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Introduction

Let g be a complex finite semisimple Lie algebra endowed with an involution o.
The map o induces a Z,-gradation on g that we can express as g = g° @ g' with
o(z) = x for every z € g° and o(z) = —z for every = € g'. The subspace g° turns
out to be a reductive Lie algebra, so we can fix a Borel subalgebra b°  g°. In this
work we are going to explore the poset of all the abelian subalgebras of gT which
are stable under the action of 6°. We will do it by decomposing this poset in special
subposets with remarkable properties, by means of an extension of the so called
Panyushev rootlets, used in the past to prove, in the case of a complex simple Lie
algebra g and a Borel subalgebra b, the surprising correspondence between maximal
abelian ideals of b and long simple roots in the corresponding set of roots Ay. This
work is organized as follows:

Chapter 1. In the first chapter we will review some of the mathematics which
led to study the set of abelians ideals of g. We will start from Kostant’s results [10],
which created a link between these ideals and the eigenvalues of the Laplacian in
the setting of Lie algebra cohomology. The chapter will continue exploring a paper
of Kostant [12] which presents unpublished results by Peterson. He translated the
problem of studying the set of abelian ideals in b into a combinatorial problem,
giving an explicit isomorphism with the subset of the affine Weyl group W of g
consisting of the so called minuscule elements of W. This implies the surprising
result known as Peterson’s 2™ Theorem which counted with the elegant formula
27%@) the number of abelian ideals in b. We will continue looking at Panyushev’s
paper [16] in which the so called rootlets were introduced and the proof of the

correspondence between maximal abelian ideals of b and long simple roots was given.



The chapter will go on following the historical path, presenting the Zs,-graded case,
and showing the reasons behind it due again to Panyushev in [17]. The problem of
studying the abelian subalgebras of ¢! which are b%-stable was translated again into
a combinatorial problem thanks to Cellini, Mdseneder Frajria and Papi in [4] in 2004.
Indeed they showed that this poset is isomorphic to a subset of an affine Weyl group
associated to a certain Kac-Moody algebra, called the set of o-minuscule elements,
and computed its cardinality providing general formulas. We will also explore a later
work [6] from the same authors in 2012. Indeed they defined special subposets of the
set of o-minuscule elements in order to study the maximal elements of the poset. The
outcome was a complete parametrization of the set of these maximal elements, and
general formulas to compute the dimension of the corresponding maximal abelian
subalgebras of g' which are stable under the action of b%. The chapter ends with
the discussion of some well known results on Weyl groups and root systems that will
be required in the following chapters.

Chapter 2. In this chapter we will give new proofs of results on the abelian
ideals of b. Indeed we will decompose the set of minuscule elements in special subsets
that will have the properties of having a unique minimum, a unique maximum, and
of being complete, meaning that if w; < w < ws and wy, wy belong to the poset
then also w belongs to it. We will prove that they are isomorphic to the poset of
minimal right coset representatives for a pair of certain suitable Weyl groups. This
will be used to prove again the correspondence between maximal abelian ideals of b
and long simple roots.

Chapter 3. This final chapter will be the core of this work, presenting the use of
the rootlets in the framework of the Zj-graded case. Consider the set of o-minuscule
elements W it is a peculiar subset of the affine Weyl group W of Z(g, o), a specific
Kac-Moody algebra associated to the pair (g, 0) that will be defined in Chapter 1.
W is a finite set, that can be seen as a poset when endowed with the weak Bruhat
order. We will decompose the finite poset W2 in the semisimple cases in both the
twisted and untwisted case, into special subposets Z, , with a a positive root called
rootlet, and p one of the roots inside the so called set of walls. We will give necessary

and sufficient conditions for the sets Z, ,, to be non-empty. We will show that when
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non-empty these posets posses a unique minimum, and are complete. Moreover we
will explicitly show their structure, and will prove that they are isomorphic to the
poset of minimal right coset representatives for some suitable Weyl groups, with few

remarkable exceptions.

Application and open problems

Spherical nilpotent orbits

Let G be a connected simply connected semisimple complex algebraic group with
Lie algebra g. Let B be a Borel subgroup, and set b = LieB. Recall that a G-variety
X is called G-spherical if it possesses an open B-orbit. The relationships between
spherical nilpotent orbits and abelian ideals of b have been first investigated in [21].
There it is shown that if a is an abelian ideal of b, then any nilpotent orbit meeting
a is a G-spherical variety and Ga is the closure of a spherical nilpotent orbit. In
particular, B acts on a with finitely many orbits.

Subsequently, Panyushev [19] dealt with similar questions in the Zy-graded case.
Let ¢ be an involution of G and g = g° @ g! be the corresponding eigenspace
decomposition at the Lie algebra level. Let Gy be the connected subgroup of GG
corresponding to g° and By C Gy a Borel subgroup of Gy corresponding to the
Borel subalgebra b9 C g°. The “graded” analog of the set of abelian ideals of b
is our set ZZ, of (abelian) b0-stable subalgebras of g!.  We say that a 17 is
G-spherical (resp. Go-spherical) if all orbits Gz, x € a are G-spherical (resp. if all
orbits Gox, = € a are Gy-spherical).

Panyushev [18] started the classification of the spherical nilpotent Gy-orbits in
g'. The classification of the spherical nilpotent Go-orbits in g' was then completed
by King [11] (see also [1], where the classification is reviewed and a missing case is

pointed out). Shortly afterwards, Panyushev [19]
e noticed the emergence of non-spherical subalgebras a € Z7;
e classified the involutions ¢ for which these subalgebras exist;
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e he also found that an element a € Z7, is G-spherical if and only if it is G-

spherical.
In [14] the authors proved

i) By acts on a with finitely many orbits, independently of its sphericity. Orbits

are parametrized via orthogonal set of weights of a.

ii) Assume that there exist non-spherical subalgebras. A construction of a

canonical non-spherical subalgebra a, was provided.

iii) A simple criterion to decide whether a is spherical or not was given: there

exists @ € Z¢, such that a is non-spherical if and only if a D a.

It would be interesting to study the interplay of the posets Z2 , which are the core

;)

of our investigation, and of their intersection with the above results. Our main
conjecture is the following: write M, = {p1,...,us} for the set of walls, and for

aq,...,0s € AT set
qu,- o, = Iocl,m Mn... mIQS7Ms'

Qs

We can write

ab
Wa = |_| Iah.--,as

0417...7045€A+

with some possibly empty sets.
Conjecture. For every aq,...,as € ﬁ*, one of the following holds:

e VacT, .a., aisG-spherical.

o VacZ, .., aisnon G-spherical.

It looks clear that this is true every time one of the sets Z,, ,, is a singleton,

which occurs many times as shown in the main Theorem 3.1.1 of this work.

v



Hermitian symmetric case

For the Hermitian symmetric case, where II; is composed by 2 simple roots,
we expect most of the results to hold in a very similar fashion to those in the
semisimple case. The vast majority of the techniques appear to work without
much trouble. What’s hindering the progress in the Hermitian symmetric case
are difficulties encountered in few particular cases, especially the ones related to
the affine diagram Eél). Indeed in this case, some subsets Z,, appear to be non
empty for unexpected pairs of positive roots v € A+ and walls € M,. Further

investigation is still needed.
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Chapter 1

Preliminaries

1.1 Abelian ideals of Borel subalgebras

1.1.1 Motivations

The interest in abelian subalgebras of Borel subalgebras in semisimple Lie
algebras has been alive for a long while up to now, so that we need to dig a bit
deep to find where everything had started. Let’s make a step back in the past,
and shed a light on why the study of these abelian subalgebras began in the first
place. Let g be a complex finite dimensional simple Lie algebra. Let h C g be a
Cartan subalgebra, let A be the corresponding root system and W the associated
Weyl group. Choose a positive root system AT in A. For o € A™, let L, be the
root space in g corresponding to a, and b = bh ® @, o+ La be the associated Borel
subalgebra. Let (-,-) be the Killing form, and choose a basis zi,- -, z, for g and
the dual basis z7,--- , 2, wr.t. the Killing form, i.e. (z;,2}) = d;;. The Casimir

operator in the universal enveloping algebra U(g) is given by

n

/

C = E T T;
i

and it can be shown that it doesn’t depend on the basis we chose. The Casimir
operator acts on the exterior algebra /\ g via the adjoint representation on g extended

to the wedge product as a derivation. Recall that the action of C' on every finite
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dimensional irreducible representation of g is scalar. Writing 7 : g — End(V}) for

the irreducible representation V) associated to the highest weight A, we have
T(C) = (A A+ 2p) Iy,

with p = %Zwe A+ Y- Since g is simple we could be interested in the eigenvalues
appearing in the action of C' on Ag, decomposed in its sum of irreducible

representations. Indeed, define the coboundary operator d on A g

1
d= 5 Z e(z))ad,,

i=1
where € is the left wedge product, given by
€(vo)(vr A -+ Avg) =vg Avp A ... vy
and 0 is its adjoint operator, given by
Owr A Avy) =Y (=) o v Avg Ao s Adi A Ay A Ao,
i<j
for every vy,...,v, € g. It is shown in [13] that the Laplace operator L = dd + 9d

satisfies .

This result gives an actual reason to be interested in the eigenvalues of the Casimir
operator acting on A g. Now a result from Kostant in [10] provides the link between
these eigenvalues and abelian subalgebras of semisimple Lie algebras. Let A be the
set of abelian subalgebras of g, and A, the subspace generated by the elements /\k a

with a € A a k-dimensional commutative subalgebra.
Theorem 1.1.1 (Kostant). Let my be the mazimal eigenvalue of C' on /\k g, then

Moreover equality holds if and only if there exists a commutative subalgebra of g
of dimension k. In this case the eigenspace associated to my is Ay, and every

decomposable element of Ay corresponds to a commutative subalgebra of g.



Furthermore in [10] Kostant shows that the focus can be restricted to the case

of abelian subalgebras contained in b, and with the property of being b-stable.

Theorem 1.1.2 (Kostant).

1) LetV be a g-module and W C /\k V' an irreducible module. Then W is generated
by decomposable vectors if and only if it has a decomposable highest weight

vector.

2) If My is the eigenspace corresponding to the mazimal eigenvalue of the action
of C" on /\k V', then it is a sum of irreducible g-submodules generated by

decomposable vectors.
This result proved that it sufficed to study the abelian ideals of Borel subalgebras

of semisimple Lie algebras.

1.1.2 A combinatorial problem
Note that every abelian ideal i of a Borel subalgebra b is necessarily a direct

i:@La

acd
for some ® C A*. This shows that the set Z,;, of the abelian ideals of b is a finite

sum of root spaces, i.e.

set, and can be regarded as a graded poset, the poset structure given by the mutual
inclusion of the ideals, and the grading given by the dimension of the ideals. The
poset Z,;, has a unique minimum which is the zero ideal. This shows that the problem
of studying these abelian ideals, their dimensions and inclusions can be translated
into a combinatorial problem. One of the first and surprising results around this
topic is reported by Kostant in [12] and attributed to Peterson. Indeed, he counted
the number of abelian ideal of b, i.e. the cardinality of the poset, in an uniform way
providing a closed and very elegant formula. He found a one-to-one correspondence
between Z,, and a certain set of combinatorial items. Let I = {ay,---,a,} be
the set of simple roots in A™ and define V' = bhi = @& Ra;, and (-,-) for the

symmetric positive bilinear form induced on V' by the Killing form. Extend V' and



its product to V = V @& RJ & RA with (6,8) = (A, V) = (\,A) = (A, V) = 0 and
(A, 0) = 1. The affine root system is given by A=A+ Z6, while the positive
roots are given by At = (AT 4+ N§) U (=A™ + Z,5). Moreover if we write 6 for
the highest root in A and with ag = § — 0, we can consider the set of affine simple
roots 11 = {ap, a1, ,a,} and the associated Coxeter group W generated by the
reflections s,, with o; € I. There is a natural isomorphism between W and Was,
the group of affine transformations of V' generated by the reflections with respect to
the hyperplanes of V given by H, = {z € V|(z,a) = k} for « € AT and k € Z.
Let A be the foundamental alcove, i.e. the polytope bounded by the hyperplanes

A={zeV|(z,a) >0 Va eIl (z,0) < 1}.
For w € /V[7 let’s define the inversion set
N(w) = {a € At|lw™(a) € —A*}.

These sets, key parts in our work, have remarkable and well-known properties [3]

that we will discuss in more detail in Chapter 1.3.
1) N(wy) = N(wsg) <= wy = wsy for every wy, wy € w.

2) They are biconvex, i.e. both N(w) and its complementary set A™\ N(w) are

closed with respect to the sum in the root system.

3) Unless there is a connected component of the Dynkin diagram of g of type
Ay, every subset of A+ finite and biconvex is of the type N(w) for a unique
w € /W

Definition 1.1.1. We call minuscule the elements w € W such that
N(w)={6 —v|y € S}
for some S C AT. We write W for the set of minuscule elements.

We have the following key proposition due to Peterson; we give a proof proposed
in [3] by Cellini and Papi.



Proposition 1.1.3. The map L, — W given by

i:@Lani

acd

where w; is the unique element such that N(w;) = {0 — ®}, is an order preserving
bijection between the poset of abelian ideals of b and the poset W™ of the minuscule

elements endowed with the weak Bruhat order (w; < w; <= N(w;) C N(wj)).

Proof. Let i = &P

aco La be an abelian ideal in b. Define

N = [ J(=®* + ko)
k>1
where & = (®* ! + &) N A. We see that ®* = 0 for £ > 2 since i is abelian.
This implies that N is closed, and also that its complementary set is closed, indeed
otherwise we can find oy, s € AT\ ® such that ay — ap € P, against the fact that
i is an ideal. Thanks to property (3) of the inversion sets, there exists w € W such
that N(w) = N;. The converse is trivial. O

The problem of studying the poset of the abelian ideals of b has been completely
transformed into a combinatorial one, namely the problem of studying the structure

of the poset W?. Define the polytope

D = U wA.

wewab

It turns out it is just 2A, i.e. twice the fundamental alcove [2]. This simplex is
paved by 27%) tiles each of them congruent to A, moreover the action is faithful,

giving as the remarkable result:
Theorem 1.1.4 (Peterson). The number of abelian ideals of b is 27,
Let’s see an example of this.

