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A B S T R A C T   

The perception of blur due to accommodation failures, insufficient optical correction or imperfect image 
reproduction is a common source of visual discomfort, usually attributed to an anomalous and annoying dis
tribution of the image spectrum in the spatial frequency domain. In the present paper, this discomfort is related 
to a loss of the localization accuracy of the observed patterns. It is assumed, as a starting perceptual principle, 
that the visual system is optimally adapted to pattern localization in a natural environment. Thus, since the best 
possible accuracy of the image patterns localization is indicated by the positional Fisher Information, it is argued 
that blur discomfort is strictly related to a loss of this information. Following this concept, a receptive field 
functional model is adopted to predict the visual discomfort. It is a complex-valued operator, orientation- 
selective both in the space domain and in the spatial frequency domain. Starting from the case of Gaussian 
blur, the analysis is extended to a generic type of blur by applying a positional Fisher Information equivalence 
criterion. Out-of-focus blur and astigmatic blur are presented as significant examples. The validity of the pro
posed model is verified by comparing its predictions with subjective ratings. The model fits linearly with the 
experiments reported in independent databases, based on different protocols and settings.   

1. Introduction 

Among the various sources of non-clinical visual discomfort (Conlon, 
Lovegrove, Chekaluk, & Pattison, 1999; Ingrid, 2009; O’Hare, Zhang, 
Nefs, & Hibbard, 2013), the blur caused by refractive errors is perhaps 
the most common one. 

The discomfort associated with blur is often explained as a conse
quence of the concentration of the spatial energy spectrum of the 
perceived image into some bands, or as a byproduct of the discrepancy 
of this spectrum from the expected spectrum of natural images (O’Hare 
& Hibbard, 2011; Wilkins, 2016). 

Alternative explanations addressed the mismatch of the spatial pat
terns with the expected ones (Kayargadde & Martens, 1996; Wang & 
Simoncelli, 2004; Baroncini, Capodiferro, Di Claudio, & Jacovitti, 
2009). An in-depth account of previous studies and mathematical 
models about the blur phenomenon is provided in (Watson & Ahumada, 
2011). 

Looking at a possible physical mechanism of blur discomfort, three 
hypotheses are examined in (O’Hare & Hibbard, 2013). The first hy
pothesis is that discomfort is stimulated by the weak response of the 

accommodation system. A second hypothesis, somewhat related to the 
first one, is that discomfort arises because the “micro-fluctuations” 
observed in the accommodation feedback signal become ineffective 
(Charman & Heron, 2015; Metlapally, Tong, Tahir, & Schor, 2016; 
Marin-Franch et al., 2017; Cholewiak, Love, & Banks, 2018). A third 
hypothesis maintains that, when an image is correctly projected onto the 
retina, the receptive fields produce a parsimonious, sparse representa
tion of this image (McIlhagga & May, 2012). The spatial spread caused 
by blur excites more receptors, producing a metabolic overload (Juri
cevic, Land, Wilkins, & Webster, 2010). 

In the present approach, the discomfort is quantified in terms of 
localizability measured by Fisher Information losses. It is argued that, 
among the basic functions of the human visual system (HVS), detection, 
recognition, and coarse localization functions are strongly conditioned 
by the individual experience. Conversely, it seems plausible that the fine 
localization role is committed to stabler and inter-subjective functions of 
the HVS. 

Based on the above consideration, the present approach starts from 
postulating that, under normal conditions, the HVS performs the fine 
localization of the observed patterns with the best accuracy allowed by 
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its physical macro-structure, given the characteristics of the environ
ment and man’s interaction. 

This assumption is fundamental, because it is known from the esti
mation theory that the maximum accuracy attainable when measuring 
the fine position of patterns in background noise is deduced from the 
Fisher Information about positional parameters. In fact, the Fisher In
formation inverse yields the minimum estimation variance (Van Trees, 
1992). 

Therefore, the focus here is on how the discomfort of blurring is 
related to the unwanted losses of Positional Fisher Information (PFI) on 
observed patterns, viewed as cognitive losses. 

This is a cognitive approach because it is inspired to concepts of 
cognitive sciences and, specifically, the classical Marr’s scheme (Marr, 
2010). The PFI losses are calculated at the computational and represen
tational levels, irrespective of the underlying physical mechanisms 
characterizing the implementation level. See (Peebles & Cooper, 2015) 
and the introduction of (Di Claudio & Jacovitti, 2018). 

Therefore, the present approach is agnostic as to whether the 
discomfort is related to accommodation fatigue or metabolic un
balances. From a more general viewpoint, the cognitive approach may 
account for the fact that blur discomfort concerns the regions of visual 
interest (Taylor, 2015) and that the blur is not always undesired or 
detrimental (Sprague, Cooper, Reissier, Yellapragada, & Banks, 2016). 
Sometime, the blur is a wanted effect in photography (Datta, Joshi, Li, & 
Wang, 2006) and microscopy. 

Previous analyses of the blur perception phenomenon were mainly 
oriented to the study of the visual acuity, employing specific stimuli 
localized either in space, such as edges, lines, crosses, or in the spatial 
frequency domain, such as sinusoidal gratings, or even in both domains, 
such as Gabor wavelets (Watson & Ahumada, 2005). 

The model presented here is oriented to the evaluation of the visual 
impact of blur in the vision of natural scenes. To this purpose, a generic 
image projected on the retina is viewed as an element of the random set 
of natural images, characterized by stable statistical features. 

The proposed approach is based on an abstract, functional model of 

the receptive fields (RF) of the HVS, allowing for a direct computation of 
the PFI. 

