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In this note we study a positivity notion for the curvature of the Bismut connection; 
more precisely, we study the notion of Bismut-Griffiths-positivity for complex Hermitian 
non-Kähler manifolds. Since the Kähler-Ricci flow preserves and regularizes the usual 
Griffiths positivity we investigate the behaviour of the Bismut-Griffiths-positivity under 
the action of the Hermitian curvature flows. In particular we study two concrete classes 
of examples, namely, linear Hopf manifolds and six-dimensional Calabi-Yau solvmanifolds 
with holomorphically-trivial canonical bundle. From these examples we identify some 
Hermitian curvature flows which do not preserve Bismut-Griffiths-non-negativity.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this note we introduce a notion of positivity (or non-negativity) for complex Hermitian manifolds which emulates the 
definition of Griffiths positivity (non-negativity) and refers to the Bismut curvature tensor. Then we investigate its behaviour 
under the action of the Hermitian curvature flows.

Let us now introduce our problem giving more details. The Bismut connection ∇+ on a Hermitian manifold (M, g, J ) is 
the unique Hermitian connection with totally skew-symmetric torsion. It can be defined by the formula

g(∇+
X Y , Z) = g(∇ LC

X Y , Z) + 1

2
Jdω(X, Y , Z)

where ∇ LC is the Levi-Civita connection, ω is the canonical 2-form associated to g and J acts as Jdω(·, ·, ·) =
−dw( J ·, J ·, J ·).

We define a notion of positivity emulating the definition of the Griffiths positivity for the Chern connection of the 
holomorphic tangent bundle (a.k.a. holomorphic bisectional curvature). We do this by evaluating the holomorphic Bismut 
bisectional curvature of the Hermitian manifold.

Definition. A Hermitian manifold (M, g, J ) has Bismut-Griffiths-positive (resp. non-negative) curvature if its Bismut curvature 
tensor �B satisfies

• �B ∈ ∧1,1M ⊗ ∧1,1M;
• for any non-zero ξ, ν ∈ T 1,0M, �B(ξ, ξ, ν, ν) > 0 (resp. ≥ 0).
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The condition � ∈ ∧1,1M ⊗ ∧1,1M is known in the literature as (Cplx). We note that the curvature tensor � associated 
to a Hermitian connection satisfies (Cplx) if and only if it satisfies the J -invariance formula: �i jkl = 0.

We could define our notion of positivity even if (Cplx) were not satisfied; however, in that case we would only describe 
the geometry of the (1, 1) part of �B ignoring the (2, 0) and (0, 2) components.

Remark. Given a complex Hermitian manifold (M, g, J ), the Hermitian structure is pluriclosed if ddcω = 0, where ω is the 
Kähler 2-form associated to g . In this case, the Bismut curvature tensor (in special coordinate around z) becomes:

�B
i jkl

= �Ch
kli j

− g pq Tkp j Tlqi

Thus for pluriclosed manifolds the Bismut-Griffiths positivity (non-negativity) implies the Griffiths positivity (non-
negativity).

In [15] F. Tong studies a positivity notion for the tensor �Ch
kli j

− g pq Tkp j Tlqi which naturally arises from a Bochner-type 
formula for closed (1, 1)-forms.

We are interested in the behaviour of the Bismut-Griffiths positivity under the action of the Hermitian Curvature Flows
(HCFs), introduced by Streets and Tian in [14]. In that article the authors suggest this class of flows as a new class of 
parabolic flows of metrics on Hermitian manifolds, and proved short time existence and regularity results. These flows have 
been used to reveal information about the geometry of the varieties, see for example the works of Streets and Tian on 
the pluriclosed flow [12], [13] and Ustinovskiy [20], [21] and [22]. We are motivated by the possibility of detecting some 
regularization properties as in [21]. In that article Ustinovskiy showed that there is a flow in the HCF family (which we will 
call Ustinovskiy flow) that not only preserves Griffiths positivity and non-negativity of the Chern connection, but it evolves 
a metric with non-negative Griffiths curvature everywhere and positive in some point to a metric with positive Griffiths 
curvature everywhere.

The HCFs are defined by the equation

∂

∂t
g = −S + Q

where S is the trace of the Chern curvature tensor �Ch

Si j = (T rω�Ch)i j = gkl�Ch
kli j

and Q is a quadratic polynomial in the torsion T Ch of the Chern connection. More precisely, the components of the quadratic 
term Q are:

Q 1
i j

= gkl gmn T Ch
ikn T Ch

jlm
Q 2

i j
= gkl gmn T Ch

km j
T Ch

lni

Q 3
i j

= gkl gmn T Ch
ikl

T Ch
jnm

Q 4
i j

= 1

2
gkl gmn

(
T Ch

mkl
T Ch

nji
+ T Ch

mi j
T Ch

nlk

)
Studying the notion of Bismut-Griffiths positivity, we focus on six dimensional Calabi-Yau solvmanifolds. These are com-

pact quotients of solvable Lie groups endowed with invariant complex structures and with holomorphically trivial canonical 
bundle. In this class we find examples of manifolds which do not satisfy (Cplx) (see Theorem 1) and among that which 
satisfy (Cplx) we find Bismut-Griffiths-non-negative manifolds. We also prove that

Theorem (Theorem 3). Let M be a six-dimensional Calabi-Yau solvmanifold, then any Hermitian curvature flow preserves (Cplx). 
Moreover, Hermitian curvature flows preserve Bismut-Griffiths-non-negativity on these manifolds.

We also study our problem on linear Hopf manifolds. The linear Hopf surface with its standard metric gH has flat 
Bismut curvature (see §3), thus it is our first example of Bismut-Griffiths-non-negative manifold. We also find other (non 
flat) examples of metrics with Bismut-Griffiths-non-negative curvature on linear Hopf manifolds of higher dimension.

Our results come from the analysis of the class of g(α, β) metrics on linear Hopf manifolds (see § 3). These are all the 
homogeneous metrics on linear Hopf manifolds of dimension greater than two, while in dimension two they are all the 
S1 × U (2)-invariant metrics on the Hopf surface (see Proposition 1). This ensures that they are closed by the action of any 
HCF and naturally arise performing the HCFs on the standard metric gH . We prove

Theorem (Proposition 2 & Corollary 1). On a linear Hopf manifold equipped with a g(α, β) metric the Bismut curvature tensor satisfies 
(Cplx). Moreover, on these manifolds any HCF starting from those metrics preserves (Cplx).

We characterize the metrics g(α, β) which have Bismut-Griffiths-non-negative curvature (§3.1); then we give a descrip-
tion of the evolution of the HCFs on these metrics through a stability result (Theorem 4), so we prove
2
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Table 1
Invariant complex structures on six-dimensional nilmanifolds up to linear equivalence, see [1], [4], [18].

