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Summary

We consider classification of functional data into two groups by linear classifiers based on
one-dimensional projections of functions. We reformulate the task of finding the best classifier as
an optimization problem and solve it by the conjugate gradient method with early stopping, the
principal component method, and the ridge method. We study the empirical version with finite
training samples consisting of incomplete functions observed on different subsets of the domain
and show that the optimal, possibly zero, misclassification probability can be achieved in the limit
along a possibly nonconvergent empirical regularization path. We propose a domain extension
and selection procedure that finds the best domain beyond the common observation domain of
all curves. In a simulation study we compare the different regularization methods and investigate
the performance of domain selection. Our method is illustrated on a medical dataset, where we
observe a substantial improvement of classification accuracy due to domain extension.

Some key words: Classification; Conjugate gradient; Domain selection; Functional data; Partial observation;
Regularization; Ridge method.

1. Introduction

We consider classification of a functional observation into one of two groups. Classification
of functional data is a rich, longstanding topic and is comprehensively surveyed in Baíllo et al.
(2011b). Delaigle & Hall (2012a) showed that depending on the relative geometric positions
of the difference of the group means, representing the signal, and the covariance operator,
summarizing the structure of the noise, certain classifiers can have zero misclassification prob-
ability. This remarkable phenomenon, called perfect classification, is a special property of the
infinite-dimensional setting and cannot occur in the multivariate context, except in degener-
ate cases. Delaigle & Hall (2012a) showed that a particularly simple class of linear classifiers,
based on a carefully chosen one-dimensional projection of the function to be classified, can
achieve this optimal error rate either exactly or in the limit along a sequence of approximations.
Berrendero et al. (2018) further elucidated the perfect classification phenomenon from the point
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162 D. Kraus AND M. Stefanucci

of view of the Feldman–Hájek dichotomy between mutual singularity and absolute continuity of
two Gaussian measures on abstract spaces with respect to each other.

Motivated by these findings, we reformulate the problem of determining the best classifier as
a quadratic optimization problem on a function space or, equivalently, a linear inverse problem.
These problems are ill-posed; however, unlike with most inverse problems, this is not a com-
plication but rather an advantage in the sense that the more ill-posed the problem is, the better
the optimal misclassification probability. We use regularization techniques, such as the method
of conjugate gradients with early stopping and ridge regularization, to solve the optimization
problem, obtaining a class of regularized linear classifiers. The optimal misclassification rate is
the limit along the regularization path of solutions which themselves may not converge.

We study the empirical version of the problem, where the objective function in the constrained
minimization must be estimated from finite training data, and make two contributions. First,
we show that it is possible to construct an empirical regularization path towards the possibly
nonexistent unconstrained solution such that the classification error converges to its best value,
possibly zero. We do this for conjugate gradient, principal component and ridge classification in
a truly infinite-dimensional manner, in the sense that the convergence takes place along a path
with decreasing regularization and holds without restrictions on the mean difference between
classes. Second, all our methods and theory are developed in the setting of partially observed
functional data, where trajectories are observed only on subsets of the domain. This type of
incomplete data, also called functional fragments, is increasingly common in applications; see,
for example, Bugni (2012), Delaigle & Hall (2013), Liebl (2013), Goldberg et al. (2014), Kraus
(2015), Delaigle & Hall (2016) and Gromenko et al. (2017). The principal difficulty for inference
with fragments is that temporal averaging is precluded by the incompleteness of the observed
functions. Our formulation as an optimization problem enables us to overcome this issue under
certain assumptions, because only averaging across individuals in the training data is needed, and
not individual curves.

Since the observation domains may vary in the training sample and the new curve to be
classified may be observed on a different subset, it is natural to ask which domain should be used.
We propose a domain selection strategy that looks for the best classifier with domain ranging from
a minimum common domain to the entire domain of the function to be classified. For various
methods of selecting the best observation points, see Ferraty et al. (2010), Delaigle et al. (2012),
Pini & Vantini (2016), Berrendero et al. (2018) and Stefanucci et al. (2018).

Our simulation study confirms that domain selection can considerably reduce the misclassifi-
cation rate. Further simulations compare the performances of the three types of regularization.
Among other findings, this study shows that the principal component and conjugate gradient clas-
sifiers often achieve comparable error rates but that the latter usually needs a lower dimension of
the regularization subspace, in agreement with a theoretical result we provide.

Application to a dataset on the geometric features of the internal carotid artery in patients
with and without aneurysm demonstrates the utility of our proposed approach. These data consist
of trajectories observed on intervals of different lengths. Previous analyses of the data used
the common domain of all curves in classification. With our results we can include information
beyond this minimum domain, which leads to a substantial drop in the error rate of discrimination
between risk groups.

General references on functional data analysis include Ramsay & Silverman (2005) and
Horváth & Kokoszka (2012). Further relevant references are Cuesta-Albertos et al. (2007) for
other methods based on one-dimensional projections, Berrendero et al. (2016) for variable selec-
tion in classification, Bongiorno & Goia (2016) and Dai et al. (2017) for classification beyond
the Gaussian setting, and Cuevas (2014) for an overview.
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Classification of functional fragments 163

2. Regularized linear classification

2.1. Projection classifiers

We regard functional observations as random elements of the separable Hilbert space L2(I)
of square-integrable functions on a compact domain I equipped with inner product 〈 f , g〉 =∫
I f (t)g(t) dt and norm ‖f ‖ = 〈 f , f 〉1/2. In most applications I is an interval and the observations

are curves, but our results can be extended to other objects, such as surfaces or images. We
consider classification of a Gaussian random function, X , into one of two groups of Gaussian
random functions: group 0 has mean μ0; group 1 has mean μ1. Both groups have covariance
operator R defined as the integral operator

(Rf )(·) =
∫

I
ρ(· , t)f (t) dt

with kernel ρ(s, t) = cov{X (s), X (t)}. In this section we assume that μ0, μ1 and R are known,
which corresponds to the asymptotic situation with an infinite training sample. To simplify the
presentation we assume throughout the paper that the new observation to be classified may come
from either of the two classes with equal prior probability. The general case is treated in the
Supplementary Material.

Like Delaigle & Hall (2012a) we consider the class of centroid classifiers that are based on
one-dimensional projections of the form 〈 X ,ψ〉, where ψ is a function in L2(I). If X belongs
to group j (j = 0, 1), the distribution of 〈 X ,ψ〉 is normal with mean 〈μj,ψ〉 and variance
〈ψ , Rψ〉. Denote the corresponding Gaussian densities by fψ ,j. The optimal classifier based on
〈 X ,ψ〉 assigns X to the class Cψ(X ) given by

Cψ(X ) = 1{fψ ,1(〈 X ,ψ〉)/fψ ,0(〈 X ,ψ〉)>1} = 1{〈 X −μ0,ψ〉2−〈 X −μ1,ψ〉2>0} = 1{Tψ(X )>0},

where Tψ(X ) = 〈 X − μ̄,ψ〉〈μ,ψ〉 with μ̄ = (μ0 + μ1)/2 and μ = μ1 − μ0. The
misclassification probability of this classifier is

D(ψ) = P0{Cψ(X ) = 1}/2 + P1{Cψ(X ) = 0}/2 = P0(〈 X − μ̄,ψ〉〈μ,ψ〉 > 0)

= P0(〈 X − μ0,ψ〉 > |〈μ,ψ〉|/2) = 1 −�

( |〈μ,ψ〉|
2〈ψ , Rψ〉1/2

)
,

(1)

where Pj is the distribution of curves in group j and � is the standard normal cumulative
distribution function.