Example 1.1.2. Consider the Lie algebra sl3(C) and its root system Ay generated
by its simple roots « and (. Let’s consider also At = {«,8,a + f} and
b=bdLy® Lg® Lotp. The abelian ideals of b are clearly just 0, and those
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corresponding to the sets of roots {a + 8}, {a + B, 5} and {a + B, a}. The ideal
Zo+p corresponds to {6 — a — S} = N(sp), s0 Zo+p — So. The ideal Z,45,
corresponds to {6 — a — 5,0 — a} = N(s0S3), S0 Zatpa + Sosg. The ideal
Zo+p,p corresponds to {6 —a — 5,0 — B} = N(s0Sa), 80 Zatsp > SoSa. Moreover
D = AUspAUspsq AU spsgA = 2A as shown in Figure 1.1. Of course as expected

from Peterson’s Theorem, the number of abelian ideals is 27%(¢5) = 22 = 4.

H,

Figure 1.1: As - Alcove A and simplex D = 2A.

1.1.3 A complete solution

A breakthrough to the problem of studying the poset of minuscule elements
of the affine Weyl group of a semisimple Lie algebra was found by Panyushev in
2002. Indeed in [16] he showed a one-to-one correspondence between the set Z,q.

of maximal minuscule elements of the poset, i.e. the maximal abealian ideals of the
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Borel subalgebra b, and the set II; of long simple roots in A. Let’s write Z,, for
the abelian ideal in b associated to the minuscule element w, A;" for the set of long

positive roots, and Z%, = Z,; \ {0}. Then the following result holds

Theorem 1.1.5 (Panyushev). The map 7 : I — A given by

T — w Hag) +6

is well defined and surjective. If T(Z,) is not simple then T, is not mazimal.
Moreover if u € A, the fiber 7= (u) is a complete subposet of IO, meaning that if
wy < w < wy and wy,wy € 71 (1) then also w € 77 (1), and has a unique minimum

and a unIQuUe Marimum.
An immediate consequence of this theorem is the following remarkable corollary:

Corollary 1.1.6. The restriction of T to L,q. @S a bijection

T Lae — 1
between the set mazximal abelian ideals of b and the long positive simple roots of A.
Let’s first see an example.

Example 1.1.3. Consider the algebra sl;(C) and the associated root system
AT = {a, 8,7y, + 3,8 + v, + B + v}, with simple roots II = {«, 3,7}. The

set of non zero abelian ideals of b is
Ty ={Ha+ B+ {at+B+yatBh{at B+, 8+9}{a+B+y.a+pa},
{a+B8+76+va+bh{a+B8+7,6+77{a+B+7.8+7,a+5, 61}
The corresponding minuscule elements are
W = {{so}, {s505,}, {s05a}, {505,55}, {s05a5,}, {S05a55}, {5050550}}.
The corresponding images through the map 7 are given by
V) = {{a+ B+t {a+ 81 {8 +} {a}. {8} {n}. {83}

The situation is shown in Figure 1.2. Note that the 3 maximal abelian ideals

correspond to the 3 long simple roots «a, 5 and ~.
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505453

O

Figure 1.2: sl, - Decomposition of W,

Panyushev also found the dimension of a minimal subalgebra in a fiber 77! (1)
to be equal to 1+ (p,0Y — ), and proved conditions controlling the cardinality of
a fiber. He also described, using a case by case argument, the structure of the fiber

as a poset.

Definition 1.1.4. If A C II we denote by W (A) the subgroup of W generated by
Sa, € A. Given € AT set

=Tnpt, Wy, =Ww(l),

pivao = 1\ {00},

Wi srar = W(Iao).

= =
=

Proposition 1.1.7. When non empty, the fiber 7—(p) is isomorphic as a poset to
the set of minimal right coset representatives WLM 5+a0\WJ-u equipped with the weak
Bruhat order of W,



More details about sets of minimal right coset representatives will be given in
Chapter 1.3. New proofs of these results, and a general proof for the last proposition
were given in [3] by Cellini and Papi in 2004. We won’t prove these results
here, because we will give a new proof in the next chapter, involving techniques
also required in the main last chapter, in a simpler fashion for this classical case.
Moreover they were able to describe the minimal and maximal elements of the fibers
771(1), and gave another proof of the results by Suter [22] describing the dimension

of the maximal abelian ideal m(u) corresponding to the maximal element in 77 ():

dim(m(x)) = g — 1+ 5] ~ 1),

where (I1,,) is the root system generated by II, = IIN u* and g is the dual Coxeter
number of A. They also found a uniform version of the Mal’cev’s formulas [15] for
the global maximal dimension of a commutative subalgebra in g, indeed if d denotes

such dimension, we have

d = dim(m(z)),

where 1 is a long simple root having maximal distance from g in the Dynkin
diagram of A. Write m; (1) for a subalgebra in the fiber 77! (u) with distance j — 1
from the minimum of the fiber according to the poset structure. For every h such
that 1 < h < k(u) where k(u) represents the position of the maximal element in the
fiber, they associated a certain finite irreducible subsystem ﬁh(,u) of A and proved
that

j—1

dim(m; (1)) = g =1+ > (gn(p) = 1),

h=1

where g, () is the dual Coxeter number of A, (y). What people had tried so far is
to bring these remarkable results about W and the abelian ideal of b in the wider

setting of Zs-graded Lie algebras as we will discuss in the next section.
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1.2 Abelian subalgebras in Z,;-graded Lie algebras

1.2.1 Motivations

Let g be a semisimple finite dimensional complex Lie algebra and o an
indecomposable involution of g. Recall that o is indecomposable if g has no
nontrivial o-invariant ideals. Let (-,-) be the Killing form of g. For j € Z set
j=j+2Z and let ¢/ = {X € g| o(X) = (-1)7X}, so that we have g = g @ g'.

Choose a basis of g of eigenvectors of o, {z1,...,2y}. Then we see that
1
d=dy+dy, d;j= 5 Z e(z;)ady,
j:l‘jegz

C=0Cy+ (4, C’i:% Z x]x;
Jiwjeg
Note that Cy is the Casimir operator of g° w.r.t. the restriction of the Killing form
of g to g°. Similar to the results for the classical case, Panyushev in [17] showed
the following link between the eigenvalues of this Casimir operator and the abelian

subalgebras of g'.

Theorem 1.2.1 (Panyushev). Ifl is the mazimal eigenvalue of Cy acting on /\k g'
then
<t
-2
Moreover the equality holds if and only if g* contains a k-dimensional abelian
subalgebra. In this case the eigenspace associated to ly, is generated by /\k a where a

runs over all the k-dimensional abelian subalgebras of g*.

As in the classical case, Panyushev showed as well that it is possible to restrict
the attention to the abelian subalgebras of g' which are b%stable. Those recalled
above were some of the results that created interest in these abelian subalgebras and
made researchers start investigating their structure and properties. The problem

became then to study Z7, the set of abelian subalgebras of g! stable under the

ab’
action of b°. We will now look into a link between 717, and a subset of some Weyl

group of a suitable Dynkin diagram.

10



1.2.2 A combinatorial problem

We let L(g, o) be the affine Kac-Moody Lie algebra associated to o in [8, Section
8.2]. Let by be a Cartan subalgebra of g°. As shown in [8, Chapter 8], b, contains
a regular element h,., of g. In particular the centralizer Cent(ho) of by in g is a
Cartan subalgebra of g and h,., defines a set of positive roots in the set of roots of
(g, Cent(ho)) and a set A of positive roots in the set Aq of roots for (g°, hg). Since
o fixes h,¢q, we see that the action of o on the positive roots defines, once Chevalley
generators are fixed, a diagram automorphism 7 of g that, clearly, fixes hy. Set,
using the notation of [8], H = ho ® CK & Cd. Recall that d is the element of Z(g, o)
acting on L(g, o) N (C[t, t 7] ® g) as <, while K is a central element. Define ¢’ € b*
by setting ¢'(d) = 1 and &'(hy) = §'(K) = 0 and let A — X be the restriction map
i)\ — bo. There is a unique extension, still denoted by (-,-), of the Killing form of
g to a nondegenerate symmetric bilinear invariant form on Z(g, o). Let v: H — H*
be the isomorphism induced by the form (-,-), and denote again by (-,-) the form
induced on h*. One has (¢',8) = (¢, h;) = 0.

We let A be the set of H—roots of Z(g, o). We can choose as set of positive roots
At =Afu{a e Al ald) >0} Welet II = {ag,...,a,} be the corresponding
set of simple roots. It is known that n is the rank of g°. Recall that any Z(g, o) is
a Kac-Moody Lie algebra g(A) defined by generator and relations starting from a
generalized Cartan matrix A of affine type. These matrices are classified by means
of Dynkin diagrams listed in [8]. Given a Dynkin diagram of type X](\?) in the
classification of affine Kac-Moody Lie algebras given in [8, pp.53-55] in table k
with £ = 1,2,3, it is possible to associate an automorhpism of g to each (n + 1)-
tuple s = (sg,...,S,) of non-negative coprime integers. We will say that this
automorphism is of type (s; k) and write o, ;. We can now recall Kac’s classification

of finite order automorphisms [8]:

Theorem 1.2.2.

a) If a; denote the coefficients associated to the simple roots in the diagram ofX](\’f),

then the order of ogy is m = k(Y ., a;s;) and thus it’s finite.
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b) In the group of automorphisms of g, every element of order m is conjugated to

some O ;.

¢) Two automorphisms o5y and oy are conjugated if and only if k = k' and s
can be transformed into s’ by applying an automorphism of the Dynkin diagram
of x )

N -

In the case of our Lie algebra g of type Xy endowed with a Z,-gradation, our
automorphism is associated to an (n+1) —tuple {so, ..., s,} and an integer k = 1,2
such that k(D> ,a;s;) = 2 with a; the coefficients of the diagram X](Vk) in table k.

There can be three cases depending on k and the number of s;’s that are not 0.

1) k=1 and there are two indices p # ¢ such that s, = s, = 1 corresponding to

coefficients a, = a, = 1, and s; = 0 for every 7 # p, q.

2) k =1 and there is an index p such that s, = 1 and a, = 2, and s; = 0 for
every i # p.

3) k = 2 and there is an index p such that s, = 1 and a, = 1, and s; = 0 for
every i # p.

The first case is called Hermitian symmetric case, while the other two are called
semisimple cases. For a generic pair (g,0) of a semisimple Lie algebra of type
Xn and its finite order automorphism we write A for the root system associated
to the affine Kac-Moody algebra E(g,a) corresponding to the diagram X](\f), and
W for the associated Weyl group. The set of simple roots = {ag,...,a,} has
Ty = {a|s; = 0} as a subset corresponding to the root system of g® and IT; = IT\ Il,.
In the root system A we define a o-height in the following way. Given a € 3, we

write v = 1" ¢;oy, then
n

hy(a) = Z CiSi,

i=0
and consider the sets A; = {y € AT|h, () =i} for i € Z.

Definition 1.2.1. We call o-minuscule the elements in W such that N(w) C A;.
We write W2 for the set of o-minuscule elements, and we see it as a poset with the

order given by the weak Bruhat order.
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Cellini, Moseneder Frajria and Papi proved in [4] the link between this poset
and the set of the b%-stable abelian subalgebras of g':

Theorem 1.2.3 (Cellini-Moseneder Frajria-Papi). Let w € W2 and N(B) =
{B1,...,Bx}. Then the map W2 — 19, defined by

k
we Pl
=1

1S a poset isomorphism.
Once again the algebraic problem related to abelian subalgebras has been
transformed into the combinatorial problem of studying the structure of the poset

W2 and its elements. Let’s first see an example of such a poset in the case of Ggl).

Example 1.2.2. Consider the Lie algebra g associated to the root system G,. Write
« and [ for its simple roots, [ is the long root. Fix the following Zs-gradation of g
given by

g() =Loa®L_o® L3at28® L_34-28Dh

gl = Leg@®L_g® Laya®L_pg_o0® Lgioa® L_pg_20 ® Lgysa ® L_g_34.

The corresponding diagram is Ggl), the only one existing for the G type, and it’s
given in Figure 1.3. The only admissible (n+1)-tupleis s = (0,1, 0), so Il = {ap, a}

Qg B o

=0
Figure 1.3: Dynkin diagram for Ggl).

with ag = § — 3a — 23, corresponding to A; & A;. The poset of abelian subalgebras
of g' and b%-stable is given in Figure 1.4. The elements with o-height equal 1 are
ﬁ}, ={p,f+a,f+2a,f+3a,0 —3a—F,0 —2a—,§ —a— 5,6 — }. The biconvex
subsets contained in &1, are {f}, {8 B+al},{B,0-3a—pF},{B8,0—3a—p3,5+a}. The

corresponding o-minuscule elements are given by {sg, 8554, 5550, S350} C W2. As
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B+ 20, p + 30}

(3]

{-B,B+3a,p+2a}

{-B. B+ 3a}

Figure 1.4: Abelian b%-stable subalgebras of g'.

we see, adding the unity 1 we get the same poset given by the subalgebras as in

Figure 1.4.

In the same article [4] the authors compute the cardinality of the set W of o-
minuscule elements in a general way. Write W, for the Weyl group associated to the
root system 30, and W; for the Weyl group associated to the root system generated
by II; = {o,...,a,}. Consider the Hermitian symmetric case. We can assume
that p = 0 so we may see W, as a subgroup of W;. Write ¢, for the connection

index of W,, and ¢; for the connection index of W/, then the following holds.

