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Abstract: Generative Adversarial Networks have recently demonstrated the capability to synthesize
photo-realistic real-world images. However, they still struggle to offer high controllability of the
output image, even if several constraints are provided as input. In this work, we present a Recur-
sive Text-Image-Conditioned GAN (aRTIC GAN), a novel approach for multi-conditional image
generation under concurrent spatial and text constraints. It employs few line drawings and short
descriptions to provide informative yet human-friendly conditioning. The proposed scenario is based
on accessible constraints with high degrees of freedom: sketches are easy to draw and add strong
restrictions on the generated objects, such as their orientation or main physical characteristics. Text on
its side is so common and expressive that easily enforces information otherwise impossible to provide
with minimal illustrations, such as objects components color, color shades, etc. Our aRTIC GAN
is suitable for the sequential generation of multiple objects due to its compact design. In fact, the
algorithm exploits the previously generated image in conjunction with the sketch and the text caption,
resulting in a recurrent approach. We developed three network blocks to tackle the fundamental
problems of catching captions’ semantic meanings and of handling the trade-off between smoothing
grid-pattern artifacts and visual detail preservation. Furthermore, a compact three-task discriminator
(covering global, local and textual aspects) was developed to preserve a lightweight and robust
architecture. Extensive experiments proved the validity of aRTIC GAN and show that the combined
use of sketch and description allows us to avoid explicit object labeling.

Keywords: Conditional GAN; Image-to-Image Translation; Text-to-Image Synthesis; multi-conditional
image generation

1. Introduction

In the last decade, deep learning (DL) algorithms have been capable of generating
photo-realistic images and videos, useful in a wide range of applications, such as computer
graphics, digital design and art generation. In this context, the scientific community
is exploring the possibility of controlling image synthesis by feeding auxiliary inputs,
such as category labels, descriptive text, hand-drawn sketches, semantic maps and many
others. Generative Adversarial Networks (GANs), first introduced by Goodfellow et al. [1],
represent nowadays the state-of-the-art solution. Despite their success, GANs are affected
by training instabilities and are sensitive to hyperparameters configuration. The high-
dimensional image space of such networks exacerbates the complexity of generating high-
resolution images in opposition to low-resolution and simulated data, such as MNIST [2],
Fashion MNIST [3] and CoDraw [4]. Recent models introduced by Zhang et al. [5,6] have
proven to achieve excellent results exploiting a multi-stage approach, in which several
networks cooperate in sequence at different resolutions. Nonetheless, the complexity in the
training phase and the limitations in generating multiple objects inside the same image are
still key issues.

In order for the image generating system to be effective, bridging the gap between high-
level concepts, such as sketches and text descriptions, and pixel-level details is required.
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Depending on the nature of such constraints, all conditional GAN models can be gathered
into three main groups: Image-to-Image Translation, Text-to-Image Synthesis and Style Transfer.
Image-to-Image Translation (I2IT) offers hard spatial constraints exploitation at the expense
of color-pattern-level information and an increasing sketch complexity for fine detail
generation, resulting in the suppression of chromatic and style variety. Isola et al. [7]
and Wang et al. [8] represent exhaustive examples of the described behaviors. On the
other hand, Text-to-Image Synthesis (T2IS) employs written captions, which are flexible and
informative but hard to handle when coping with detailed shape descriptions. This may
lead to high color variations but little or no shape adjustments. In general, this problem
is solved using complex cascade networks to capture every possible semantic meaning,
e.g., [9]. However, this scenario results in elaborated models, restraining and limiting the
possibilities of generating multiple objects in the same image. Style Transfer (ST) works in
a different context, allowing the network to homogeneously apply a requested style on a
given input image. This kind of conditioning lacks fine control over the final generated
image, as the model performs a translation rather than a proper generation. An important
accomplishment is pictured by Zhu et al. [10].

Two of the aforementioned categories are prone to be affected by Mode Collapsing.
This phenomenon is characterized by the generation of samples containing either the same
color and texture patterns (I2IT) or shapes (T2IS), pointing out a major limitation in the
mono-conditional generation scenario. On the other hand, ST is virtually unaffected by
this issue, although it requires a well-formed image provided as a basis for the translation,
limiting the expressiveness of the model.

In aRTIC GAN, we decide to address the Mode Collapsing problem by creating a
multi-conditional scenario in which I2IT and T2IS are combined, contrasting each other’s
style suppression. In particular, we proposed as visual input the use of simple and mini-
mal hand-drawn sketches and descriptive captions related to colors and patterns. These
two conditioning are both user-friendly and simple to retrieve, differently from previ-
ous works that combine text caption only with position [11] and parts [12] information.
Moreover, the concurrent use of simple sketches and text descriptions takes advantage of
non-overlapping information: the illustration imposes hard spatial constraints, making
the model able to identify pose and species, while the caption is in charge of pointing out
the coloring.

In addition to the initial problem, we explored the possibilities of multi-object genera-
tion. One major problem we encountered is represented by different visual defects, such as
checkerboard artifacts and the loss of detail, which may characterize the generated image.
These issues are derived directly from the output morphology and must be solved by cus-
tom adjustments; thus, we opted for a sequential model, as opposed to the more common
concurrent approach. The proposed method exploits a recurrent module in conjunction
with a third visual conditioning represented by an initial background. In detail, this is
used by the first generated object, and the resulted output is provided as a new scene for
the following generation step. A visual example of the overall generation procedure is
provided in Figure 1.

aRTIC GAN displays a compact design, composed of a set of blocks in charge of
capturing the proper semantic, leading to a generation process enriched with detail en-
hancement or suppression (see Figure 2). This pipeline forwards the given inputs along a
realistic inpainting procedure up to the intermediate and final results. The simplicity of
this configuration allows the model to be called recursively over a series of different pairs
of sketches and descriptions, while the rendering capabilities enable high levels of realism,
limiting the generation possibilities only to the human imagination and artistic touch. The
contribution of our method is threefold:

(i) aRTIC GAN exploits two specifically designed refinement blocks (Section 3.2) to
deal with image artifacts and fine detail enforcement as opposed to the multi-stage
generation approaches. This structure aims to achieve a small parameter count, much
lower than the aforesaid counterparts, while still obtaining high-quality performance.
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(ii) In order to use a unique discriminator for single-stage generation, our discriminator
produces different outputs at the same time. This design allows us to simultaneously
analyze text consistency and image quality at several levels without weighing down
excessively the overall complexity. The model and the novel losses are described,
respectively, in Sections 3.3 and 3.4.