To find the best function ψ , one would ideally like to maximize |Z(ψ)|, where

Z(ψ) = 〈μ,ψ〉
〈ψ , Rψ〉1/2 .

Similarly to Delaigle & Hall (2012a) and Berrendero et al. (2018), we see that if ‖R−1/2μ‖ < ∞,
then by the Cauchy–Schwarz inequality,

|〈μ,ψ〉|
〈ψ , Rψ〉1/2 = |〈 R−1/2μ, R1/2ψ〉|

〈ψ , Rψ〉1/2 � ‖R−1/2μ‖‖R1/2ψ‖
〈ψ , Rψ〉1/2 = ‖R−1/2μ‖. (2)

If, moreover, ‖R−1μ‖ < ∞, then the equality is achieved forψ = R−1μ. For this choice ofψ , or
any multiple of it, the probability of misclassification is 1−�(‖R−1/2μ‖/2), which is positive due
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164 D. Kraus AND M. Stefanucci

to the finiteness of ‖R−1/2μ‖, which can be seen as the signal-to-noise ratio. If ‖R−1/2μ‖ < ∞,
then regardless of whether ‖R−1μ‖ < ∞ or not, two Gaussian measures with mean differenceμ
and covariances R are mutually absolutely continuous and 1−�(‖R−1/2μ‖/2) is the Bayes error
for distinguishing them, i.e., the lowest possible misclassification probability for this problem
among all possible classifiers (Berrendero et al., 2018). If ‖R−1/2μ‖ < ∞ but ‖R−1μ‖ = ∞,
then the Bayes risk cannot be achieved by a projection classifier based on a bounded linear func-
tional of the form 〈 X ,ψ〉 for some ψ ∈ L2(I). One can, however, use the theory of reproducing
kernel Hilbert spaces to define a linear classifier that achieves the Bayes risk. We do not pursue
this line of development here because, as will be seen in § 2.2, approximations in the form of
projections can asymptotically achieve the Bayes risk.

The maximization of |Z(ψ)| can be solved as the task of maximizing 〈μ,ψ〉 subject to
〈ψ , Rψ〉 = 1. Using Lagrange multipliers 〈μ,ψ〉 + λ(1 − 〈ψ , Rψ〉) and taking the Fréchet
derivative with respect toψ , one obtains the equation 2λRψ = μ. Solutions for all λ > 0, if they
exist, i.e., if ‖R−1μ‖ < ∞, yield the same optimal misclassification probability. Without loss
of generality we take λ = 1/2. Thus, minimizing the error rate translates into the unconstrained
quadratic optimization problem to maximize 〈μ,ψ〉 − 〈ψ , Rψ〉/2, or

minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉, (3)

i.e., into the linear problem Rψ = μ.

2.2. Regularization

Ifψ = R−1μdoes not exist in L2(I), i.e.,‖R−1μ‖ = ∞, there is no maximizer of |Z(ψ)|. One
can instead consider an approximating, regularized problem that can be solved. Regularization
is typically used to solve, in a stable way, ill-posed inverse problems for which a solution exists.
In such contexts, the path of regularized solutions converges to the solution to the problem of
interest. Here it may be that no solution exists, but paths of regularized solutions towards the
possibly nonexistent solution still turn out to be useful, since the misclassification probability
converges to the optimal value along these paths.

If a solution exists, one can approximate it by an iterative numerical method. This approach can
also be used when no solution exists. The idea is to construct a sequence of iterations of an appro-
priate numerical optimization method. The number of steps taken along this divergent sequence
towards the nonexistent solution can be seen as a regularization parameter. The conjugate gradient
method is particularly suitable for this situation.

The first m steps of the conjugate gradient method applied to the linear inverse problem
Rψ = μ, or equivalently to the minimization of the quadratic functional 〈ψ , Rψ〉/2 − 〈μ,ψ〉,
are described in Algorithm 1. This formulation is based on the multivariate version in Phatak
& de Hoog (2002, § 5), where one can find further references and details on how applying the
conjugate gradient method to the normal equations in linear regression leads to partial least
squares regression. The functions νj are conjugate directions in the sense that 〈 νj, Rνk〉 = 0 for
j |= k , and the functions ζj are called residuals in numerical analysis and are orthogonal, i.e.,
〈 ζj, ζk〉 = 0 for j |= k . In step j, the algorithm moves from the current approximate solution ψ̂CG

j
along the conjugate direction νj with step length hj that minimizes the quadratic objective. The
residual is then updated to ζj+1. The new conjugate direction νj+1 is obtained by projecting the
residual ζj+1 onto the orthogonal complement of the span of the previous conjugate directions,
where orthogonality is in the sense of the inner product 〈 · , R(·)〉.
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Classification of functional fragments 165

Algorithm 1. Conjugate gradient regularized classification direction.

Initialize ψCG
0 = 0, ν0 = ζ0 = μ

Repeat for j = 0, . . . , m − 1
hj = 〈 νj, ζj〉/〈 νj, Rνj〉
ψCG

j+1 = ψCG
j + hjνj

ζj+1 = μ− RψCG
j+1 (= ζj − hjRνj)

gj = −〈 ζj+1, Rνj〉/〈 νj, Rνj〉
νj+1 = ζj+1 + gjνj

Output ψCG
m

The conjugate gradient approach is an example of dimension reduction regularization. The
method solves the minimization problem (3) with ψ restricted to the Krylov subspace Km(R,μ)
spanned by μ, Rμ, . . . , Rm−1μ and also by the first m conjugate directions νj or the first m
residuals ζj; that is, it seeks to minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉 subject to ψ ∈ Km(R,μ). The
projection direction that solves this minimization is ψCG

m .
Another popular choice is to minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉 subject to ψ ∈ Em(R), where

Em(R) is the subspace spanned by the first m eigenfunctions, ϕ1, . . . ,ϕm, of R in the spectral
decomposition

R =
∞∑

j=1

λjϕj ⊗ ϕj,

with λ1 � λ2 � · · · > 0 being the eigenvalues. The solution ψPC
m = ∑m

j=1 λ
−1
j 〈μ,ϕj〉ϕj gives

the principal component classifier of Delaigle & Hall (2012a).
In general one can minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉 subject to ψ ∈ Sm, where Sm is the m-

dimensional subspace generated by some functions s1, . . . , sm such that the sj (j = 1, 2, . . . )
generate the range of R. Let Pm be the projection operator that projects onto Sm, and let Rm =
PmRPm and R−

m = PmR−1Pm. Then the solution of the regularized minimization problem
is ψm = R−

mμ. More explicitly, considering solutions of the form ψm = ∑m
j=1 cjsj leads to the

m-variate minimization of cTQc/2 − uTc where the matrix Q is such that Qjk = 〈 sj, Rsk〉 and
the vector u has components uj = 〈μ, sj〉, i.e., to the solution with coefficients c = Q−1u. In
the case of the Krylov subspace, the iterative conjugate gradient method given in Algorithm 1 is,
however, preferred because the matrix Q is ill-conditioned.

We can also take another approach to regularization, based on ridge regression. Optimiz-
ing the misclassification probability in a ball with radius θ1/2 leads to the task of minimizing
〈ψ , Rψ〉/2 −〈μ,ψ〉 subject to ‖ψ‖2 � θ or, equivalently, minimizing 〈ψ , Rψ〉/2 −〈μ,ψ〉+
α‖ψ‖2/2, where α � 0 is a regularization parameter. The solution is ψR

α = R−1
α μ, where

Rα = R + αI and I denotes the identity operator. Despite its practical performance and
amenability to theoretical analysis, the functional ridge classifier does not seem to have been
considered before.