The model accounts, at the same time, for both the contrast sensi
tivity function (spectral response) and the local directional selectivity of 
the eye. 

For analytical convenience, the blur is modelled as a Gaussian sha
ped isotropic blur. Then, the analysis is generalized to other types of 
blur, invoking a criterion of informational equivalence with respect to 
isotropic Gaussian blur under the PFI paradigm. 

To verify the limits of the present approach, the model-based 
discomfort predictions were first compared to empirical data about 
the subjective quality loss of blurred images, which is arguably related to 
blur visual discomfort. These data are available in organized databases 
containing the results of experimental sessions finalized to Image 
Quality Assessment (IQA), conducted for multimedia industry purposes 
(Wang, Bovik, Sheikh, & Simoncelli, 2004; ITU, 2008; Bosse, Maniry, 
Muller, Wiegand, & Samek, 2018). Subsequently, the model is applied to 
blurred images annotated with ratings of visual discomfort. The results 
of these experiments confirm the validity of the hypothesis. 

The paper is organized as follows. Section 2 describes the features of 
the functional RF model in the space and in the spatial frequency do
mains. Section 3 provides the definition of the PFI. In Section 4, the 
expected Fisher Information acquired during the visual exploration of 
natural images is computed, and the informational equivalence of a 
generic blur with a Gaussian isotropic blur is stated. In Section 5, the 
measure of the visual discomfort is defined. Section 6 presents the 
comparison of the predicted discomfort with subjective ratings. Some 
remarks are provided in Section 7. Conclusions are finally drawn in 
Section 8. 

2. The virtual receptive field model 

As the luminance plays a dominant role for the localizability of 
patterns, for the sake of simplicity only the luminance component of the 
images is accounted for. Chrominance is neglected. 

Fig. 1. Upper row: the magnitude of the VRF, its real and imaginary parts referred to the ideal retina grid. Lower row: the magnitude of the VTNF, its real and 
imaginary parts in the spatial frequency plane. The vertical and horizontal spatial frequencies span the ( − 30,30)cycles/degree interval. 
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The retina in the foveal vision is abstractly modeled as a rectangular 
grid of receptors, whose position is individuated by the coordinate pair 
p ≡ (x1,x2). Receptors are regularly spaced one arcmin apart. The den
sity of 60 receptors/degree assures that all the image information within 
the 30 (=60/2) cycles/degree spatial bandwidth is captured by the retina, 

according to the Nyquist sampling rule. 
For any p, the RF calculates a weighted sum of the luminance I(p) in 

a neighborhood of p, yielding a visual map y(p). This operation corre
sponds mathematically to a spatial convolution, indicated by the symbol 
*, between I(p) and the visual map of a single lighting point in the dark, 
indicated by h(p) and referred to as the Point Spread Function (PSF) of 
the RF: 

y(p) = I(p)*h(p) . (1) 

The RF model considered here is a harmonic angular filter (HAF). 
HAF filters are complex valued functions, i.e., they represent pairs of real 
filters (Jacovitti & Cusani, 1990). 

With reference to the spatial frequency domain, defined by the 
horizontal and vertical frequencies f1, f2, and to the polar coordinates 

ρ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f2
1 + f2

2

√

and ϑ = arctan
(

f2
f1

)

, where ρ (Daugman, 1980) is referred 

to as the radial frequency and ϑ is the azimuth, the Fourier spectrum H(ρ,
ϑ) of the RF model is defined as 

H(ρ,ϑ) = j2π
(

ρe− s2
Gρ2 ⋅ejϑ

)
(2)  

where j is the imaginary unit, and sG is a parameter. This spectrum is 
polar separable, i.e., it is the product of a function of the radial frequency 
and a function of the azimuth. One outstanding feature of this RF model 
is that it is also polar separable in the space domain (Daugman, 1983). In 
fact, taking the inverse Fourier transform of H(ρ,ϑ), with reference to the 

space polar coordinates r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + x2

2

√

and φ = tg− 1x2
x1

, the PSF of the RF 
is: 

h(r,φ) = − 2
π3

s4
G

⎛

⎜
⎝re

− r2 π
s2
G ⋅ejφ

⎞

⎟
⎠ (3)  

which has the same shape of the VNTF, except for a scale factor. 
This RF is used herein as a functional spatial vision model and, for this 

reason, it is referred to as Virtual Receptive Field (VRF). For short, the 
term “VRF” will be used in the following to indicate also its PSF and its 
HAF shape, whereas its Fourier transform H(ρ,ϑ) will be referred to as 
Virtual Neural Transfer Function (VNTF), because it represents the 
spatial frequency response of the VRF. 

The magnitude and the real components of the VRF are displayed in 
the upper row of Fig. 1, where the ideal retinal grid is shown in the 
background. In the same figure, the magnitude, the real and the imag
inary parts of the VNTF are displayed in the lower row. 

The magnitude of the VNTF frequency response versus the radial 
frequency is the same in any orientation. It is displayed in Fig. 2. The 
VNTF is a simple model of the eye contrast sensitivity function. 

Here, and from now on, sG is assumed equal to sG = 2.5 arcmin, un
less otherwise noted. This choice sets the maximum of the radial fre
quency response magnitude at about 8.5 cycles/degree in the radial 
frequency, according to the experimental data provided in (Campbell & 
Green, 1965 & Williams, 1985). 

In the lowest spatial frequency range, the magnitude of the VNTF 
increases linearly. At higher spatial frequencies, the VNTF exhibits a 
soft-decaying low-pass behavior, reaching an attenuation of about 40 dB 
at 30 cycles/degree at the Nyquist frequency. 