(iii) The use of sketches and text descriptions improves performance while reducing the
Mode Collapsing effects, since each constraint influences and dampens the variation
suppression problem caused by the other input. As an additional effect, the gen-
erator appears to better discern elements from multiple domains and to generate
them accordingly, boosting even more the all-round realism quality and the detail
enhancement (Section 5.3).

this flower has yellow petals and a
yellow pistil

this red flower has 5 leaves with a
deep pale yellow center.

this bird has a black bill, with a white
breast.

STEP 1

STEP 2

STEP 3

Input
Sketch and

Text
Description

Processed
Input OutputGenerator

aRTIC
Generator

Figure 1. Theproposed generation process of aRTIC GAN. The model is recursively fed with sketches
composed of a few lines, short yet informative descriptions and either a background or the previous
generated image.

U-Net 
Backbone

Text Mask Gen.

Char
CNN_RNN

Generator Text Mask Gen.

Char
CNN-RNN

Real
Image

Inquired 
Image 

1x1x1

16x16x1

1x1x1024

Shared Backbonex2 x2

AGBs DEBs

Input
Image

Figure 2. The overall architecture of aRTIC GAN. The orange blocks represent the convolutional
layers and the red ones symbolize the transposed convolutional layers, while the green and purple
represent the fully connected and bilinear upsampling blocks, respectively.

All the introduced novelties have been validated on two well-known datasets contain-
ing birds (CUB-200 [13]) and flowers (Oxford Flower 102 [14]) images. The correspondent
text descriptions together with their embeddings (i.e., their vector representation), outlining
attributes such as appearances and colors, are provided in a different dataset collected by
Reed et al. [12].
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The paper is organized as follows: Section 2 presents the state-of-the-art work, describ-
ing the main generation approaches; Section 3 discusses the main novelties of aRTIC GAN
with respect to network blocks, losses and architecture; Section 4 describes the implementa-
tion details of the proposed method, from the input preparation to the network setup and
training procedure; Section 5 shows the experiments and results, investigating comparative
and ablation studies; Section 6 draws the conclusions of our work.

2. Related Works

Generating photo-realistic images is a challenging and significant task for many
applications, such as computer graphics, digital design and art generation. Over the
last few years, great progress has been achieved in this direction with the emergence of
deep generative models. Among them, GANs [1] stood out for their capability to achieve
several outstanding results, relentlessly improving as [15–19]. Moreover, the efficiency of
GAN-based image processing has been proven in many other research areas such as object
classification [20] or signal restoration [21].

Realistic image generation can be divided into five main categories with respect to
conditioning types and modalities:

Image-to-Image Translation has significantly improved over the last years since the
development of Pix2Pix by Zhu et al. [7], where conditional generative adversarial network
is explored to learn a mapping from input to output images. CycleGAN was introduced by
Zhu et al. [10] to convert the source domain into a different target domain in the absence
of explicit paired example images. Wang et al. [8] proposed an improvement to generate
high-definition images by progressively adding new generators. Chen et al. [22] presented
an alternative approach by exploiting a cascade of refinement blocks. A recent turning point
has been reached by Park et al. [23], who introduced a novel method based on semantic
spatially adaptive normalization. Recently, Park et al. [24] proposed an approach based on
patchwise contrastive learning and adversarial learning, while [25] explored a hierarchical
tree structure to organize labels and a new translation process. A peculiar approach was
developed by [26] which exploited a rich dataset collected through Artbreeder [27] to
output a single image from a graph-like structure. Finally, Dai et al. [28] learned a sequence
of invertible mappings which led to a flow-version of popular GANs, such as StarGAN,
AGGAN and CyCADA, with similar performances but half of the training parameters.

Text-to-Image Synthesis was first pursued by Reed et al. [29], in which embeddings
containing visual-relevant features are obtained taking advantage of the popular text
embedding technique Char CNN-RNN [12]. Subsequently, Zhang et al. [5,6] introduced
StackGAN in which the employment of multiple consecutive generator-discriminator pairs
is explored. Xu et al. [9] developed AttnGAN, a model able to transform text description
into spatial attention associating single words with image regions. The usage of a BI-LSTM
text encoder rather than Char CNN-RNN allows the model to focus on both the general
caption meaning and the single semantic word meaning, obtaining impressive results.
The drawback is a very high complexity due to the fact that every semantic aspect part
has to be controlled by a different component. Finally, Hong et al. [30] and Wang et al. [31]
focused on the spatial constraints of the generated image. Other recent notable works
are DM-GAN [32], MirrorGAN [33] and DF-GAN [34], using, respectively, a dynamic
memory module to refine fuzzy images (DM-GAN), a mirror structure to model T2I and
I2T subjects (MirrorGAN) and a single-stage architecture composed of a deep text–image
fusion block and a target-aware discriminator (DF-GAN). Finally, Li et al. [35] proposed
a lightweight GAN model with a novel word-level discriminator providing fine-grained
training feedback; the corresponding generator is able to correctly focus on specific visual
attributes while using a small number of parameters.