There is an important difference between the conjugate gradient method and the other
approaches. While the principal component and ridge methods regularize the problem without the
main goal in mind, the conjugate gradient approach greedily follows the goal of optimal classi-
fication. Indeed, the conjugate gradient method as an iterative optimization procedure constructs
the regularization path focusing on the minimization of the misclassification probability, whereas
the other approaches regularize by modifying the operator to be inverted regardless of the goal.
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166 D. Kraus AND M. Stefanucci

From a computational point of view the conjugate gradient method is simplest because it does
not require inversion or eigendecomposition.

2.3. Properties of regularization paths

While ψm, the solution regularized by a subspace constraint, in general need not converge
as m → ∞ since a solution to the unconstrained minimization problem may not exist, the
misclassification probability associated with the linear classifier given by ψm converges along
the regularization path. The following and all other results are proved in the Appendix.

Proposition 1. The misclassification probability of the regularized linear classifier based on
ψm = R−

mμ converges to 1 −�(‖R−1/2μ‖/2) as m → ∞.

This result holds regardless of whether the unconstrained minimization problem (3) has a
solution, i.e., regardless of whether ‖R−1μ‖ < ∞. The limiting misclassification probability is
positive if ‖R−1/2μ‖ < ∞ or zero if ‖R−1/2μ‖ = ∞. As discussed earlier, the optimal error
is achieved exactly by the one-dimensional projection onto ψ = R−1μ, when ‖R−1μ‖ < ∞.
Even when ‖R−1μ‖ = ∞, both of the dimension reduction techniques, namely the conjugate
gradient and principal component methods, and also ridge regularization as we will soon see,
achieve the optimal limiting error rate along a possibly nonconvergent path of one-dimensional
projection directions.

It is natural to investigate and compare how quickly the misclassification rate approaches the
limit for the two main types of subspace regularization. It turns out that the conjugate gradient
classifier, being a greedy, goal-oriented procedure, performs as well as or better than the principal
component classifier with the same dimension.

Proposition 2. Regardless of whether the optimal misclassification probability can be
achieved exactly or along a regularization path, i.e., whether ‖R−1μ‖ < ∞ or ‖R−1μ‖ = ∞,
and regardless of whether the optimal misclassification probability is zero or positive, i.e., whether
‖R−1/2μ‖ = ∞ or ‖R−1/2μ‖ < ∞, the misclassification probability of the principal compo-
nent classifier using m components is higher than or equal to the misclassification probability of
the m-step conjugate gradient classifier.

Phatak & de Hoog (2002, § 6.2) showed in the multivariate setting that ‘PLS fits closer than
PCR’. In infinite dimensions, in the context of kernel partial least squares, Blanchard & Krämer
(2010, Theorem 1) showed that the partial least squares solution is closer to the true solution of the
inverse problem than is the principal component solution with the same number of components.
Unlike these results, our Proposition 2 does not assume the existence of a solution and instead
focuses on the values of the misclassification probability.

Although Proposition 2 suggests that the conjugate gradient method will typically use fewer
components than the principal component method to achieve the best result, the resulting mis-
classification probability with the best number of components need not be better. We address this
in the simulation study. A similar phenomenon was previously studied in the literature on partial
least squares in finite dimensions and in the functional setting by Febrero-Bande et al. (2017).

As in the case of subspace regularization, below we obtain the convergence of the error prob-
ability of the ridge classifier, whether or not the unconstrained minimization problem (3) has a
solution, i.e., regardless of whether ‖R−1μ‖ < ∞. The limiting misclassification probability is
positive if ‖R−1/2μ‖ < ∞ or zero if ‖R−1/2μ‖ = ∞.
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Classification of functional fragments 167

Proposition 3. The misclassification probability of the regularized linear classifier based on
ψR
α = R−1

α μ converges to 1 −�(‖R−1/2μ‖/2) as α → 0+.

3. Empirical classifiers for fragmentary functions

3.1. Construction of classifiers with incomplete training samples

So far we have assumed that the parameters of each group are known. We now present the
empirical version with a finite training dataset, and show that under regularity conditions such
classifiers can achieve asymptotically the same optimal error rate as if there were infinite training
data. We aim to do this not only in the case of fully observed functions but also in the case
of incomplete curves. Incompleteness can occur in the training data, with each curve possibly
observed on a different domain, as well as in the new curve that we wish to classify. One strategy
would be to consider all curves on the intersection of their observation domains, if it is nonempty.
However, such a restriction can be too severe and is unnecessary. We will construct classifiers
that use the observed new curve on a set I, which may be its entire observation set or a subset
thereof, without requiring that all training curves be completely observed on I.

For group j let there be a training sample consisting of nj curves, Xj1, . . . , Xjnj . The training
data are assumed to be mutually independent. Curves may be observed incompletely, with values
known only on a subset Oji of the domain and with no information about the values on the
complement. The observation domains are assumed to be independent of the curves and consist
of a finite union of intervals. We let Oji(t) denote the indicator of the curve Xji being observed at
time t. Similarly, let Uji(s, t) indicate observation at times s and t, i.e., Uji(s, t) = Oji(s)Oji(t).

The mean μj of group j can be estimated by the cross-sectional average

μ̂j(t) = 1{Nj(t)>0}
Nj(t)

nj∑
i=1

Oji(t)Xji(t) (j = 0, 1),

where Nj(t) = ∑nj
i=1 Oji(t) is the total number of observed curves in group j at time t. The

covariance kernel ρ(s, t) can be estimated by the empirical covariance using pairwise complete
observations of groupwise centred curves. Formally, the estimator is

ρ̂(s, t) = M1(s, t)ρ̂1(s, t)+ M2(s, t)ρ̂2(s, t)

M1(s, t)+ M2(s, t)
,

where Mj(s, t) = ∑nj
i=1 Uji(s, t) and

ρ̂j(s, t) = 1{Mj(s,t)>0}
Mj(s, t)

nj∑
i=1

Uji(s, t){Xji(s)− μ̂jst(s)}{Xji(t)− μ̂jst(t)}

with μ̂jst(s) = 1{Mj(s,t)>0}Mj(s, t)−1∑nj
i=1 Uji(s, t)Xji(s). If Nj(t) = 0 or Mj(s, t) = 0, the esti-

mators are defined as μ̂j(t) = 0 or ρ̂j(s, t) = 0, respectively. This happens with asymptotically
vanishing probability under Assumption 1 below.

Suppose that the new independent curve to be classified, Xnew, is observed on the domain
Onew. Let us fix the target domain I ⊆ Onew on which we aim to apply the classifier to Xnew. The
empirical classifier Ĉ

ψ̂
trained on partially observed curves is defined like the theoretical one,

with unknown quantities replaced by their estimators. It assigns Xnew restricted to I to the class
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168 D. Kraus AND M. Stefanucci

Ĉ
ψ̂
(Xnew) = 1{T̂

ψ̂
(Xnew)>0}, where T̂

ψ̂
(Xnew) = 〈 Xnew − μ̃, ψ̂〉〈 μ̂, ψ̂〉. Here μ̃ = (μ̂0 + μ̂1)/2

and μ̂ = μ̂1 − μ̂0, with μ̂j being the estimators defined above restricted to I. The projection
direction ψ̂ is one of ψ̂CG

m , ψ̂PC
m or ψ̂R

α , constructed respectively by conjugate gradient, principal
component or ridge regularization applied to μ̂ and R̂, where R̂ is the integral operator with
kernel ρ̂(s, t) introduced above, restricted to I × I.

