis of the aerodynamic coeffi-
cients (see Section 7.5), but also the effect of the velocity fluctuations.
The coloured phase averages show that the majority of the incidence
variation is related to the tower shadowing and confined in the last
quarter of revolution. The strong and sudden variation in angle of
attack and velocity generates an hysteresis in the loads of both the
sections. However, the larger hysteresis of the aerodynamic coefficients
makes the variation of the loads at the root larger compared to the ones
at the tip. In the end, the increased airloads variability, of the pitching
moment in particular, is visible from the increased area covered by the
instantaneous airloads in gray.
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(a) Airloads at 25% span - T-ALM/IV case

(b) Airloads at 25% span - T-ALM/IV-UA case

(c) Airloads at 90% span - T-ALM/IV case

(d) Airloads at 90% span - T-ALM/IV-UA case

Figure 7.6: Instantaneous and phase-averaged airloads per unit length as a function of the incidence in the turbulent cases at
25% and 90% of the blade span. The colormap indicates the azimuthal angle in the phase average.
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7.3 Structural dynamics

Figure 7.7 shows the phase average of the flapwise, edgewise and tor-
sional components of the displacement and of the deformation velocity
at the blade’s tip, for the turbulent cases only. We can see that the FSI
coupling has a major impact on the flapwise and torsional components,
confirming the explained flapwise damping mechanisms, whereas it has
a practically negligible effect on the edgewise component, dominated
by the sinusoidal weight force on the blade. The premultiplied PSD
of the tip flapwise deformation velocity in Figure 7.8 testifies how the
aeroelastic coupling dampens the oscillations of the first flapwise mode.
The 〈v2〉 fluctuations, mostly triggered by the passage of the blade in
front of the tower, reach values that are comparable with the upstream
fluid velocity in the last quadrant, and thus influence largely the defini-
tion of the local aerodynamic forces. On the other hand, the smaller
variation of the incidence and the larger importance of the structural
vibrations towards the free tip of the long blades make the effect of UA
at the tip practically negligible.

A final comment on the dynamics of the torsional angle. Even if the
variation of the pitching moment is large in the UA cases, the blade is
particularly stiff torsionally, and thus the increased fluctuations at high
frequencies, potentially close to the natural torsional frequencies (first
torsional mode at f ≈ 5.58 Hz), do not affect dramatically the overall
dynamics of θ1. As a consequence, also the indirect effect of the torsion
on the flapwise motion, due to the eventual flexo-torsional coupling in
the blade’s structure, is rather small. This limits the possible indirect
damage done by the uncertain accuracy of the pitching moment UA
model to the FSI coupling procedure used in this work. However, we can
see from Figure 7.8 that the increased fluctuations due to the UA model
in the ALM/IV-UA cases, start to reinforce the high-frequency spectral
components, activating also the torsional modes. As a result, if torsion
had been included in the local definition of the incidence, this could
have influenced directly and even more the aeroelastic response of the
blades in general. In fact, with the addition of a model for the unsteady
aerodynamics, the airloads are more sensitive to the instantaneous
turbulent fluctuations of the velocity, which makes stronger the possible
coupling between the high-frequency modes of the structure and the
unsteady aerodynamics itself. Among the structural modes, torsional
ones are particularly critical given their influence on the local incidence.
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Figure 7.7: Flapwise (left), edgewise (centre) and torsional (right) components of the displacement (top) and corresponding
components of the deformation velocity (bottom) at the blade tip for the turbulent cases only. Colours from Table 7.1.
|d2|max = 5.96 m, |d3|max = 1.08 m, |θ1|max = 2.89 deg, |v2|max = 2.45 m/s, |v3|max = 0.789 m/s, |ω1|max = 18.6 deg/s.

Figure 7.8: Pre-multiplied Power Spectral Density of the flapwise deformation velocity at the tip, normalised by the corresponding
variance. Colours from Table 7.1. Vertical lines indicates the frequencies corresponding to: first 12 multiples of the rotational
frequency, first 6 flapwise modes, first 4 edgewise modes, first 4 torsional modes. The last two modes reported are flexo-torsional
modes with a dominant flapwise nature in the first case and a dominant torsional nature in the second case.

7.4 Reactions

Figure 7.9 shows the phase average of the six components of the reaction
at the blade’s root for the turbulent cases. We indicate with R1, R2

and R3 the axial, flapwise and edgewise components of the reaction
force respectively, and with MR

1 , MR
2 and MR

3 the torsional, edgewise,
and flapwise reaction moment components respectively.

As expected, R3 and MR
2 are mostly sinusoidal and determined by the

gravitational force that is maximum at the multiples of Θ = 180 deg.
The axial component R1 instead is completely determined by the gravity
and the centrifugal force. On the other hand, the flapwise and torsional
components show the influence of the structural vibrations, which is
dominant around the main source of structural unsteadiness, i.e. the
tower. Moreover, UA introduces additional oscillations affecting the
local behaviour. The amplitude of these contributions is larger for the
torsional root moment, which experiences the large variability of the
pitching moment.