Style Transfer aims at transferring the style from one image onto another synthesising
a texture from a source image preserving the semantic content of a target image. Gatys
et al. [36] exploited one of the first attempts of texture modeling with deep learning.
The multiple-domain transfer problem was widely addressed in [37–40], deepening the
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analysis on cross-domain relations, style merging and translation control, even in non-
visual scenarios. This type of approach was explored in more specific fields, such as
face modification, resulting, for example, in a family of architectures specialized in age
progression and regression, such as CAAE [41] and its further development CAAE++ [42],
C-GAN (Contextual GAN) [43], IPCGAN [44], idGAN [45] and CAN-GAN [46]. Recently,
An et al. [47] explored the content leak issue in state-of-the-art methods and addressed it
using neural flows, while [48] developed an adaptive attention normalization procedure
to apply the attention mechanism on a per-point basis. A novel application of Laplacian
pyramids was proposed by [49], which transfers global style patterns with a drafting
network and further refines the local details with a revision network by hallucinating the
previous output with a residual image.

The Multi-Conditioned GANs approach, although very demanding, nowadays re-
sults fundamentally in dampening the problem of Mode Collapsing; otherwise, it is much
more difficult to deal with the "standard" mono-conditional methods. Reed et al. [12]
proposed an architecture to generate objects from text descriptions and bounding boxes or
object part locations. Bounding boxes determine the object region but cannot provide any
information about the appropriate pose. On the other hand, the posture can be precisely
described by selecting single parts’ locations, although this methodology is significantly
unnatural and time-consuming. H.Park et al. [11] introduced a model improving the gen-
eration process by focusing on object masks, while Dean et al. [50] developed a cascade
GAN exploiting both class labels and audio signal inputs. Recently, astonishing results
were achieved by T. Park et al. [23], combining semantic maps in combination with input
semantic layouts. This method displays great visual performance, even showing capabili-
ties of concurrent multiple-object generation. However, it lacks fine-detail control over the
single object.

Multiple-Object Generation has been mainly addressed via a concurrent approach,
characterized by a simultaneous spawning of multiple objects. Examples of concurrent
generation are provided by [23,51–54]. Turkoglu et al. [55] proposed oppositely a sequential
generation method based on a recursive approach, in which one single object is generated
at a time from a segmentation map to deal with the occlusion artifacts problem. Finally,
the model proposed by El et al. [56] produces sequentially simple shapes in a simulator [4],
inpainting new geometrical objects in the scene.

3. Method

aRTIC GAN, as a Generative adversarial network (GAN), consists of a generator G
and a discriminator D competing in a two-player minimax game: the discriminator tries
to distinguish real training data from synthetic images, and the generator tries to fool
the discriminator. aRTIC GAN takes as input an RGB image containing a background
and the inpainted sketch (see Section 4.2) together with a text description embedding
(Section 4.2.4). When dealing with the task of generating multiple objects, as opposed to
multi-stage methods such as [5,6,9], our approach focuses on a single-stage generation
process resulting in a much more compact design as shown in Figure 1. Specifically, at each
step, the image produced as output by the generator is merged with the sketch for the
consecutive generation process, resulting in a recurrent approach due to the exploitation of
the same generator and discriminator.

In this Section we introduce the main novelties of aRTIC GAN, focusing on original
network blocks, loss definitions and overall architecture composition.

3.1. Text Mask Generator

The cross-modal input of aRTIC GAN Generator is carried out through the Text Mask
Generator Block (TMG) (shown in Figure 3), who is in charge of combining sketches and
captions. First of all, text descriptions are encoded with the robust embedding method
exploited by Reed et al. [29], whose performances are widely demonstrated in several
works [5,6,9,11]. After that the text embedding is combined with the desired object sketch,
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represented here as a binary mask (in Section 4.2.2 are given details regarding the binary
mask generation).

Upsample

Block
Upsample

Block

Char
CNN-
RNN

1x1x1024

32x32

32x32

32x32

256x256
Text Mask

Embedding

128x128

Figure 3. The Text Mask Generator structure exploits the binary masks, corresponding to the sketch
area, into the transposed convolutional layers.

The composition of text embedding and object binary mask could in principle be
performed by a single fully connected (FC) layer, resulting in a prohibitive parameters
number. To overcome this issue and to preserve the separation between text and objects,
we propose a series of progressive upsampling blocks fed at each level with the binary mask
describing the desired location and rough shape of the object. Such a mechanism of spatial
enforcement is reproduced in the generator and the discriminator so that each text channel
is independently trained in both models. In Section 5.2 we present an overview of the
configuration and performance of the TMG Block.

The TMG output is concatenated to the RGB input, i.e., an initial background image in
case of the first object, or the previously generated scene in case of the subsequent ones,
and fed to the aRTIC GAN Generator successive block (in Figure 2 is depicted the overall
generation process).

3.2. Refinement Blocks

As shown in Figure 4, we dealt with two main issues to achieve photo-realistic images:
large monochromatic areas are affected by grid and checkerboard artifacts, while finer
details are insufficiently highlighted. To deal with these undesired effects, the generator
is equipped with two refinement modules: the Anti-Grid Block (AGB) and the Detail
Enforcement Block (DEB), respectively illustrated in Figures 5 and 6. The idea of grid-
pattern removal in GANs is not novel [57,58], but our approach differs in the development
of a specific modular block which can be applied several times in a row (e.g., 2 consecutive
ones in the proposed architecture). The contributions of these two modules are further
discussed in Section 5.4.

The Anti-Grid Block (AGB) is in charge of removing the grid-pattern artifacts due to
small dimension kernels during the decoder steps of the generator. Our implementation is
inspired by the ones proposed by Odena et al. [57] and Sugawara et al. [58]. The model
performs an upsample operation by a factor of 2 via a bilinear function, and then a convo-
lutional layer composed of three 8 × 8 kernels and a hyperbolic tangent activation function
are employed.

As analyzed in detail in Section 5.4, the AGB effectively learns a smoothing func-
tion with improved performance with respect to classical smoothing algorithms [59,60]
operating over the whole image and causing an excessive blur effect.