This behavior can be interpreted by regarding the VTNF as the 
cascade of two basic operators: 

• an orientation selective complex gradient operator 
(

∂
∂x1

+ j ∂
∂x2

)

(Rei

sert & Burkhardt, 2008), whose frequency response is obtained by 
the Fourier transform derivation rule: 

j2πf1 + j(j2πf2) = j(2πρcosϑ + j2πρsinϑ) = j2πρejϑ ; (4) 

Fig. 2. The radial frequency response magnitude of the VTNF for sG = 2.5 
arcmin normalized with respect to its maximum value. 

Fig. 3. The luminance of an image (left) of the database LIVE (Sheikh et al., 
2006) compared to the corresponding visual map y(p) (right), where the 
magnitude of the edges is coded into luminance, and their direction, in the 
interval [0, π), into hue. The hue/direction code is read in the edges of the 
upper-left superimposed polygonal. 
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• a radial frequency selective Gaussian smoothing operator, represented 
by the frequency response: 

G(ρ, θ) = e− s2
Gρ2 (5)  

which is responsible of a neural blur. 

Therefore, the visual map y(p) of the VRF is globally interpreted as a 
complex, Gaussian-smoothed gradient field associated to the retinal image. 
The parameter sG will be referred to as the spread of the VRF, or as the 
neural spread. 

Different from the complex Gabor functions, whose paired real com
ponents are aligned each other (Daugman, 1993; Watson & Solomon, 
1997), the paired real components of the VRF are geometrically 
orthogonal in the image plane (Fig. 1). As such, the VRF is steerable 
(Simoncelli, Freeman, Adelson, & Heeger, 1992) and more specifically 
scalar steerable, i.e., it rotates in azimuth by multiplication by a complex 
number as follows 

h(r,φ − α) = h(r,φ)ejα

H(ρ,ϑ − α) = H(ρ, ϑ)ejα .
(6) 

This implies that rotated version of the VRFs by a generic azimuth α 
are obtained by linear combinations of the real components Re{h(r,φ)}
and Im{h(r,φ)}: 

Re{h(r,φ − α)} = Re{h(r,φ)}cosα − Im{h(r,φ)}sinα
Im{h(r,φ − α)} = Re{h(r,φ)}sinα + Im{h(r,φ)}cosα .

(7) 

The VRF model materializes into the visual map y(p). In the corre
spondence of an edge of I(p), the magnitude of y(p) measures the edge 

strength, while the phase tg− 1
[

Im{y(p) }
Re{y(p) }

]

indicates the orientation orthog

onal to the edge (Jacovitti, 1991; Jacovitti & Neri, 1995; McIlhagga & 
May, 2012). In the example of Fig. 3, the luminance of a retinal image 
(left) and its visual map in false color (right) are displayed. In the visual 
map the gradient strength is indicated by the luminance component 
whereas, for visual immediateness, only the direction of the gradient in 
the interval [0, π) is indicated with the hue color component. 

The visual map y(p) is a near-complete, sparse representation of I(p). In 
fact, except for its mean value, I(p) can be fully recovered from y(p) by 
spectral inversion (i.e., by division by H(ρ,ϑ) in the frequency domain). 

Standard multichannel spatial vision models follow a tomographic- 
like approach. Around any point, they analyze the image from a 
limited number of azimuthal views. For each view, they apply co- 
oriented filters tuned to different bands. Their outputs are then com
bined in different ways. See (Schütt & Wichmann, 2017) for a historical 
account. 

In comparison, around any point, the VRF performs a full-band radial 
tomographic analysis in every orientation, as described in (Cusani & 
Jacovitti, 1989; Jacovitti & Cusani, 1990). For the scope of this work, 
the outstanding advantage of the VRF is that its output (the visual map) 
allows straightforward computation of the PFI (Neri & Jacovitti, 2004) 
as described in the next section. 

The VRF is the simplest functional spatial vision model based on 
HAFs. It coincides with the first order component of the orthogonal 
family of the Laguerre Gauss (LG) functions (Jacovitti & Neri, 2000; 
Victor & Knight, 2003; Massey & Refregier, 2005) or, equivalently, of 
the 2D Hermite functions, which span the same signal space (Martens, 
1990; Di Claudio, Jacovitti, & Laurenti, 2011). Higher order LG analysis 
provides functional spatial vision models oriented to structures more 
complex that simple edges (Neri & Jacovitti, 2004; Di Claudio, Jacovitti, 
& Laurenti, 2010). HAF based wavelets can be also used for multi
resolution analysis (Jacovitti & Neri, 2000). 

3. The Positional Fisher Information 

A detail dp(q) of a visual map y(p) around p is defined as 

dp(q) = wp(q)⋅y(q − p) (8)  

where wp(q) is a sampling window. 
A comprehensive calculus of the Fisher Information of a detail about 

its position, orientation, and scale, in the presence of a background 
Gaussian white noise, was provided in (Neri & Jacovitti, 2004). As 
specified in (Di Claudio et al., 2010), the total PFI of a detail is calculated 
as: 

ψ(p) = λ(p)
σ2

V
(9)  

where λ(p) is the smoothed gradient energy of the detail, computed as 

λ(p) =
∑

q
wp(q)2

|y(q − p) |2 (10)  

and σ2
V is the variance of the background noise.1 

The inverse square root of the PFI 

eMIN(p) =

̅̅̅̅̅̅̅̅̅̅
1

ψ(p)

√

=

̅̅̅̅̅̅̅̅̅

σ2
V

λ(p)

√

(11)  

represents the minimum standard deviation of the detail position error 
eMIN(p), achievable with an unbiased estimator, irrespective of the 
employed estimation method (Van Trees, 1992). Thus, the quantity 

̅̅̅̅̅̅̅̅̅̅
ψ(p)

√
=

1
eMIN(p)

(12)  

measures the certainty of the detail position in the visual plane. For a 
given amount of background noise, the higher the smoothed gradient 
energy, the higher the PFI, the greater the certainty about the detail 
position. 