Proposition 1.2.4. In the Hermitian symmetric case

W) = :VV?: (1+ i—f)

In the semisimple case instead, write x, for the truth function on A which is 1
if the argument is long and 0 otherwise, and L for the number of long simple roots

in II;, then we have the following result.

Proposition 1.2.5. In the semisimple case

a ner Wyl
W2 = ag(xe(ap) + 1)k Lﬁ — xe(ap).
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Both these formulas are proven considering again the fundamental alcove A as

in the classical case, computing the volume of the polytope

D, = U wA

weWpg,

and the ratio between D, and A.

1.2.3 Maximal elements

In a later work [6], Cellini, Moseneder Frajria, Papi and Pasquali made a
breakthrough in the study of the poset W2, fully describing its maximal elements
and the dimensions of the corresponding maximal b%-stable abelian subalgebras of
g'. Note that II, could be a disconnected subdiagram of II. Let’s write Y|, to
mean that > is a connected component of Ily, fs for its highest root, and let a be
the square of the norm of the length of a root of maximal length in A. Also set
§ = 3" sazey and I1; = T\ Tly. We define I = Il U {ré — fx|a < 2||0x]]?} and
o, = ﬁgu{a—l—rﬂa € II;, « is long}. In particular it is shown that the polytope D,
can be obtained as the intersection of the hyperplanes corresponding to the roots of
®,. Finally define the set of walls

M, =&, \ (IIN®,).

The following proposition was the starting point for the study of some special subsets

of W which represent a core element to describe the maximal elements of W2,

Proposition 1.2.6. If w € W is mazimal, then there exist o € Il and we M,
such that w(a) = p.

This proposition makes clear that in order to study the maximal elements in W2,

the main point was to study the following subposets: given a € Il and e M,,
define

Loy ={w e W' w(a) = u}. (1.1)

Let’s first have a look to an example to have a clearer picture of the situation.
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Example 1.2.3. Let’s consider again G,. D, is the polytope given in Figure
1.5. We also have that &, = {ap,a,208 + 3, + [}, note that the hyperplanes
of reflection represented by its elements mark the perimeter of D,. We also have
that M, = {26+3a, d+ [}, and recall that the unique maximal o-minuscule element
is $350S. Then if we take 5 € ﬁ,5 + 5 € M, we find sgspsa(f) = 0 + 3, and so
58505q € Lg,5+3-

206+ 3a
@

/ B+ 2 /. B+ 3a

Hspi 30,1

)
“‘&.

.:,.' s ﬁA(,»"""‘gﬁ,SOS % A

i
i

[ shsddn

o

Figure 1.5: G2 - Alcove A and D,.

In [6] the authors find conditions under which the posets Z,, are non empty.
They showed that when non empty, the posets Z,, have a unique minimum

element, they are complete, and are isomorphic to the set of minimal right coset
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representatives for a suitable pair of subgroups of W. We won't give more details
here because these results are proved again in Chapter 3 in a more general setting.
The structure of their intersections is also given in the article. As a main result
they gave a parametrization of all the maximal b%-stable abelian subalgebras of g,
and found formulas to compute their dimensions. In order to recall the main result
we need some definitions. If S is a connected subset of the set of simple roots, we

denote by S, the set of elements of S of the same length of its highest root 6g.

Definition 1.2.4. A real root « is noncompact if g5 C g', compact if g5 C g°, and
complex otherwise. We say that a root is of type 1 if it is long and non complex, of

type 2 otherwise. We also write II} for the roots of type 1 in II;.

Definition 1.2.5. Let X|II; and consider the subgraph of il given by the vertices
{a € ﬁ|(a, 0x) < 0}. We define A(X) to be the union of the connected components

of this subgraph that contain at least one simple root from II;. Moreover we define

Note that if |II;| = 1, then A(X) is connected. Let’s also recall the following

useful proposition.

Proposition 1.2.7. [6, Lemma 4.4] Assume X|Ily, k6 — 0y € M,, a € ﬁ, and
el = [16]l-

1. If Os is of type 1, let u> be the element of minimal length such that u>(a) =
k§ — Oy a € A(X). Then uZ € WP,

2. If Ox, is of type 2, a € X, v, is the element of minimal length in W (X) such
that vy () = Ox, and s is the element of minimal length in W such that
s(0s) = k§ — O, then sv, € WP, Moreover, {(svy) = £(s) + £(vy) and sv,

1s the element of minimal length in W that maps « to kd — Os.

The main goal of [6] was to determine a parameter space for maximal b° -stable

abelian subalgebras of g'. The following main result holds.

17



Theorem 1.2.8. The mazimal b°-stable abelian subalgebras of g' are parametrized

by the set

M=< U F(z)g>u< U m)u( U ngm)uni.

Mo S|, 2,5 o, S< 5
3 of type 1 3 of type 2 3,57 of type 1

1.3 Results on Coxeter groups

We collect here some well known facts about several tools involved in our work.

1.3.1 Combinatoric of inversion sets

Recall that we define for w € W its inversion set
N(w) = {a € At|w™ (@) € —A*}.

For a real root o € A+ we write S for the associated reflection. For a simple root
a; we write s; in place of s,,. We present the most important facts, that are proven
in [3]:

(1) N(wl) = N(wg) < W1 = Wa.

(2) fw=s4---5

is in reduced form, then

N(U)) = {aiw Siy (aiz)a ey Sip Sy (Oém)}
Moreover if 7; = s, - -+ 55,_, (@) for 1 < j < m, then

W= S8, "S-

(3) N(w) is biconvex, which means that both N(w) and its complementary set
A+ \ N(w) are closed with respect to the sum in A*. Vice versa unless there
is a connected component of the Dynkin diagram of g of type A;, every subset

of A* finite and biconvex is of the type N(w) for a unique w € w.
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(4) Let < be the weak left Bruhat order, i.e. w; < wjy if there is a reduced form
for w; which is the initial part of a reduced form for w,. Then the following
holds

w; < wy <= N(w;y) C N(ws).

(5) Set N*(w) = N(w) U —N(w). Then, N*(wywy) = N*(wjws) + wi (N*(wy))
with + used to denote the symmetric difference. The following facts are

equivalent:

(a) N(wiws) = N(wi)Uwi(N(ws)),
(b) L(wiws) = L(wy) + £(ws),

(c) wi(N(ws)) C A*.

We can define left and right descent sets for any w € W as follows:

=

E
[

—~—

[€(saw) < £(w)},
(wsq) < L(w)}.

It can be proved that L(w) = N N(w) and R(w) = nn N(w™).

=
£

I
—~—

L R
Mm M
~

Remark 1.3.1 (A remark on notation). Coxeter groups will play a major role in
the following. However, to avoid overloading notation, we will not fix once for all the
notation for the simple reflections. So we will freely use notation as u = uy - - - uy,

u = 81 -8, and so on to denote reduced expressions.

1.3.2 Reflection subgroups and coset representatives

These results are a key component to understand the structure of the posets Z, ,
in both the classical and the Zjy-graded case. Let G be a reflection group with S
as a set of generating simple reflections and let ¢ be the associated length function.
Let R be the associated root system, IIz a set of simple roots and R* the set of

positive roots. Given a subgroup G’ of G generated by reflections and considering
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the subset R’ of R made of roots a such that s, € ', it can be proved that R’ is a

root system as well, and that a set of simple roots is given by
p = {a € RT|N(so) N R = {a}}

with corresponding set of positive roots given by RF N R*. If g € G we call w € G'g
a minimal right coset representative if among the elements in G'g it is of minimal
length. Tt is known [7] that such an element is unique for every G'g and it is

characterized by the property that
wl(a) >0 Vae R

We write G'\G for the set of minimal right coset representatives and we see it as a
poset with the induced partial order given by the weak Bruhat order on G. Take a
root o € R and consider G’ the stabilizer of a in G, then the minimal right coset
representative for G’¢g is the unique minimal length element that maps ¢ 'a to a,

and it’s characterized by
—1 -+
w(B) >0 VB e R orthogonal to a.

If Iz C Il we say that G’ is a standard parabolic subgroup, and if ¢ € G and w
is the minimal right coset representative of G'¢g we have that ¢ = ¢'w with ¢’ € G’
and £(g) = ¢(¢') +¢(w), and N(g)NR' = N(g'). It is also known that in this setting

G/\G = {w c G|L(w) - HR \ HR/}.

When G is a finite group then G’\G has a unique minimum and a unique maximum,
in particular the identity 1 is the minimum and wjwy is the unique maximum, where
wp is the longest element of G and wy is the longest element of G'. Its length is
given by

fwfuo) = |A*(R)| - |A* (R,
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Chapter 2

The case of abelian ideals: a new

proof

2.1 Results

In this chapter we want to provide new proofs to the main results from
Panyushev in [16] and from Cellini and Papi in [3]. This also serves to make the
reader familiar with some of the techniques that will be used in the next chapter. Let
g be a simple Lie algebra of type X,,. Write A for the associated root system with
IT = {ay,...,a,} as the set of simple roots, and W for its Weyl group. Consider the
corresponding affine Dynkin diagram X% as in [8] and write A for the associated
root system with = {B,a1,...,a,} as the set of simple roots, and W for its Weyl
group. Recall that § = 546 where 0 is the highest root in A. We define the a-height
co(7y) for a simple root a € Il of a root v € A in this way: if v = > refi b7, then

Ca(7y) = ba. Also recall the main definition

Definition 2.1.1. We call minuscule the elements w € ﬁ/\ such that
N(w) ={0 —v|y € S}
for some S C AT. We write W for the set of minuscule elements.

Note that this is equivalent to say that w is minuscule iff for every 7 € N(w) we

21



have 0 < 7 < § and cg(7) = 1. Note that 7 < ¢ can be dropped because if x € AT
then w(d +x) = § + wl(x) > § > 0. Clearly also 0 < 7 can be dropped. In
the end w is minuscule iff for every 7 € N(w) we have cg(7) = 1. For a given root
v € AT we define the set

T g1s = {w € WPlw(y) = 5+ 8).

Definition 2.1.2. We call rootlet any root v € A such that v = w=(8 + ) for

some w € W,

In other words a rootlet is a root vy € A such that Z,5+5 # 0. We decompose

W as the disjoint union of possibly empty sets

W= | | Z,s:s.

yEAT

Note that it’s enough to use v € A+ because if w € W% then v = w6+ 5) >0
since c3(d + B) = 2 # 1. We collect what we are going to prove in the next theorem

and corollary, then we go through the required proofs.

Theorem 2.1.1. Z, 5. 5 is non empty if and only if v € A or~y =6+ . When non
empty, it is a connected subposet, meaning that if w; < w < we and wy, ws € Ly 543
then also w € L 5.3. Moreover it has a unique minimum and a unigue MariMum,
and it is isomorphic as a poset to the set of minimal right coset representatives
/WLW;Jrﬂ\/WLW equipped with the weak Bruhat order of w.

Corollary 2.1.2. There is a one-to-one correspondence between maximal elements
of W% and long simple roots of A.

2.2 Proof of the results

In every case except for A,, write as for the unique simple root in Il connected
to #. For A; there is nothing to prove. For A, with n > 1 there are two simple

roots connected to § in the Dynkin diagram, let’s say a; and «,,. In this case define
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for every v € A, Cag (V) 1= €ay (V) + Ca, (7); the following results hold in this case as
well. Note that c,,(f) = 2, that is easily seen because sg(f)) = 6 + 3 and (3 is a long

root. For z,y € A+ we write 2 C y iff writing v =) __gb,7andy =) _gc.7 we

have b, < ¢, for every 7 € II. Notice that x C ¢ is equivalent to x < § for every
z € A+

Lemma 2.2.1. Let 7 € A with c,,(7) =2, then 7 = 0.
Proof. sg(1) = 7+20 D §+ because cg(7+28) = 2,80 7+ D § implies 7 = ¢. [
Lemma 2.2.2. Let v € A, then T, 5.5 # 0.

Proof. Let u, € W be an element of shortest length such that w,(y) = 6. Then
sguy(y) = 6 + 5. We want to prove that sgu, is minuscule. Let 7 € N(sgu (7)) =
{8} U s3(N(u,)); then we only have to check that cs(t) = 1. If v = 0 there
is nothing to prove. Write u, = s;...s, in reduced form, with s; = s,,, and
qr = 51...5k—1(ax). Note that, for 1 <k < n, we have g > 0 and thus ca,(qr) > 0.
Moreover g, € A, 50 cq4(qr) < 2. We want to prove that c,,(qr) = 1 for all k. Write

Sk(Ska1 -+ Sn(7)) = Ska1 - - Sn () + arap,

so that, multiplying by s; - - - si, we have

S1 .« Sk—1Sk41 - - - Sn(Y) = 0 — apqy.

Notice that a; # 0 by minimality of w,. Moreover since 6 — ayq, € A we
have a; > 0 by maximality of #, and also caﬁ(qk) # 0, thanks to 2.2.1 because
0 —arqr C 0. If cg(qr) =2, by lemma 2.2.1, ¢y = 6. So s1---sx_1(a) = 6, but also
S1+ - Sk—1(Sk -+ sn)(y) = 0, and combining these relations we get sy - - - $,,(7) = .

Finally, applying s, we have

—a = Sgr1Sn(y) =7 >0
since a; > 0 for every i, but this is absurd. We conclude that ca,(qx) = 1. O
Lemma 2.2.3. Let v € A, then spu, = minZ, 5_p,.