The Detail Enforcement Block (DEB) plays a key role in object generation by exploit-
ing a bilinear upsampling and a convolutional downscaling combination analogous to the
one in the AGB. The DEB input is given by the concatenation of the initial sketch with
the AGB output. The objects’ spatial constraints are enforced using 4×4 convolutional
kernels, obtaining two significant improvements: the avoidance of small detail removal
performed by the AGB (e.g., little bird eyes in Figure 4) and the enhancement of sharper
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image elements. The latter effect comes from mimicking a well-known behavior exploited
in previous works dealing with stacked approaches, in which sharp details are generated
by the last G-D pairs [5,6,9,50].

Before After Before After

Details EnforcementGrid Patterns Removal

Input Input

Input Caption: this yellow bellied bird has a
short flat beak and yellow head

Input Caption: a smoky grey bird from head
to feet with small black eyes.

Input Caption: this flower has five long purple
petals that all have a pinkish stripe down the

middle of them.

Input Caption: this flower has petals that are
white with yellow lines.

Figure 4. Single-step generation artifacts are shown along with the corresponding inputs and outputs.

Bilinear
Upsample

Conv
Block

Kernels
3x8x8512x512

256x256256x256

Anti-Grid Block

Figure 5. The Anti-Grid Block exploits a linear function to upsample the image, and 8 × 8 convolu-
tional kernels provide the learned smoothing function.

Bilinear
Upsample

Conv
Block

Kernels
3x4x4512x512

256x256
4x256x256

Details Enforcement Block

Figure 6. The Detail Enforcement Block design is similar to that of the AGB. The difference resides in
the task of the convolutional layer, which retraces the input sketch for fine and sharp details.

3.3. Loss Functions

aRTIC GAN loss functions are based on several components to enforce all the con-
straints defined by TMG, AGB and DEB. Four types of cost functions have been imple-
mented for both the generator and discriminator.

Binary and Patch Losses, introduced by [1,7], are widely used in image translation
methods. In particular, the Binary Loss states the likelihood of an image, while the Patch
Loss associates a confidence with the realism of each image region. aRTIC GAN exploits
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them together to enforce precise object generation with both fine details and global con-
sistency (e.g., small-scale generated parts placed in a realistic way). Moreover, each of
these losses provides a measurement on the image-caption consistency other than the Text
Reconstruction Loss (described later in this section). Binary and Patch Losses are defined
by applying a Mean Squared Error cost function, as proposed by Mao et al. [61]:

LBinary = E[(DBin(z, y)− 1)2] +E[(DBin(z, G(z)))2] (1)

LPatch = E[(DPatch(z, y)− 1)2] +E[(DPatch(z, G(z)))2] (2)

where DBin is the binary output of the discriminator, DPatch is the patch output of the dis-
criminator, G is the generator output, y is the ground truth image and z is the concatenation
of the RGB image with the inpainted sketch and the text description embedding.

Double L1 Loss deals with the synthesized object and the recursive generation of
multiple elements. aRTIC GAN computes this criterion function twice: the first one is
calculated over the whole image to ensure background consistency; the second one is
computed on the eroded sketch area, as introduced by [11], to ensure the visibility of
the object.

Double L1 Loss is defined as follows:

LL1 = E[||y− G(z)||1] +E[||(yMasked)− (G(z)Masked)||1], (3)

where yMasked is the eroded ground truth and GMasked is the eroded output of the generator.
Text Reconstruction Loss (TRL) is fundamental for preserving semantic information

represented by the text embedding in the discriminator architecture. Without this specific
loss, semantic information would be ignored leading to Mode Collapsing. Since Binary and
Patch Losses focus mainly on spatial consistency, TRL ensures coherence between color
patterns and referring captions, as shown in Section 5.4. Text Reconstruction Loss is defined
using the Cosine Similarity (CS) as follows:

LTRL = E[CS(ztext, DTRL(z, y))] +E[CS(ztext, DTRL(z, G(z)))] (4)

where DTRL is the text reconstruction output of the discriminator and ztext is the input
text embedding.

The final Generator and Discriminator Losses take the following forms:

LG = αLBinary + βLPatch + λ1LL1image + λ2LL1target (5)

LD = αLBinary + βLPatch + γLTRL, (6)

where LG is the Generator Loss, LD is the Discriminator Loss and the weight parameters
α, β, λ1, λ2, γ are defined in Section 4.3.

3.4. aRTIC GAN Architecture

One of the main advantages of aRTIC GAN is the tight model composed of a single
generator–discriminator pair. The discriminator’s multi-head structure balances between
the network compactness and the number of constraints given to the model in the previ-
ously described loss.

The overall architecture is shown in Figure 2. The generator G is a mixture of four
components: the TMG, the encoder-decoder (E-D) backbone and the two refinement blocks.
The output of the Text Mask Generator is fed to the E-D backbone. This core unit has a
U-net [62] structure and is in charge of analyzing features at several scales while feeding
the upsampling blocks with the corresponding encoder information. The final output
image is given by the two refinement blocks working in pipeline. The discriminator D has
been designed to take advantage of two feature-extraction backbones and is composed
of 10 convolutional layers. It is able to perform three different tasks in parallel: binary
classification, patch classification and text reconstruction.
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4. Implementation Details

A detailed overview of the technical aspects is provided here, starting from the datasets
employed in our experiments, the input text and sketches preprocessing, the network setup
and its training procedure.

4.1. Datasets

The Caltech-UCSD Birds 200 (CUB-200) [13] dataset is composed of more than
11,000 images depicting 200 bird species. Images are associated with objects’ bounding
boxes, segmentation masks and attributes.