The smoothed gradient energy λ(p) is significantly expressed by the 
(two-dimensional) Fourier transform of the detail. Applying the Parseval 
theorem (which equates the energy calculated in the space and in the 
spatial frequency domains) the PFI of the detail represented by its 
Fourier transform Dp(ρ,ϑ) is 

ψ(p) = 1
σ2

V

∫ 2π

0

∫ +∞

0
ρ2|G(ρ, ϑ)|2

⃒
⃒Dp(ρ,ϑ)

⃒
⃒2|B(ρ,ϑ)|2ρdρdϑ (13)  

where B(ρ,ϑ) is the Optical Transfer Function (OTF), i.e., the spatial 
frequency response of the optical system, from the observed object to the 
retina (Watson, 2013). Its inverse 2D transform is the Optical PSF b(r,φ). 

The overall OTF of a vision system, including the human eye, is a 
function of the OTFs of cascaded subsystems including the OTF of cor
recting lenses, the OTF of an imaging system, the OTF of a display sys
tem, etc. 

Under the hypothesis of linearity, the overall OTF is the product of 
the single OTFs. In other terms, the overall Optical PSF is the cascaded 
2D convolution of the single PSFs. 

1 Strictly speaking, the PFI of a detail does not coincide with the PFI of the 
pattern “contained in” the detail. In fact, the window itself carries its own PFI. 
In the following, the latter contribution will be neglected, assuming that the 
window is so smooth that the information carried by its shape is small with 
respect to the information carried by the captured pattern. 
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4. The natural scene spectrum and the PFI equivalence 

4.1. The PFI of natural scenes 

For a generic image, the average PFI calculated on a group of N 
details visited during the visual exploration is: 
∑

p
λ(p)

Nσ2
V

=
1

σ2
V

∫ 2π

0

∫ +∞

0
ρ2|G(ρ,ϑ)|2|DN(ρ, ϑ)|2|B(ρ,ϑ)|2ρdρdϑ (14)  

where 

|DN(ρ,ϑ)|2 =
1
N

∑

p

⃒
⃒Dp(ρ,ϑ)

⃒
⃒2 (15)  

is the average energy spectrum of the N visited details. The expected 
value Ψ of the PFI is defined as: 

Ψ≐E

⎧
⎨

⎩

∑

p
λ(p)

Nσ2
V

⎫
⎬

⎭
=

1
σ2

V

∫ 2π

0

∫ +∞

0
ρ2|G(ρ,ϑ)|2E

{
|DN(ρ,ϑ)|2

}
|B(ρ,ϑ)|2ρdρdϑ

(16)  

where E
{
|DN(ρ,ϑ)|2

}
denotes the expected value of the energy spec

trum of the visited details over the random set of natural images. 
It is well known that the expected value of the energy spectrum of 

natural images is proportional to the inverse of the square of the radial 
frequency, i.e. to 1

ρ2. The generality of this spectral distribution is sup
ported by theoretical arguments (Van Der Schaaf & Van Hateren, 1996; 
Bell & Sejnowski, 1997; Field & Brady, 1997; Simoncelli & Olshausen, 
2001; Graham, Chandler, & Field, 2006; Kuang, Poletti, Victor, & Rucci, 
2012). 

Here, this property is attributed to the average spectrum of the visited 
details. Posing, for the sake of generality (Torralba & Oliva, 2003) 

E
{
|DN(ρ,ϑ)|2

}
= f (ϑ)

1
ρ2 (17)  

it follows that 

Ψ =
1

σ2
V

∫ 2π

0
f (ϑ)

∫ +∞

0
|G(ρ,ϑ)|2|B(ρ,ϑ)|2ρdρdϑ (18)  

and, in the absence of blur, 

Ψ0 =
1

σ2
V

∫ 2π

0
f (ϑ)

∫ +∞

0
|G(ρ, ϑ)|2ρdρdϑ . (19) 

In the case of isotropic Gaussian blur, the OTF is 

B(ρ, ϑ) = e− s2
Bρ2 (20)  

where sB is referred to as the optical spread. Therefore, 

Ψ =
F
σ2

V

∫ +∞

0
e− 2(s2

G+s2
B)ρ

2 ρdρ (21)  

Ψ0 =
F
σ2

V

∫ +∞

0
e− 2s2

Gρ2 ρdρ (22)  

where the coefficient F is 

F =

∫ 2π

0
f (ϑ)dϑ . (23) 

Finally, from the equality 
∫ +∞

0
e− 2(s2

G+s2
B)ρ

2 ρdρ =
1

4(s2
G + s2

B)
(24)  

it follows that 

Ψ
Ψ0

=
s2

G

s2
G + s2

B
. (25)  

4.2. The PFI equivalence 

The above result is so simple owing to the Gaussian shape of the blur. 
However, having assumed that blur discomfort depends only on the PFI 
loss, the discomfort due to different types of blur could be predicted by 
the same formula applying the concept of PFI equivalence. 