All methods discussed in the previous section can be formulated in terms of the population
parameters, i.e., the mean difference and covariance operator, and not in terms of individual
observations in the training set. The population parameters can be consistently estimated by
averaging individual observations, whereas temporal averaging of individual curves, for example
in inner products, is impossible due the incompleteness of the observed functions. In particular,
the conjugate gradient method can be applied to fragmentary training data, whereas the usual
algorithms for multivariate or functional partial least squares, such as those in De Jong (1993),
Hastie et al. (2009, Algorithm 3.3) and Delaigle & Hall (2012b, § 4.2 and Appendix A.2), involve
the computation of certain scores, i.e., inner products, for individual curves.

3.2. Asymptotic behaviour along the empirical regularization path

We aim to study the behaviour of classifiers on incomplete training samples of increasing
size with decreasing amounts of regularization. Previous asymptotic results in related settings
include those of Delaigle & Hall (2013), who established the consistency of empirical principal
component classifiers based on partially observed training data. In the setting of complete curves,
Berrendero et al. (2018) used dimension reduction regularization by evaluation of curves at
a finite set of arguments; they proved consistency of the empirical version but did not study
the asymptotics for decreasing amounts of regularization, i.e., they did not consider letting the
dimension grow. Baíllo et al. (2011a) studied optimal classifiers for Gaussian measures based on
Radon–Nikodym derivatives and investigated the performance of their empirical version in the
special class of processes with triangular covariance functions. In contrast, all of our methods,
including the ridge approach not considered previously, have been developed for fragmentary
training samples and shown to achieve the Bayes error rate for general Gaussian processes along
the empirical regularization path, as we now explain.

The following assumptions will be needed for the derivation of asymptotic properties of
empirically trained regularized linear classifiers.

Assumption 1. The distributions in groups j = 0, 1 satisfy EPj (‖X ‖4) < ∞.

Assumption 2. For a domain I, there exists δ > 0 such that the observation patterns in training
samples j = 0, 1 satisfy, as nj → ∞,

sup
(s,t)∈I×I

pr
{
n−1

j Mj(s, t) > δ
} = O(n−2

j ).

Assumption 1 guarantees the consistency of the empirical mean and covariance operator for
samples of completely observed curves; see, for example, Bosq (2000) or Horváth & Kokoszka
(2012). Kraus (2015, Proposition 1) showed, under the additional Assumption 2 with I equal to
the entire domain of the curves, that the root-n consistency of the sample mean and covariance
restricted to I continues to hold in the fragmentary setting. In particular, it follows that ‖μ̂j −
μj‖ = Op(n

−1/2
j ) and hence ‖μ̂ − μ‖ = Op(n−1/2) for n = min(n0, n1) → ∞, and also that

‖R̂ − R‖∞ = Op{(n0 + n1)
−1/2}, where ‖ · ‖∞ is the operator norm. When I is a subset of
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Classification of functional fragments 169

the domain, analogous results hold for the restrictions of the functions and integral kernels to
I. Assumption 2 means that at all pairs of time-points there is an asymptotically nonnegligible
fraction of observed values. Assumption 2 is less restrictive than the requirement that there be
complete curves in the sample. It can be satisfied, for example, in situations where the observed
curves consist of several shorter fragments. If the assumption is not satisfied because the data
contain only one short fragment per curve, other estimation methods can be used; see, for example,
Delaigle & Hall (2016) and Descary & Panaretos (2019).

We now study the asymptotic behaviour of the empirical classifier when the number mn of
steps of the conjugate gradient algorithm grows as the training sample size grows. Under cer-
tain conditions on the regularization path, we establish the convergence of the misclassification
probability of the conjugate gradient classifier trained on collections of functional fragments to
the same optimal limit as for the theoretical conjugate gradient classifier with an infinite training
sample, regardless of whether the limiting error rate is zero or positive and regardless of whether
the limit can be theoretically achieved exactly or along the path.

Theorem 1. Suppose that Assumption 1 holds. Assume that n = min(n0, n1) → ∞ and
mn → ∞ in such a way that mn � Cn1/2 for some C > 0 and

n−1/2ω−1
mn

‖γ (mn)‖ + n−1ω−3
mn

→ 0, (4)

whereωmn is the smallest eigenvalue of the mn×mn matrix H with entries hjk = 〈 κj, Rκk〉 for κj =
R j−1μ and the mn-vector γ (mn) is defined as γ (mn) = H−1d with d being the mn-vector having
components dj = 〈μ, κj〉. Then the misclassification probability of the empirical regularized
linear classifier based on ψ̂CG

mn
converges in probability to the optimal misclassification probability

1 −�(‖R−1/2μ‖/2).

Condition (4) guarantees that the number of components does not grow too fast in relation to
the growing number of training observations and to the increased ill-conditioning of the theoret-
ical problem. Condition (4) is analogous to (5.10) in Delaigle & Hall (2012b) for partial least
squares. The vector γ (mn) contains the coefficients of the theoretical regularized solution ψCG

mn
with respect to the non-orthogonal basis κ1, . . . , κmn of the Krylov subspace Kmn(R,μ), i.e.,
ψmn = ∑mn

j=1 γ
(mn)
j κj. The eigenvalues of H are called the Ritz values in numerical analysis. For

details on connections with partial least squares see Lingjærde & Christophersen (2000).
In the proof given in the Appendix we use the results of Delaigle & Hall (2012b) on the

consistency of partial least squares regression for functional data. These results were obtained
for situations that differ from our setting in several ways. In particular, we work with functional
fragments instead of complete curves, the conjugate gradient path differs from partial least squares
regression, e.g., in the group centring in the estimation of the covariance, and we do not require that
the population inverse problem, Rψ = μ in our context, have a solution. However, inspection of
the underlying technical arguments in Delaigle & Hall (2012b) shows that appropriate analogous
results can be obtained and used in our setting, as we explain in the proof.

Next, we show that the empirically trained principal component classifier with an increasing
number of components asymptotically achieves the optimal misclassification probability.

Theorem 2. Suppose that Assumption 1 holds. Assume that n = min(n0, n1) → ∞ and mn →
∞ in such a way that λ4

mn
n → ∞ and λ2

mn
n(
∑mn

j=1 aj)
−2 → ∞, where a1 = 23/2(λ1 − λ2)

−1

and aj = 23/2max{(λj−1 − λj)
−1, (λj − λj+1)

−1} for j = 2, 3, . . . . Then the misclassification
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probability of the empirical regularized linear classifier based on ψ̂PC
mn

converges in probability
to the optimal misclassification probability 1 −�(‖R−1/2μ‖/2).

The conditions on the principal component regularization path are the same as in the case of
functional principal component regression (Cardot et al., 1999). Unlike in the functional linear
model, it is not assumed that the inverse problem has a solution, since the goal is not to estimate
the possibly nonexistent bounded linear regression functional.

Finally, the empirical ridge classifier with finite training data asymptotically attains the same
optimal error rate as its theoretical counterpart. Unlike for the conjugate gradient and principal
component classifiers, the conditions on the ridge path classifier do not involve parameters of the
distributions because no subspace is constructed.