The Oxford Flowers 102 [14] dataset is made up of more than 8000 images belong-
ing to 102 flower categories. For each class, we can find a total number of n images,
with 40 ≤ n ≤ 258, resulting in an unbalanced dataset. One of the main advantages of
Oxford Flower 102 is a high variation with respect to flowers pose and light conditions in
images, even within the same class.

The Birds and Flowers Captions [62] dataset describing the images contained in CUB-
200 and in Oxford Flowers 102, is provided by Reed et al. [12]. It consists of 10 short text
captions for each image, together with their 1024 vector embeddings, retrieved via Amazon
Mechanical Turk. The text descriptions provide attributes such as appearances and colors of
birds and flowers.

The choice to employ the aforementioned datasets is due to the visual chromatic
variance which can be found in their images, a consequence of brightness, saturation and
high contrast provided by colors in nature. Other types of datasets, even among the most
common in this field such as COCO [63], ADE20K [64] or Cityscapes [65], characterized by
urban environments, display less variance. Moreover, the amount and high quality of the
human-made captions provided by [12] makes a strong contribution for the dataset choice.

4.2. Input Preparation

We discuss here the RGB input image preparation, the sketch generation process
and the text embedding. Unless specifically reported, all the image data are resized to
256 × 256 pixels, which is the standard aRTIC GAN working resolution.

4.2.1. Background Generation

Background images are obtained directly from the CUB-200 dataset, upscaling the
bird images and isolating the four 256× 256 external edge squares, as suggested in [11].

4.2.2. Sketch Mask and Input Generation

One of the two aRTIC GAN inputs is a merging of a sketch and an RGB background,
which is either a random background image (in case of the first generated object) or the
output of the previous generation step. The sketch is inpainted into the background image
by replacing the corresponding pixels and the area within the sketch. At training time,
the objects’ binary masks are taken from CUB-200 and Oxford Flowers 102 datasets. On the
other hand, if a sketch is provided at test time, the binary mask is generated through closure
morphological operator and Fill algorithms. The binary masks are resized to 32× 32, 64× 64
and 128× 128 to feed the corresponding upsampling block in the TMG (see Figure 3).

4.2.3. Sketch Generation

In order to automatically reproduce plausible human-made sketches for the images
in CUB-200 and Oxford Flowers 102 datasets, we apply an edge detection strategy on
the ground truth images. The Canny algorithm [66] is chosen as the baseline method for
this purpose taking into account two separate thresholds to regulate the sensitiveness of
the resulting sketch with respect to the amount of details. The choice of the sensitivity
threshold level is particularly tricky in the case of the CUB-200 dataset because low values
lead to noisy details while high values can remove contours and structural details (e.g.,
birds’ eyes). Two different Canny edge detectors are then employed, one working on



Electronics 2022, 11, 1737 10 of 21

the elements inside the object and one working on the segmentation mask to obtain the
contours. Finally, the outcomes are summed up and normalized in [−1, 1]. Examples of the
sketch generation procedure are displayed in Figure 7.

Image → Sketch Problematic Sketches Improved Sketch

Figure 7. Sketch generation outcomes and the related issues are reported. Our algorithm efficiently
deals with complex cases.

4.2.4. Char CNN-RNN Text Embedding

Char CNN-RNN is employed to extract the visually discriminative text embedding
of a given description, the second input of aRTIC GAN. This method was proposed by
Reed et al. [12] to pretrain a text encoder and it is largely used in Text-to-Image Synthesis
tasks. It maps text descriptions to the common images feature space by learning a corre-
spondence function between text and images. The choice to employ the aforementioned
model in the evaluation phase is to pursue a fair comparison of aRTIC GAN with other
generative models.

4.3. Network Setup

aRTIC GAN inputs have dimensions of 256 × 256 × 3 for the RGB image and
1 × 1 × 1024 for the text embedding. The text embedding feature vector is fed to the
TMG, resulting in a 256 × 256 × 1 features map, which is concatenated to the RGB tensor
as an additional channel.

The encoder-decoder structure is composed of eight convolutional blocks for the down-
sampling stage and seven transposed convolutional blocks for the upsampling. The encoder
is equipped with batch normalization (BN) [67] and the tanh activation function, with an
exception for the first layer. The decoder is equipped with BN and ReLU activation func-
tions. A dropout strategy is used in the first three blocks to improve the robustness of the
model. We employed two AGBs and two DEBs with filters of dimension 8 × 8 and 4 × 4,
respectively (see Figure 2).

The discriminator input has size 256 × 256 × 7, obtained by the concatenation of
the inquired image, the Text Mask and the ground truth (GT) image. The two shared
architectures are composed of three downsampling blocks (with a factor of 2). Every con-
volutional layer is followed by BN and ReLU activation functions. The final discriminator
outputs representing the Binary, Patch and Text Reconstruction tensors, have dimensions of
1 × 1 × 1, 16 × 16 × 1 and 1 × 1 × 1024, respectively. The Binary and Patch Losses exploit
a Mean Square Error (MSE) cost function, while Text Reconstruction utilizes the Cosine
Similarity (CS). The weights chosen for the two final loss functions (Equations (5) and (6))
are: α = 0.6, β = 0.1, γ = 1.0, λtot = 100 and λmask = 100. Our model is trained with a
batch size of 3 for 200 epochs with image augmentation and for an additional 100 epochs
with background augmentation (experiments described in Section 5.2). Finally, aRTIC GAN
is trained with single-object generation, as each generation is independent from the others.



Electronics 2022, 11, 1737 11 of 21

4.4. Training Procedures

aRTIC GAN can generate an object in a scene while preserving the given background
up to a plausible inpainting using only a single generator–discriminator pair. When
generating multiple objects, this structure allows the model to handle each object generation
as almost completely independent from the others. Indeed, occlusions and artifacts are
processed separately at each step.

Accordingly, two training strategies have been developed for aRTIC GAN: indepen-
dent steps learning and random consecutive steps training.