Name Complex structure Lie algebra

(Np) dϕ1 = dϕ2 = 0, dϕ3 = ρ ϕ12, where ρ ∈ {0,1} ρ = 0 : h1 = (0,0,0,0,0,0)

ρ = 1 : h5 = (0,0,0,0,13 + 42,14 + 23)

(Ni)

dϕ1 = dϕ2 = 0,
h2 = (0,0,0,0,12,34)

h3 = (0,0,0,0,0,12 + 34)

dϕ3 = ρ ϕ12 + ϕ11̄ + λϕ12̄ + D ϕ22̄, h4 = (0,0,0,0,12,14 + 23)

h5 = (0,0,0,0,13 + 42,14 + 23)

where ρ ∈ {0,1}, λ ∈R≥0, D ∈C with �D ≥ 0 h6 = (0,0,0,0,12,13)

h8 = (0,0,0,0,0,12)

(Nii)

dϕ1 = 0, dϕ2 = ϕ11̄,
h7 = (0,0,0,12,13,23)

h9 = (0,0,0,0,12,14 + 25)

h10 = (0,0,0,12,13,14)

dϕ3 = ρϕ12 + B ϕ12̄ + c ϕ21̄,
h11 = (0,0,0,12,13,14 + 23)

h12 = (0,0,0,12,13,24)

where ρ ∈ {0,1}, B ∈C, c ∈R≥0, with (ρ, B, c) �= (0,0,0)

h13 = (0,0,0,12,13 + 14,24)

h14 = (0,0,0,12,14,13 + 42)

h15 = (0,0,0,12,13 + 42,14 + 23)

h16 = (0,0,0,12,14,24)

(Niii)
dϕ1 = 0, dϕ2 = ϕ13 + ϕ13̄, h

−
19 = (0,0,0,12,23,14 − 35)

dϕ3 = √−1ρ ϕ11̄ ± √−1(ϕ12̄ − ϕ21̄), where ρ ∈ {0,1} h
+
26 = (0,0,12,13,23,14 + 25)

Theorem (Theorem 5 & Proposition 5). There exists a class in the family HCF of flows which do not preserve Bismut-Griffiths-non-
negativity; all the others HCFs preserve Bismut-Griffiths-non-negativity on linear Hopf manifolds equipped with g(α, β) metrics.

Finally, we check these conditions on some interesting Hermitian curvature flows, such as the Ustinovskiy flow and the 
pluriclosed and the gradient flows of Streets and Tian (the latter is the only HCF which is a gradient flow for some functional 
F , see [14]). In particular, the Ustinovskiy flow does not preserve the Bismut-Griffiths-non-negativity, while the gradient 
flow does on linear Hopf manifolds with g(α, β) metrics; the pluriclosed flow preserves the Bismut-Griffiths-non-negativity 
on the Hopf surface while it does not on linear Hopf manifolds of higher dimension. See §3.4 for details.

2. Bismut-Griffiths-positivity of 6-dimensional Calabi-Yau solvmanifolds

In this section we analyze the symmetries of (Cplx) and the notion of Bismut-Griffiths-positivity by investigating them 
on 6-dimensional Calabi-Yau solvmanifolds. By solvmanifold we mean a compact quotient of a connected simply-connected 
solvable Lie group by a co-compact discrete subgroup. We endow it with a Hermitian structure (g, J ) which is invariant 
(under left-translations) when lifted to the universal cover; moreover, we ask these solvmanifolds to be Calabi-Yau, that 
is, the complex structure J is such that the canonical bundle is holomorphically-trivial. This includes nilmanifolds with 
invariant complex structures.

We refer to the classification (up to linear equivalence) of the invariant complex structures on six-dimensional nilman-
ifolds (Table 1) and solvmanifolds non-nilmanifolds with holomorphically-trivial canonical bundle (Table 2) as outlined in 
the works of Salamon, Ugarte, Villacampa, Andrada, Barberis, Dotti, Ceballos and Otal [11], [17], [1], [9], [18], [5], [4].

In the formulas above the authors refer to a co-frame (ϕ1, ϕ2, ϕ3, ϕ1, ϕ2, ϕ3) where (ϕ1, ϕ2, ϕ3) is an invariant co-frame 
of (1, 0)-forms with respect to J .

The generic invariant Hermitian structure ω = g( J ·, ·) is given by

2ω = √−1(r2ϕ11 + s2ϕ22 + t2ϕ33) + uϕ12 − uϕ21 + vϕ23 − vϕ32 + zϕ13 − zϕ31 (1)

where ϕ i j = ϕ i ∧ ϕ j and the coefficients satisfy the following inequalities coming from the fact that g is positive definite 
(see [17]):

r2 > 0, s2 > 0, t2 > 0

r2s2 > |u|2, r2t2 > |z|2, s2t2 > |v|2
8
√−1 det � = r2s2t2 + 2Re(

√−1uvz) − (r2|v|2 + t2|u|2 + s2|z|2) > 0

where, � denotes the Hermitian matrix associated to the Hermitian structure, i.e.

� =
⎛
⎜⎝

√−1 r2

2
u
2

z
2

− u
2

√−1 s2

2
v
2

− z − v √−1 t2

⎞
⎟⎠
2 2 2

3
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Table 2
Invariant complex structures on six-dimensional solvmanifolds non-nilmanifolds with holomorphically-trivial canonical bundle up to linear 
equivalence, see [9], [5].

Name Complex structure Lie algebra

(Si)
dϕ1 = Aϕ13 + Aϕ13̄, g1 = (15,−25,−35,45,0,0) when θ = 0

dϕ2 = −Aϕ23 − Aϕ23̄, dϕ3 = 0, gα
2 = (α × 15 + 25,−15 + α × 25,−α × 35 + 45,−35 − α × 45,0,0)

where A = cos θ + √−1 sin θ, θ ∈ [0,π) with α = cos θ
sin θ

≥ 0, when θ �= 0

(Sii)
dϕ1 = 0, dϕ2 = − 1

2 ϕ13 − ( 1
2 + √−1x

)
ϕ13̄ + √−1xϕ31̄,

g3 = (0,−13,12,0,−46,−45)dϕ3 = 1
2 ϕ12 +

(
1
2 −

√−1
4x

)
ϕ12̄ +

√−1
4x ϕ21̄,

where x ∈R>0

(Siii1)
dϕ1 = √−1ϕ13 + √−1ϕ13̄

g4 = (23,−36,26,−56,46,0)dϕ2 = −√−1ϕ23 − √−1ϕ23̄

dϕ3 = ±ϕ11̄

(Siii2)
dϕ1 = ϕ13 + ϕ13̄

g5 = (24 + 35,26,36,−46,−56,0)dϕ2 = −ϕ23 − ϕ23̄

dϕ3 = ϕ12̄ + ϕ21̄

(Siii3)
dϕ1 = √−1ϕ13 + √−1ϕ13̄

g6 = (24 + 35,−36,26,−56,46,0)dϕ2 = −√−1ϕ23 − √−1ϕ23̄

dϕ3 = ϕ11̄ + ϕ22̄

(Siii4)
dϕ1 = √−1ϕ13 + √−1ϕ13̄

g7 = (24 + 35,46,56,−26,−36,0)dϕ2 = −√−1ϕ23 − √−1ϕ23̄

dϕ3 = ±(ϕ11̄ − ϕ22̄)

(Siv1) dϕ1 = −ϕ13, dϕ2 = ϕ23, dϕ3 = 0

g8 = (16 − 25,15 + 26,−36 + 45,−35 − 46,0,0)
(Siv2)

dϕ1 = 2
√−1ϕ13 + ϕ33̄, x ∈ {0,1}

dϕ2 = −2
√−1ϕ23 + xϕ33̄, dϕ3 = 0

(Siv3)
dϕ1 = A ϕ13 − ϕ13̄

dϕ2 = −A ϕ23 + ϕ23̄, dϕ3 = 0
A ∈C with |A| �= 1

(Sv)
dϕ1 = −ϕ33̄

g9 = (45,15 + 36,14 − 26 + 56,−56,46,0)dϕ2 =
√−1

2 ϕ12 + 1
2 ϕ13̄ −

√−1
2 ϕ21̄

dϕ3 = −
√−1

2 ϕ13 +
√−1

2 ϕ31̄

Table 3
Conditions on the underlying complex structure, invariant Hermitian metric and Lie algebra.