Definition 4.1. (PFI Equivalence) A blur characterized by the generic 
OTF B(ρ,ϑ) is said to be PFI equivalent to an isotropic Gaussian blur with 
standard deviation (spread) sB if it yields the same expected PFI for 
natural images, i.e.: 
∫ 2π

0

∫ +∞

0
e− 2s2

Gρ2
|B(ρ,ϑ))|2ρdρdϑ =

∫ 2π

0

∫ +∞

0
e− 2(s2

G+s2
B)ρ

2 ρdρdϑ . (26)  

This equivalence criterion is intuitive. It equals the energies of the 
actual OTF and of an isotropic Gaussian OTF, both weighted by the 
squared magnitude of the VNTF. In particular, the PFI equivalence does 
not depend on the phase of the OTF. 

An important example of PFI equivalence is the one of the out-of- 
focus blur, whose PSF is modeled as a cylinder of unitary volume and 
radius R. It is referred also to as the disc blur, or the sinc blur, and is 
characterized by the following OTF: 

B(ρ,ϑ) = 2
J1(2πρR)

2πρR
. (27) 

Equating the PFI of the sinc blur and of the Gaussian isotropic blur 
yields 

4
∫ +∞

0

(
J1(2πρR)

2πρR

)2

e− 2s2
Gρ2 ρdρ =

∫ +∞

0
e− 2(s2

G+s2
B)ρ

2 ρdρ =
1

4(s2
G + s2

B)
. (28) 

The first integral is not available in closed form. A careful numerical 
integration provides a value of the optical spread sB of the isotropic 
Gaussian blur as a function of its PFI equivalent sinc blur of radius R, as 
plotted in Fig. 4 and is roughly expressed by the rule sB

R ≈ 3
8. In the same 

figure some subjective equivalence judgments averaged over a pool of 
six observers are also reported. These empirical data refer to synthetic 

Fig. 4. The radius R of the sinc blur versus the spread sB of its PFI equivalent 
Gaussian blur. The red circles indicate some average results of experiments 
conducted with synthetic images emulating natural images (Murray & 
Bex, 2010). 
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images whose contours emulate the ones of natural images (Murray & 
Bex, 2010). 

From a perceptual viewpoint, it appears that this equivalence works 
generally well. Here, to provide the reader with visual examples, the 
most critical cases in the Tampere image database (TID2013) (Pono
marenko et al., 2015), are reported in Fig. 5, including the non-natural 
image i25 as a benchmark. Notice that some grating patterns are 
cancelled out or amplified by the sidelobes of the OTF of the sinc blur in 
comparison to the Gaussian blur. Notice also that these effects are not 
present in the natural out-of-focus blur, owing to the apodization of the 
pupil, which attenuates the sidelobes (Zhang, Ye, Bradley, & Thibos, 
1999). 

A second example of PFI equivalence regards the non-isotropic 
Gaussian blur, referred to as astigmatic Gaussian blur. For the sake of 
simplicity, this equivalence is calculated here only for the case of 
isotropic image spectral energy distribution. Using for convenience the 
Cartesian coordinates, the OTF of this blur is: 

B(f1, f2) = e− 2(s2
V f 2

1+s2
H f 2

2) (29)  

where sH and sV are the horizontal and vertical optical spreads. A 
straightforward algebraic analysis shows that the astigmatic Gaussian 
blur is PFI equivalent to the isotropic Gaussian blur with spread 

sB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s4
G + s2

G(s2
H + s2

V) + s2
V s2

H

√

− s2
G

√

. (30) 

An example is provided in Fig. 6. Two versions of an original image, 
respectively affected by an astigmatic Gaussian blur with sH = 4, sV = 1 
and with sH = 1, sV = 4 are compared to the same image affected by 
their PFI equivalent isotropic Gaussian blur. Notice that the sea waves 
are better localized in presence of horizontal blur, while masts are better 
localized in presence of vertical blur. The average localizability loss is 
visually balanced in the case of the isotropic Gaussian blur. 

Fig. 5. Upper row: two original images, Second and third rows: Gaussian blurred image (left) and Fisher equivalent sinc blurred images (right). The values of R were 
chosen to put into evidence the effects of the spectral sidelobes of the sinc blur (see the encircled patterns). Natural image (i19 of the database): R = 6 arcmin, 
corresponding to sB = 3.1 arcmin. Synthetic image (i25 of the database): R = 7 arcmin, corresponding to sB = 3.4 arcmin. 
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5. Prediction of blur discomfort 

Provisionally, the amount of blur discomfort is assumed proportional 
to the relative certainty loss about the details position2 defined as: 

ε =

̅̅̅̅̅̅
Ψ0

√
−

̅̅̅̅
Ψ

√

̅̅̅̅̅̅
Ψ0

√ = 1 −

̅̅̅̅̅̅

Ψ
Ψ0

√

. (31) 

This assumption is suggested by the belief that the perceived cost of 
wrong localization is proportional to the uncertainty of the Euclidean 
distances, at least for small errors. 

Then, for the random set of natural images and for isotropic Gaussian 
blur, using (25) the relative certainty loss takes the form of the following 
non-dimensional discomfort index: 

ε = 1 −

̅̅̅̅̅̅

Ψ
Ψ0

√

= 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

1 +

(
sB
sG

)2

√
√
√
√
√

. (32) 

This index ranges between 0 (in the absence of blur) to 1 (for diverging 
blur). It depends only on the normalized blur, i.e., the ratio between the 
optical spread on the retinal image and the neural spread of the VRF. 