The Independent steps learning strategy is based on the idea of training aRTIC GAN
on a single object at a time. The whole procedure is summarized in Algorithm 1. The input
background is either composed by random environment surroundings or a GT image
belonging to one of the two datasets used, mimicking the context of multi-object images.
The gradients for both the generator G and discriminator D are computed at each step as
well as their weights update. This strategy allows us to provide the final image starting
from any type of sketch, description and background, avoiding any dependency with
respect to the position, patterns and relative occlusions from other inputs. This modality
has been exploited for all the results shown in our work.

Algorithm 1: Independent steps learning
Input: Inpainted sketch, text embedding and GT image
Output: Generated image and weights update step

1 Generator Call over the inpainted sketch and text embedding
2 Discriminator Call over the generator output and the GT
3 Generator Losses: Binary, Patch and Double L1
4 Discriminator Losses: Binary, Patch and Text Reconstruction
5 Gradient Computation
6 Weights Update;

Random consecutive steps training is an alternative procedure based on a sequence
of generation steps and a single-discriminator evaluation. The procedure is summarized
in Algorithm 2, where the input is defined as a set of m, with 1 ≤ m ≤ 4, sketch-text
embedding pairs. The final image is generated via consecutive calls of G, where the current
sketch is inpainted in the output of the previous step (except for the first object, which
is inpainted in the initial background input), while the Double L1 Loss is computed and
stored at each step. After all the generations are completed, the discriminator is called and
its loss is computed along with the Binary and Patch components of the Generator Loss in
order to perform a single gradient descent step.

Algorithm 2: Random consecutive steps training
Input: List of inpainted sketches and text embeddings
Output: Generated image and weights update step
for Input sketch–text pair do

1 Generator Call over the inpainted sketch and text embedding
2 Generator Double L1 Losses: GDL1

3 Discriminator Call over the generator output and the GT
4 Discriminator Losses: Binary, Patch and Text Reconstruction
5 Generator Losses Aggregation: Gtot = GBinary + GPatch + ∑i Gi

DL1

6 Gradient Computation
7 Weights Update;

5. Experiments and Results

Extensive experiments have been carried out to prove the validity of the proposed
method. In Section 5.1, we report the metrics used to measure aRTIC GAN performance.
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In Section 5.2, we evaluate the generation of multiple elements, highlighting the behavior
of aRTIC GAN with respect to different backgrounds. A comparative analysis is then
provided in Section 5.3. Finally, an ablation study of the main components is described in
Section 5.4.

5.1. Metrics

A quantitative evaluation has been performed using several metrics: the Inception
Score (IS) [17] (the higher the better) for the realism of the generated image, the Structure
Similarity (SSIM) [68] to quantify the similarity between the GT and the generated images
(SSIMGTgen), the Cosine Similarity (CS) to measure text descriptions’ variations and the
Frèchet Inception Distance (FID) [69] (the lower the better), which compares the distribution
of the generated images with the distribution of the training images. The definitions of the
cited metrics are shown below.

IS is a measure of the characteristics of a generative model:

IS = exp[Ez∼p(z)[D(p(y|g(z)))‖p(y)]] (7)

where g(z) is an image generator to be evaluated, y is the label, p(y|x) is the posterior
probability of a label computed for an image x, p(y)=

∫
p(y|g(z))dz is the marginal class

distribution and D(p‖q) is the KL-divergence between two probability distributions p, q.
The Structure Similarity (SSIM) estimates the visual impact of shifts in image lumi-

nance, changes in image contrast and structural changes. The SSIM between two image
windows x and y with the same dimension is defined as:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (8)

where α, β, γ > 0 control the significance of each of the three terms. The luminance, contrast
and structural components are defined as:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

(9)

where µx and µy represent the means of the two images, σx and σy represent the standard
deviations, σxy is the covariance of the two images and C1, C2, C3 ∈ R.

The Frèchet Inception Distance (FID) is the Wasserstein distance between two multi-
variate normal distributions Xr ∼ N (µr, Σr) and Xg ∼ N (µg, Σg):

FID = ‖µr − µg‖2 + Tr(Σr + Σg − 2(ΣrΣg)
1
2 ) (10)

Furthermore, an additional metric has been defined to evaluate the capability of the
generator to reproduce the target domain distribution for the given conditional input. In
particular, we compute ∆SSIM as the absolute difference between the similarity obtained
on the ideal transformation (inputGT) and the one performed by aRTIC GAN (inputGen)
as follows:

∆SSIM = |SSIMinputGT − SSIMinputGen| (11)

where SSIMinputGT and SSIMinputGen are the structural similarities computed over the input
image with respect to the ground truth and the generated output.

Finally, we exploit the Cosine Similarity (CS) metric to understand text embeddings’
variations and similarities.
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The CS between two vectors x and y is defined as:

CS(x, y) =
x · y
‖x‖‖y‖ (12)

The CS measures in fact the similarity between two vectors of an inner product space
on the basis of their angle cosine. A CS value equal to zero means that the two vectors are
orthogonal, while two vectors pointing up to the same direction correspond to a CS value
equal to one. We refer to the CS value of a dataset as the mean value of all CSs calculated
on 104 different vector combinations among the dataset text embeddings. Furthermore, we
refer to the CS value of a dataset pair as the mean value of all CSs calculated on 104 pairs
of vectors taken from the respective datasets. This value can be empirically used as the
distance between the two datasets’ text embeddings.

5.2. aRTIC GAN Evaluation

Table 1 reports the performance of aRTIC GAN in terms of IS, SSIM and ∆SSIM over
the two datasets and their combined usage. An interesting result is represented by the
increasing performance in terms of IS when training aRTIC GAN over both domains (birds
and flowers), keeping the same hyperparameters setting. This highlights the importance of
using a multi-domain dataset to improve the quality of image generation.

Table 1. The Inception Score (IS), the Structural Similarity Score (SSIM) and the ∆SSIM (Equation (11))
are reported, respectively, for the generation of birds, flowers and their combined use.