Theorem 3. Suppose that Assumption 1 holds. Assume that n = min(n0, n1) → ∞ and
αn → 0+ in such a way that α4

nn → ∞. Then the misclassification probability of the empirical
regularized linear classifier based on ψ̂R

αn
converges in probability to the optimal misclassification

probability 1 −�(‖R−1/2μ‖/2).
3.3. Selection of the regularization parameter

The regularization parameter can be selected by minimizing an estimate of the misclassification
probability. We use leave-one-out crossvalidation. The Supplementary Material provides details
of crossvalidation in the presence of incomplete curves. The best value of the regularization
parameter is searched for over a grid of values, such as the values corresponding to integer
degrees of freedom up to some maximum value. The number of degrees of freedom for the
subspace methods is the dimension of the subspace, and for the ridge method it is defined as
the trace of (R̂ + αI )−1R̂, i.e.,

∑n0+n1
j=1 λ̂j/(λ̂j + α) where λ̂j are the eigenvalues of R̂. The

maximum number of degrees of freedom we use is one fifth of the number of curves.

4. Domain selection

To classify the new curve Xnew observed on Onew, we apply the classifier on the target domain
I ⊆ Onew, the choice of which we now consider. One possibility would be to restrict attention
to the intersection of the observation domains of all curves, say I0, if it is nonempty. An obvious
drawback of this approach is that one can lose discriminatory power because any differences
between the classes may be more pronounced outside I0. An advantage of our approach is its
capability of working with incomplete curves, since the empirical construction of the projection
direction requires only the estimation of μ and R on the target domain. Hence one can look at a
domain larger than I0. A natural choice is the largest subset of Onew that contains enough data
for estimation of the classifier, i.e., satisfies Assumption 2, and contains enough functions for
validation in the crossvalidation procedure, i.e., has a sufficiently large set V . In this way one
hopes to capture the widest range of shapes of the group difference. On the other hand, it could
be that not even this maximal domain, Imax, will lead to the best classification accuracy, because
one includes more uncertainty in the estimation due to the missing values and because the mean
difference may not be important in the added part of the domain. Therefore, it seems reasonable
to also consider intermediate choices between I0 and Imax.

Here we present a domain selection strategy for the most common case of interval observation
sets. The idea, worked out in detail in Stefanucci et al. (2018), is to construct the classifier on a
series of intervals that range from the common domain I0 to the maximal domain Imax, extending
the working interval by a fixed percentage at each step. More formally, we consider a sequence
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of nested intervals I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ · · · ⊂ IK = Imax, starting from I0 and ending in
IK = Imax, and build the classifier on each interval. The regularization parameter for the kth
domain is selected by crossvalidation as described in the Supplementary Material. Among these
K + 1 candidates we select the one that minimizes the crossvalidation estimate of error.

The search strategy can be extended by considering larger systems of candidate domains; for
example, one could vary the two endpoints independently. The idea can be generalized to other
situations, such as non-interval observation sets, multivariate functional data or functions indexed
by multivariate arguments. In each situation one needs to define a meaningful system of domains
and optimize the crossvalidation score over the system.

5. Simulations

5.1. Behaviour of regularized classifiers on complete data

In this section we illustrate the behaviour of the three estimators of ψ in different settings.
We consider Gaussian processes on [0, 1] with covariance kernel ρ(s, t) = exp(−|s − t|2/0.01)
and mean function depending on the group label. Group 0 has mean μ0(t) = 0 in each setting.
Group 1 has meanμ1(t) = μ(t), for which we consider eight different forms: (i) ct, (ii) c(t−0.5)2,
(iii) c(t−0.5)3, (iv) c sin(20t), (v) cϕ1(t), (vi) cϕ10(t), (vii) cb(t; 5, 5), and (viii) cb(t; 2, 6), where
ϕj is the jth eigenfunction of the kernel ρ and b(t;α,β) = tα−1(1 − t)β−1 is the beta density. In
each case the parameter c is selected to yield a reasonable misclassification rate.

In each of 5000 repetitions we generated 50 curves from each group and evaluated them
on a grid of 100 equispaced points in [0, 1]. We also generated a new observation that could
arise from group 0 or group 1 with equal probability. Then we constructed the regularized clas-
sification direction by the principal component, conjugate gradient and ridge methods with m
degrees of freedom and predicted the label of the new observation. We considered m = 1, . . . , 20,
corresponding to a reasonable minimum of five observations per degree of freedom.

Figure 1 shows the misclassification proportion over the 5000 repetitions as a function of m for
the eight different choices ofμ(t).As expected, the conjugate gradient method performs well in all
settings and is not much affected by the shape ofμ(t). By contrast, the performance of the principal
component classifier depends strongly onμ(t). To see this, consider the two extreme situations in
settings (v) and (vi). The classification error of the principal component approach is close to that of
the conjugate gradient method in case (v), whereμ(t) is the first eigenfunction, but is much higher
at lower dimensions in case (vi), whereμ(t) is the tenth eigenfunction. In the latter case, the princi-
pal component method reaches the same level of error as the conjugate gradient method only when
m = 10 or more. These findings agree with Proposition 2 and with the conclusions of Delaigle &
Hall (2012a) and Febrero-Bande et al. (2017), who pointed out that principal components need
more degrees of freedom than partial least squares to achieve good performance. In this regard
ridge regularization seems to lie between the two subspace methods, but is more similar to the
conjugate gradient method in most cases. In particular, it does not completely fail at low degrees of
freedom in case (vi), because it does not construct a subspace that could miss the important infor-
mation; however, it also suffers in this situation, whereμ(t) is on the tail of the spectrum, because
ridge penalization shrinks higher-index spectral components more than lower-index components.
Nevertheless, with sufficiently many degrees of freedom, the three methods behave similarly.

Additional simulation results, reported in the Supplementary Material, show that similar con-
clusions can be drawn when functions have nonsmooth trajectories and that the capability to
discriminate between two groups with different means is robust with respect to the assump-
tion of equal covariances. Results for increased training sample size are also provided in the
Supplementary Material.
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Fig. 1. Misclassification rate (%) versus degrees of freedom for different forms of μ(t): (i) linear, (ii) quadratic,
(iii) cubic, (iv) sinusoidal, (v) first eigenfunction, (vi) tenth eigenfunction, (vii) symmetric beta, and (viii) asymmetric
beta. The different curves represent the principal component (solid), conjugate gradient (dotted) and ridge (dashed)

classifiers.

Table 1. Misclassification rates (%), with standard errors in parentheses, achieved by clas-
sifiers with degrees of freedom selected by crossvalidation in the different settings; for each

classifier the numbers in the second row are the minimum misclassification rates
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

PC 13.0 (0.34) 8.3 (0.28) 1.3 (0.11) 2.5 (0.16) 7.2 (0.26) 7.6 (0.27) 10.7 (0.31) 26.2 (0.44)
8.1 6.1 0.1 2.2 2.4 7.4 6.1 20.4

CG 8.6 (0.28) 6.5 (0.25) 0.7 (0.09) 2.1 (0.14) 2.6 (0.16) 7.8 (0.27) 6.1 (0.24) 20.9 (0.41)
8.1 5.7 0.1 2.1 2.2 7.2 5.7 19.9

R 8.4 (0.28) 7.7 (0.27) 0.7 (0.09) 2.2 (0.15) 2.4 (0.15) 7.9 (0.27) 6.1 (0.24) 20.8 (0.41)
7.9 6.5 0.2 2.0 2.3 7.3 5.7 20.0

PC, principal component classifier; CG, conjugate gradient classifier; R, ridge classifier.