Name (Cplx) condition Bismut-Griffiths-non-negativity

(Np)
Always satisfied ρ = 0: flat

ρ = 1: nowhere non-negative nor non-positive

(Ni)

h2: non-negative if u = 0
h3, D = 1: non-negative
h3, D = −1: nowhere non-negative nor non-positive

ρ = 0 h4: nowhere non-negative nor non-positive
h5: nowhere non-negative nor non-positive
h8: non-negative

(Nii) c = B = 0, ρ = 1, v = 0 nowhere non-negative nor non-positive

(Si)
u = v = z = 0 A = √−1: flat

A �= √−1: nowhere non-negative nor non-positive

(Siii1) u = v = z = 0 non-negative

(Siv1) Always satisfied nowhere non-negative nor non-positive

(Siv3)
u = v = z = 0 nowhere non-negative nor non-positive
A = 0, v = z = 0 in both cases

Analyzing case by case the possible families of nilmanifolds and solvmanifolds, we get the following results, whose proofs 
are collected in the Appendix.

Theorem 1. Let M be a six-dimensional solvmanifold endowed with invariant metric g and complex structure J , g as in (1) and J such 
that the canonical bundle is holomorphically-trivial. The Bismut curvature tensor satisfies the (Cplx) condition precisely in the cases 
(Np), (Ni), (Nii), (Si), (Siii1), (Siv1) and (Siv3) when the conditions on the invariant structures of Table 3 are satisfied.
4
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Remark. In [2] the authors studied the existence of Gauduchon Kähler-like connections on 6-dimensional Calabi-Yau solv-
manifolds. The Gauduchon connections are an affine line of Hermitian connections which goes through the Chern and the 
Bismut connections. Moreover, Kähler-like means that the curvature tensor satisfies both (Cplx) and the first Bianchi identity. 
Examples on the Hopf manifolds show that the Kähler-like condition is strictly stronger than (Cplx).

In the cases where (Cplx) is satisfied we look at the holomorphic bisectional Bismut curvature.

Theorem 2. Let M be a six-dimensional solvmanifold endowed with invariant metric g and complex structure J , g as in (1) and J such 
that the canonical bundle is holomorphically-trivial. If J is in the families (Siii1) or (Ni) with Lie algebra h2, h8 and h3 (with D = 1) 
then the Bismut curvature tensor is Bismut-Griffiths non-negative. If J is in the family (Si) with Lie algebra g0

2 and diagonal metric the 
manifold is Bismut-flat. In all the other cases where (Cplx) is satisfied the invariant metrics are neither non-positive nor non-negative. 
(See Table 3)

The computations in the Appendix lead to the Remarks 1, 2, 3, 4 and 5 that we summarize in the following statement.

Theorem 3. Let M be a six-dimensional solvmanifold endowed with invariant metric g and complex structure J , g as in (1) and J
such that the canonical bundle is holomorphically-trivial. Then the symmetries of (Cplx) are preserved by any HCF. Moreover, the HCFs 
preserve Bismut-Griffiths-non-negativity and Bismut-flatness, when they occur.

We remark that recent results in [6] show that the pluriclosed flow (which is in the HCF family) preserves the Bismut 
Kähler-like condition on 2-step nilpotent Lie group with left-invariant Hermitian structure.

All the computations on six-dimensional Calabi-Yau solvmanifolds within the proofs of the above statements are con-
tained in the Appendix.

3. HCFs on linear Hopf manifolds

Linear Hopf manifolds are defined as quotients of the complex domain Cn \ {0} over an equivalence relation depending 
on a ∈Cn \ {0}

Mn = Cn \ {0}
∼ ,

where (z1, · · · , zn) ∼ (a1z1, · · · , anzn) with |a1| = · · · = |an| �= 1.
These manifolds come with a natural complex structure and a Hermitian metric

gH = δi j

|z|2 dzi ⊗ dz j .

The Bismut curvature tensor associated to gH satisfies various symmetries, including (Cplx). Indeed, its non-vanishing coef-
ficients are (see [7]):

�B
i jkl

(z) = δilδ jk − δi jδkl

|z|4 + δi j zkzl + δkl zi z j − δil z j zk − δ jkzi zl

|z|6 .

Thus, for any ξ, ν ∈ T 1,0M

�B(ξ, ξ , ν, ν)|z = 1

|z|6
(
−|ξ |2|ν|2|z|2 + |ξ · ν|2|z|2 + |ν · z|2|ξ |2 + |z · ξ |2|ν|2+

−(ξ · ν)(ν · z)(z · ξ) − (ν · ξ)(ξ · z)(z · ν)) .

Since this vanishes for n = 2, we get the following

Proposition. For n = 2 the Hopf manifold with canonical metric gH is Bismut flat. Thus, in particular, it is Bismut-Griffiths-non-
negative.

However, this is not the case in higher dimension.

Proposition. The Hopf manifold with canonical metric gH is not Bismut-Griffiths non-negative for n > 2.

Proof. The Bismut curvature tensor satisfies �B
i jkl

= −�B
k jil

= −�B
ilk j

. Thus �B
i jkl

= �B
kli j

and the two Bismut-Ricci curvatures 
agree and are
5
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R B
i j

= 1

|z|4
(
(2 − n)(δi j|z|2 − zi z j)

)
,

so that for any ξ ∈ T 1,0 M

R B(ξ, ξ) = 2 − n

|z|4
(
|ξ |2|z|2 − |ξ · z|2

)
≤ 0 ,

and the equality holds only if ξ = λz with λ ∈C.
Thus, if we take ξ different from any multiples of z

0 > R B
z

(
ξ, ξ

) = gi j�B
z

(
ξ, ξ, ∂i, ∂ j

) = |z|2
∑

i

�B
z

(
ξ, ξ, ∂i, ∂ i

)
,

so at least one of the �B
z

(
ξ, ξ, ∂i, ∂ i

)
is strictly negative. �

3.1. HCF-closed family of metrics on linear Hopf manifolds

Here we study the Hermitian metrics g(α, β) (depending on real parameters α > 0 and β > −α) on a generic linear 
Hopf manifold defined by

g(α,β)i j = α
δi j

|z|2 + β
zi z j

|z|4 .

Proposition 1. Given an n-dimensional linear Hopf manifold M, the g(α, β) metrics are all the S1 × U (n)-invariant metrics on M; 
hence, in particular, they are homogeneous. Moreover, if n ≥ 3 they are all the Hermitian homogeneous metrics on M.

Proof. On a generic Hermitian metric on M

g = gi j(z)dzi ⊗ dz j ,

the U (n)-invariant condition is

U (gi j(p))U t = (gi j(Up)) ,

for any U ∈ U (n). Notice that it is satisfied by the metrics gz(α, β). Moreover, these metrics also are S1 invariant, hence 
homogeneous on M .

Now suppose that g is a Hermitian S1 × U (n)-invariant metric on M . If we fix a point p ∈ M and consider its isotropy 
group (S1 × U (n))p ∼= U (n − 1), we get that

U (gi j(p))U t = (gi j(p)) ,

for any U ∈ (S1 × U (n))p . Moreover, we can take e1 as point p; hence we get that the matrix(
1

U

)(
gi j(e1)

)(
1

U †

)
must be independent on U ∈ U (n − 1).