Distance CUB-200 Flowers 102 Multi-Domain

IS 5.54 ± 0.33 4.28 ± 0.31 7.15 ± 0.34

SSIM 0.86 0.71 0.80

∆SSIM 0.04 0.045 0.042

The combined use of text embeddings and sketches is analyzed in Table 2 in relation
to the respective datasets (i.e., CUB-200 [13] and Oxford Flower 102 [14]).

Table 2. The distance between the datasets is calculated using the SSIM and CS.

Distance CUB-200 Flowers 102 CUB-Flowers

SSIM 0.072 ± 0.192 0.057 ± 0.121 0.062 ± 0.053

CS 0.27 ± 0.178 0.64 ± 0.092 −0.04 ± 0.034

The reported CS values in the case of single dataset show the coherence of text em-
beddings in the Oxford Flower and CUB-200 datasets, with the latter showing a smaller
value because of the greater variety of text descriptions of birds with respect to flowers.
The almost-zero CS value calculated between the two datasets suggests that the respec-
tive embeddings are almost orthogonal; thus, a multi-domain training will increase the
model generalization.

A qualitative analysis is provided in Figure 8, showing a large set of resulting images
with respect to several conditions (e.g., single-object, multiple-object generation). The left
block shows examples of aRTIC GAN outputs when trained on both the domains, while
the middle and right blocks display results provided by single domain training procedure.
By the combined use of the two domains (left block), aRTIC GAN is able to improve the
realism of color-pattern textures, boosting the IS value of about ∼2 points (see Table 1).
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Multi-Domain CUB-200 Oxford Flower

Figure 8. Examples of images generated by aRTIC GAN, trained over single and multiple domains.
Examples of multiple-element generation are shown as well as of single birds and single flowers.

Finally, the possibility of generating objects out of their original environments has to
be considered since random backgrounds can be provided as inputs to our model. In order
to deal with this issue, we investigated a fine-tuning training strategy over an augmented
dataset using the procedure introduced in [11]. The GT object and relative sketch pair
is inpainted both into the original background and into a randomly chosen one. Table 3
reports the obtained IS, which slightly decreases in the more challenging setting of complete
random backgrounds. In Figure 9, some background images and original-augmented GT
image pairs are presented in the first and second rows, respectively. The last two rows
provide examples of the generation process employing or not the background augmentation
technique. The not-augmented model, while trying to preserve the background, propagates
black regions from the input image, resulting in unrealistic outputs.

The bird has an
orange bill that
is thick and a
white belly.

the flower has
petals that are

white with
yellow lines

Backgrounds

BG Augmented GT

Input Caption Input Image No BG Aug. BG Aug.

original GT

Figure 9. Backgrounds, GT augmentations and examples of generation failures and successes are
reported here, showing the importance of the generalization step.

5.3. Comparison with the State of the Art on Single Domain

A straightforward comparison between aRTIC GAN and other methods is not trivial.
As already mentioned, T2IS and I2IT lack, respectively, spatial and color-pattern constraints,
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possibly leading to Mode Collapse events. Even if the Inception Score (IS) outputs a lower
score in the case of Mode Collapse [70], the actual supervision is hard to be measured:
neither text-based methods, e.g., DF-GAN [34], DM-GAN [32] and StackGAN [5], nor
sketch-based methods, e.g., Pix2PixHD [8], CUT [24] and CycleGAN [10], have the expres-
sive power required to enforce both the constraints (details and textures). On the other
hand, multi-conditioned methods [11] actually exploit the combined use of background
images and text descriptions, but no actual control over the object’s shape or details is
provided, resulting in a slight variation in the Text-to-Image Synthesis task.

Moreover, the comparison with another multi-conditioned model, SPADE by Park
et al. [23], is not an easy task due to the different inputs used. Pairing style images to
text descriptions is far from being a trivial task, and no assurance on providing the same
amount of information can be given. If no style image is fed to the network, SPADE falls
into the same category as Pix2Pix and Pix2PixHD.

Table 3. The IS of the standard aRTIC GAN is compared with the BG-Augmentation setting.

Model Multi-Domain IS

aRTIC GAN 7.20 ± 0.29

BG-Augmentation 6.28 ± 0.18

Nonetheless, we compared aRTIC GAN with several baseline models in single-domain
setting in order to provide a general indicator for the realism quality of the generated
images; these include the aforementioned stacked approaches, more modern architectures
and even a single-stage generation competitor model, due to their high reputations among
the scientific community and the availability of common metric scores on CUB-200 and
Oxford Flowers 102 datasets.

Table 4 reports the achieved results in terms of Inception Score and FID score, re-
spectively: the competitors’ values have been taken directly from the original papers with
the exception of Pix2Pix, which had to be trained specifically for the sake of comparison
purposes. Even if our aRTIC GAN aims to tackle a more challenging objective with respect
to I2IT and T2IS, due to the used inputs, the IS achieved on CUB is 5.54± 0.33 and the FID
score is 14.17, while on Oxford Flowers the IS achieved is 4.28± 0.31, resulting in extremely
competitive performances in both datasets: LeicaGAN* (which is LeicaGAN trained with a
custom training-testing split) is the only one performing slightly better on CUB, even if
it lacks the quality of controls of our proposed method, as it displays a mono-conditional
I2T approach; aRTIC GAN performs better than all the presented competitors’ models on
Oxford Flowers dataset.

For a qualitative analysis, Figure 10 demonstrates how aRTIC GAN can control the
output image, given the same background and text caption, through a change in the input
sketch. In the provided examples, our method is able to generate the correct poses and
species, as opposed to the methodologies that exploit random noise to generate different
output images. The example in Figure 11 shows how our method reacts to a fixed-input
sketch and different captions: aRTIC GAN is able to produce different coloring on request,
proving the avoidance of Mode Collapses as opposed to other competitors’ I2IT methods.
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Caption: "this bird has wings that are black and has a white belly"

Attn
GAN

aRTIC
GAN

Sketch

Output

BG

Figure 10. The supervision of the generation process is committed via the sketch, generating different
poses and the species with the same caption.