As in the previous chapter, we compare the fatigue properties from the
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Figure 7.9: Phase-averaged force and moment components of the root reaction for the turbulent cases only. Colours from Table
7.1. |R1|max = 6.24·105 N, |R2|max = 2.41·105 N, |R3|max = 2.00·105 N, |MR

1 |max = 1.13·105 N ·m, |MR
2 |max = 4.60·106 N ·m,

|MR
3 |max = 9.54 · 106 N ·m.

root reactions by means of the Damage Equivalent Load [176] from the
post-processing tool MCrunch [177].

Table 7.2 and Table 7.3 report the DELs for the L-ALM and T-ALM
reference cases and the percentage differences between each case and the
relative reference one. The results confirm the findings of the previous
chapter regarding the overprediction of the load fluctuations by using
one-way coupled simulations. In particular, we demonstrated how the
aerodynamic damping due to FSI coupling limits the flapwise and
torsional vibrations of the blade and thus reduces by almost 10% - 20%
the DELs of the corresponding components. By comparing the laminar
and turbulent results, turbulence and mean shear increase by almost
the double the equivalent airloads of the laminar cases. Meanwhile, the
turbulent inflow limits the differences between the one- and two-way
coupled cases, which confirms that turbulence mitigates the impact
of the structural vibrations on the aerodynamics. However, torsional
root reactions does not seem to be affected by the different coupling
conditions, with only small differences between the laminar and the
turbulent cases.

On the contrary, the introduction of the UA model has an opposite
effect on the equivalent airloads: the additional fluctuations produced
by the airloads hysteresis increase considerably all the DELs, especially
the flapwise components affected by the hysteresis of Cn. We point
out the large differences caused by the pitching moment dynamics on
MR

1 , underlining that this issue will need special attention in future
studies.

As a result of the two counteracting effects, the DELs of the IV-UA
cases have an intermediate shift with respect to the ALM cases. In
particular, they show that the increase due to the unsteady aerody-
namics dominates over the decrease due to the aeroelastic coupling for
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Table 7.2: Damage Equivalent Load of the reaction components: laminar inflow. The DELs of the baseline L-ALM case are
reported together with the percentage differences for the other cases. The percentage difference for the generic root reaction
component Ri is defined as ∆Ri% = 100·(DELRi−DELALMRi

)/DELALMRi
, where DELRi is the DEL of the i-th root component

of the case considered, and DELALMRi
is that of the corresponding one-way coupled case without unsteady aerodynamics and

with the same inflow (L-ALM).

DEL R1 [N ] R2 [N ] R3 [N ] MR
1 [N ·m] MR

2 [N ·m] MR
3 [N ·m]

L-ALM 146.0 24.73 145.9 12.01 2988 942.0

∆Ri % ∆R1 % ∆R2 % ∆R3 % ∆MR
1 % ∆MR

2 % ∆MR
3 %

L-ALM-UA 0.00 % +24.73 % +0.34 % +268.71 % +0.27 % + 8.28 %
L-ALM/IV −0.03 % −20.75 % +0.10 % − 21.81 % +0.22 % −24.58 %

L-ALM/IV-UA 0.00 % +14.14 % +0.58 % +230.34 % +0.49 % −15.13 %

Table 7.3: Damage Equivalent Load of the reaction components: turbulent inflow. As in Table 7.2, but the baseline is the
T-ALM case.

DEL R1 [N ] R2 [N ] R3 [N ] MR
1 [N ·m] MR

2 [N ·m] MR
3 [N ·m]

T-ALM 152.0 47.95 146.0 23.98 2992 1840

∆Ri % ∆R1 % ∆R2 % ∆R3 % ∆MR
1 % ∆MR

2 % ∆MR
3 %

T-ALM-UA −0.07 % +15.11 % +0.48 % +193.58 % +0.25 % +7.09 %
T-ALM/IV 0.00 % −11.27 % +0.41 % − 25.35 % +0.70 % −13.56 %

T-ALM/IV-UA −0.10 % + 7.81 % +1.44 % +196.50 % +1.19 % − 6.39 %

R2, while the contrary happens for MR
3 . This disagreement is actually

coherent with the distribution of the forces and with the different
regions of influence along the blade. In fact, the force component is
only given by a thorough integration of the force along the span, which
makes no distinction concerning where the sectional force is applied.
On the other hand, the moment depends on where the sectional force
is applied and privileges the forces towards the tip. As a consequence,
for MR

3 , the diminishing effect of the tip aeroelastic coupling prevails
over the increasing effect of the root unsteady aerodynamics.

7.5 Unsteady aerodynamics variables

In this section, we examine the phase average of the various definitions
of the incidence, the delayed separation point, and the contributions to
the attached normal force component introduced by the UA model for
two sections at 25% and 90% of the blade respectively.