The above equation forces gi j(e1) to be of the form

gi j(e1) =
(

a
λId

)
,

where a and λ are positive real numbers. This means that g agrees with g(λ, a −λ) in e1; moreover the S1 ×U (n)-invariance 
ensures that they agree all over M .

The last statement comes from the fact that if n > 2 on the sphere S2n−1 any SU (n)-invariant metric actually is U (n)-
invariant. �

Since the HCFs preserve the S1 × U (n)-invariance of the metrics, the g(α, β) family must be closed by the action of 
the HCFs. Moreover, the standard metric gH is g(1, 0), hence this family naturally arises studying the evolution of HCFs 
on linear Hopf manifolds. For the same reason, these metrics also arise in the evolution of gH by the Chern-Ricci flow 
(see [16]). We also recall that the g(α, β) metrics also appear in [8] where the authors use them to produce examples of 
Levi-Civita Ricci-flat Hermitian metrics on Hopf manifolds.
6
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The inverse of g(α, β) is

g(α,β)i j = |z|2
α

(
δi j − β

α + β

z j zi

|z|2
)

.

The Christoffel symbols for the Bismut connection are

�k
i j = gks∂ j gis = 1

|z|2
(

β

α
δk

j zi − δk
i z j

)
− β

α

zi z j zk

|z|4 ;

�k
i j

= gks
(
∂ i g js − ∂ s g ji

)
= 1

|z|2
(

δi j z
k − α + β

α
δk

j zi

)
+ β

α

zi z j zk

|z|4 ,

and a direct computation leads to �B
i jkl

= 0 for any i, j, k, l ∈ {1, . . . , n}. Thus we have the following,

Proposition 2. The Bismut curvature tensor associated to a g(α, β) metric on a linear Hopf manifolds satisfies (Cplx).

Corollary 1. The symmetries of (Cplx) are preserved by any HCF acting on a linear Hopf manifold equipped with a metric g(α, β).

Now we turn to the study of the holomorphic bisectional Bismut curvature of these metrics.
We have the following formula for the Bismut curvature tensor of g(α, β):

�B
i jkl

=α

[
δilδ jk − δi jδkl

|z|4 + δi j zkzl + δkl zi z j − δil z j zk − δ jkzi zl

|z|6
]

︸ ︷︷ ︸
Uα

+ 2β

[−δi jδkl

|z|4 + δi j zkzl + δkl zi z j

|z|6 + −zi z j zkzl

|z|8
]

︸ ︷︷ ︸
Uβ

.

Notice that we already know Uα since it is the curvature tensor of gH (w.r.t. the Bismut connection). If we evaluate Uβ on 
vectors ξ, ν ∈ T 1,0M , we get

Uβ

(
ξ, ξ, ν, ν

) = 1

|z|8
(
|ξ |2|z|2 − |ξ · z|2

)(
|ν · z|2 − |ν|2|z|2

)
≤ 0 , (2)

and the equality holds if and only if ξ = λz or ν = λz with λ ∈C.
In dimension two Uα vanishes, thus g(α, β) is Bismut-Griffiths-non-negative if and only if β ≤ 0. In dimension greater 

than 2, we have seen that Uα is not non-negative, as well as Uβ ; hence the non-negativity of the tensor will only depend 
on the ratio γ .= β

α . For example we get

Lemma 1. For any dimension n, the Hermitian metric g(α, − 1
2 α) on the n-dimensional linear Hopf manifold is Bismut-Griffiths-non-

negative; in particular, given any ξ, ν ∈ T 1,0M, we have the following equation

�B(ξ, ξ , ν, ν) = α

|z|8
∣∣∣(ξ · ν)|z|2 − (ξ · z)(z · ν)

∣∣∣2 ≥ 0 .

Remark. Notice that in any point z ∈ M we will never get �B(z) > 0 for metrics g(α, β), since both the terms Uα and Uβ

vanish if ξ = λz or ν = λz for λ ∈C.

Proposition 3. There are coefficients γn depending on the dimension n of the linear Hopf manifold such that for all α > 0, g(α, γα)

has Bismut-Griffiths-non-negative curvature tensor if and only if γ ≤ γn. These coefficients are γ2 = 0 and γn = − 1
2 for n ≥ 3.

Proof. We already know that γ2 = 0 has the above property.
Now suppose that n ≥ 3. Take α > 0 and ε > 0; by Lemma 1 we know that the metric g(α, − 1

2 α) is Bismut-Griffiths-
non-negative and the metric g(α, (− 1

2 + ε)α) has Bismut curvature tensor given by

�B(ξ, ξ , ν, ν) = α

|z|8
∣∣∣(ξ · ν)|z|2 − (ξ · z)(z · ν)

∣∣∣2 + 2εUβ(ξ, ξ , ν, ν) .

On a point z ∈ M with two zero coordinates (say k and l), by equation (2) we get

�B(∂k, ∂k, ∂l, ∂ l)z = 2εUβ(∂k, ∂k, ∂l, ∂ l)z = − 2ε
4

< 0 . �
|z|
7
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3.2. HCFs evolution in the canonical family

First of all, we compute the terms S and Q of the HCFs in the explicit case of a linear Hopf manifold equipped with 
g(α, β). By direct computations we get the Christoffel symbols of the Chern connection

�k
i j = 1

|z|2
(

β

α
δk

i z j − δk
j zi

)
− β

α

zi z j zk

|z|4 ,

and the Chern curvatures

�l
i jk

= 1

|z|2
[
δl

k

(
δi j − zi z j

|z|2
)

− β

α
δl

i

(
δ jk − zkz j

|z|2
)

+ β

α

(δ jkzi + δi j zk)|z|2 − 2zi z j zk

|z|4 zl

]
;

�
(2)

i j
= 1

|z|2
[(

n − 1 − β

α

)
δi j + β

α

(
2n − 1 + β

α
(n − 1)

)
zi z j

|z|2
]

.

The Chern torsion is T k
i j = 1

|z|2
(

β
α + 1

)
(δk

i z j − δk
j zi) and we have the following quadratic terms in T Ch:

Q 1
i j

= 1

|z|2
(

β

α
+ 1

)2 [
α

α + β
δi j +

(
n − 2 + β

α + β

)
zi z j

|z|2
]

;

Q 2
i j

= 2

|z|2
(

β

α
+ 1

)2 α

α + β

[
δi j − zi z j

|z|2
]

;

Q 3
i j

= (n − 1)2
(

β

α
+ 1

)2 zi z j

|z|4 ;

Q 4
i j

= 1

|z|2
(

β

α
+ 1

)2 α

α + β
(n − 1)

[
δi j − zi z j

|z|2
]

.

Proposition 4. Let M be a linear Hopf manifold equipped with the Hermitian metric g(α0, β0), then the HCF ġ = −S +aQ 1 +bQ 2 +
c Q 3 + dQ 4 starting from g(α0, β0) evolves the metric as

g(t)i j = α(t)
δi j

|z|2 + β(t)
zi z j

|z|4
for t ≥ 0, where α and β satisfy the ODE system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(0) = α0, β(0) = β0

α̇(t) = β
α + 1 − n +

(
β
α + 1

)
(a + 2b + (n − 1)d)

β̇(t) = β
α

(
1 − 2n − β

α (n − 1)
)

+
(

β
α + 1

)2
(n − 1)(a + (n − 1)c)+

−
(

β
α + 1

)
(a + 2b + (n − 1)d)

(3)

Thus we now turn to the study of the behaviour of the Bismut-Griffiths-non-negativity on linear Hopf manifolds equipped 
with g(α, β) metrics under the action of the HCFs. Since the Bismut-Griffiths-non-negativity of the metric g(α, β) only 
depends on the ratio γ , we give a useful result (Theorem 4) which describes the evolution of γ through the action of the 
HCFs.