23



Proof. Let w € Z, 5.3 be minimal, w # sgu., and write sgu, = u; - - - u,, in reduced
form (u; = sg). Consider N(sgu,) N N(w) = V. If o, 7 € ¥ then o, 7 € N(sgu,)
and o, 7 € N(w); since these are inversion sets we have a+7 € N(sgu,), N(w), and
thus a+7 € V. On the other hand if a«+7 € U, then a+7 € N(sgu,), N(w). Since
these are inversion sets of minuscule elements, exactly one among « and 7 can have
cg =1, let’s say «, so @« € N(sgu,), @ € N(w) and thus a € ¥. So ¥ turns out to

be an inversion set, and we can write
N(sguy) "N N(w) = N(uq - uy)

for some k = 1,--- ,n. Let’s call v; the rootlet of uy -+ -u;, i.e. v = wir1 - un(7y).
We have seen in Lemma 2.2.2 that v;_; = w;(y;) = v + a;oi; > ; because a; > 0 for
every i. Hence
o+f=rn>n>">Mm="7

The rootlet of w = wuy - --ugty - - - t,, (which is written in reduced form) is , thus
all the simple reflections in w1, -+ ,u, must appear at least once in ¢1,--- ,¢,,; in
particular ui41 appears. Let’s say t; = w41 for some j, and assume that t; # w4
for all i« < j. We have uy---upty---tj_1upy1 € Web (Call 7; the simple root
corresponding to t;, write ¢; = uy - - - ugty - - - t;_1(1;) € N(w) and t;(741) = Teo1+biT;

for some b; > 0 since t; # g1, all of them for every ¢ = 1,...,m. Then the elements

Uy ugty ot (k) = ur gty oo + b T1) =

7j—1
=bj_1qj—1 Fur - uty o tio(Qpgr) = -0 = Z bigi + u1 -+ up(ugy1)
i=1

must have cg equal 1. Since all the ¢;’s and wu; - - - uy(ag+1) have cg = 1 and the b;’s

are non negative, then b, =0 foralli=1,...,7 — 1 and

ti(opg1) = Qg

foralli=1,...,5 — 1. So tjugy1 = ugst; foralle =1,...,5 — 1 and thus we can
write

w:ul"'uk’uk-i-ltl”'tj—ltj-i-l“'tm

against the fact that N(sgu,) N N(w) = N(ug - - ug). O
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Lemma 2.2.4. Let v € A} and sgu,s1---s, € L, 5.5 written in reduced form.

Then s;(y) = for everyi=1,...,n.

Proof. Suppose there is an s; such that s;(y) # 7. Then there exists a rootlet 7/,
a simple root ¢ and a minuscule element vs, with ¢(vs,) = ¢(v) + 1, such that

vsy(Y') =0 + B and s,(7') =+ — aq for some positive a, so

v(y') =0+ B+ av(q)

implying S+av(q) € A. Since vs, is minuscule, we have cz(av(q)) = a > 1, moreover
p € N(vs,) and v(q) € N(vs,) so f+av(q) € N(vs,), but cg(B+av(q)) =14+a > 2
which is absurd. O

Lemma 2.2.5. Let v € A, Then s,(v) =7 < sgu,(q) =u,(q) VYqe€ I1.

Proof. Assume first that ¢ # 5. Suppose s,(y) = 7 and sgu,(q) # u,(q), then
sguy(q) = uy(q) +apf € A, and so a and u~(q) have the same sign. Moreover

Uy sqtty,”H(uy(q) + aB) = uysy(q + ad — ay) = uy(—q + ad — ay) = —u,(q) + aff € A

implying that ¢ and u,(q) have opposite sign, absurd. Suppose s,(7y) # 7 and
sgu~(q) = uy(q), then s,(y) = v+ aq with a # 0. So

uy(y+aq) =0 — B+ au,(q) € A
implying that a and u.,(g) have opposite sign. But also
55(0 — B+ auy(q)) = 8 + B+ au,(q) € A

implying that a and u,(q) have the same sign, absurd. Let’s now assume ¢ = f.

Suppose sg(7) = v and sgu,(8) # uy(8), then sgu,(8) = u,(8) + af with a # 0.
Thus

_Sﬁuvsﬁuv_l(uvw) +af) = —spu,sp(8 +ad —ay) =
= —sguy (=B + ad — ay) = sp(uy(B) — aB) = u,(B) + 2ap € A.
Moreover also

—uyspuy, (uy(B) 4 2a8) = —uys5(B + 2a8 — 2a7y) =
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= —u,(206 — B — 2a7) = u,(8) — 28 € A,

Without loss of generality we can take a > 0, then u.(5) — 2a8 < 0 since
cg(uy(B)) = 1, then u,(5) = B, but u, () +2af = (2a+1)B € A which is absurd.
Suppose sg(7y) # v and spu,(8) = u,(B), then sg(y) = v+ af with a # 0. Thus

—55u7_185u7(—25 +v+af) = —85U7_185(—5 — B+ au,(B)) =

= —sgu, (=0 + B+ auy(B)) = —ss(—y + aBf) = v+ 2a8 € A.

Moreover also
—u, sy (—20+y+2a8) = —u, " sg(—0—B+2au,(B)) = —u, " (—0+B+2au,(B)) =

:fy—Qaﬁeﬁ.

Without loss of generality we can take a > 0, then v — 2a/ < 0 since c3(y) = 1, so
~v = (3. But then

spu~(B) = sguy(7) =0+ B #6 — B =u,(7) = uy(B)
which is absurd. ]

Lemma 2.2.6. Let v € Af. Suppose u,w is such that {(u,w) = l(u,) + (w)
and write w = s1---8, in reduced form. Then uw € I, 5.5 < w € W®

and s;(y) = for every i = 1,...,n. Moreover I, 545 is isomorphic as a poset to
Wisst8\Wis.

Proof. Suppose s;(y) = « for every i = 1,...,n and write «; for the simple root
associated to s;. Then by Lemma 2.2.5 sgu,(q) = u,(q) for every ¢ € . If q# S
then cs(spu,(q)) = cs(u,(q)) = 0, if ¢ = B then cs(spu,(B)) = cs(u,(8)) = 1.
Now just consider sgu(sq---sg_1(c)) € N(uyw) for every k = 1,...,n, we have
ca(spuy(s1 -+ sk—1(ag))) = ca(s1 -+ - sk—1(ay)) and the equivalence follows. To prove
the second claim just notice that if u € WM,MB\WM then for every 7 € N(u) we
have ¢g(7) > 1 by definition of W M,(;JFB\WM, moreover since ﬁv is a finite diagram

and cg(0) = 1 we also have cz(7) < 1, and so cz(y) = 1. O
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Lemma 2.2.7. If 7 € A is such that T ¢ A, then we have
Zrsrs =10

orT =0+ and Lsi 5515 = {1}.

Proof. Suppose that there is 7 € At and T ¢ A} for which there is a w € Z, 5,5,
w # 1. Write w = sgssy ... s, in reduced form. Since cz(7) # 0 and c(sz. .. 5,(7)) =
c3(0 — ) = 0, there must be an index k£ € [2,n]| such that s, = sz is the last
simple reflection in w that changes the 5-height of 7 applying the sequence of simple

reflections sy...5,. S0y = sSk11...5,(7) is such that cz(y) = 0 and

5882 ...8k-1 € I%k5+ﬂ.

Thanks to Lemma 2.2.4, since sg(7y) # 7, SgS2 ... Sg—1 is the minimum in the poset
2,518, SO 8352 ...5,_1 = Sguy. But then sgu,ss can’t be minuscule due to Lemma

2.2.5, since sgu,(B) # u,(B) and thus cg(sgss...sp—1(8)) = ca(spu,(B)) # 1,
absurd. To prove the final statement suppose that there is a minuscule element

w E W, w # 1, such that w(d + B) =0 + B. Then w™(8) = B > 0 which is absurd

so Lsyps+s = {1}-
[

We give now a direct proof of the existence of a unique maximum in Z, 5 3;
this statement might be deduced by the fact that /WM is a finite Weyl group and

W Ly,5+p 1s a standard parabolic subgroup.
Lemma 2.2.8. Let v € A/, Then I, 5.5 has a unique mazimum.

Proof. Every element in Z, 5.3 can be built up by taking u, and adding a block in
reduced form s; - - - s,, such that s;(7) = v foreveryi =1,...,nand s;...s, € W,
Then consider the finite subdiagram of Il made of the simple roots associated to
simple reflections fixing -, and consider its connected component containing 4 and
call it B. If wy, wy are minuscule elements in the subgroup W (B) generated by the
simple reflections associated to the simple roots contained in B, then if we prove
that also N(w;) U N(wy) is biconvex then there would exist w € W(B) such that
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N(wy) U N(wy) = N(w), and we could prove our Lemma taking the union on all
the inversion sets of minuscule elements contained in W (B). To prove the claim just
note that if ; € N(w;) and 75 € N(ws) then 71+ is not a root since cg(1 +72) = 2
and 7 + 75 € (B) which is a finite diagram, so every root is strictly contained in ¢
and cg(d) = 1. O

We now give a proof to Corollary 2.1.2 on the one-to-one correspondence between

maximal elements of W and long simple roots of A.

Proof. Given a simple long root « in II we associate to it the unique maximal element
w in Z, 545 We need to prove it is a maximal element in W*. Suppose it is not,
so there exists a simple reflection s, such that ¢(ws,) > (w), cz(w(q)) = 1 and
sq(a) = a+ aq for some a > 0 because of the maximality of w in Z, 545 (and ¢ # «
because czg(w(a)) = 2 # 1). But then w(a) = ws,(a+aq) = §+ 5 but {(ws,) > {(w)
and also their rootlets verify a4+ ag 2O « against the argument in 2.2.4 (that it’s not
possible to both reduce the length of a minuscule element and decrease the rootlet
with respect to the partial order induced by C). Conversely given a maximal element
w in W we associate to it its corresponding rootlet o = w=(§ + 3). We need to
check that it is simple. Suppose it is not. Since w # 1 we excluded @ = § + [ so
this implies & € A", Then we can write a = v+ ag with v € KJ“, qell,a>0and
Sq(7) = v+ ag because A is a finite root system. We have w(y + aq) = ws,(y) = 0.
If w(g) < 0 then ¢(ws,) < £(w) and so ws, € W, but this is against the argument
in 2.2.4 because {(ws,) < {(w) and also their rootlets satisfy v C v + ag. Then
w(q) > 0 and (ws,) > ¢(w). We write

w(y) =0+ — aw(q)

and since 3 — aw(q) € A then cg(w(q)) > 1 otherwise cz(8 — aw(q)) > 0 but there
would be another simple root 7 such that ¢, (5 —aw(q)) < 0. Suppose cg(w(q)) > 2.
Then cz(w(y)) < 0 and since ¢ + 5 is the smallest root with ¢ = 2 we also have
w(y) < 0. Write w(y) = —(=6 — 8 + aw(q)) with (=6 — 8 + aw(q)) € AT,
then w™(—d — 8 + aw(q)) = —y < 0 and so cg(—0 — B + aw(q)) = 1 and
cg(aw(q)) = 3 forcing a = 1 and cg(w(q)) = 3. But then —0 — § + w(q) € N(w)
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and of course § € N(w) so also (—=d — 8+ w(q)) + (B) = —0 + w(q) € N(w) but
cg(—0+w(q)) =2 # 1. In the end cg(w(q)) = 1, but this is against the maximality

of w, so @ must be a simple root. O]
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Chapter 3

A rootlets theory for b)-stable

abelian subspaces

In this chapter we will present the main results concerning the decomposition of
W2 in the semisimple case in both the twisted and untwisted case. In the first part
we divide the possible outcomes in several subcases and state the main theorem of
this work. In the second part we give proofs for every single case and prove the

main theorem. In the last part we show tables which summarize all the findings.

3.1 A rootlets theory for b’-stable abelian
subspaces

Assume II; = {f}, hence from now on we will not consider the Hermitian

symmetric case. Given o € 3*, € M,, set, extending (1.1)

Toy = {w € W | wla) = i} (3.1)
Fix p € M,. Then, clearly
Wt = | | Zap
aeA+

Write M, = {p1, ..., ps} and set

:Z’-al:-~~as = Ialuul ﬂ ct m ICVSHU'S'
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Then
W= || Zaoan (3.2)

Our main problem is to establish when the r.h.s. of (3.1) is non-empty and to
understand the structure of the corresponding poset.

We will use the following notation

(A) =AtNnzA, AcT,

(A, =AfnzA, AcT,

Ri={yeld* ey =i},
a=={ye Al |vy<a}, acAf,

ax, € ¥ is the only root in ¥ connected to 3, i.e. say(8) # 5,
Y3 is the connected component containing 5 in ({o € I0:|al =48]}

Let ordinary be the walls of type ko — fx, let special be the walls of type kd + .
Also recall that in our case a root is said to be of type 1 if it is long, of type 2

otherwise. The possibilities are listed in the following table.

Name | Type of wall | Length of 8 | Type of 05 | |X|
a ordinary long 1 > 1
b ordinary long 1 1
¢ ordinary long 2 1
d special long
e ordinary long 2 >1
f ordinary short
g special short

Set
{yell| (v,6%) =1} if p = kd — 0y and 6Oy, is of type 1,
B, =411, if 4 = k6 — O, and Oy, is of type 2,

i if = ké+ 3 and B € II,.
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Definition 3.1.1. Given a € ﬁj{e and 1 € M, such that Z,,, # 0, we set
M, =Tna*, Wi, =W(l,),
i

1
M, U{fs} if p=ké — 0y, 05 of type 1, || > 1,
a € (AS)\ (SUIL)),

1, in all other cases;
Wi, = WL ).

Let’s see an example for each case. For short we write, e.g., Dy = {9, a3, ag, a5}

to mean that the root subsystem of I generated by o, ag, ay, as is of type Dy.

Example 3.1.2.

(1) 1
BG le 7 F4( )
1 Ql 2 2 2 2 1 2 3 4 2
(5] (}:'2 [0 %) g (04 (l"ﬁ (;1 (xp 3 [0 %] C}‘:'_[‘s

Figure 3.1: Affine Dynkin diagrams Bél) and F, 4(1).