Figure 7.10 reports the comparison between the T-ALM/UA and the
T-ALM/IV-UA cases at 25% and 90% of the blade. The curves in
Figure 7.10a confirm that the incidence is not affected by the structural
vibrations close to the root of the blade, while the curves in Figure
7.10d show the sinusoidal variation due to the mean shear and confirm
the effect of the aeroelastic interaction, especially in the last quadrant.
Furthermore, it is visible that in the first half of the blade, the UA
model introduces a noticeable delay between the geometric incidence
〈α〉, the effective incidence 〈αf 〉, and even more in the chordwise-
effective incidence 〈α′′〉. It is also possible to see that, given the small
time in which the blade covers the azimuthal region around the tower,
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Figure 7.10: Phase average of some variables of the UA model for the T-ALM-UA case and the T-ALM/IV-UA at 25%
(top) and 90% (bottom) of the blade span (shown on the left): various definitions of the angle of attack, delayed separation
point, contributions to the attached normal force coefficient. Full lines are referred to the T-ALM-UA case, shaded lines to the
T-ALM/IV-UA case. In the incidence plots, we report the instantaneous geometric incidence α, the effective incidence αf , and
the chordwise-effective incidence α′′.

large derivatives of the incidence take place close to the root at low
velocities, suggesting the relevant role of noncirculatory components
here.

The decrease of the incidence shown in the tower region accounts for
the gradual increase of the separation point function 〈f〉 and of its
delayed estimation 〈f ′′〉, which is visible in Figure 7.10b. Close to the
hub, the flow on the airfoil is always separated, with approximately 10%
of the chord always covered by separated flow, and there is a relevant
delay between 〈f〉 and 〈f ′′〉. On the other hand, towards the tip of the
blade, the flow is almost fully attached, and the main source of motion
to the separation point becomes the sinusoidal fluctuations imposed by
the wind shear and the aeroelastic modifications. Moreover, the delay
between 〈f〉 and 〈f ′′〉 is almost null.

The different response of the separation point to a qualitatively similar
variation of the angle of attack throughout the rotor revolution depends
mostly on the different f − α curves of the airfoils of the two regions.
In particular, Figure 7.11 shows that the incidence fluctuations close
to the tip take place near the sharp knee between the flat and steep
regions of the separation point curve, while close to the hub they take
place in a region with approximately uniform slope. Indeed, the airfoils
closer to the tip are thinner and have a broader linear attached region
in the aerodynamic polar, which makes the f curve flat on top for
a broader region and then suddenly steep. Thick profiles in the first
half of the blade, and especially really close to the root, have instead
a more limited linear portion, since flow tends to separate soon and
progressively, and thus their f curves have smoother knee on top. As a
result, even assuming the same history of the incidence, the response
f(α(t)) is different.

Figures 7.10c - 7.10f report the comparison of the contributions to
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Figure 7.11: Hysteresis of the separa-
tion point at 25% (DU35_A17 f − α
curve, –) and 90% (NACA64_A17
f − α curve, - -): instantaneous and
phase-averaged f ′′ as a function of the
incidence in the T-ALM/IV-UA case.
The colormap indicates the azimuthal
angle in the phase average.

the potential normal force coefficient. The differences in Cpotn for the
different cases are actually the origin of the differences in the complete
airfoil coefficients, since the contribution from the LEV is almost null
(not shown for brevity). We can immediately notice that the aeroelastic
coupling has only an effect on the circulatory component of the tip
profile, since it influences directly the modification of the geometric
incidence. On the other hand, the noncirculatory component is insignif-
icant at the tip, while being comparable to the circulatory component
at the root. Here, where the variability of the incidence and the chord
are larger, and the flow velocity is smaller (q at the root can be even
6 times higher than at the tip), the oscillations of Cpot,ncn can even
overshadow the main Cpot,cn especially close the tower passage, which
remains the main source of unsteadiness for both the structure and the
aerodynamics.

In the end, similarly to the complete airloads in Figure 7.6, Figure
7.12 reports the phase-averaged and instantaneous hysteresis of the
airload coefficients only for the T-ALM/IV-UA case at 25% and 90%
of the blade. The coefficients oscillate around the steady-state values,
confirming the ability of our UA model to recover in the average
the usual tabulated values, and attest the main source of variation
around Θ = 270 deg. Besides noting generally the different extent of
the hystereses at the two sections, we highlight the narrower hysteresis
of Cc related to the limited variability of the circulatory component of
Cn, from which Cc mainly depends (Equation 2.97). Finally, we observe
the very large hysteresis of Cm. For this component, the noncirculatory
component remains significant also at the tip, and far larger than the
small circulatory part typical for small angles of attack.
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(a) Airloads at 25% span - T-ALM/IV-UA case

(b) Airloads at 90% span - T-ALM/IV-UA case

Figure 7.12: Instantaneous and phase-averaged airload coefficients as a function of the incidence in the turbulent cases at 25%
(top) and 90% (bottom). The colormap indicates the azimuthal angle in the phase average.

7.6 Fluid flow

In general, we have noticed that the mean fluid flow is not affected
significantly by the aeroelastic coupling and the unsteady aerodynamics.
For this reason, we present in the following only a rapid comparison
between L-ALM and T-ALM cases and an overview of the flow topology
in the rotor region influencing the response of the blades.

Figure 7.13 compares the mean Turbulent Kinetic Energy (TKE) for
the L-ALM and the T-ALM cases on vertical and horizontal slices
through the hub. The contours show that the tower introduces an
asymmetry in the wake, with a recirculation region just behind the
tower and the nacelle. Moreover, the increased mixing induced by the
turbulent inflow stimulates a more intense activity behind the wind
turbine, promoting a faster wake recovery, as observable also from the
rotor averaged velocity along the streamwise axis in Figure 7.14. Small
differences in the organisation of the flow just behind the tower and
the nacelle can also be noticed: the imposed mean shear reduces the
extent of the recirculating region at the feet of the tower and enhances
the one behind the nacelle.