Notice that in the ODE (3) both α̇ and β̇ depends only on γ = β
α . Thus we can rewrite the ODE system as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
α(0) = α0, β(0) = β0

α̇(t) = γ + 1 − n + (γ + 1) (a + 2b + (n − 1)d)

β̇(t) = γ (1 − 2n − γ (n − 1)) + (γ + 1)2 (n − 1)(a + (n − 1)c)+
− (γ + 1) (a + 2b + (n − 1)d)

Then the ratio γ evolves as⎧⎪⎨
⎪⎩

γ (0) = β0
α0

γ̇ = 1
α (γ + 1) [(F − n)γ + F ]

α̇ = (γ + 1)L − n

(4)
8
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where F (a, b, c, d, n) = (n − 2)a − 2b + (n − 1)2c − (n − 1)d and
L(a, b, c, d) = 1 + a + 2b + (n − 1)d.
Recall that β > −α, so γ > −1. Thus γ can not be equal to −1 and it can be equal to F

n−F only if F < n. If we start 
with α0, β0 with ratio F

n−F , then α and β will evolve as two straight lines, meaning that when γ0 = F
n−F the flow acts on 

the metric by homotheties: these metrics are called static. Moreover, the following result shows that these static metrics 
are globally stable for the HCFs among the g(α, β) metrics.

Theorem 4. Consider an n-dimensional linear Hopf manifold and the HCF ġ = −S + aQ 1 + bQ 2 + c Q 3 + dQ 4 . Suppose that the 
coefficients (a, b, c, d) are such that F (a, b, c, d, n) < n, then the metric g(1, F

n−F ) (as well as any of its multiples) is static for the flow. 
Moreover, any metric g(α0, β0) evolves along the flow so that the ratio γ converges to F

n−F .

Proof. First of all, notice that the flows act by homothety on the static metrics, thus they are exactly those for which

γ̇ = 1

α
(γ + 1) [(F − n)γ + F ] = 0 .

Since γ > −1, this could be the case only if F < n and we get γ = F
n−F .

Now suppose that the starting metric g(α0, β0) has ratio γ0 < F
n−F . By the evolution equation (4) for γ we know that γ

is strictly increasing along the flow, moreover, it is bounded above from F
n−F . We now distinguish two cases, depending on 

L: when α is decreasing along the flow, meaning that ( F
n−F + 1)L − n ≤ 0, and when it is not.

In the first case, suppose that γ does not converge to F
n−F , then it needs to converge to some γ∞ with γ0 < γ∞ < F

n−F . 
In this way

α̇ < (γ∞ + 1)L − n <

(
F

n − F
+ 1

)
L − n ≤ 0 ,

thus α̇ is uniformly strictly negative and so α will get to zero in finite time, say T ; at the same time T , γ will be increasing 
with infinite speed (by eq. (4)), which is a contradiction to the convergence γ → γ∞ .

In the second case, namely 
(

F
n−F + 1

)
L − n > 0, we can suppose without loss of generality that (γ0 + 1)L − n > 0. 

Moreover, since the term (γ +1) in the formula of γ̇ is positive and increasing we can suppress it and prove the convergence 
of γ to F

n−F with evolution equation

γ̇ = 1

α
[(F − n)γ + F ] .

Since γ is bounded from above, then also α̇ is so. This means that we can bound α above with a straight line with positive 
slope α ≤ α(0) + At . Thus finally we have (α(0) + At)γ̇ (t) ≥ (F − n)γ (t) + F . We have an explicit solution for this ODE

γ (t) ≥ C(At + α(0))
F−n

A + F

n − F
,

where the constant C depends on the initial value γ0. Since the exponent F−n
A is negative we get the convergence to F

n−F
for t → ∞.

A similar argument holds true also in the opposite case, namely if γ0 > F
n−F . �

This is another evidence of stability results as in [14]. Here we have global stability in the non-KE setting; however, this 
is an extremely particular case since it refers to linear Hopf manifolds equipped with a metric g(α, β).

3.3. Bismut-Griffiths-non-negativity under the action of HCFs

In this section we detect a subset of HCF of flows which preserve Bismut-Griffiths-non-negativity on linear Hopf man-
ifolds equipped with a g(α, β) metric (see Theorem 5). This subfamily is prescribed by inequalities of the coefficients 
(a, b, c, d) characterizing the HCFs which depend on the dimension n. Take γn as in Proposition 3.

Theorem 5. Consider an n-dimensional linear Hopf manifold equipped with a metric g(α0, β0), and suppose that (n −2)a −2b + (n −
1)2c − (n − 1)d ≤ n γn

γn+1 . Then if the metric g(α0, β0) is Bismut-Griffiths-non-negative, the HCF with coefficients (a, b, c, d) starting 
at g(α0, β0) preserves the Bismut-Griffiths-non-negativity.

Proof. Notice that since the metric g(α0, β0) is Bismut-Griffiths-non-negative, the initial ratio γ0 must be γ0 ≤ γn . Moreover, 
we have that
9
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F (a,b, c,d,n) = (n − 2)a − 2b + (n − 1)2c − (n − 1)d ≤ n
γn

γn + 1
≤ 0 < n

thus by Theorem 4 the ratio γ will evolve along the flow converging to a value γ∞ = F
n−F ≤ γn . This means that the metric 

will remain Bismut-Griffiths-non-negative along the flow. �
On the other hand, when the above inequality is not satisfied, the flow does not preserve Bismut-Griffiths-non-negativity. 

More precisely

Proposition 5. On linear Hopf manifolds of dimension n the HCFs with coefficients (a, b, c, d) such that (n − 2)a − 2b + (n − 1)2c −
(n − 1)d > n γn

γn+1 do not preserve Bismut-Griffiths-non-negativity.

Proof. To prove the statement we suppose to perform the HCF with coefficients (a, b, c, d) starting from the metric g(1, γn). 
By hypothesis this is Bismut-Griffiths-non-negative and γn is the largest ratio for which this happens; thus we just have to 
verify that γ̇ (0) > 0.

In case F ≥ n, we get that (F − n)γ + F > 0 for any γ since γ > −1. Otherwise, if

n > F (a,b, c,d,n) = (n − 2)a − 2b + (n − 1)2c − (n − 1)d > n
γn

γn + 1

then (F − n)γn + F > 0. Thus, if the inequality in the statement is satisfied, using the evolution equation (4) for γ we get 
that

γ̇ (0) = 1

α
(γn + 1) [(F − n)γn + F ] > 0

and the thesis is proved. �
Remark. Proposition 5 shows that the inequalities of Theorem 5 are sharp, meaning that they detect the largest set of HCFs 
which preserve Bismut-Griffiths-non-negativity on linear Hopf manifolds equipped with metrics g(α, β).

3.4. Interesting flows

We can use the above set of inequalities to check if some interesting flow preserves Bismut-Griffiths-non-negativity on 
linear Hopf manifolds with metrics g(α, β).