(a) Consider Bél),p = 4, choose ¥ ~ D, = {a,as,a3,a7}, so that A(X) =~
B, = {as,a4,05,06}, (X)) = {az}, and take p = § — Os. Let’s take
a = as, note that as € (AD)\ (S UIL)) = {as,ag}). We have I, =
{a1, as, asz, ar}, and ﬁ;u = {ay,a3,a7,05}. Let’s take @ = a4 instead, note
that ay & (A(X) \ (X UIL)) = {as, a6}). We have I, = {a1, s, ag, az}, and

ﬁ;’;’u = {ay, ag, ar}.

(b) Consider Bél),p = 2, choose ¥ ~ A; = {ay}, so that A(X) ~ Ag =
{az, a0, a3, a4, a5, 06}, T(3) = 0, and take p = 0 — ay. Let’s take a =

az + ag + as. We have 11, = {1, ay, a7}, and I, , = {aq, aq, ar}.
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(c) Consider Bél),p = 5, and choose ¥ ~ A; = {ag}, so that A(X) ~ Dg =
{a1, a9, a3, g, a5, a7}, T(X) = 0, and take = § — ag. Let’s take a = ag. We

~ ~
have 1, = {a1, ag, a3, ay, a7}, and 1T}, | = {1, ag, a3, ay, az}.

(d) Consider Bél),p =4, 4 =0+ a. Let's take @« = az + as + as. We have

ﬁa = {1, a4, a7}, and ﬁjw = {ay, ar}.

(e) Consider Ff),p =32 ~ Ay = {ay, a5}, A(X) ~ A3 = {a, a2, a3}, T(X) = 0,
and © =6 — oy — a. Let’s take o = ag + a3 + a4 + a5. We have , = {as},
and ﬁj;u = 0.

(f) Consider Bél),p = 6,2 ~ Dg = {a,as,as,aq,as,a7}, AX) ~ By =
{as, a6}, T'(X) = {as}, and take p = 6 — ag. Let’s take @ = a5. We have

Ha - {()él,Oé27Oég,Oé7}, and ﬁz’“ - {a17a27a3a 067}.

(g) Consider Bél),p = 6,0 = 0+ ag. Let’s take a = a5 + ag. We have

Ha - {O{l,O(Q,Oég,Oé6,0é7}, and ﬁ;”u == {(){1,0[2, 0637057}.

Let s be the number of components of 1y, let Wy = W(Ilj) and wy its longest
element. Consider the set of simple roots ® = {a € Iy|(a, ) = 0}, write
Wop = W(®), wop for its longest element, and define wg = szwp pwy. The following
theorem summarizes our results on the structure of the posets Z, ,. It will be proven

in Section 3.2, by looking at each case individually.

Theorem 3.1.1. Assume II; = {f}. Let a € 3:; and u € M, be such that
oy # 0. Assume [ is long.
(a). If i = kd — Ox, with Os, of type 1, then

1. Assume I'(X) = {ax}. Then if con(a) = 0 the map wa,u — u is a
poset isomorphism between I, and /V[?M,u\/ﬂza; if instead o # ax and
Cay (@) # 0, then the map x — xw,, S a poset isomorphism between

Ly, — Loy, where I, , is the doubleton defined in Lemma 3.2.12.

2. If [I'(X)| # 1 then the map u — w, ,u is a poset isomorphism between L, ,
and me\wla unless « = ax + B+ 1, ax € T'(2), (ax,B) #0, and n €

34



{0YU{r € Ip|(7, B) # 0,7 # ax}; in the latter case L, ,, = /WLOW\WLQLI{E},

Via W, U —> u where
u=min(W,,,\Wi,) maxP

is an absolute maximum, I'(3) | is the component of I'(X) orthogonal to Ops)

and containing ax, and

WI(E)L)/WEE) N\ {as})  fs=1,
W(D(E)/W(T()\ {as}) otherwise.

P:

Moreover, uw = wg, wgs, according to whether n = 0,1 # 0.

(b). If u=248—0x,05 € ﬁl, then I, is a singleton.

(c). If pw = ko —0x,05 € ﬁs, then in case of a double link between [ and Ox, the
poset I, ,, is a doubleton unless o = 0Oy, in which case it is a singleton. In case of a
triple or quadruple link Z,, ,, is a singleton.

(d). If pw = ké + B let u € Wy be of minimal length such that u(a)) = kd — (3, then
the map sguv — v is a poset isomorphism between I, , and /WLQM\/WLQ.

(e). If a € 332 U 332, la| = |0s] and o # ax, + B, or if @ = 0 + ax, or
if « = 8+ as + B the map uZv — v is a poset isomorphism between Loy and
WLQ,H\WLQ. If o = as + 8 and u is the shortest element such that u(as + ) = p
then Log+p, = {t, uSay }-

Assume 3 is short.

(f). If p = kd—0Ox, with Os, of type 1, then the map w,, ,u — u is a poset isomorphism
between Z,, , and /WL,W\/WLQ.

(g). If n = ké + B, then the map wq,,u — u is a poset isomorphism between I, ,
and /WM,;L\WM.

Define ﬁu according to the following table.
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Case Ku
a | (A(E))
b | (AN U ({5~ (D))
¢ | Ag, if B < — >0y is adouble link, {y € (k0)< : |7] = |fs],7 # bs} otherwise
d | AyU{kd+ 3}

e | {yeAL UAL |y =0/} U{d+as}U{d+as + 5}

—

(AE))

g {763}5:7:]{5—7,76(25>}U{k55+5}

Note that case b might be also displayed as

(AU ({6 = (AN \ {2}) = (35, UAI)\ {05},
Corollary 3.1.2. Assume y € M, and « € ﬁje Then I, # 0 if and only if

ac A,

3.2 Proof of the Main Theorem

We start proving some general facts.

Lemma 3.2.1.

wo(B) = kd — .

Proof. Recall that k6 — 5 = 8+ kY .| a;cy, where o; runs over all the simple roots
of the diagram but f.

k6 — wo(B) = wo(kd — B) = wo(B + k Z a;a;) = wo(B) + k Z azwo(a;) =

= wo(B) =k Y aico = wo(B) =k Y as(yc

with ¢ the permutation associated to wy acting on the several components X|II.

Then
1 1 a; + Qg4
w()(ﬁ) = §(k55+k Z CLU(Z‘)OQ‘) = 5(2B+k5 Z CLZ‘O{i+I€ Z CLU(i)OéZ‘) == ﬁ—’—k Z T()Ozi.
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But then H#

L <a;Vi=1,---,n,ie @y < a; Yi=1,---,n. Since of course

> i Go(i) = Y, a; we must have ap;y =a; Vi =1,--- ,n. So

O

Corollary 3.2.2. Let a € 11 be a simple root connected to B in the Dynkin diagram,

then wo(a) = —av.

Proof. wy(a) € —II and belongs to the same component X|II of . Since § is long,
wo(f) =ké — B and kd — a € A, we have

wosg(kd—a) = kd—wpsg(a) = kd—wo(a+F) = kd—wo(a) —kd+5 = B—wo(a) € A
forcing wy(a) = —a O
Lemma 3.2.3. If § is long, then co(0s) = 1.

Proof. Note that

Cax(05) = c5(sp(0x)) = cp(fs — (BV,HE)B) = —(5\/,92)-

Now applying the Cauchy-Schwartz inequality to the non linearly dependent vectors
BV and s, we get
0
(8%, 05)] < 18" - 6] = 2% <9,

so |(8Y,0s)] <1 and of course ¢, (0s) = 1. O

Note that in every case A(X) is a diagram of finite type, because it is obtained

removing at least one simple root from the original affine diagram.

Case a.

We assume that g is a long root, and we consider y = ké — Oy, with |X| > 1
and Oy, of type 1. Recall that in this case kd — 0y € (A(X)) and it’s its highest
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root. A proof of this is given in [6, Lemma 4.1 and Proposition 4.2]. After proving
some basic facts, we show in Lemmas 3.2.7 and 3.2.8 that if 7 € (A(X));, then
the minimal element > in W(A(%)) such that u>(y) = kd — 6y is also such that
u,% = minZ, ,, proving in particular that Z, , # (. After some technicalities, we find
in Corollary 3.2.10 conditions under which we can add chains of simple reflections
fixing v to u?, in order to find other elements in 7, ,. Then we split the remaining
work in two cases: |I'(X)] = 1 and |I'(X)] > 1. Note that c,,(kd) < 4, because
cs(kd) = 2 and sg(kd) = kd, and ¢,y (kd) > 2, because || > 1. We look separately
at the cases coy(kd) = 3,4 and ¢4y (kd) = 2, which is equivalent to I'(X) = {ax}
as we prove in Lemma 3.2.5. For c,.(kd) = 3,4 we show in Lemma 3.2.11 that
only for at most two specific roots v € (A(X)); we are able to find one new element
in Z,, that cannot be obtained adding a chain of simple roots fixing v to u?,
concluding on determining the structure of Z, ,. For ¢, (kd) = 2, we show in
Lemma 3.2.12 that Z, , = {1, spwo asWoSs}, then we prove in Lemmas 3.2.13 and
3.2.14 that right multiplication by u§ is a poset isomorphism between 7, , and
Z

~

v & (A())y, then Z,, = 0; this proves A, = (A()).

u = {u¥,spwoaywossu’ ). We conclude showing in Proposition 3.2.15 that if

Lemma 3.2.4. T'(X) # 0.

Proof. Assume T'(X) = (). This implies s,..(fx) = 0y — ax and so ¥ ~ A, for some
n. Write aq, ..., a,, for the simple roots in X, ordered in the way such that a,, = as,

and write s; for the associated simple reflections. Then we can write
n
k6 =Y aja;+23+ R
i=1

with R a sum of other simple roots in the affine diagram. We get

a1 = Cq, (k6) = co,(51(k0)) = —ay + aq,
a; = Co; (k6) = Co,(5i(k0)) = —a; +a;—1 + a4 2<i<n-—1,
ap = Cq, (k0) = o, (8n(k0)) = —an + ap_1 + 2.
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For n = 2 we solve the system and get a; € N. For n > 2 we sum the equations and

simplify, and get a; = —a; — a,, + 2. This can be expressed as

ap,=2—2a; <0
which is absurd. This proves I'(X) # 0. O
Lemma 3.2.5. ['(Y) = {ax} <= ca(kd) =2.

Proof. Suppose I'(¥) = {ax}. Note that cz(kd —0x) = 2, kd — 0y, is the highest root
in (A(X)) = ((IT\ ¥) U{ax}), ax is long and is at the edge of A(X) next to 3, and
Sax (k0 — O0s) = kd — Oy, then ¢, (kd — 0x) = 1 and so ¢,y (k0) = 2. For the converse
SUPPOSE Cqy, (k0) = 2, then coy (k0 — Ox) = 1. ag € Supp (kd — Ox) so ax € ['(2);
this implies s, (kd —0s) = kd — 0, and since cg(kd — 6x) = 2 any other simple root
in ¥ cannot be in Supp (ké — bx) = A(X).

[

Lemma 3.2.6. Assume vy € (A(X)) with cg(y) =2. Then v = ko — Ox.

Proof. Suppose there is a root v € A(X),v # kd — Oy, with cz(y) = 2; then write
v+ R = kd — O with R a (non zero) sum of simple roots in A(X) \ {8}. So
v = kd — 6y, — R but 6y + R is not a root because cz(fy, + R) = 0 against the

maximality of fy. [l
Lemma 3.2.7. Let vy € (A(X));, then uZ € W2,

Proof. Write u§ = 51...5, in reduced form, with s; = s,,, and g; = s1...s;_1(a;).
Note that, for 1 < j < n, we have ¢; > 0 and thus c3(g;) > 0. Moreover ¢; € (A(X)),
so c3(g;) < 2. We want to prove that cg(g;) = 1 for all j. Write

$i(8j+1---Sa(7)) = sj41- - su(7) + aj05,
so that, multiplying by s; - --s;, we have

814818541 -+ Sn(’}/> =k — 92 — a;q;.
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Notice that a; # 0 by minimality of u>. Moreover since kd — 0y — a;q; € (A(X)) we
have a; > 0 by maximality of k0 — 0x. If c3(¢q;) = 0, since a; > 0 and Oy, + a;q; is
a root, we have ¢; € (X) but fy is maximal in (¥). If c3(¢;) = 2, by lemma 3.2.6,
q; = kd—0x. Sos1---sj_1(j) = kd — 0Oy, but also sy -+ s;_1(s; - -+ 5,)(7) = kd — O,
and together they give us s;---s,(7) = @; and finally

—ay = 41 sa(7) 27 > 0

since a; > 0 for every ¢, but this is absurd. So cg(g;) = 1 for every j and the claim
follows. m

The proof of the following lemma is similar to that of Lemma 2.2.3. We include

it for completeness.
Lemma 3.2.8. Let v € (A(X)), then v} = minZ, 5, .

Proof. Let w € Ty s_g; be minimal, w # u3. Consider N(u2) N N(w) = U. If
a,7 € VU then a,7 € N(u)) and a,7 € N(w), since those are inversion sets
a+ 71 € N(uy),N(w), and thus & + 7 € W. On the other hand if o + 7 € ¥,
then o +7 € N(u2), N(w). Since those are inversion sets of o-minuscule elements,
exactly one among a and 7 can have ¢z = 1, let’s say «, so & € N(uZ), a € N(w)

and thus a € W. Hence ¥ turns out to be an inversion set, so we can write
N(u?) NN(w) = N(uy - w)

for some | = 0,--- ,n — 1. Let’s call v; the rootlet of u;---u;. We have seen in

Lemma 3.2.7 that v;_1 = w;(7;) = 75 + a;c;; > y; because a; > 0 for every i. Hence
kb —bOs=vn>1n>>m="7

The rootlet of w = wuy -+ wty -+ -t,, (which is written in reduced form) is -, thus
all the simple reflections in w1, - -+, u, must appear at least once in ty,--- ,%,,, in
particular w;41. Let’s say t; = w4 for some j, and assume that ¢; # w4 for all

t < j. We have uy ---wty - - - tj_ 141 € ng. Call 7; the simple root corresponding
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to t;, write ¢; = uy---wty---t;1() € N(w) and t;(141) = 741 + by for some

b; > 0 since t; # w1, all of them for every ¢ = 1,...,m. Then

up gty oty (aggn) = uy ety -t o(ugr +bjaT) =

7j—1
=bj1qj_1 tur-uty - tio(ag) =0 = Z bigi + u1 - - w(Qug1)
i=1

must have ¢z equal 1. Since all the ¢;’s and wuy - - - w;(aq41) have ¢g = 1 and the b;’s

are non negative, then b, =0 foralle=1,...,7 — 1 and

ti(ous1) = Qg

foralli =1,...,7 —1. So tjujs1 = wqt; for all e = 1,...,5 — 1 and thus we can
write

W= Uy WUty it oty

against the fact that N(u2) N N(w) = N(ug - ). O

Lemma 3.2.9. Let v € (A(X)), and let g be a simple root such that s,(y) = .
Then

(1) If g € A(X), then cﬁ(ug(q)) = 0.