Figure 7.15 reports instead the time-averaged velocity components for
the L-ALM case on a vertical slice in correspondence of the rotor, with
arrows indicating the velocity in the plane. The figures spotlight how
the 3D and complex interaction between the disc blockage, the tower
shadowing and the swirl induced by the blades break the axisymmetry of
the flow in the proximity of the rotor, affecting the local fluid dynamics
that determines the aerodynamic loads on the blades. In particular, the
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(a) L-ALM - Vertical (b) T-ALM - Vertical

(c) L-ALM - Horizontal (d) T-ALM - Horizontal

Figure 7.13: Time-averaged Turbulent Kinetic Energy on vertical (top) and horizontal (bottom) slices through the hub. L-ALM
(left), T-ALM (right).

Figure 7.14: Rotor-averaged velocity along (x1 −Xt)/D. T-ALM curve is scaled by the value of the rotor-averaged velocity at
the inlet, which is slightly larger than U∞. The region occupied by the wind turbine is indicated in gray. L-ALM –, T-ALM –.

interaction between the tower and the swirled flow induced by the rotor
generates a mean flow slightly skewed towards the left (z < zt) for a
counterclockwise-rotating rotor. The obstruction due to the asymmetric
recirculation region behind the tower induces the streamwise velocity to
slightly increase on the left and and vice versa on the right. Moreover,
the assumed conical shape of the tower generates a decrease of the
flow velocity that is not homogeneous in the vertical direction. Thus,
the lower part of the blades feels more the tower shadowing and the
imposed flow deceleration.

As a result, we can divide the flow in the proximity of the rotor into
five different regions:

I close to the terrain, the tower is not hidden by the rotor and the
flow is deviated symmetrically in the lateral directions.

I In the bottom tip region, the enlargement of the stream tube
impacting the rotor induces a radial flow component. The flow
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(a) u1 (b) u2 (c) u3

Figure 7.15: Time-averaged streamwise (left), vertical (centre), spanwise (right) velocity components on a vertical plane in
correspondence of the rotor for the L-ALM case, with arrows indicating the velocity in the plane.

is determined by the combination of this component with the
tower shadowing, whose effect is maximum here. From here, we
can observe the asymmetry of the flow towards the left side
of the turbine: while the fluid particles on the left do not find
any obstacle in following the imposed clockwise swirl, the fluid
particles on the right are blocked by the tower and thus forced to
flow more radially, towards the terrain.

I After a region of transition, close to the root, the tower shadowing
is less evident and the flow is dominated by the blades’ swirl at
the left of the tower. At the right, the decelerated flow remains
mainly streamwise and progressively goes radially proceeding
towards the tip of the blade, because of the increase in the stream
tube area. Future works will consider also the presence of the hub
in the geometry of the immersed body, whose lack in this case
accounts for the overestimated velocities in the central region.

I On top of the nacelle, where there is no tower shadowing, the
left and right flows merge together producing a flow that – in the
plane – gradually tends to follow the opening of the stream tube
towards the tip and the rotation imposed by the blades.





Discussion





8 Conclusions

8.1 Great Power and Problems153
8.2 Numerical Hopes . . . . . . 153
8.3 What We Aim For . . . . . 154
8.4 Flexibility . . . . . . . . . . . . 155
8.5 Unsteady Aerodynamics . 157
8.6 Very Final Conclusions . . 158

Given the large increase in the electricity demand and the great expec-
tations about the capabilities of green, renewable energy sources, the
wind energy field is expected to grow and to play a central role in the
future of the power generation.

8.1 With Great Power
Come Great. . . Problems

To face these urgent requests and to reduce the Levelised Costs Of
Energy (LCOE), wind turbines are getting bigger and bigger. The latest
prototypes have rotor diameters around 220 metres and rated capacities
of 15 MW. One single rotation could power one household for more than
two days. However, with great power come great problems. Considering
high towers with very large blades brings the need to better evaluate
the interaction of the wind farms with the Atmospheric Boundary Layer
(ABL), to better optimise the control systems of the large wind plants,
and to better examine the complex physics of the response of these
colossal rotating machines. In particular, huge, slender, and flexible
blades ask for the assessment of coupling phenomena between unsteady,
nonlinear fluid and structural dynamics. Obviously, the dimensions of
the physical problem forbid almost completely controlled experimental
measurements, but also theoretical modelling becomes difficult because
of the inherent nonlinearities of the multi-physics problem.

8.2 Numerical Hopes

As a result, the scientific and industrial community has great expecta-
tions about the potential of proper multi-physics numerical modelling,

The credits for the image above the chapter title go to Offshore-Windindustry.com.
https://www.offshore-windindustry.com/images/IWR/BilderKategorien/
Fotolia_52430002_L_1280_512.jpg
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able to simulate with adequate levels of fidelity the holistic response of
the wind turbine. In this contest, numerical modelling of Fluid-Structure
Interaction (FSI) has already demonstrated its capacity in the past,
even with simplified, low-fidelity, engineering models. The coupling
between simple structural models and the well-known Blade Element
Momentum (BEM) theory provided a useful tool for the design of past
wind turbines. However, with the advent of enhanced computational
methods and resources, this method starts to be inadequate to describe
the three-dimensional and unsteady interaction between the fluid and
the solid parts. Given the evolution of Computational Fluid Dynamics
(CFD) and Computational Structural Dynamics (CSD) methods, re-
searchers envisage the development of high-fidelity CFD-CSD methods
that provide sounder and more accurate representations of the wind
turbine behaviour and that yield a deeper physical insight into realistic
conditions.