The optical blur spread sB is subject to change by the action of the 
natural accommodation system and, in the context of a composite op
tical system, by the action of technical devices. The neural spread sG 
plays instead the role of an inner reference. At glance, it could be argued 
that it is a stable parameter. However, some experiments indicate that 
the sG value is adaptive (Webster, 2002). It appears that the visual 
adaption to a blurred image causes a dilation of the spread sG, leading to 
a reduction of the normalized blur, so that the spectrum of the image 

looks wider and the image sharper. 
The discomfort formula is now applied to the blur caused by out-of- 

focus condition of the eye optics, i.e., in natural vision. Using the 
geometrical arguments of (Strasburger, Bach, & Heinrich, 2018), it is 
deduced that the radius R of the out-of-focus optical PSF in arcmin is 

R = 1.71p|D| (33)  

where p is the pupil diameter (in mm) and the D is the out-of-focus 

Fig. 6. A unblurred image (upper left) and its astigmatic blurred versions. For sH = 4, sV = 1 (horizontal blur, upper right), and for sH = 1, sV = 4 (vertical blur, lower 
left). They are PFI equivalent to the isotropic Gassian blurred version shown in the lower right image with sB = 2.54. 

Fig. 7. The value of the theoretical discomfort index in centesimal units versus 
the diopters (measured in m− 1) for different values of the pupil diameter 
(measured in mm). (A typical pupil diameter when reading at normal illumi
nation is 3 mm). 

2 An exponentiated version of such a measure was employed in (Di Claudio & 
Jacovitti, 2018). 
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measure in diopter units (m− 1). 
Applying the sB

R ≈ 3
8 rule it follows that the spread of the PFI equiv

alent blur of the out-of-focus blur measured in diopters is approximated 
as 

sB ≈ 0.64p|D| (34)  

so that a coarse estimate of blur discomfort in natural vision is: 

ε = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

1 +

(

0.64 p
sG

D
)2

√
√
√
√
√

. (35) 

In the chart of Fig. 7 this theoretical discomfort index ε is plotted 
versus D for different pupil diameters. The scale of ε is expressed in 
centesimal units. 

This chart essentially says that, if the out-of-focus discomfort is 
proportional to the relative certainty loss, as assumed, it is not linear 
with the blur spread. Moreover, since the sensitivity of the discomfort 
index with respect to the normalized spread ξ≐ sB

sG 
is calculated as 

dε
dξ

= ξ
[

1
1 + ξ2

]
3
2 (36)  

the increment Δξ necessary to produce a given increment Δε is 
approximated as: 

Δξ =
1
ξ
[
1 + ξ2]3

2Δε . (37) 

This increment exhibits a typical “dipper shape” (Solomon, 2009; 
O’Hare & Hibbard, 2011) as shown in Fig. 8. The theoretical minimum 
occurs in the correspondence of the normalized spread value ξ = sB

sG
=

1̅̅
2

√ . 
In the above formulas, diffraction and aberration contributions to 

blur discomfort are considered negligible. Non-negligible aberrations 
could be accounted for by adopting parametric models for character
izing their PSFs (Goodman, 2005; Watson, 2015), and calculating the 
PFI equivalent blur. A simple example is the aberration due to astigmatic 
Gaussian blur provided in Section 4, where the blur is characterized by 
the two parameters sH and sV . However, broad generalizations would be 
quite an undertaking beyond the scope of this paper. 

6. Comparison with empirical data 

The above results about the phenomenon of blur discomfort for 

natural images are derived by principles and assumptions. To assess 
their effectiveness in the reality, the theoretical model was first verified 
against empirical ratings of the subjective quality loss of images caused by 
blur, which are argued to be strictly related to blur discomfort. These 
data were released in response to the growing demand by the media 
industry for reliable automatic image quality assessment (IQA) through 
objective metrics. Four independent IQA databases were employed, 
based on different methodologies and protocols, and following different 
strategies to prevent biases and side effects. 

IQA databases include images affected by Gaussian blur, which is 
considered sufficiently representative of the perceptual effect of the 
actual blur in many technical applications. 

Subsequently, the predictions of the model were compared to 
experimental data where subjects were literally asked to rate “the visual 
discomfort” due to blur (O’Hare & Hibbard, 2013). 

All these experiments do not account for blur discomfort secondary 
effects, such as psychological consequences that lie behind the scope of 
the paper. Furthermore, in these experiments the eye optical blur of the 
observers is corrected if present. So, the blur applied to the observed 
images emulates an undesired natural optical blur on the retina plane. In 
fact, under the hypothesis of linearity, the natural optical blur and the 
artificial blur applied to the observed images are interchangeable, 
because of the well-known property of cascaded convolutions. 

Before presenting the experiments and discussing the results, it is 
essential to illustrate how the discomfort index must be scaled to fit the 
experimental settings of a database. 

6.1. The Scaled Blur Discomfort Index 

To this purpose, the following parametric “Scaled Blur Discomfort 
Index” (SBDI) is defined from (32): 

SBDI≐a

⎡

⎢
⎢
⎢
⎣

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

1 +

(

γ2 sB
sG

)2

√
√
√
√
√

⎤

⎥
⎥
⎥
⎦

(38)  

where the gain a fixes the scoring scale (Sheikh & Bovik, 2006), and γ is a 
distance parameter defined as 

γ≐
δ0

δ
(39)  

where δ0 is nominal viewing distance, i.e., the distance from which the 
density of pixels projected on the retina matches the previously assumed 
density of the receptors (60/degree) and δ is the viewing distance 
adopted in the experiment. 

Differently stated, γ equals the ratio between the number of pixels 
viewed within one degree at distance δ0 (60 pixels) and the number of 
pixels viewed within one degree at distance δ. 