Input Image Pix2Pix aRTIC GAN C1

C1:this is a solid blue bird with a blue bill that is short and pointed.
C2: the bird is black in color with a sharp black pointed beak.
 

aRTIC GAN C2

Figure 11. The use of a single sketch and multiple captions (e.g., C1 and C2) allows aRTIC GAN to
generate different color patterns as opposed to I2IT methods (e.g., Pix2Pix).

Table 4. Acomparison between our method and other models using IS and FID scores as metrics
computed over both CUB-200 and Flowers 102.

Architecture CUB-200
(IS)

Flowers 102
(IS)

CUB-200
(FID)

Pix2Pix [7] 2.76 ± 0.13 2.62 ± 0.023 -

GAWWN [12] 3.62 ± 0.07 - 67.22

AttnGAN+CL [9] 4.42 ± 0.05 - 16.34

StackGAN [5] 3.70 ± 0.04 3.20 ± 0.01 51.89

StackGAN V2 [6] 4.04 ± 0.05 3.26 ± 0.01 15.30

MirrorGAN [33] 4.56 - 34.71

LeicaGAN [71] 4.62 ± 0.06 3.92 ± 0.02 -

LeicaGAN* [71] 5.69 ± 0.06 3.80 ± 0.01 -

DM-GAN [32] 4.75 - 16.09

SEGAN [72] 4.67 ± 0.04 - 18.167

DF-GAN [34] 5.10 - 14.81

aRTIC GAN 5.54 ± 0.33 4.28 ± 0.31 14.17
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5.4. Ablation Study

We perform an ablation study to highlight the effects of the Patch Loss, the Text
Reconstruction Loss, the Anti-Grid Block and the Detail Enforcement Block. These elements
are compared using a conditional discriminator baseline with the Binary Loss, where the
Gaussian Smoothing and Sharpening techniques replace the proposed refinement blocks.

The Binary Loss alone produces globally consistent yet inaccurate images, failing to
correct heavy image artifacts produced by the generator. We found that setting β to 0.6
in Equation (6) improves detail generation while keeping a global coherence, as shown
in Figure 12. The combined use of the Binary and Patch Losses makes the discriminator
focus on spatial constraints, while the generator tends to choose the median pixel color to
minimize the two L1 losses [7].

Input Caption:
this magnificent
specimen has
mostly orange
body with black
head, and gray

wingbars.

Input Image No TRL TRL

Input Caption: this
flower is orange in
color, with petals
that are spotted.

Input Image No Patch Loss Patch Loss

Te
xt

R
ec

on
st

ru
ct

io
n

Lo
ss

Pa
tc

h 
Lo

ss

Figure 12. Region consistency and color-pattern generation are compared when using the Patch Loss
and TRL, respectively.

The TRL enforces the text description, as shown in Figure 12, where the generation
process is sensible to the input caption resulting in the correct color pattern. Moreover,
Table 5 reports several implementations of the TMG, as in Section 3.1, and the corresponding
number of parameters of the generator and the Inception Score. We empirically found that
the best performance is obtained through the 32 × 32 implementation, which demonstrates
the capability of this block to generalize the information provided by text.

Table 5. The TMG implementations are here presented to discuss performance with respect to the IS
and the number of parameters.

Mode Parameters Inception Score

Fully connected 116.086.915 6.56 ± 0.24

FC 16 × 16 + upsample 49.174.983 6.96 ± 0.23

FC 32 × 32 + upsample 49.962.166 7.20 ± 0.29

FC 64 × 64 + upsample 53.110.949 6.96 ± 0.22

Here we investigate the use of the Gaussian Smoothing and Sharpening techniques when
replacing the Anti-Grid Block and the Detail Enforcement Block. As shown in Figure 13,
these filters affect the whole image neither preserving the background nor adapting to
specific cases. Instead, the AGB removes the grid-pattern artifacts without influencing the
contours and the surroundings. On the other hand, DEB contrasts the lack of details and
sharp lines.
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s Input Caption: a

smoky grey bird from
head to feet with
small black eyes.

Input Image Gaussian Sharpening DEBs

A
nt

i-G
rid

 
B

lo
ck Input Caption: the

bird is yellow with
black on its head
and has a very

short beak

Input Image Gaussian Blur AGBs

Figure 13. Gaussian Blur and Sharpening global action are compared to the AGB and DEB local action.

For a more holistic view of the ablation study, Table 6 shows the effects, in terms of the
FID metric, derived from the suppression of various components in the complete model,
highlighting and quantifying their importance in the presented architecture.

Table 6. Here are presented the FID scores retrieved when the indicated component is removed from
the complete model.

Removed Comp. FID

aRTIC GAN 14.17

TMG (Section 3.1) 22.83

AGB (Section 3.2) 48.42

DEB (Section 3.2) 39.71

AGB + DEB 83.47

6. Conclusions

In this paper, we proposed aRTIC GAN, a method to recursively generate images
conditioned on multiple text descriptions and object sketch pairs. aRTIC GAN improves
the supervision on the image generation process by exploiting each constraint to tackle
Mode Collapsing. Moreover, our approach aims at generating the inquired object as well
as preserving both the semantics and the details of the given background image via a
single-step generation. The proposed model uses foreground and background information
to produce photo-realistic images. The experimental results suggest that our chosen input
modalities significantly improve image diversity, enhancing the robustness of the model.
Finally, the three novel network blocks, namely the Text Mask Generator, Anti-Grid and
Detail Enforcement Blocks, boost the model’s performances, offering a text embedding
channel and the possibility of dealing with image artifacts.
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