However, high-fidelity, wall-resolved Direct Numerical Simulation (DNS)
or Large Eddy Simulation (LES) of wind turbines are still out of
question, given the large range of scales to be solved in the problem.
For this reason, generalised actuator disc models are widely adopted
to reduce the computational burden of the fluid dynamics simulations:
additional body forces mimic the action of the blades’ solid boundaries
onto the fluid in the Navier-Stokes equations, avoiding the resolution of
the exact surface geometry. A sectional blade-element approach defines
the blades’ airloads on the basis of tabulated airfoil data and of the local
kinematics, while the Navier-Stokes equations describe the resulting
3D wake dynamics.

8.3 What We Aim For

The main idea of this work is to exploit the formulation of one of
these models, the Actuator Line Model (ALM), to couple an high-
fidelity fluid solver with an efficient simplified structural solver. Without
practically affecting the heavy computational cost of an LES solver
already validated for wind energy, our method allows estimating the
aeroelastic response of the blades in a fluid solver that evaluates properly
the unsteady and three-dimensional features of the flow impacting the
rotor.

Furthermore, the sectional estimation of the airload coefficients of
the actuator line model, offered us also the possibility to consider
an additional element which is usually neglected in Horizontal Axis
Wind Turbines (HAWTs), but that can be crucial for long blades and
their aeroelastic response: the Unsteady Aerodynamics (UA). Despite
the potential role of the UA phenomena for increasingly large wind
turbines, their effects on the local aerodynamics have been scarcely
considered and investigated to improve the modelling of state-of-the-
art CFD simulations. The adoption of a UA model to estimate the
airloads’ coefficients has the potential to complete the description of
the local aerodynamics in solvers that adopt steady-state tabulated
airfoil data from wind tunnel measurements, and that do not use the
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sufficient resolution to solve explicitly the unsteady behaviour of the
blade boundary layer.

The aim of this work is therefore twofold.
In the first part, we presented our novel high-fidelity CFD-CSD model
for the study of the aeroelastic response of HAWTs. The CFD solver
adopts an LES approach modelling the rotor by means of the Actuator
Line Model (ALM), and the tower and the nacelle by means of an
Immersed Boundary Method (IBM). On the other hand, the CSD
solver adopts a modal approach modelling the blades only as rotating
cantilever beams, and includes the inertial effects in modal basis by
means of the method followed by Saltari et al [155]. The coupling
adopted is loose and staggered, to avoid undermining the computational
efficiency of the complete coupled scheme, and takes advantage of the
sectional evaluation of the aerodynamic forces of ALM, which thus
provides a natural and efficient interface between the two physical
subproblems.
In the second part, we examined the effects of an unsteady aerodynamics
model for the evaluation of the sectional aerodynamic forces in the
developed solver. A semi-empirical Beddoes-Leishman model has been
implemented to evaluate dynamically the aerodynamic coefficients of
the blade’s airfoil in the ALM formulation of our LES solver, instead
of using fixed tabulated airfoil data.

In all of our simulations, we considered the well-known baseline onshore
HAWT defined in detail by the National Renewable Energy Laboratory
(NREL), with a rated capacity of 5 MW, a diameter of 126 m and an
hub height of 90 m [51].

For laminar, uniform and turbulent, sheared inflows, for one- and two-
way coupled simulations – with different kinds of structural feedback
– and for tabulated and dynamic aerodynamics, we examined the be-
haviour of such a utility-scale wind turbine by taking into consideration
the time and phase average of the power and the thrust, the aerody-
namic forces along the span, the structural displacements and their
derivatives, the reactions and the related fatigue properties, but also
the fluid field produced.

8.4 Effects of the Flexibility

In the first part, we compared the results of three sets of simulations
that we named ALM, ALM/IV, and ALM/IVT. In the first case, we
considered only a one-way coupling approach in which the LES solver
provided the aerodynamic loading to the structural solver running in
parallel; in the second case, we introduced in the definition of the local
angle of attack a first structural feedback, made of the instantaneous
bending deformation velocity in and out of the plane; in the third case,
we added also the instantaneous torsional deformation caused by the
unsteady loads to the structural feedback.
Our results showed that:

I The dynamics of the deformation velocity introduces an impor-
tant variation in terms of power production, loads distribution,
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structural dynamics and fatigue properties. In particular, the dy-
namics of the flapwise deformation velocity introduces a relevant
aeroelastic damping that the one-way coupled simulations are not
able to capture. The effect of the edgewise deformation velocity,
instead, besides being ambiguous, is overshadowed by the larger
rotational velocity.