The role of the distance parameter is understood considering that the 
VRF spread on the image projected on the retina is sG

γ , i.e., it increases 
proportionally with the viewing distance. Conversely, the projection of 
the spread of the blur applied to the observed image is γsB, i.e., it is 
inversely proportional to the viewing distance. 

If not specified, the parameters a and γ can be determined from data 
by regression. 

6.2. The “subjective quality loss” experiments 

The essential features of the employed IQA databases are illustrated 
below. 

The LIVE Image Quality Assessment Database Release 2 (DBR2) 
(Sheikh, Sabir, & Bovik, 2006) reports the quality ratings of 779 dis
torted versions of 29 reference images (included 145 blurred images) 
from about 23 subjects. Ratings of subjective quality loss with respect to 

Fig. 8. The theoretical increment Δ
(

sB
sG

)

versus sB
sG 

for Δε = 0.05 in a log/log 
scale. Curves for different values of Δε are obtained by vertical translation. 
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reference images were expressed on a DMOS (Difference of Mean 
Opinion Score) scale ranging from 0 (perfect quality) to 100 (absymal 
quality) using a double stimulus strategy. 

The Tampere Image Database 2013 (TID2013) (Ponomarenko et al., 
2015) contains 3000 distorted images, including 125 blurred images. 
Quality ratings were collected in five independent labs and on the 
internet using more than 300 subjects. They were asked to select the best 
image between two distorted images in direct comparison to the reference 
image. The average quality scores were expressed on a Mean Opinion 
Score (MOS) scale ranging from 0 (bad quality) to 9 (perfect quality). 

The Computational and Subjective Image Quality Database (CSIQ) 
(Larson & Chandler, 2010) contains 30 reference images and 866 dis
torted versions, including 150 blurred images. The database includes 
5000 ratings of 25 subjects, obtained by comparative ratings between 
different images, reported in DMOS units. 

The LIVE Multiply Distorted Image Quality Database (LIVE MD) 
(Jayaraman, Mittal, Moorthy, & Bovik, 2012) contains 15 reference 
images and 405 distorted images, including 45 blurred images, whose 
quality was rated by 37 subjects. The study was conducted using a single 
stimulus with hidden reference strategy, using DMOS scores. 

All databases contain images representing natural scenes, except the 
image i25 of the TID2013 database (which was used as a benchmark in 
Fig. 5). 

In the graphs of Fig. 9 the subjective quality loss prediction curves for the 
blurred images of the different databases are superposed to the empirical 
DMOS values, plotted versus the normalized spread sB/sG. These empirical 
DMOS data represent average scores of the pool of the observers. 

In the TID2013 database, ratings are available as MOS values. The 
DMOS values were inferred considering that the best MOS ratings do not 
exceed 7.5, as seen from Fig.20 of (Ponomarenko et al., 2015). 

Therefore, posing MOS = 7.5 in correspondence to DMOS = 0 and 
MOS = 0 in correspondence to DMOS = 100 yields 

DMOS = (100/7.5) × (7.5 − MOS) . (40) 

In the CISQ database, the DMOS was normalized between its mini
mum and maximum empirical value. 

The blur values of the LIVE MD database were not available. They 
were estimated through a regularized spectral division of the blurred 
images with the unblurred ones. 

The fitting of the empirical data with the theoretical prediction of the 
subjective quality loss is substantially linear, as evidenced by the scat
terplots of the DMOS empirical ratings versus the predicted ones for all 
the images contained in the different databases (Fig. 10). In the TID2013 
and LIVE MD scatterplots, the averages with respect to the sample im
ages are indicated by filled circles. 

In Table 1 the most relevant data about the experimental validation 
of the model are resumed. The Pearson Linear Correlation Coefficient 
(PLCC) and the Root Mean Square Error (RMSE) between theoretical and 
empirical data are also provided. The “claimed” normalized viewing 
distances were calculated with the information about the experimental 
settings provided by the respective authors.3 The sign “–” stands for “not 
available”.4 

Fig. 9. The empirical DMOS values of the subjective quality loss for the blurred images of the databases versus the normalized blur spread compared to the values 
predicted by the theoretical model (dashed curves). Averages with respect to images are indicated by the filled circles in the TID2013 and LIVE MD scatterplots. 

3 The viewing distances of CISQ and LIVE MD are slightly (10%) under
estimated. The maximum absolute difference is within ten centimeters. How
ever, the “physical” viewing distance does also depend on the physical 
dimension of the pixels of the screen.  

4 The Authors are grateful to Prof. Ponomarenko for providing details about 
the blur settings in the TID2013 database in a personal communication. 
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6.3. The “blur discomfort” experimental data 

In (O’Hare & Hibbard, 2013) the results of some experiments aimed 
to investigate the relationship between visual discomfort judgments and 
image manipulations causing blur are reported. In particular, “Experi
ment 3” regards natural images. 

In these experiments sixty natural images were taken from a data
base whose images pertain to two general categories: distant natural 
scenes and closeups natural scenes. In particular, ten images from the 
first category whose spectral energy has a mean energy spectral radial 

decay of the kind 
(

1
ρβ

)2 
with β = 1.39, and ten images from the second 

category, characterized by β = 0.95, were selected. The scope of this 

diversity was to see if visual discomfort judgments would depend on 
deviation from the ideal spectral slope for natural scenes (β = 1). 

During experimental sessions, thirteen subjects were asked to 
formulate discomfort judgments following a pairwise comparison strategy. 