The Gradient flow of Streets and Tian, that is the one with coefficients a = 1
2 , b = − 1

4 , c = − 1
2 , d = 1, has F

n−F = −n−1
n+1 ; 

hence, F
n−F ≤ − 1

2 = γn for any n > 2 and F
n−F = − 1

3 when n = 2. On the other hand, for the Ustinovskiy flow F = 1 > 0
regardless of the dimension.

Beside these two flows we are interested in the pluriclosed flow, introduced by Streets and Tian in [13]. They identified a 
particular choice of Q which yields a flow that preserves the pluriclosed condition and so has a natural link with the Bismut 
connection. Specifically, in our notation Q is identified by a = 1, b = c = d = 0. With these coefficients we get F = n − 2.

Comparing these values with the inequalities in the previous results we have

Proposition. Consider a linear Hopf manifold (of any dimension) equipped with a Bismut-Griffiths-non-negative metrics g(α0, β0), 
then

• the gradient flow of Streets and Tian starting at g(α0, β0) evolves preserving the Bismut-Griffiths-non-negativity;
• the Ustinovskiy flow starting at g(α0, β0) does not preserve the Bismut-Griffiths-non-negativity;
• unless n = 2, the pluriclosed flow starting at g(α0, β0) does not preserve the Bismut-Griffiths-non-negativity.

Remark. We saw that the pluriclosed flow performed on linear Hopf surfaces with metrics g(α, β) preserves the Bismut-
Griffiths-non-negativity. As a matter of fact, a metric g(α, β) on the linear Hopf manifold is pluriclosed if and only if n = 2; 
thus, it is interesting that the pluriclosed flow behaves well with Bismut-Griffiths-non-negativity only in dimension two.

4. Appendix. Computations on six-dimensional Calabi-Yau solvmanifolds

We collect here the computations on six-dimensional Calabi-Yau solvmanifolds that lead to Theorems 1, 2 and 3.
Some of the following computation were performed with the help of the symbolic computation software Sage [10].
10
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4.1. Nilmanifolds

4.1.1. Holomorphically-parallelizable nilmanifolds in family (Np)
Consider six-dimensional holomorphically-parallelizable nilmanifolds, i.e. nilmanifolds with holomorphically trivial tan-

gent bundle. On these nilmanifolds the complex structure equations are

dϕ1 = dϕ2 = 0, dϕ3 = ρϕ12; ρ = 0,1

The case ρ = 0 refers to the Torus which is Kähler and flat; thus we consider only the case of Iwasawa manifold (ρ = 1).
A direct calculation shows that �i j·· = �··kl = 0 for any i, j, k, l ∈ {1, 2, 3}.
Moreover, we have computed the following determinant and coefficient:

�1133�2233 − �1233�2133 = − t10

32
√−1 det �

�1133 = t4(r2t2 − |z|2)
16

√−1 det�

Showing that this Bismut curvature tensor is neither non-positive nor non-negative.

4.1.2. Nilmanifolds in family (Ni)
Consider the generic Hermitian structure of this family

dϕ1 = dϕ2 = 0; dϕ3 = ρϕ12 + ϕ11 + λϕ12 + Dϕ22

where ρ ∈ {0, 1}, λ ≥ 0, ImD ≥ 0.
According to equations (2.4-2.5) of [19], up to linear biholomorphism we can take v = z = 0 and r2 = 1 in the generic 

expression (1):

2ω = √−1(ϕ11 + s2ϕ22 + t2ϕ33) + uϕ12 − uϕ21

Let us take the element �2313 = ρs2t2

16
√−1 det�

. It vanishes if and only if ρ = 0.

Taking into account the classification of complex structures up to equivalence (see [4]) we set the coefficients ρ, λ and 
D (and the Lie algebras) as follows:

• (ρ, λ, D) = (0, 0, 
√−1), Lie algebra h2;

• (ρ, λ, D) = (0, 0, ±1), Lie algebra h3;
• (ρ, λ, D) = (0, 1, 14 ), Lie algebra h4;
• (ρ, λ) = (0, 1) and D ∈ [0, 14 ), Lie algebra h5;
• (ρ, λ, D) = (0, 0, 0), Lie algebra h8.

In any of these cases the computation of the curvature elements yields that, for any i, j, k, l ∈ {1, 2, 3} �i j·· = �··kl = 0.
Suppose λ = 0 (thus Lie algebras h2, h3 and h8). From direct computations we get the following elements of the Bismut 

curvature tensor

�1111 = t2 �1122 = Re(D)t2

�2211 = Re(D)t2 �2222 = |D|2t2

�3312 = − Re(
√−1D)

(s2 − |u|2) t4u �3321 = − Re(
√−1D)

(s2 − |u|2) t4u

Thus if D = −1 (h3), then �1122 < 0 < �1111 and the curvature tensor is neither non-negative nor non-positive. On the 
other hand, if D = √−1 (h2), then the determinant

�3311�3322 − �3312�3321 = − t8|u|2
(s2 − |u|2)2

≤ 0 .

Thus the Bismut curvature tensor is non-negative if and only if u = 0. Finally, for D = 1 or D = 0 (h3 or h8) we have 
Bismut-Griffiths non-negativity.

Remark 1. Suppose we are in case of Lie algebra h2, hence with coefficients (ρ, λ, D) = (0, 0, 
√−1). Suppose also that u = 0

(i.e. the metric g is diagonal, since we are supposing v = z = 0) then also S and Q are diagonal. This means that any HCF 
preserves the condition u = v = z = 0.
11



G. Barbaro Journal of Geometry and Physics 169 (2021) 104323
Now we turn to the Lie algebras h4 and h5, for which we have computed the following element and the determinant of 
the curvature tensor:

�1111 = t2 > 0 ,

�1111�1122 − �1112�1121 = t4(D − 1

4
) .

Thus, in case of Lie algebra h5 (i.e. D < 1
4 ) the Bismut curvature tensor is neither non-positive nor non-negative. Now, if 

D = 1
4 , we compute the second Ricci tensors of The Bismut curvature Ric2B . We have that

Ric2B
11

Ric2B
22

− Ric2B
12

Ric2B
21

= −|4s2 − 4
√−1u + 1|2

16(s2 − |u|2)2
< 0 .

4.1.3. Nilmanifolds in family (Nii)
Consider the complex structure equations

dϕ1 = 0, dϕ2 = ϕ11, dϕ3 = ρϕ12 + Bϕ12 + cϕ21

where ρ ∈ {0, 1}, c ≥ 0, B ∈C satisfying (ρ, B, c) �= (0, 0, 0).
If ρ = 0 we have the coefficients

�2312 = c(s2t2 − |v|2)2

16
√−1 det�

, �2321 = −B(s2t2 − |v|2)2

16
√−1 det�

These vanish only if c = B = 0 which is impossible since (ρ, B, c) �= 0. Thus we take ρ = 1 and compute

�2323 = s2t2 − |v|2
16

√−1 det �
t4 B .