I The effect of the torsional dynamics in the ALM/IVT case, often
neglected in the literature, impacts significantly the estimated
performances. In particular, the mean nose-down deformation of
the blades reduces the aerodynamic loads, which thus suggests
an overestimation of the generated power when adopting one-
way coupled simulations. The dynamic effect of the torsional
fluctuations instead is in general modest and, although some
small effects on the other DOFs and on the root reactions start to
be visible, the amplitude of the vibrations is still not sufficient to
cause substantial differences for the turbine considered. However,
different studies [61] have shown that the NREL 5 MW wind
turbine has rather stiff blades. Thus, for longer and more flexible
blades, it is not excluded that torsional dynamics could play a
more influential role in FSI.

I The presence of the tower is key to predicting correctly the fluid
and structural dynamics. On the one hand, it breaks the symme-
try of the fluid field and the coherence of the wake structures;
on the other hand, it is the main source of unsteadiness in the
structural dynamics. Moreover, the reduced aerodynamic loads
caused by the tower draw attention to the the effect of the aeroe-
lastic coupling, which is amplified by the large vibrations of the
structure in the quarter of revolution following the tower itself.
However, given the strong influence of the various features of the
atmospheric flow on the turbine performance

[183]: Chamorro et al. (2015), ‘Turbu-
lence effects on a full-scale 2.5 MW
horizontal-axis wind turbine under neu-
trally stratified conditions’
[184]: Howard et al. (2015), ‘Charac-
terizing the response of a wind tur-
bine model under complex inflow con-
ditions’

[183, 184], further
in-depth analysis must be carried out to better characterise the
turbine aeroelastic response for different and more turbulent in-
flows. Indeed, turbulence intensity in these cases was rather low,
and more intense turbulent structures could affect significantly
the coupled dynamics and even dominate the tower-induced un-
steadiness.

I The flapwise and the torsional vibrations are those more affected
by the aerodynamic loads and thus by the FSI coupling mecha-
nisms under study. On the contrary, the axial and edgewise DOFs
are mainly affected by the gravitational force, given the large
mass of each blade, as shown also in other works [53].

I While the structural dynamics, the aerodynamic loads, and the
wind turbine coefficients show the effects of the different coupling
procedures, the fluid field quantities are less or in no way sensitive
to them.

The time-averaged results were in general in good agreement with
similar studies with different techniques, but the inherent features of
our high-fidelity CFD-CSD approach accurately provided additional
information also on the unsteady and distinct effects of the coupling
procedures. These simulations thus explicitly assessed the unsteady
impact of the aeroelastic mechanisms on a utility-scale wind turbine
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under turbulent operative conditions, by means of a simplified but
accurate numerical rotor modelling.

8.5 Effects of the Unsteady Aerodynamics

In the second part, we examined a set of eight simulations, in which we
considered all the combinations between a uniform, laminar inflow and
a sheared, turbulent inflow, one-way and two-way FSI coupling (with
the deformation velocity feedback only) and with and without the UA
model. This time, the turbulent intensity for the turbulent cases was
higher and typical of a real conditions.

Our results showed that:

I The effects of both UA and FSI are not directly visible in the
time-averaged behaviour, but rather more in the variability of
all the aerodynamic and structural quantities. For fully-coupled
simulations, we observed that the blade is divided into two re-
gions of influence: the tip region, mainly influenced by important
flapwise vibrations affecting the local incidence, and the root
region, mainly influenced by important oscillations of the angle
of attack at low fluid velocity that generate large noncirculatory
contributions to the airfoil coefficients. Inflow turbulence miti-
gates the differences between the two regions, and increases the
variability of the loads throughout the blade.

I Even for the more turbulent cases, the dominant source of aero-
dynamic and structural unsteadiness remains the presence of the
tower, which is thus a critical element to be considered to properly
estimate the overall wind turbine behaviour. As already shown in
the first part, tower shadowing causes a sudden variation of the
flow that curtails the airloads, promotes the flapwise and torsional
structural vibration, causes a mean deflection in the wake flow,
and additionally, triggers the surge of added mass effects that
amplify the airload hysteresis.

I No particular interaction between UA and FSI takes place, al-
though the spectral analysis of the deformation velocity reveals
that the increased unsteadiness introduced by the UA fluctua-
tions starts to trigger the high-frequency structural modes, which
affect also the torsional dynamics with potential effects in the
aeroelastic response of the blade.

I The analysis of the fatigue properties from the root reaction
components indicated also that the two models have competing
effects, whose net effect depends on the reaction component
considered. While the FSI-induced aerodynamic damping reduces
the load fluctuations almost exclusively at the tip, the hysteresis
of the airloads from the UA module increases them more, but
primarily at the root, as previously shown for tidal turbines

[185]: Scarlett et al. (2019), ‘Unsteady
hydrodynamics of a full-scale tidal tur-
bine operating in large wave conditions’

[185].
I Finally, the flow dynamics primarily changes basically because of

the different inflow, with increased wave recovery promoted by
the more realistic turbulent inflow, but is again almost insensitive
to the variations induced by the structural vibrations and the
unsteady aerodynamics. Anyway, the analysis of the mean flow
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close to the rotor showed the complexity induced by the critical
presence of the tower, which affects the definition of the incidence
for the blades’ airfoils and the airloads in turn.