5.2. Performance of crossvalidation for selection of degrees of freedom

We used simulation to investigate the performance of leave-one-out crossvalidation in choosing
the correct level of regularization. The settings were the same as in § 5.1, but classification was
done using the number of degrees of freedom selected by leave-one-out crossvalidation. We
summarize the classification errors in Table 1. Crossvalidation performs well as a selector of the
best level of regularization since the misclassification rate in Table 1 is in each case close to the
corresponding minimum error in Fig. 1. The principal component method appears to perform
worst, while the conjugate gradient and ridge methods have comparable performance. The latter
two methods nearly achieve the respective minimum errors. Table 2 reports the mean and median
selected degrees of freedom. The principal component method often uses considerably more
degrees of freedom than the other methods. This is particularly interesting in case (v), where the
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Table 2. Mean and median (in parentheses) degrees of freedom selected by crossvalidation
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

PC 8.2 (7) 14.3 (15) 9.9 (9) 10.9 (10) 4.6 (4) 11.9 (11) 5.3 (4) 8.6 (6)
CG 5.4 (3) 10.7 (11) 3.4 (2) 4.5 (2) 2.4 (1) 4.9 (3) 2.7 (1) 8.6 (7)
R 6.4 (3) 11.6 (13) 6.0 (3) 6.1 (4) 2.7 (1) 9.3 (8) 3.4 (1) 6.7 (3)

PC, principal component classifier; CG, conjugate gradient classifier; R, ridge classifier.
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Fig. 2. Misclassification rate (%) plotted as a function of the domain extension, for μ(t) being the (a) Be(2, 6),
(b) Be(5, 5) or (c) Be(6, 2) density for the principal component (solid), conjugate gradient (dotted) and ridge (dashed)
classifiers with selected degrees of freedom. Classification is performed on the domains [0, u] with u ∈ [0.5, 0.9], and

the error values are plotted against u.

mean difference equals the first eigenfunction and so one component should be the best choice
in theory. These results again illustrate the general phenomenon that the principal component
approach is inappropriate for inference about means due to the possible lack of informativeness
of the principal components about the mean and the extra uncertainty associated with their
estimation.

5.3. Missing data and domain extension

We now demonstrate the usefulness of the domain extension approach presented in § 4, using
Gaussian processes on [0, 1] with the same covariance as in § 5.1 and considering three scenarios
for the mean difference in the form of a multiple of a beta density, (a) b(t; 2, 6), (b) b(t; 5, 5) and
(c) b(t; 6, 2), which reflect situations where discrimination due to a peak is in the left, central and
right parts of the domain, respectively. We sampled 50 curves from each group on a sequence of
100 equispaced points in [0, 1]. Then we generated endpoints of the observation interval for each
curve from the uniform distribution on (0.5, 1); that is, each curve was observed between 0 and
the endpoint and treated as missing beyond the endpoint. The new observation had an endpoint
sampled between 0.5 and 1. So the first half of [0, 1], I0 = [0, 0.5], was the common observation
domain of all curves. We considered extensions of I0 to Ik = [0, 0.5 + 0.05k] (k = 0, . . . , 8).
For each interval of this form that was contained in the observation domain of the curve to be
classified, we estimated the classifiers, choosing the best degrees of freedom via crossvalidation,
and classified the new curve. This procedure was repeated 1000 times. We plot the behaviour of
the resulting classification error as a function of the endpoint of the extended domain in Fig. 2.

When the peak of the mean difference is in the left part of [0, 1], extending the domain does not
lead to better classification. In this case the interval where the means mainly differ corresponds
to the part of the domain where all the data are available, and inflating the domain only increases
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Table 3. Misclassification rates (%), with standard errors in parenthe-
ses, achieved by classifiers with domain and degrees of freedom selected
by crossvalidation in the different settings; the minimum and maximum

misclassification rates are given in square brackets
(a) (b) (c)

PC 18.1 (0.38) [11.3, 33.7] 11.9 (0.32) [11.4, 15.2] 31.1 (0.46) [21.8, 46.0]
CG 19.6 (0.39) [15.4, 25.7] 7.4 (0.26) [5.6, 9.3] 30.4 (0.46) [19.2, 45.7]
R 22.4 (0.42) [17.2, 22.8] 6.9 (0.25) [5.4, 8.6] 28.4 (0.45) [20.7, 45.9]

PC, principal component classifier; CG, conjugate gradient classifier; R, ridge classifier.

the uncertainty due to missing data. In the second case, the peak of the mean difference is
exactly at 0.5, and extending the domain leads to little improvement. The third scenario is the
opposite of the first, as the discrimination is mainly in the right part of [0, 1]. In this case,
extending the domain reduces the error considerably because good classification is only possible
by employing the right part of the domain. The classification error is about 45% when using only
I0, but drops to about 20% when using also the part of the interval where the data are partially
observed.

5.4. Performance with selected domain

Domain extension may or may not improve the performance of classifiers, depending on the
interplay between the form of the mean difference, the covariance structure and the missingness
pattern. In practice, the user is not an oracle with access to misclassification errors for candidate
subsets whose estimates are plotted in Fig. 2, and hence would select the best domain by cross-
validation. In Table 3 we report simulation results for classifiers with both domain and degrees
of freedom selected by crossvalidation, for the same configurations as in § 5.3. Selection of the
domain leads to a considerable improvement of the error rate compared with the worst-performing
domain. On the other hand, this improvement has some limitations and a gap remains between the
achieved value and the best value; this can be explained by the fact that crossvalidation provides
only an estimate of the error, not the true value.

6. AneuRisk data example

We apply the proposed method to theAneuRisk dataset from an interdisciplinary project aimed
at investigating the effects of blood vessel morphology, blood fluid dynamics and biomechanical
properties of the vascular wall on the pathogenesis of cerebral aneurysms. An introduction to
the data can be found in Sangalli et al. (2014b). This dataset has previously been analysed in
several works that focused on different methodological aspects, such as function and derivative
estimation (Sangalli et al., 2009b), exploratory analysis and classification (Sangalli et al., 2009a),
and alignment and clustering (Sangalli et al., 2014a), among others.

The data consist of measurements of the radius and curvature of the internal carotid artery in
a sample of 65 patients, 33 of which have an aneurysm at the bifurcation of the vessel or after it,
while the other 32 either have an aneurysm before the bifurcation, which is much less dangerous,
or are healthy. The goal is to classify the patients based on the morphology of their internal
carotid artery. In this example we work with only one of the observed variables, the radius. The
data have previously been pre-processed, registered and smoothed, and are observed on a grid of
2000 points in the interval [−100.3, 5.1], where the argument represents the distance between the
observation point and the terminal bifurcation of the internal carotid artery, with positive values
indicating points inside the skull. As we can see in Fig. 3, the data are partially observed because
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Fig. 3. Radius along the carotid artery from the AneuRisk dataset, along with the
mean of the group of subjects with an aneurysm after the bifurcation (dotted) and the
mean of the group of subjects with an aneurysm before the bifurcation or without
an aneurysm (dashed). Curves for two example subjects are highlighted as solid

lines. Note the different start and end points for different subjects in the study.

the start and end points are different from subject to subject. All subjects are observed on the
subset I0 = [−32.9, −7.4], which corresponds to 24.3% of the whole domain.

We first apply the regularized linear classifiers to curves restricted to the common domain
I0. The classification error estimated by crossvalidation is 29.2% for the principal compo-
nent method, 29.2% for the conjugate gradient method, and 32.3% for ridge regularized
classification.