(2) If ¢ ¢ A(X) and is not connected to A(X) in the Dynkin diagram, then
u(q) = ¢ and cs(u3(q)) = 0.

(3) If ¢ € A(X) and it is connected to A(X) in the Dynkin diagram, then
ca(uz(q)) = 1.

Proof. Notice first that if 5,(7) = v then u2(¢) > 0, otherwise u has a reduced form
ending in s,, and the remaining element is still o-minuscule, against the minimality
of uZ in Z, ks—oy,-

(1). Notice that u3(q) € (A(X)) and thus 0 < cz(u(q)) < 2. Suppose
05(u§(q)) = 2, then, by Lemma 3.2.6, u%(q) = kd — Ox and so v = ¢ which is
against s4(7) = 7. Suppose now cs(u>(¢)) = 1, then there exists v € W(A(X)\{5})
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such that v(8) = v (¢) and by definition v(fy) = 6. Then v(fs + ) = uZ(q) + Oy
is a root. We get

Wsg(ul) N (uZ(q) + Os) = uZse(q + kd — ) = uZ(—q+ ké — ) = —uZ(q) + Os.

On the other hand —u>(q) + 6 is not a root, because cg(—u2(q) + ) = —1 and
ce(—u(q) +0x) > 0, & being a simple root in X not orthogonal to fy (in particular,
£¢A(Y)).

(2). Obvious.

(3). Let’s divide the proof into two cases. Assume first that A(X) U {¢} is
not the whole Dynkin diagram (e.g. in type Eél)). Consider the unique path of
simple roots connecting the support of 7 to ¢ in the Dynkin diagram and call the
simple roots ay,...,a,,q and their simple reflections si,...,s,,s,. Set for short
U = u?, A = A(X). We can compute $,5, - S2(a1) = aq + baag + - - - + by, + byq
with b; > 0, and s1(v) = v + a1 with a; > 0, and finally

USySp -+ $251(7) = kd — O + ar(u(aq) + bau(as) + - - - + byu(ay,) + byu(q)).
Thanks to part (1) we have
cg(u(ay)) =0 1=2,...,n. (3.3)

To compute cz(u(ay)) we just observe that usi(y) = kd — 0y + aju(y) and since
a; > 0 and u(ay) € (A), by the definition of A as in the previous lemma we have
u(a) < 0 and thus cg(u(aq)) < —1 (and of course at least —2). If cs(u(y)) = -2,
by Lemma 3.2.6 we have u(a;) = —kd+0x and so u(—ay) = kd — 6x, which is absurd

because —a; = 7y and rootlets must be positive. Hence
cg(u(on)) = —1. (3.4)
Note now that
w(ay) +bou(as) + - - -+ bpu(ay) +bgu(q) = w(ay +byan+- - -+ bpan+byq) € At (3.5)

since ¢ ¢ A and o; € A and u € W(A(X)). Evaluating cg(u(q)) from (3.5) and
using (3.3), (3.4) we get cg(u(q)) > 1. On the other hand if cz(u(q)) were greater
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than 1, we would have cg(fs — aju(oq + baas + - -+ + by, + byq)) < 0 and thus
Oy, — agu(ay + baaog + - - - + by, + byq) < 0 which is not possible by the assumption
that AU{q} is not the whole Dynkin diagram (so some simple roots in ¥ are missing
in u(ay + baag + - -+ + by, + b,q)). Therefore cg(u(q)) = 1.

Suppose now A U {q} is the whole Dynkin diagram (e.g. F4(1), p =2). If
ko —q € (A) then since cg(kd — q) = 2 we have k6 — q = ké — Oy and so
q = 0y which is against || > 1. This implies u(q) < k0 and thus cs(u(q)) < 2.
Suppose cg(u(q)) = 2. By inspection ¢ (kd) < 2, and so b, < 2 because
ay + beag + - + by, + byg < kd. Indeed ¢, (kd) = 2, since if ¢,(kd) = 1, then
ko —q € A, which is excluded. If b, = 2 then ¢ (u(a; +beas + - - - + by, +b,yq)) = 2
and cg(u(ay+beas+- - -+bpa,+b,q)) = 3, and so u(ay+baca+- - -+b,0,+byq) = ko+7
with 7 € (A). But then ké — s+ a1 (kd +7) = (14 a1)kd — O + a7 is a root, hence
ko —0x,+a,7 is aroot in (A), which is absurd since it is greater than the highest root.
If b, = 1 and a; = 1 then ¢ (u(ay +baaa + - - - + by, +b,q)) = 1 and ¢,(6x) = 1 and
cg(u(ar +baag+ -+ by, +b,q)) =1, 80 —Os +u(ag +bacg+ - - -+ bpay, +byq) > 0.
On the other hand c¢,(—0s + u(oq + bacy + -+ - + by, + byq)) > 0, s0 ¢4(6s) = 1,
which is not possible since k§ — 0y, € (A(X)).

If b, = 1 and a; = 2 we have cg(—0x + 2u(ay + baag + - -+ + by, + byq)) = 2
and c,(—0s + 2u(oq + baay + - -+ + bpay, + b,q)) = 0 since again ¢,(fy) = 2, so
—0s + 2u(ay + by + - - - + by, + byq) € (A) with ¢g = 2 and thus we must have
—0s +2u(o +bag + - - - + by, +byq) = k6 — Oy implying u(ay +boaa + - - - + by, +

byq) = %‘5, which is not a root, contradiction. ]

Corollary 3.2.10. Let v € (A(X)); and w € W be a product of simple reflections
fixing ~v. Suppose that u?w 15 in reduced form. Let W be the set of simple roots in
Y\T(X) connected to A(X). Then u>w € I, k5o, if and only if for every 7 € N(w)

we have Y,y cn(T) = 1.

Proof. Assume ), cp(7) = 1 for every 7 € N(w). Since N(ujw) = N(uZ) U

u>(N(w)), it suffices to show that cg(u2 (7)) = 1 for all 7 € N(w). By assumption
7 is a sum of simple roots only one of which, say 7, is in ¥. Notice that u? (1) > 0.

By Lemma 3.2.9, cg(u (7)) = 1. The converse is similar. O
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For ¢y (k0) = 3, 4:

Lemma 3.2.11. Let w' € W2, Suppose we can write w' = ws, in reduced form
such that s,(v) = v — aq for some positive a, a simple root q and a rootlet . If
Cay, (k0) = 4 then W' = sgwopgwy and W' € Loyt rs—os- If Cag(kd) = 3 let x be the
simple root connected to B and not in X, then w' = sgwopwo and W' € Loy 48 ks—os

or w' = sgwo gWoSy and W' € Ly 1p1q ko—oy,-
Proof. We claim that a = 1. We have w(y — aq) = ws,(y) = ko — 05 and so
w(y) = kd — Os, + aw(q).
Note that cg(w(q)) = 1 since ws, € W, and so —0s + aw(q) > 0.
w (=0 + aw(q)) = —w ' (fs) + ag < 0

because w € W2 unless w™!(fx) = ¢, which is not possible because then w(q) = 05
and cg(w(q)) = 0. Thus we get —0x + aw(q) € N(w) and finally a = 1. We claim
that 0y, + 8 € N(ws,). Write w(q) = 0y, + 8+ R with R a sum of simple roots not

containing 3, and in general not a root. Then
wl@s+B)=qg—w ' (R) <0

unless R = 0, in which case w(q) = 0y + 8 € N(ws,) already, otherwise
Oz + f € N(w) C N(ws,). Our claim implies that ws, can be written in reduced
form starting with sgwg o, wo. In the case ¢,y (kd) = 4 we have wp oy, = wo g and
S0 WS, = Spwp pWy = wg since it is maximal in W2, We have wg(8) = kd + 3 and
wg(ay) = spwo gas) = —sg(0s) = —0x—B, sowg(as+p) = ké+L—0s—F = kd—0x,
and wg € Togiprs—os- 10 the case coy(kd) = 3 we have wg.,, = wops, and
so ws, starts with sgwg gs,wy = sgwp gwos, = wgs, < wg. There is no simple
indeed if y #
then wgs,s, = wss,s, and wgs, € WP but ws is maximal, if y = 3 we get
wps,(B) = we(x+P) = wg(x)+ko+5 = spwo pwo(x)+kd+5 = spwo p(—z)+kd+0 =
sg(—x)+kd+ 0 =—x—F+B+kd = kd —x with cg(kd —x) = 2 # 1. Finally we see

root y # x such that wgs,s, > wgs, and wgs,s, € WP

o)
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that wgs,(ax + 8+ x) = wg(ax + ) = kd — s and wss, € Loyt sraks—oy, and as
before wg € Zyg 18 k5—05- We claim that all these elements are not the minimum in
their posets, nor they can be obtained extending the minimum word in their posets
using simple reflections fixing their rootlets, indeed these are new elements. They
can’'t be minimal elements because wg contains simple reflections related to simple
roots not in (A(X)) because wg(f) = kd+ 5 > ké, and for wgs, < wg, s, € W(A(X))

anyway. They are not even minimal elements with added simple reflections fixing

7, indeed they end in s, because wgs,(ax) = wglax) = —0x — f < 0, and
Sap(an + B) = B # ag + 0, Saxlazs + 4+ 2) = f+ 2 # ax + [+ x. This
proves we found new elements. O

For coy (k0) = 2:
Lemma 3.2.12. Ik(;_g&k(;_gz = {1, SB'LU()@EU)()Sg}.

Proof. We start proving the following relations:

(1) wo,ax(bs) = as,
(2) wo,as(as) = b5,
(3) wO,ag(ﬁ) = ko — 5 - 92 — Qy.

To prove (1) we show that wg ., (6s) is a simple root. Suppose that there exists
a simple root ¢ and a € N such that wg,(0y) — aq is a root, then applying wg
we get that Oy, — awpo(q) is a root as well. ¢ ¢ X\ {ax} otherwise wp oy (q) < 0
against the fact that 6y is the highest root in (¥). So ¢ = ax. If a = 2, since
Cas,(05) = 1, Can (0 — 2wo ax () = —1 and thus Oy = ax against the fact that
|X| > 1. If @ = 1 then wpa.(fs) — ax > 0 and wp ., (0s) — ax € ¥\ {ax}, so
applying wo o, We get Oy, — wo oy () < 0 which is absurd since 6y, is the highest
root in (X) and wp .. (ax) € X. We conclude that wp . (fx) is a simple root,
and since cuy (Woay (fy)) = 1 we must have wg oy, (fx) = ax. The second identity
follows from the first one applying wg o,,. To prove (3), recall by Lemma 3.2.1 that
wo(B) = kd—B. Since wy can be decomposed into commuting subwords according to

the connected componets of the Dynkin diagram, as well as wy q,,, and they coincide
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everywhere but on the component X, we get that wo ... (8) = k6 — f — kdx, where
ké = > a,7 and kdy = Y _ca,7 (kds is not necessarily a root). Consider the
100t SayS5(kd — Ox) = ko — Oy — axy, — B. Since cay, (k0 — 0y — ax — ) = 0 and
cg(kd — Oy — axy — ) = 1 its support is completely contained outside of ¥ and so
kos, = Os, + ax, then wp o, (8) = kd —  — ag — 0.

Let’s go back to the main claim. We first check that sgwp a.woss(fy) = Oy We

have

85W0,a5W0S5(05) = S50 .05 Wo(Os + B) = 8pWo,ay (k6 — B — Os) = s5(8 + Ox) = Os.

We now need to check that sgwg o, woss € ng.

N(spwo,aswos3) = {8} U sgN (W s Wo) U Saw0 s wWo ().

N(wo,aswp) contains exactly all the roots in X with ¢,y, = 1, s0 cz(spN (wp 4y o)) =

1. For the last element

85W0,05Wo(B) = 8pWo,ay, (k6 — B) = sglax + B+ 0s) = a+ B+ 0x

and so cg = 1. We now want to prove that every element w € Zjys5_py ks—p,, such
that w # 1 must start with sgwg o woss; this will end the proof, since we will also
show that this element is maximal in W?. We need to prove that 05 + 8 € N(w).
We have w1 (0s + 8) = s + w1(B3), if it is positive, then w™1(f) € X. To find a

' maps ¥ to X, because it is invertible

contradiction we just need to prove that w™
and X is a finite set. Consider any 7 € X, then w™(7) + w (s — 7) = by,
fs. — 7 could be not a root, but both addends are positive because w is o-minuscule,
then w™!(7) € ¥ and the claim follows. In the end w™'(3) € X is impossible and
w0+ B) < 0, in particular cg(w™'(8)) < 0. Now for every other root 7 € ¥ with
Cax (T) = 1 we have w™ (7 + 8) < 0 since cg(w™!(B)) < 0 and so w must start with
SaW0 asWo. For the last element we have w!(a+ 4+ 60x) < 0 since cg(w1(8)) < 0,
w(ag),w 1 (fg) € X. So w must start with sswp aswoSs.