We acknowledge that the pitching moment UA model needs further
studies, given its intrinsic empiricism. But does its use invalidate all
the results, especially about the aeroelastic interaction? Since some
high-frequency contributions around the torsional natural frequencies
are present in the spectra of the flapwise deformation velocity, some
effects of the enhanced torsional dynamics start to be felt. However,
the flexo-torsional coupling in the blade we considered has a limited
importance for the low natural frequencies of the structure, which still
remain the dominant ones. Hence, we believe that our conclusions about
the FSI coupling are still valid.

In any case, despite the expected limits of the semi-empirical UA model,
our study puts under the spotlight the potential impact of the unsteady
aerodynamics on the general behaviour of large HAWTs and points out
the need to cover a gap in the representation of the local aerodynamics
for simplified CFD methods used in wind energy.

8.6 Very Final Conclusions

In the end, in this work we tried to cover some of the gaps in the
numerical modelling of the complete physics of wind turbines. First of
all, we tried to prove the validity of a simplified FSI coupling, and we
demonstrated that in order to properly describe the aeroelastic response
of the blades, especially the structural behaviour, one-way coupled
simulations overpredict both vibrations and load fluctuations, with
relevant consequences on the estimation of crucial fatigue properties.
Moreover, the often neglected torsional degree of freedom starts to play
a role in the estimation of the airloads, and neglecting it can induce
further differences with one-way coupled results. On the other hand, if
one is interested only in the behaviour of the fluid flow, two-way coupling
has practically no effect on the wake. However, further studies need to
assess how wind turbines can interact and how the aeroelasticity of the
blades could modify the functioning of the standalone wind turbines.

Another critical aspect is the presence of the tower in the numerical
modelling. Our results confirm that neglecting the fixed elements of the
wind turbine in the fluid domain would mean completely ignoring the
main source of unsteadiness of the structure and also of the unsteady
aerodynamics. The tower induces a significant asymmetry in the wake
and a relevant perturbation in the local flow close to the rotor, with
obvious consequences for the local incidence determining the airloads
along the blades. The slowdown of the flow generates a limited low-
velocity region that induces a sharp variation in the incidence. The
fluctuations of the airloads accounts for the increased vibrations of the
structure – especially flapwise and at the blade tip –, which thus become
relevant for the aeroelastic coupling. Moreover, the sudden variations
of the incidence at low velocities accounts also for the generation of
noncirculatory components in the aerodynamic coefficients that can
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become dominant – especially in the normal component and at the
blade root.

The introduction of the unsteady aerodynamics, instead, unveiled that
for large blades, the extent of the region affected by relevant hysteresis
phenomena increases and that the consequent additional contributions
to the airfoil forces can even start to affect the structural dynamics,
especially in the high-frequency domain.

Future studies could follow different paths to enhance the developed
model.
First of all, recent works [160] stated that linear models start to describe
defectively very long composite blades with pre-bending, coning, sweep
and other geometrical complications. As a result, it would be interesting
to upgrade the structural model with more complex beam theories [21]
to assess the effects of the structural nonlinearities on the response of
blades larger than the ones studied [186]: Bak et al. (2013), Description of

the DTU 10 MW reference wind tur-
bine

[186].

Moreover, severe fluctuations of the incidence cause high-frequency and
high-amplitude fluctuations of the aerodynamic coefficients, triggering
even more high-frequency structural modes. These includes torsional
and more coupled structural modes, which thus paves the way for
torsion to come into play in the definition of the incidence more and
more. As a result, after having improved the UA model and fixed
the critical issues mentioned above, it will be interesting to examine
how the inclusion of the torsional degree of freedom in the structural
feedback changes the aeroelastic response also with UA.

Finally, wind farms are the main ingredient of the future of wind
energy. Several studies [14] [187]: Archer et al. (2013), ‘Quantify-

ing the sensitivity of wind farm per-
formance to array layout options using
large-eddy simulation’

[187] have demonstrated the capability of
LES solvers to simulate numerically the effects of the fluid interaction
between turbines in realistic layouts of wind farms, but under the
assumption of rigid structures. The presented method will allow us
in future works to assess also the aeroelastic unsteady effects on the
loading of turbines in waked operational regimes.
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A
Unsteady Aerodynamics Details

A.1 Validation of the model:
the S809 airfoil

Here in the following, for the S809 airfoil in different conditions, we
report a comparison of the results of our BL model against the experi-
mental measurements from the Ohio State University [188]: Ramsay et al. (1995), Effects of

grit roughness and pitch oscillations
on the S809 airfoil

[188] and against
the numerical results provided by another slightly different implemen-
tation of the Beddoes and Leishman model for the same profile and
the same conditions [189]: Gupta et al. (2006), ‘Dynamic

stall modelling of the S809 aerofoil and
comparison with experiments’

[189].