Hence also B = 0.
Now we prove that c = v = 0. First of all, if c = 0, we have

�2312 = s2t2 − |v|2
16

√−1 det �
v2 ,

which implies v = 0; on the other hand, if v = 0, we have

�1313 = ct4 r2t2 − |z|2
16

√−1 det �
,

which implies c = 0. Thus c = 0 if and only if v = 0. Suppose c �= 0 (hence v �= 0), then we compute the following elements 
of the Bismut curvature tensor:

�1311 =
[√−1ct2(r2t2z + √−1t2|u|2 + uvz − uvz − z|z|2) − √−1t2uvz − (cv + v)|z|2 v

]
/16

√−1 det�

�1312 =
[√−1ct2(s2t2u − u|v|2 − v|z|2 + r2t2 v − √−1s2 vz) − √−1t2uv2 − (cv + v)v2z

]
/16

√−1 det�

�1213 =
[

ct2(−8
√−1 det � + r2|v|2 − √−1s4z + s2uv − √−1uvz)

+(
√−1s2 vz − u|v|2)(cv + v)

]
/8

√−1 det �

�1212 =t2

√−1u|v|2 + s2 vz − ct2uz − √−1cr2t2 v

8
√−1 det�

From �1311 = �1312 = 0 we get:[√−1ct2(r2t2 − |z|2) − (
√−1t2u + vz)(cv + v)

]
z = ct2u(t2u − √−1vz)[√−1ct2(r2t2 − |z|2) − (

√−1t2u + vz)(cv + v)
]

v = −ct2s2(
√−1t2u + vz)

Hence

(
√−1t2u + vz)(uv + √−1s2z) = 0 .
12
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From this equation we get that u = 0 if and only if z = 0; however they can not vanish or we would get cv = 0 from 
�1312 = 0. Thus u, z (v, c) are different from zero and we distinguish two cases: 

√−1t2u + vz = 0 and uv + √−1s2z = 0. 
In the first case, we have

0 = √−1ct2(r2t2 − |z|2) − (
√−1t2u + vz)(cv + v)

= √−1ct2(r2t2 − |z|2) ,

thus c = 0, which is a contradiction. In the second case, �1212 = 0 and uv + √−1s2z = 0 imply

0 = √−1u|v|2 + s2 vz = ct2(uz + √−1r2 v) .

Multiplying by v and using again uv + √−1s2z = 0 we obtain s2|z|2 = r2|v|2. Finally, with these equations �1213 become

�1213 = −ct2 �= 0 .

This shows that v = c = 0 is needed to satisfy (Cplx).
With these parameters (ρ = 1; c = B = 0) and v = 0 (Cplx) is satisfied and we get the following element and determinant 

of the Bismut curvature tensor:

�2233 = s2t6

16
√−1 det �

�2233�1133 − �1233�2133 = − t10

32
√−1 det �

showing that the curvature tensor is neither non-negative nor non-positive.

Remark 2. With parameters (ρ = 1; c = B = 0) the condition v = 0 (and hence (Cplx)) is preserved by any Hermitian curva-
ture flow in the family HCF.

4.1.4. Nilmanifolds in family (Niii)
Consider the complex structure equations

dϕ1 = 0, dϕ2 = ϕ13 + ϕ13, dϕ3 = √−1ρϕ11 + δ
√−1(ϕ12 − ϕ21)

where ρ ∈ {0, 1} and δ = ±1. From a direct computation we get the following elements of the Bismut curvature tensor:

�1223 = − (
√−1uv + s2z)v2

16
√−1 det�

�1212 = − (
√−1δρs2z − √−1r2 v − δρuv − uz)s2 v

16
√−1 det �

�1322 = (
√−1t2u + zv)s2 v

16
√−1 det�

�1221 =
√−1s4z2 − 2s2uvz + s2uvz − √−1u2 v2 + √−1v2|u|2

16
√−1 det�

First of all we prove that u, v and z must vanish: suppose v �= 0, then imposing �1223 = 0 we get s2z = −√−1uv . Now 
�1212 = 0 implies r2 v = √−1uz, and �1322 = 0 implies t2u = √−1vz. These three equations together would imply that 
det � = 0 which is a contradiction, thus v must vanish. Moreover, if v = 0 from �1221 = 0 we get also z = 0. Finally, �1332
with v = z = 0 is

�1332 = − s2t2(
√−1s2 − t2)u

16
√−1 det�

.

Thus, also u must vanish.
Now, for u = v = z = 0 we have � = 1 (δ

√−1t2 − s2) �= 0, showing that (Cplx) is never satisfied.
1331 2

13
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4.2. Solvmanifolds

4.2.1. Solvmanifolds in family (Si)
Consider the generic Hermitian structure of this family

dϕ1 = A(ϕ13 + ϕ13), dϕ2 = −A(ϕ23 + ϕ23), dϕ3 = 0

where A = cos θ + √−1 sin θ and θ ∈ [0, π).
We directly compute (and set equal to zero)

�1233 = −√−1|A|2 r2uv2 + s2z2u

8
√−1 det�

.

This vanishes only if r2uv2 + s2z2u = 0 since A �= 0. We compute the following coefficients of the Bismut curvature tensor 
(where I = √−1):

�1331 = −
[

4Ar2t2|u|2 + (A + A)r4|v|2 − (A + 3A)Ir2zuv

+(A + A)Ir2uvz − (A − A)|u|2|z|2
]

A/16
√−1 det �

�1332 = −
[
−4I Ar2s2t2u − (A + A)r2s2zv + (A − A)Ir2|v|2u

+(3A − A)Is2|z|2u − (A − A)u2 vz
]

A/16
√−1 det �

�2331 =
[
−4I Ar2s2t2u + (A + A)r2s2 vz + (3A − A)Ir2|v|2u

+(A − A)Is2|z|2u + (A − A)zu2 v
]

A/16
√−1 det �

�2332 = −
[

4As2t2|u|2 + (A + A)s4|z|2 − (A + A)Is2zuv

+(3A + A)Is2uvz − (A − A)|u|2|v|2
]

A/16
√−1 det �

The system of equations generated by the vanishing of these four coefficients has u = v = z = 0 as unique solution. The com-
putations follow exactly the same structure as for solvmanifolds in family (Siv3), see §4.2.7. Moreover a direct computation 
shows that with this hypothesis (Cplx) is satisfied.

Remark 3. The invariant metric g with u = v = z = 0 is Chern-flat. Moreover, with these parameters also Q is diagonal; 
hence (Cplx) is preserved by any HCF.

We computed the following elements of the Bismut curvature tensor:

�1111 = 2Re(A)2 r4

t2
, �1133 = −2r2 Re(A)2,

showing that if A �= √−1 it is neither non-negative nor non-positive.
For parameter A = √−1, corresponding to the Lie algebra g0

2, the diagonal metrics are Kähler, hence, Kähler-flat (see the 
Remark above). By [3], the complex solvmanifold is in fact biholomorphic to a holomorphically-parallelizable manifold.

4.2.2. Solvmanifolds in family (Sii)
Consider the complex structure equations (where x ∈R>0)

dϕ1 = 0

dϕ2 = −1

2
ϕ13 − (

1

2
+ √−1x)ϕ13 + √−1xϕ31,

dϕ3 = 1

2
ϕ12 + (

1

2
−

√−1

4x
)ϕ12 +

√−1

4x
ϕ21

Working on the elements �2323 and �2333 (which we set equal to zero) we get s2 = t2, see [2] for details. Then

�1212 = t2(2x − √−1)

16x
�= 0 ,

and so (Cplx) is never satisfied.
14
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4.2.3. Solvmanifolds in families (Siii1), (Siii3), (Siii4)
Recall that the Lie algebras underlying (Siii1), (Siii3), and (Siii4) are, respectively, g4, g6, and g7. In order to give a unified 

argument, we will gather the complex structure equations as follows:

dϕ1 = √−1(ϕ13 + ϕ13), dϕ2 = −√−1(ϕ23 + ϕ23), dϕ3 = xϕ11 + yϕ22

where (x, y) = (±1, 0) for g4, (x, y) = (1, 1) for g6 and (x , y = −x) = (±1, ∓1) for g7. In particular x �= 0.
Imposing the symmetries (Cplx) on the Bismut curvature tensor, we get that y must be zero (meaning that the underly-

ing Lie algebra is g4) and the metric described by the equation (1) need to satisfy u = v = z = 0; see [2] for details.
With these conditions (Cplx) is satisfied and the only non-zero coefficient of type �i jkl of the curvature tensor is �1111 =

t2.