It remains to prove that sgwg o5 wpss is maximal in ng. We try to add sy, s, for

every simple root z linked to 5 and x # oy, and s, for any other simple root y.
SW0.asWoSp(0x) = S5Wo.asWo(a + B) = SpWo ax (K — ax — B) = sg(ag + 5) = as,
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880,05 W055(T) = 85Wo,apWo(T + B) = sg(ax + B +0s + 1) = ag + 26+ 0x + 1z,

/

88W0,05W0S3(Y) = SpWo.asWo(y) = s5(Y') =y

where ¢ is a positive simple root not 5 and not linked to 5. In each case the o-height
of the resulting element is not 1, thus the element sgwg o, woss is maximal in ng.

O
Lemma 3.2.13. Let v € I, j5-05,, 7 7 s, then sgwpwosgv € Ly ks—oy,-

Proof. We just need to check that sgwg,wosgv is o-minuscule. Call the eventual
simple roots not in ¥ connected to (5, z; and x,, with simple reflections s;
and s, or just x if there is just 1. Write v = v;---v, in reduced form, and
7; = v1 - vj_1(q;) = ftaas+bri+cra+ R with R a sum of other simple roots. Note
that a+b+c < 4. In particular we claim that a+b+c < 2, indeed if a+b+c = 4 then
cs(sg(7;)) = 3 and so sg(7;) = kd+ f and 7; = kd — 3, which is not possible because
otherwise kd = (k0 — ) + 8 € N(v); if a+ b+ ¢ = 3 then sg(7;) = 73 + 8 € N(v)
but cz(r; + f) = 2 and the claim is proved. If both b # 0 and ¢ # 0 we have
T; = B+ 21 + 22 and v = 55515253, and in this case sgwy ;wpssv is not o-minuscule
because sgwg ;wos152(8) = spwo zwo(B+x14+22) = s(f+0s+an+x1+22) = kd+
with ¢z = 3. In this case its rootlet is sgs95153(k0 —fx) = ax. In every other case we
can just write 7; = B+ aas + br + R with a4+ b < 2 and compute sgwo owose(7;) =
SWo.axWo(—0 + acs +af +bx + b5+ R) = sgwyawo((a+b—1)F+aax +br+ R) =
sgWo.a((a+b—1)(ké—B)—aas—br—R') = sg((a+b—1)(as+L+0x)—abs+br+R") =
(2b—1)B+ (a+b—1)ax + (b—1)0g + bxr + R". In the end we need to look at the
element

(20—1)B+ (a+b—1)ag+ (b—1)fs + bz + R".

If b = 0 it is negative, and if b = 1 the c¢g = 1, in both cases we are done. If b = 2

then ¢ = 0 and the root is
B+as+0s+2xr+R=ki+p

(for example because it is greater than kJ but applying sg its ¢z becomes 1). So

SWo,aWoSa(Tj) = kd +  and 7; = spwowp o5(kd + B) = kd — ay, — f — . In case
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cy(kd) = 2 we have 7; = kd —ay — f — Oy = f+ 2 + 02 and so v = SzwpWoS3
and its rootlet is sgwowg ss(kd — by) = ax. If otherwise c,(kd) = 1 we have

T; = ko —axy, — f — 0s = B+ x1 + x2 we have already discussed. O

Note that sgs;s2s5 and sgwgawoss are both maximal in W, 50 T, r5_gy, is a

singleton.

Lemma 3.2.14. Let v € (A(X));. If uw € T, ps_py, and cay(y) =0 then w can be
written as a product of simple reflections fiving . If cas(7) # 0 and v # ayx, then

_ X %
Ly ko—05, = {uy, spo,a5wosguy }-

Proof. Suppose there is w' € I, j5_¢9, such that it is u§ extended with a block
of simple reflections not all fixing 7. At some point starting from right there
must be a simple reflection s, for which s,(7") = 7/ — aq for some positive a and
some rootlet 7/, w € W2 and ws, € Z, xs_p; then as in Lemma 3.2.11 a = 1,
Oy + B € N(ws,) and ws, starts with szwp awo, and so does w’, w' = sgwp qwov
with [(sgwo,aswov) = (W aywo) +1(v) and v in reduced form. Left multiplication
by sgwp wosg gives us sgv which is in Z, p5_g,, thanks to Lemma 3.2.13. Note that
sgv cannot start with sgwoqwo and so sgv = w2 f where f can be written as a
product of simple reflections fixing v and I(u} f) = I(u2) + I(f). We claim that
SpW0.a5Wo = S3SasSSax, Where s is the shortest element such that s(ax) = fx. We

show that they have the same inversion set, indeed

N(Sﬁsazssaz) = {6} U {az + 6} U sﬁsazN(S) U {Sﬁsazs(az)}'

We have sgSa.5(0s) = SgSay (0x) = sp(fs) = B + Os because ay € (A(X)). Since
there is f+6x we just need to prove that N(s) contains only roots in (X\{ax}) with
coefficient 1 for one simple root z € ¥ connected to ayx. The first part is clear by
minimality of s. Write s = s; - - - 5, in reduced form, and 7; = s1 - - - 5;_1(a;) € N{(s).
Then

81+ 8j_18j41 - Sp(as) = Os — a;7;
for some positive a; since 0y, is maximal and s is minimal. Then since kd — 05, is the

highest root in (A(X)), 7; must contain in its support a simple root z linked to A(X),
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and so to ay since ¢,y (kd) = 2 is equivalent to I'(X) = {ax} thanks to lemma 3.2.5
(exactly one otherwise the support of 7; is disconnected by ax). If c,(1;) =b > 1
then s, (7;) = 7; + bax with ¢, (7; + bax) = b > 1 but 7; + bax, € (X) which is
absurd. In conclusion spwg oy Wo = $5SaySSas- If Cax (V) # 0, since ¢,y (k6 —0x) =1
then also ¢,y (7) = 1. By minimality of u§ it can be written itself in reduced form
with just one simple reflection s,,, and so of course we can write w2 = s3Sq,,% With
u e W(AX)\ {acg}) and so sgv = ul f = sgsapif. We get w' = sgwpaynwov =
5850y SSanSFSAY = 58505550y 58U~ f = S35ay,SSay5853SanUf = 5Saysuf. Now since
se W(X\{axg}) and u € W(A(X) \ {ax}) we get su = us and s is made of simple
reflections fixing v € (A(X)). In the end w' = sgwpaywot = SgSayUsf = usf
which is against the assumptions. If otherwise ¢,..(7) = 1, 7 # as, then thanks to
the previous lemmas sgv = u§ because it can’t be extended with simple reflections

fixing 7. We conclude that w' = sgwp qywosgul # u . O
Proposition 3.2.15. If Z, j5_0, # 0, then v € (A(X)), = Au-

Proof. Suppose v € I, y5-0, and v & (A(X));. Then we can write v = s1---5,
with simple reflections in reduced form, and for some j,1 < j < n we have
Sit1--Sn(y) € (A(X)); and ¥ = $j541 - - - Su(7) € (A(X)), definitively. Let’s call ¢;
the simple root associated to s; and @ the shortest element in Z5 5_p,,. As we already
know, since sy---s;_1 € Zsis-p, in general we must have s;---s;_; = ww with
l(aw) = l(u)+1(w), w made of simple roots fixing 4 and for every 7 € N(w) we have
> new cn(7) = 1. We want to compute cg(@w(q;)). w is made of simple reflections
associated to simple roots that can be divided in connected components containing
at least one root connected to A(X), moreover every root is not in Supp (7), so there
is exactly one root connected to A(X) in every connected component. There can’t
be a connected component containing ¢; since s;(¥) # 7. Then we get w(g;) = g;.
We are just required to compute cz(u(g;)). us;(y) = kd — Os + au(g;) is a root for
some a > 0, and so is —f0x +au(q;). If A(X)U{g;} is not the whole Dynkin diagram,
then —fy + at(g;) < 0 and cg(u(q;)) = 0. If otherwise A(X) U {¢;} is the whole
Dynkin diagram, then as we have seen in Lemma 3.2.9, ¢, (k) = ¢, (0s) = 2.
If @ = 1 then ¢, (—0s + au(g;)) = —1 and so cs(u(g;)) = 0. If a = 2 then
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cq,(—Os+at(q;)) = 0 and cg(—Os+at(q;)) = 2 since us; is o-minuscule (ws; = s;w),
and so —0yx, + 2u(q;) = kd — Oy, and u(q;) = % which is not possible. In every case
we find a contradiction, or cg(aw(q;)) # 1, so aws; = s1---s; is not o-minuscule,
which is absurd. We are left to check less common possibilities.

If oy (kd) = 3,4 we could be in case sq---sj_1 = Sgwopwy Or S1---Sj_1 =
SgWo pWoS,. In ther first case wggwp(g;) is a positive simple root not connected
to [ since ¢; # asx, so cg(spwo gwo(g;)) = 0. In the second case spwo swos;(q;) =
spWo,sWo(g;) so we can argue as in the first case.

If coy(kd) = 2 we could be in case S;--- 5,1 = SgWpayWoSaU and sy ---5; =
SpW0,asWoSsUs;. From the previous lemmas sgwg o wospis; € W iff us; € W2,

but as we have seen earlier cz(u(g;)) # 1. O

Case b.

We assume that  is a long root, and we consider u = ké — 0y, with 0y of type
1 and |¥X| = 1. Note that necessarily & = 1 and ¢y (0) = 1. We write Wp,, for
the Coxeter group associated to the finite Dynkin diagram obtained removing 6y,
which is a simple root, from the original diagram. We start showing in Lemmas
3.2.16 and 3.2.17 that Au C (AX)) U ({0 — (A(X))i} \ {fs}). Then we break
(A(X)) U ({6 — (A(X))} \ {fs}) into its two components. For v € (A(X)),;, let
u> be the shortest element in W(A(X)) such that u2(y) = § — fg, then it is
o-minuscule and is the minimum of Z 5 4. as in Lemmas 3.2.7 and 3.2.8. We
show that if v € (A(X));, then 7, , is a singleton in Lemma 3.2.20, and that if
v € ({6 = (AX))i} \ {fs}), then Z, , is a singleton in Lemma 3.2.21. This also
shows that 3# = (AX)) U{d—(AX))i} \ {fs}). At the end of the section we give

a closed formula to compute |[W|.
Lemma 3.2.16. Zy, 54, = 0.
Proof. Suppose w € Zy,, 5-py,, then w(fy) = § — b.

w*1(92 +6) =0—0x+ wil(ﬁ) >0
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because Oy — w () > § < —w (B) > § since Oy, is simple, if and only if
w1 (d + B) < 0, which is not possible since w is o-minuscule. Now for every root 7
with c3(7) = ¢p (1) = 1, 7 = 5+ Oy + R we get

w(t) =w (B +0g) +w  (R) >0
since w™!(R) > 0. Then for every 7 € N(w) we have cp.(7) = 0 and thus w € Wy,.,

but this is against the assumptions since

1= cpy(fx) = cop(w(bs)) = cos (0 — O5) = 0.

Lemma 3.2.17. [fl'%g_gz 7é @ then AS <A(E)>l @) ({5 - <A(E)>l} \ {02})

Proof. Let w be in Z, 5 g, and notice that 7 is long. v = w™(d — 6x) implies
o, (7) > 0, and v = 6 —w ™ (0y) implies cpy,(7) < 1. If cp. () = 0 then v € (A(2)),,
if co(7) =1thend —y=a € (AX));andsoy =9 —a € {6 — (A(X));}. Thanks

to the previous lemma we can cut out fx. O

For v € (A(X)), let u2 € Wy, be the shortest element such that u3 () = 0 — 0y,

then it is o-minuscule and is the minimum of Z, 5_4,, as in Lemmas 3.2.7 and 3.2.8.
Lemma 3.2.18. Ifv € Z, 5 ¢, then sgwo gwosgv € Ls_~ 5-g5, unless v = 1.

Proof. Let’s write v = vy - - - v, in reduced form and
T =0V Vp_1(Qg) = ﬁ—i—Zaiai + R e N(v)

with 4, the simple root associated to vy, a; the simple roots connected to [ in the
Dynkin diagram, and R a sum of other simple roots. Recall that in general ) . a; < 4,

and since 7 € N(v) and v is o-minuscule, in particular ), a; < 2. Let’s compute

swo,pwoss(T) = —(0+0)+ D ai(0—i—Ry)|[+ Ro = 6(D_, ai—1) = =3, azovi + R

thus
ca(spwo gwosg(T)) = 2<Zai - 1) —-1= 22@,» - 3.

For > .a; <1 we get cg <0, for ). a;, = 2 we get cg =4 — 3 = 1. Finally note that
if v =1 then spwg gwo(8) = 6 + B with ¢z = 3. O
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Lemma 3.2.19. Z5_g. 59, = {1}.
Proof. Suppose there is y € Zs_p.. 5—05,, y # 1. Then

SpWo gWoSRY € 192,5,92 = 0.

Lemma 3.2.20. If v € (A(X));, then T, 5_g, = {u’}.

b
Y

be expressed as v = u's with I(u2s) = I(u}) 4 I(s) and s(y) = . This implies

Proof. Since uZ is the minimum in Z, ys5_¢.,, every other element v € Z, p5_4, can

that v can be rewritten as v = yu with y = u2s(u>)™" and y(fs) = fx. We want

5
to prove y is o-minuscule, so that y = 1. Consider then 7 = u§sun Uy (o)
with ay, the simple root associated to ug. Since uZ's(u)~'(fy) = x, we can rewrite

u?sun o Uggp (U1 - u(Os) + agag) = Oy and

by
U,y SUp ** " Ugar1Uk—1 " * Ul(eg) = 02 — QT.