We compare the above procedure with a different approach consisting of a multivariate clas-
sification method applied to principal component scores. The covariance kernel is estimated
from observations centred to their respective group means, its eigenfunctions are computed,
and quadratic discriminant analysis is applied to the inner products of the uncentred curves
with the eigenfunctions. This procedure is similar to that in Sangalli et al. (2009a). The best
classifier of this type turns out to exhibit a misclassification error of 32.3%, obtained with two
eigenfunctions.

These values show that in this dataset, when attention is restricted to the common domain I0,
our proposed method is comparable to the more standard multivariate technique.

Next, we consider classification on extended domains including observed values outside the
common domain I0.We build the sequence of domains I0, . . . , IK by enlarging the domain at each
step by 1.25% of the complement of I0. This step size is a compromise between the fineness of
the grid and the computational cost. We consider extended domains up to K = 40, corresponding
to I40 = [−66.6, −1.2], because not enough subjects have observed values outside this interval
for reliable estimation and crossvalidation. All regularized linear classification methods benefit
from the domain extension; in particular, the error rate for the principal component method drops
from 29.2% to 23.2%, for the conjugate gradient method from 29.2% to 25.8%, and for ridge
regularization from 32.3% to 25%. The best domain is I10 = [−41.3, −5.8] for the conjugate
gradient method and I11 = [−42.2, −5.7] for the other two methods.

The alternative method based on multivariate classification of scores cannot be applied on
extended domains since the individual scores of incomplete curves cannot be computed, although
they can be predicted (Kraus, 2015). By contrast, the proposed methods are entirely formulated
in terms of distributional parameters, which can be consistently estimated from incomplete data,
unlike individual quantities.
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Appendix

Proof of Proposition 1

The misclassification probability for ψm is D(ψm) given in (1). Since ψm ∈ Sm, we compute

|〈μ,ψm〉|
〈ψm, Rψm〉1/2

= 〈μ, R−
mμ〉

〈μ, R−
m RR−

mμ〉1/2
= ‖(R−

m )
1/2μ‖.

By Lebesgue’s monotone convergence theorem, the right-hand side converges to ‖R−1/2μ‖, finite or
infinite, and therefore the limiting misclassification probability that is attained along the regularization
path ψm, as m → ∞, is 1 −�(‖R−1/2μ‖/2).

Proof of Proposition 2

The conjugate gradient method minimizes the quadratic objective function in the Krylov subspace
Km(R,μ) whose elements are in the form η = ∑m−1

k=0 ckRkμ = p(R)μ, where p is a polynomial of order
lower than m. Then η ∈ Km(R,μ) can be written as η = ∑∞

j=1 p(λj)bjϕj with bj = 〈μ,ϕj〉. The objective
function at η equals

〈 η, Rη〉/2 − 〈μ, η〉 = 〈 p(R)μ, Rp(R)μ〉/2 − 〈μ, p(R)μ〉

=
∞∑

j=1

b2
j {p(λj)

2λj/2 − p(λj)}

=
∞∑

j=1

b2
j

2λj
q(λj){q(λj)− 2},

(A1)

where q(λ) = p(λ)λ is a polynomial of degree at most m such that q(0) = 0. The conjugate gradient method
seeks the polynomial with these properties that minimizes the objective function. To prove the proposition
we shall find a polynomial q with the required properties such that the objective function above is smaller
than or equal to the objective function for the principal component classifier. The principal component
classifier uses ψPC

m = ∑m
j=1 λ

−1
j bjϕj, and the objective function at ψPC

m is

〈ψPC
m , RψPC

m 〉/2 − 〈μ,ψPC
m 〉 = −

m∑
j=1

b2
j

2λj
. (A2)

Consider the polynomial of degree m,

q(λ) = 1 − (−1)m
λ− λ1

λ1
· · · λ− λm

λm
,
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with q(0) = 0. We see that q(λj) = 1 for j = 1, . . . , m, so the first m summands in the series (A1) and
(A2) are equal. For j > m we have that 0 � q(λj) � 2 due to the properties of the eigenvalue sequence; so
q(λj){q(λj)− 2} � 0 and therefore the corresponding summands in the series (A1) are negative, whereas
they are zero in the series (A2). Hence, for this polynomial,

∞∑
j=1

b2
j

2λj
q(λi){q(λi)− 2} � −

m∑
j=1

b2
j

2λj
,

and so the objective at the conjugate gradient solution must be smaller than or equal to the objective at
the principal component solution. The inequality between the minima of the quadratic objective function
implies the inequality between the misclassification probabilities stated in the proposition.

Proof of Proposition 3

Proceeding as in the proof of Proposition 1, we need to show that

〈μ, R−1
α μ〉

〈μ, R−1
α RR−1

α μ〉1/2
=

∑∞
j=1

b2
j

λj+α{∑∞
j=1

λjb
2
j

(λj+α)2
}1/2

−−−→
α→0+

( ∞∑
j=1

b2
j

λj

)1/2

= ‖R−1/2μ‖,

where bj = 〈μ,ϕj〉 is the coefficient of μ in the eigenbasis. If
∑∞

j=1 b2
j /λj < ∞, the convergence follows

from Lebesgue’s monotone convergence theorem. Otherwise, we use the inequality
∑∞

j=1 λjb2
j /(λj + α)2 �∑∞

j=1 b2
j /(λj + α) to bound the left-hand side expression from below by {∑∞

j=1 b2
j /(λj + α)}1/2, which

diverges to infinity again by Lebesgue’s theorem.

Proof of Theorem 1

The probability of misclassifying a new observation using the conjugate gradient classifier based on ψ̂CG
mn

is D(ψ̂CG
mn
) = 1 −�{|Z(ψ̂CG

mn
)|/2}. We need to show that the fraction in Z(ψ̂CG

mn
) converges in probability

to ‖R−1/2μ‖/2 along the regularization path satisfying the assumptions of the theorem. To deal with the
numerator in Z(ψ̂CG

mn
), one can show that

〈μ, ψ̂CG
mn

〉 − 〈μ,ψCG
mn

〉 = Op

(
n−1/2ω−1

mn
‖γ (mn)‖ + n−1ω−3

mn

)
. (A3)

This result follows from an analogue of (5.9) in Theorem 5.3 of Delaigle & Hall (2012b) and intermediate
results in the proof of that theorem which can be established in our context. The necessary modifications of
the proofs of Theorems 5.1, 5.2 and 5.3 in Delaigle & Hall (2012b) are as follows. All results remain valid
for incomplete instead of complete curves, because the proofs depend only on the root-n consistency of the
covariance estimators, which holds also for functional fragments (Kraus, 2015, Proposition 1). Moreover,
the derivations in Delaigle & Hall (2012b) can be repeated without assuming that the theoretical solution
ψ = R−1μ exists as an element of L2(I). Indeed, the proofs in Delaigle & Hall (2012b) are based on
stochastic expansions of R̂ jψ = R̂ jR−1μ, in our notation, about R jψ = R jR−1μ = R j−1μ and derived
quantities, but the same steps can be followed for R̂ j−1μ̂ about R j−1μ in our setting. In other words, it can
be shown that ψ̂CG

mn
and ψCG

mn
converge to each other without assuming that ψCG

mn
converges. Similarly, for

the denominator in Z(ψ̂CG
mn
) we have that

〈 ψ̂CG
mn

, Rψ̂CG
mn

〉 − 〈ψCG
mn

, RψCG
mn

〉 = Op

(
n−1/2ω−1

mn
‖γ (mn)‖ + n−1ω−3

mn

)
. (A4)

This last result is analogous to (7.27) of Delaigle & Hall (2012b), whose proof can be repeated with the
same modifications for our situation as before. Therefore, regardless of whether ‖R−1μ‖ or ‖R−1/2μ‖ is
finite or infinite, the theoretical and empirical regularized quantities approach each other at the rates given
in (A3) and (A4). The result on D(ψ̂CG

mn
) then follows as in the proof of Proposition 1.
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Proof of Theorem 2

We show that D(ψ̂PC
mn
) = 1−�{|Z(ψ̂PC

mn
)|/2} converges in probability to 1−�(‖R−1/2‖/2). The strategy

of the proof is similar to that of Theorem 3.1 in Cardot et al. (1999) for the principal component approach
to the functional linear model. The difference lies in the incompleteness of the functional data and in that
we do not assume that the underlying theoretical inverse problem has a solution. We write

‖ψ̂PC
mn

− ψPC
mn

‖ � ‖R̂−
mn

− R−
mn

‖∞‖μ̂‖ + ‖R−
mn

‖∞‖μ̂− μ‖.