Remark 4. If u = v = z = 0 (i.e. the metric g is diagonal) then also S and Q are diagonal. This means that any HCF preserves 
the condition u = v = z = 0.

4.2.4. Solvmanifolds in family (Siii2)
The complex structure equations for this family are the following:

dϕ1 = ϕ13 + ϕ13, dϕ2 = −ϕ23 − ϕ23, dϕ3 = ϕ12 + ϕ21

Imposing the symmetries (Cplx) on the Bismut curvature tensor, we get that the metric described by the equation (1) need 
to satisfy v = z = 0; see [2] for details.

From a direct computation we get

�1331 = √−1r2t2u
t2 + 2

√−1u

8
√−1 det �

, �1332 = r2s2t2 t2 + 2
√−1u

8
√−1 det�

�1332 = 0 implies t2 + 2
√−1u = 0, and then �1331 = 0 leads to t2 + 2

√−1u. These two equations together imply that u is 
real which is in contradiction with both of them. This shows that (Cplx) is never satisfied.

4.2.5. Solvmanifolds in families (Siv1)
Consider the complex structure equations for this family:

dϕ1 = −ϕ13, dϕ2 = ϕ23, dϕ3 = 0

A direct computation shows that �i j·· = �··kl = 0 for any i, j, k, l ∈ {1, 2, 3}.
Moreover, we have the following coefficient and determinant of the curvature tensor:

�1111 = r2s2 − |u|2
16

√−1 det �
r4, �1111�1133 − �1113�1131 = − r2s2 − |u|2

32
√−1 det�

r6

4.2.6. Solvmanifolds in families (Siv2)
Recall the complex structure equations for this family:

dϕ1 = 2
√−1ϕ13 + ϕ33, dϕ2 = −2

√−1ϕ23 − xϕ33, dϕ3 = 0

where x = 0, 1.
Consider the terms �1231 and �1232:

�1231 = − (r2s2 − |u|2)(xr2s2 + x|u|2 + 2
√−1r2u)

8 det�

�1232 = − (r2s2 − |u|2)(r2s2 + |u|2 − 2
√−1xs2u)

8 det�

Notice that, �1231 = �1232 = 0 if and only if

xr2s2 + x|u|2 + 2
√−1r2u = r2s2 + |u|2 − 2

√−1xs2u = 0 .

If x = 1, these equations imply Re(u) = 0, Im(u) = −r2 and r2 = s2, which is a contradiction to the positive definiteness of 
the metric. Hence, x = 0 and � is always different from zero.
1232

15
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4.2.7. Solvmanifolds in families (Siv3)
The complex structure equations for this family are the following (with A ∈ C \S1):

dϕ1 = Aϕ13 − ϕ13, dϕ2 = −Aϕ23 + ϕ23, dϕ3 = 0

We directly compute (and set equal to zero)

�1233 =
√−1(r2uv2 + s2z2u)A

8
√−1 det�

.

This vanishes if A = 0 or r2uv2 + s2z2u = 0. We start analyzing the case A �= 0. We compute the following coefficients of 
the Bismut curvature tensor (where I = √−1):

�1331 =
[

4Ar2t2|u|2 + (A − 1)r4|v|2 + (1 − 3A)Ir2zuv + (A − 1)Ir2uvz − (A + 1)|u|2|z|2
]

16
√−1 det �

�1332 =
[
−4I Ar2s2t2u + (3A + 1)Is2u|z|2 + (1 + A)Ir2u|v|2 + (1 − A)r2s2zv − (A + 1)u2 vz

]
/16

√−1 det �

�2331 =
[

4I Ar2s2t2u + (1 − A)r2s2 vz − (3A + 1)Ir2|v|2u − (A + 1)Is2|z|2u − (A + 1)zu2 v
]
/16

√−1 det�

�2332 =
[

4As2t2|u|2 + (A − 1)s4|z|2 + (1 − A)Is2zuv + (3A − 1)Is2uvz − (A + 1)|u|2|v|2
]
/16

√−1 det�

Notice that A − 1 �= 0 by hypothesis, thus if u = 0 we get also v = 0 and z = 0 from �1331 = 0 and �2332 = 0 respectively. 
On the other hand, if u �= 0 then v vanishes if and only if z vanishes (from r2uv2 + s2z2u = 0), and they can not vanish 
together otherwise u should also be 0 (from �2332 = 0). Now suppose u, v, z �= 0 and consider the following equations:

�1332 − �2331 = s2|z|2 − r2|v|2
8
√−1 det�

A
√−1 = 0

�1331|v|2 − �2332|z|2 = − uvz + uvz

8
√−1 det�

A
√−1r2|v|2 = 0

�2331uv − �2332uz = A|u|2 s2t2(
√−1r2 v − uz) − 2

√−1r2|v|2v

4
√−1 det�

= 0 (5)

�1331uv − �1332uz = A|u|2 r2t2(uv − √−1s2z) − 2
√−1r2|v|2z

4
√−1 det�

= 0 (6)

where we used the first one to get the second and the first two to get the last two. Finally from (5) · z − (6) · v = 0 we get 
vz = 0 which is a contradiction. This shows that u, v and z must be zero and a direct computation shows that with this 
hypothesis (Cplx) is satisfied.

In case A = 0, �1231 and �1232 become

�1231 = (r2s2 − |u|2)(√−1r2 v + zu)

16
√−1 det �

, �1232 = (r2s2 − |u|2)(uv − √−1s2z)

16
√−1 det�

The equations 
√−1r2 v + zu = 0 and 

√−1s2z − uv = 0 imply that v vanishes if and only if z vanishes. Moreover, if they are 
both different from zero, we can multiply the first one by v and the second one by z; this leads to 

√−1r2|v|2 + uvz = 0 =√−1s2|z|2 − uvz which is impossible. Hence v and z must be zero and with this hypothesis (Cplx) is satisfied.

Remark 5. In both cases u = v = z = 0; A �= 0 and v = z = A = 0 these conditions (and then (Cplx)) are preserved by any 
Hermitian curvature flow in the family HCF.

Now, setting v = z = 0, we get the following elements of the curvature tensor:

�1111 = 1

2

r4

t2
(A − 1)(A − 1) ;

�1133 = −1

2

(A − 1)(A − 1)r4s2 − ((A − 1)A − A − 3)r2|u|2
r2s2 − |u|2 ,

showing that in both cases u = 0 and A = 0 the curvature tensor is neither non-negative nor non-positive.
16
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4.2.8. Solvmanifolds in families (Sv)
Recall the complex structure equations for this family:

dϕ1 = −ϕ33, dϕ2 =
√−1

2
ϕ12 + 1

2
ϕ13 −

√−1

2
ϕ21, dϕ3 = −

√−1

2
ϕ13 +

√−1

2
ϕ31

Consider the terms �2333 and �1231: if we set

�2333 = s4|z|2
32

√−1 det �
= 0 ,

we get z = 0, but then �1231 = − r2s2−|u|2
4t2 �= 0; thus (Cplx) is never satisfied.
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