Differently from the preceding experiments, ratings are averaged not 
only over the pool of observers, but also over groups of images. One 
average regards the distant natural scenes, and the other one regards the 
closeups natural scenes. As in the TID2013 and in the LIVE MD experi
ments, few (three) Gaussian blur values were employed, with standard 
deviations 8, 16, and 32 cycles/degree in the spatial frequency domain, 
corresponding respectively to sB = 3.75, sB = 1.875 and sB = 0.9375 
arcmin in the spatial domain. In the Fig. 11 the results of these experi
ments are reported, along with the discomfort predicted by the SBDI 
index. The results were expressed in the Thurstone scale (Tsukida & 
Gupta, 2011), according to the method employed for calculating the 
discomfort scores, and then converted into the discomfort scale of the 
SBDI by the following affine transformation: 

SBDI = 50(Thurstone + 1) . (41) 

The normalized viewing distance, determined by regression, is δ
δ0

=

0.6, corresponding to γ = 1.66. 
The scatterplots of the discomfort ratings versus the normalized 

Fig. 10. The scatterplots of the DMOS ratings versus the corresponding SBDI values predicted by the model for each blurred image in the different databases. 
Averages with respect to images are indicated by filled circles in the TID2013 and LIVE MD scatterplots. 

Table 1 
Summary of the experimental verification for the four databases and sG = 2.5.  

DATABASE a estimated δ
δ0 

claimed  
δ
δ0 

estimated  PLCC RMSE 

LIVE DBR2 93 0.46/0.57  0.53  0.96  5.44  
TID2013 80 – 0.44  0.92  6.82  
CSIQ 98 0.65  0.60  0.97  7.47  
LIVE MD 107 0.84  0.76  0.83  8.57   
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Gaussian blur spread are displayed in Fig. 11 for the groups of images 
contained in the database, along with the superimposed theoretical 
prediction curve. The triangles refer to the distant natural scene cate
gory, and the circles to the closeups scene category. 

The fitting of the empirical data with the theoretical prediction of the 
subjective quality loss is substantially linear, as evidenced by the scat
terplots of the empirical ratings versus the predicted ones for all the 
images contained in the database (Fig. 12). 

The Pearson Linear Correlation Coefficient (PLCC) between the 
average ratings and the predicted SBDI is 0.98. These results support the 
argued strict relationship between the subjective quality loss ratings and 
the visual discomfort ratings caused by blur. 

7. Remarks 

From the IQA experiments, the judgments expressed by pool of ob
servers for the different natural images appear moderately scattered 
around the SBDI curve, as indicated by the Root Mean Square Error 
values of Table 1. This fact is relevant, considering the large variety of 
the images contained in the databases. This relatively small dispersion 
can be explained by the adaptive nature of the image exploration, which 
tends to focus on the details of prominent interest (Baddeley & Tatler, 
2006). 

This appears even more evident looking at the results of the “blur 
discomfort” experiments, whose purpose was to verify if the discomfort 
judgments depend on the deviations from ideal statistics of natural im
ages. The average ratings for selected categories of images characterized 
by markedly different spectral slopes are so close each other (see 
Fig. 12), that in (O’Hare & Hibbard, 2013) the authors concluded that 
the difference among these spectral slopes is not important to blur 
discomfort judgments. 

This evidence underlines the validity of the attribution of the ideal 
spectrum of natural images to the subset of the visited details. This 
assumption, made in Section 4, supports the approach followed herein. 

However, the image content still influences blur discomfort, as 
shown by the said moderate, but not negligible, scattering of the sub
jective ratings in the IQA databases, and as suggested by the common 
experience. The identification of essential quantitative attributes of 
images producing different blur discomfort in the presence of the same 
amount of optical blur is a matter of current investigation. 

8. Conclusion 

The adoption of a polar separable, complex-valued receptive field 
model, and of a visual information loss criterion, led to compact theo
retical formulas for the prediction of blur visual discomfort for natural 
scenes, exhibiting a good predictive power faced to several independent 
experimental data.  

• From a general scientific viewpoint, the paper demonstrates that blur 
discomfort is well correlated with the loss of fine localizability of the 
observed patterns and with the perceived loss of quality.  

• From a system theoretical viewpoint, the approach provides a 
quantitative prediction of the average psycho-physical findings 
irrespective of the underlying mechanisms.  

• From a technical viewpoint, the results presented here may provide 
coarse estimates of the discomfort caused by undesired blur, for op
tical correction in natural vision, and for calibration of image 
reproduction apparatus. 

Finally, these results could help in developing IQA methods.5 
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Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the 

Fig. 11. The scatterplots of the subjective discomfort ratings versus the 
normalized blur spread for the images in (O’Hare & Hibbard, 2013). The tri
angles refer to the distant natural scene category, and the circles to the closeups 
scene category. 

Fig. 12. The subjective discomfort ratings versus their theoretical predictions 
for the images in (O’Hare & Hibbard, 2013). The triangles refer to the distant 
natural scene category, and the circles to the closeups scene category. 

5 For instance, some existing IQA methods model the local smearing of im
ages originated from coding for compression as local blur (Kayargadde & 
Martens, 1996; Sheikh & Bovik, 2006; Li, Zhang, Ma, & Ngan, 2011; Di Claudio 
& Jacovitti, 2018). The model developed here may be employed to estimate the 
contribution of the blur of single details to the overall perceived quality loss. 

E.D. Di Claudio et al.                                                                                                                                                                                                                          



Vision Research 189 (2021) 33–45

44

online version, at https://doi.org/10.1016/j.visres.2021.07.018. 
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