Proceeding as in the proof of Lemma 5.1 in Cardot et al. (1999), we can show that

‖R̂−
mn

− R−
mn

‖∞ � λ̂−1
mn
λ−1

mn
‖R̂ − R‖∞ + 2λ−1

mn
‖R̂ − R‖∞

mn∑
j=1

aj.

Here λ̂j are the eigenvalues of R̂ in descending order and ϕ̂j are the corresponding eigenfunctions. In
establishing the above inequality one uses the facts that |λ̂j −λj| � ‖R̂ −R‖∞ and ‖ϕ̂j −sign〈 ϕ̂j,ϕj〉ϕj‖ �
aj‖R̂ − R‖∞, which are known from Bosq (2000, Lemmas 4.2 and 4.3) for the empirical covariance
operator from complete curves but hold also for functional fragments; see the proof of Proposition 2 in
the supplementary document for Kraus (2015). Since ‖R̂ − R‖∞ = Op(n−1/2), we see that λ̂−1

mn
λ−1

mn
‖R̂ −

R‖∞1[λ̂mn>λmn /2] � 2λ−2
mn

‖R̂ − R‖∞ = λ−2
mn

Op(n−1/2). Since the probability of the event [λ̂mn < λmn/2]
is bounded by λ−2

mn
O(n−1) and hence converges to 0, it follows that λ̂−1

mn
λ−1

mn
‖R̂ − R‖∞ = λ−2

mn
Op(n−1/2).

Combining this with the facts that ‖μ̂‖ = Op(1), ‖R−
mn

‖ = λ−1
mn

and ‖μ̂− μ‖ = Op(n−1/2) gives

‖ψ̂PC
mn

− ψPC
mn

‖ � λ−2
mn

Op(n
−1/2)+ λ−1

mn
Op(n

−1/2)

mn∑
j=1

aj.

Similar arguments can be used in the analysis of the denominator in Z(ψ̂PC
mn
). In conclusion, we obtain that

the estimation errors for the quantities in the numerator and denominator converge to zero at the rates

〈μ, ψ̂PC
mn

〉 − 〈μ,ψPC
mn

〉 = λ−2
mn

Op(n
−1/2)+ λ−1

mn
Op(n

−1/2)

mn∑
j=1

aj, (A5)

〈 ψ̂PC
mn

, Rψ̂PC
mn

〉 − 〈ψPC
mn

, RψPC
mn

〉 = λ−2
mn

Op(n
−1/2)+ λ−1

mn
Op(n

−1/2)

mn∑
j=1

aj. (A6)

In light of (A5) and (A6), the asymptotic behaviour of the misclassification probability is driven by the
behaviour of the theoretical classifier addressed in Proposition 1.

Proof of Theorem 3

We show that the fraction |Z(ψ̂R
mn
)| converges in probability to ‖R−1/2μ‖/2 as n → ∞. For the

numerator we write

〈μ, ψ̂R
αn

〉 − 〈μ, R−1
αn
μ〉 = 〈μ, (R̂−1

αn
− R−1

αn
)μ̂〉 + 〈μ, R−1

αn
(μ̂− μ)〉. (A7)

For the first term on the right we find that

|〈μ, (R̂−1
αn

− R−1
αn
)μ̂〉| � ‖μ‖‖R̂−1

αn
− R−1

αn
‖∞‖μ̂‖

= ‖μ‖‖R̂−1
αn
(R̂αn − Rαn)R

−1
αn

‖∞‖μ̂‖
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� ‖μ‖‖R̂−1
αn

‖∞‖R̂αn − Rαn‖∞‖R−1
αn

‖∞‖μ̂‖
� α−2

n Op(n
−1/2),

since ‖R̂−1
αn

‖∞ � α−1
n , ‖R−1

αn
‖∞ � α−1

n , ‖μ̂‖ = Op(1) and ‖R̂αn − Rαn‖∞ = ‖R̂ − R‖∞ = Op{(n0 +
n1)

−1/2} (Kraus, 2015, Proposition 1). For the second term on the right-hand side of (A7), we obtain

|〈μ, R−1
αn
(μ̂− μ)〉| � ‖μ‖‖R−1

αn
‖∞‖μ̂− μ‖ � α−1

n Op(n
−1/2).

The quantity in the denominator of Z(ψ̂R
mn
) can be rewritten as

〈 ψ̂R
αn

, Rψ̂R
αn

〉 − 〈ψR
αn

, RψR
αn

〉 = 〈 ψ̂R
αn

− ψR
αn

, Rψ̂R
αn

〉 + 〈ψR
αn

, R(ψ̂R
αn

− ψR
αn
)〉. (A8)

The first term on the right is

〈 ψ̂R
αn

− ψR
αn

, Rψ̂R
αn

〉 = 〈 R̂−1
αn
μ̂− R−1

αn
μ, RR̂−1

αn
μ̂〉

= 〈 R−1
αn
(Rαn − R̂αn)R̂

−1
αn
μ̂, RR̂−1

αn
μ̂〉 + 〈 R−1

αn
(μ̂− μ), RR̂−1

αn
μ̂〉. (A9)

For the first summand in (A9) we have

|〈 R−1
αn
(Rαn − R̂αn)R̂

−1
αn
μ̂, RR̂−1

αn
μ̂〉| � ‖μ̂‖2‖R̂−1

αn
‖2

∞‖RR−1
αn

‖∞‖R̂ − R‖∞

� α−2
n Op(n

−1/2),

using properties mentioned previously and the fact that ‖RR−1
αn

‖∞ � 1, and for the second summand
we have

|〈 R−1
αn
(μ̂− μ), RR̂−1

αn
μ̂〉| � ‖RR−1

αn
‖∞‖R̂−1

αn
‖∞‖μ̂− μ‖ � α−1

n Op(n
−1/2).

Putting these results together, we see that the absolute value of the first term on the right-hand side of (A8)
is dominated by α−2

n Op(n−1/2). The second term on the right-hand side of (A8) can be analysed in a similar
way to the first two terms on the right-hand side of (A7) with RR−1

αn
μ in place of μ. Thus we bound the

absolute value from above by α−2
n Op(n−1/2). These results imply that the estimation errors vanish at rates

〈μ, ψ̂R
αn

〉 − 〈μ,ψR
αn

〉 = α−2
n Op(n

−1/2),

〈 ψ̂R
αn

, Rψ̂R
αn

〉 − 〈ψR
αn

, RψR
αn

〉 = α−2
n Op(n

−1/2).

Hence the empirical classifier has the same limiting error as the theoretical one addressed in Proposition 3.
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