The results show that the qualitative unsteady behaviour of the aero-
dynamic response is predicted adequately, even if in some conditions
the model slightly underpredicts the quantitative amplitude of the
oscillations. This certainly depends on the precise value of all the em-
pirical constants in the model, as can be seen from the results of the
same model with different airfoil parameters used in Damiani et al.,
2016.[99] However, fine tuning of all these constants for our specific
implementation is out of the scope of this work, since the S809 airfoil
is not of our interest for the wind turbine considered and since no
experimental data are available for the unsteady aerodynamics of the
NREL 5 MW wind turbine’s airfoils. Moreover, unlike the code, the
coefficients below are evaluated by using the effective incidence for
the circulatory potential part provided by the classic superposition
of indicial responses. These tests demonstrate only the ability of our
model to capture the unsteady features of the aerodynamics and to
preserve the specific features of the original static aerodynamic polars.
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(a) ∆α = 5.5◦, k = 0.0026

(b) ∆α = 5.5◦, k = 0.050

(c) ∆α = 5.5◦, k = 0.077

(d) ∆α = 10◦, k = 0.0026

Figure A.1: Comparison of the S809 airfoil coefficients for ᾱ = 8◦.
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(e) ∆α = 10◦, k = 0.050

(f) ∆α = 10◦, k = 0.077

Figure A.1a: Comparison of the S809 airfoil coefficients for ᾱ = 8◦.

(a) ∆α = 5.5◦, k = 0.0026

(b) ∆α = 5.5◦, k = 0.050

Figure A.2: Comparison of the S809 airfoil coefficients for ᾱ = 14◦.
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(c) ∆α = 5.5◦, k = 0.077

(d) ∆α = 10◦, k = 0.0026

(e) ∆α = 10◦, k = 0.050

(f) ∆α = 10◦, k = 0.077

Figure A.2a: Comparison of the S809 airfoil coefficients for ᾱ = 14◦.
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(a) ∆α = 5.5◦, k = 0.0026

(b) ∆α = 5.5◦, k = 0.050

(c) ∆α = 5.5◦, k = 0.077

(d) ∆α = 10◦, k = 0.0026

Figure A.3: Comparison of the S809 airfoil coefficients for ᾱ = 20◦.
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(e) ∆α = 10◦, k = 0.050

(f) ∆α = 10◦, k = 0.077

Figure A.3a: Comparison of the S809 airfoil coefficients for ᾱ = 20◦.

(a) ᾱ = 8◦,∆α = 5.5◦

(b) ᾱ = 8◦,∆α = 10◦

Figure A.4: Comparison for different k and same ᾱ and ∆α.
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(c) ᾱ = 14◦,∆α = 5.5◦

(d) ᾱ = 14◦,∆α = 10◦

(e) ᾱ = 20◦,∆α = 5.5◦

(f) ᾱ = 20◦,∆α = 10◦

Figure A.4a: Comparison for different k and same ᾱ and ∆α.
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A.2 Tf modifications

In order to account for the different times of the different processes tak-
ing place during separation at the trailing edge, the variable σ1 modifies
the initial value Tf0 of the time constant Tf = Tf0/σ1. The initial value
of the variable σ1 = 1 is modified according to the conditions reported
in the pseudocode below, from the reference paper for the unsteady
aerodynamics [142]. The logical variables TESF, LESF, VRTX are true
if trailing-edge separation, leading-edge separation and vortex advection
are taking place respectively, according to the conditions explained in
Section 2.5.

1 IF TESF = True THEN: (trailing-edge separation)

2 IF Kα(α− α0) < 0 THEN:

3 σ1 = 2 (accelerated f motion, moving towards α0)

4 ELSE IF LESF = True THEN:

5 σ1 = 1 (possible leading-edge separation, moving away from α0)

6 ELSEIF f ′′n−1 ≤ 0.7 THEN:

7 σ1 = 2 (accelerated f motion when separation is occurring)

8 ELSE:

9 σ1 = 1.75 (accelerated f motion)

10 ELSE: (reattachment)

11 IF LESF = False THEN:

12 σ1 = 0.5 (decelerated reattachment)

13 IF V RTX = True AND τV ∈ [0, TV L] THEN:

14 σ1 = 0.25 (no reattachment if vortex shedding in progress)

15 IF Kα(α− α0) > 0 THEN:

16 σ1 = 0.75 (default)

A.3 TV modifications

Analogously to Tf , to consider the different times of the different
processes taking place during separation at the leading edge, the variable
σ3 modifies the initial value TV 0 of the time constant TV = TV 0/σ3.
The initial value of the variable σ3 = 1 is modified according to the
conditions reported in the pseudocode below, from the reference paper
for the unsteady aerodynamics [142], when LESF = True.

1 1) Is the vortex past the trailing edge, but less than 2 chords?

2 IF τV ∈ [TV L, 2TV L] THEN:

3 σ3 = 3 (accelerated vorticity decay in post-shedding)

4 IF TESF = False THEN:

5 σ3 = 4 (accelerated vorticity decay if reattaching flow)

6 2) Is the vortex on the airfoil?

7 ELSEIF V RTX = True AND τV ∈ [0, TV L] THEN:

8 IF Kα(α− α0) < 0 THEN:

9 σ3 = 2 (accelerated vorticity decay if moving towards α0)

10 ELSE

11 σ3 = 1 (default)

12 3) Is the vortex over the airfoil, but still close, and is it

moving away from stall?

13 ELSEIF Kα(α− α0) < 0 THEN:

14 σ3 = 4 (fast vorticity decay)
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15 4) Vorticity enhancement if flow is reattaching and rate of change

of the AoA is slowing down.

16 IF TESF = False AND Kq(α− α0) < 0 THEN:

17 σ3 = 1 (default)
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