Note that since (u)™'(fg) = 6 —~ we have a > 0. When 7 < 0 there is
nothing to prove, suppose then 7 > 0. Suppose for now 0 < 7 < §. We have
in this case cz(7) < 2. We see that if 7 € Il then 7 = 65, and a; = 2, but then

s _
U SUp ++ * Upg 1 U1 " -uy(fy) = —6x, and

U gt - (0) = =57 (WE) " (0g) = 7 — 0.
Note that u € Wy, since it is minimal, thus cs; must stay the same, but
1 = coo(Up -+ - Upprup—1 - - ur(0y)) # co(a — ) = —1.

We conclude that if 7 € N(y) then cz(7) > 0. Suppose now cs(7) = 2. If ¢p,(7) =0,
then § — 7 =0y and so 7 = § — Oy, thus y'(7) =6 — s > 0 but 7 € N(y). If
cos(7) =1, then 7 = 20 + 05, + R. We write

USUyp -+ U1 Ug—1 + - u1(Ox) = (1 — ag)bs — 2ax8 — ax R.
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If ap = 2 then the right hand side becomes —fy, — 48 — 2R which is impossible
because we must have —fy, — 45 — 2R = 26 — 6y, that is clear adding 20 and checking

its new cg and cy,,. Then
Up -+ up(Os) =26 — 3_1(u§)_1(92) =20—(0—7)=0d+1.

This is the same as u; - - - up(y) = 0y — 6 < 0 which is absurd because u; - - - u,(7y) =

d —0x > 0. If ax = 1 then usuy, - upup_1 - u1(fs) = =26 — R =05 — 0, so
_ =1, 51 _
Up, Uty - ur(Os) = 87 (u)) " (0g —0) = —.
Again since ug € Wpy,, then ¢y, must stay the same, but

1= Cos, (Un U Ug—1 7 'UI(QE)) 7é 002(—7) = 0.

Note also that since 6y, — a;7 is an actual root, ¢y, (7) = 1. In conclusion if
0 < 7 < ¢ then cg(1) = 1, ¢p,(7) = 1. Note that every root greater than ¢
can be written as jo + z with 0 < x < §, indeed for all the roots of the form i§ — 2’
with 0 < 2’ < ¢ we can rewrite id — 2’ =id —a2’'+0 —0 = (i —1)6 + (6 — 2’). Then
if 7 =38+ x € N(y) then z € N(y) because y*(jd) = jo. But then cg(z) =1 and

exactly as we have just seen ¢y () = 1, s0 7 = jo + f + 0x + R. We can expand

T = U2 SUp - - - Ups1 () = j0 + B + O 4+ R and multiplying by s~ (u2) ™!

g (a0) = J6 5 WS (B) 45—y -5 WS U(R). (36)
Note that since wuls is o-minuscule then s~'(u2)™'(R) > 0 and p :=
co (s (u)"'(R)) > 0, on the other hand s7'(u)™'(8) < 0 and for n :=
coy,(s7H(uZ) 1 (B)) we have —1 < n < 0. Recalling that u> € Wi, we compute
cg,, on both sides of (3.6) 0 =j+n+1—0+p and so
In the end y is o-minuscule, y(6 — fx) = § — s and so y = 1. O

Lemma 3.2.21. If v € (A(X));, v # 6 — O, then Ts_ 59, = {spwo swossu’’}.
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Proof. Since left multiplication by sgwg gwyss is an invertible map between Z, 5,

and Zs_., 5_¢.,, We get the result. O

Corollary 3.2.22. If v # 0 — 0Oy, left multiplication by sgwogwoss induces an

isomorphism of posets between L, 5_g, and Ls_~ 5_g,

Corollary 3.2.23. If any component ¥ of the Dynkin diagram satisfies |3 = 1 and
Oy, is of type 1, then we can use the following formula to compute the cardinality of
the set of o-minuscule elements. Let L be the number of long positive roots T € A

with T < 0, then
W =L 1.

Case c.

We assume that 3 is a long root, and we consider u = ké — 0y, with 0y of type
2 and |X| = 1. We denote by Wj,, the Coxeter group associated to the diagram of
finite type obtained removing fs, from the original diagram. Note that kd — Oy is
not contained in a diagram of finite type and is not the highest root of any such
diagram, so most of the previous techniques will not work in this case. Of course
['(X) = 0. We divide the arguments according to the type of link between 8 and
Oy, it can be double, triple or quadruple. Indeed it is given by the coefficient a in
so(B) = B+ aby. If a > 4 then sg(8 + abs) = (a — 1)5 + aby, with ¢z > 4, since
S+ abs, < ké then (a—1)p + abs = ké + (a — 3)5 with (a —3) > 2 which is absurd.
For the double link case we first prove that Eu - ﬁéx in Lemma 3.2.24. Then we
show in Lemmas 3.2.27 and 3.2.28 that if v € 3@2, then the minimal element v in
Wi, such that u?(’y) = ko — 0Oy is such that u§ =minZ, ,. We also show in Lemma
3.2.29 that Z,,,, = {1, sgse,s3} and in Lemma 3.2.30 that Zy, , = {sswo swosesss}-
For the other roots in ﬁéz we show in Lemma 3.2.31 that another element in Z, ,
other than u>’ can be found via left multiplication by sgsgy 53, i.e. sgsaysau> € Ly .
In Lemma 3.2.32 we prove that Z, , = {u§,3559235u§}. This also implies that
ﬁu = 352. At the end of the section we give a closed formula to compute [W2|.

For the triple and quadruple link cases, we are able to show that they are necessary
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associated to the root systems Gél) and ASQ) respectively, and we exhibit explicit
realizations in Lemmas 3.2.36 and 3.2.37.

Let’s start looking at the double link case.
Lemma 3.2.24. If T, ys5_9, # 0, then cp.(y) = 1.

Proof. Let w be in Z,, y5_p,,. Then w(y) = kd — s, and thus we have v = w(kd —
fx) > 0 since cg(kd — Os) = 2 # 1 implying cp,.(y) > 0, and also v = k§ — w™(6x)
implying ¢y, () < 2 since cz(fy) = 0 # 1. We prove that the parity of ¢y, of any root
can never change applying elements of W. Of course it can change only when we
apply sp,,, consider then any root 7 = dfy+a/+ R with R a sum of other simple roots,
we have sy, (7) = sg. (dfs +af+ R) = —dbs +af +2abs + R = (2a — d)f0s +af+ R
and (2a—d) has the same parity as d. Now since w(7y) = kd—0y and ¢y, (kd—0x) =1
we get that ¢y, (7) is odd and thus ¢y, () = 1. O

—

Corollary 3.2.25. If 0y is another short root, then for every w € W we have
w(Bys) # 05.

Proof. cp.(fx) = 1 and its parity cannot change applying w. Indeed writing
w = s1---8, in reduced form, we see that applying simple reflections s; # sp,
the value of ¢y, for the resulting root doesn’t change. As seen in Lemma 3.2.24,
consider then any root 7 = dfy, + a8 + R with R a sum of other simple roots, we
have sy (7) = (2a — d)fs + aff + R, and (2a — d) has the same parity as d. This

proves that for every w € W we get that o (w(fyx)) is odd and can never be 0. [

Lemma 3.2.26. If ¢y () = 1 then there exists u € Wy, such that u(vy) = bx. In

particular v is a short root.

Proof. Consider the height map h : AT — N defined by h(>, bja;) = > . b;.
Consider the set

[ = {r € Al |w(r) # b5 for all w € Wy, }.

Assume I' non empty and let 7 € ' be an element of minimal image through h.

Then for every simple reflection s € IT\ {x} we have h(s(7)) > h(7) since s(7) € T,
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implying that h(se. (7)) < h(7), otherwise h(w(7)) > h(r) for every w € W, against
the fact that every real root is W-connected to a simple root. But ¢y (1) = 1
and its parity can never change, so there can only be one possibility: 7 = fx, and
o (fx) = —0x, but this is against 7 € I'. We conclude that I' = (). In particular
any vy € 3«%2 is short since there is u € Wy, such that u(y) = s, which is short. [

Notice that the map that associates v to ké —~ is an involution of Kég. We call

u? € Wy, the shortest element such that u(y) = ké — 0y for any v with oy (7) = 1.
Lemma 3.2.27. If cy.(y) =1 then u§ €L ko—o -

Proof. Write u§ = Uy - - - Uy in reduced form. Then for every j = 1,--- ,n—1 setting

T; = uy - - - uj—1(a;) we have
Up - Uj_1Uj+1Un(’}/) =kb — 92 — ;7;.

We see that a; # 0, otherwise u - - - uj_1(7j41) = 0y against the minimality of u§
Moreover, since u; # sg, for every ¢ and a; # s, we have a; > 0 and cg(7;) > 1.
Moreover ¢y (75) = 0 so cz(r;) < 2. If cs(r;) = 2 then cg(kd — 7;) = 0 and

Coy, (k0 — 7;) = 2, which is absurd; so cg(7;) = 1 and the claim is proved. O
Lemma 3.2.28. If cy.(y) =1, then u§ =minZ, y5_g,-

Proof. Write u§ = U - - - U, in reduced form and call v; the rootlet of u; - --u; for

J=0,---,n. As we have seen in the previous lemma a; > 0 for every j and so
VY=Y < Y1 < - <Y =ko— 0.

Then the claim follows as in Lemma 3.2.8. O

Lemma 3.2.29. Zy5 g, ks—0.. = {1, 5550555}

Proof. We only need to prove that there are no other elements in Zys g, ks—oy -
Let ¥ € Ths_ophsos, ¥y # 1. Of course y(fy) = Os. Since y~(8) < 0 and
y1(B) # —bs = y~}(—0x) we have that

y B+ 205) =y H(B) + 205 <0
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thus 8+ 205 € N(y). Writing 8+ 205, = (8 + 0x) + 05, and since y~ () = 0z > 0
we see that also f + s € N(y), and for the same reason also f € N(y). We can
write ¥y = s5p, 5351 -+ - S, in reduced form. But then we notice that for every s; € I
such that [(sgse.5551) = 4 we have that sgsg.szs1 € WP. In fact sgse,.ss(0s) = Ox
with ¢z # 1, if o # 6y, o connected to (5 in the diagram, sgsp,sg(a) = v+ 25 + 205,
with cg # 1, and if = is any simple root not connected to § in the diagram we have

$pSesSa(r) = x with ¢z # 1. In the end y = sgsg,, sp. O
Lemma 3.2.30. 1.927]€§_92 = {S/Bwo,BUJOSQESﬁ}.

Proof. First we check that sgwgpgwosesss € ZLog rs—os- We already know that
S3Wo pWoSey, 18 o-minuscule since I(sgwo pwosey) < l(spwoswp). We then compute
SWo WoSes, (B) = spwo gwo(B + 20%) = ko + + 2(—0x — ) = kd — [ — 20y, which
has cg = 1. We check that sgwy gwosessg € Lo, ko—os:

$5W0,8WoSey, S5 (0x) = spwo gwo(f + bs) = spwop(kd — f —bx) =

Let v be in Zpg, gs—p, its minimum (so v doesn’t contain sy, ), then
v (k6 — 205 — B) = ké — 2(k§ — Oy) — v 1(B) <0

since cg(v™!(B)) > —1 because —v~*(f) is in (ﬁ \ {fs}), whose highest root is
ko — 20x, — B with ¢ = 1, thus k0 — 20y, — 8 € N(v). Moreover this root
contains the highest root of the connected component 35 not containing 6y, i.e.
ké — 20y, — B = 6Ox, + 5 + R with R a sum of simple roots in 3. Since
v (05, + B+ R) < 0 and v (R) > 0 we see that v (s, + 3) < 0. Then for every
decomposition of Oy, = & + & we have that exactly one of them has 5+ ¢&; € N(v).
Note that the longest element with support in Y, is wgsg,, and the longest
element with support in II \ {83,505} 18 wop, so sgN(wpswy) C N(v). Because
N (sgwo pwosessp) = LUsgN (wo gwo) U{kd — 205, — B} we have that sgwp gwose,sg <
v. In conclusion sgwy gwysey, S is the minimum of Zy,, x5_p,,. We now check that for

every simple reflection s for which I(sgwogwosessss) = l(spwo pwosessps) + 1 we
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have sgwo gwosessss & W2, For Oy, we get spwo gwoses Sp(fs) = sgwo gwo(S+6s) =
sg(ké —  —0x) = ko — Ox, with cg = 2 # 1. For a a simple root not 6y, linked to

in the diagram, we get

S5Wo,aWoSes () = Spwo gwo(a + B+ 20x) = sgwog(kd — a — f — 20x) =
=sg(k6 —a—p—20s—R) =k —a—20—-20s— R

with ¢cg = 0 # 1. For any other simple root = € I we get S3Wo pWoSeySp(T) =
sgwo pwo(r) = sg(—a') = —a’ with 2’ a simple root that is not 3, « nor fy. The

claim follows. O
Lemma 3.2.31. Ifv € Z, k5-05, and v # Ox, then sgsp, 530 € Ly ks—oy -

Proof. Write v = vy ---v, in reduced form, «; the simple root associated to the
reflection v;. Let’s use a; and s to indicate the simple roots (which are at most 2)

connected to § that are not fy,. We have
T =0y v_1(ay) = aroq + agas + f+ b0s + R

with R a sum of other simple roots. Recall that we always have a; +as+b < 4. On
the other hand a; + as + b # 3 otherwise sz(7) =7+ € 3, and since both 7 and
p € N(v) we would have 7 + 3 € N(v) which is impossible because cz(7 + ) = 2.
Moreover a; + as + b # 4 otherwise sg(7) =7+ 208 = ké + 5 and so 7 = kd — 3, but
then 7 + f = k0 € N(v) which is impossible. In conclusion a; + as +b < 2. Let’s

compute
$8S0.S3(T) = a1y + asas + (2a1 + 2a2 — 1) + (2a; + 2a2 + b — 2)0s + R.

For a;+ay < 1 the root is negative or ¢g = 1 and the claim follows. When a;+ay = 2
we have b = 0, S0 ¢, + Cay = 2, o, = 2 and cg = 3 thus sgsg,sp(7) = kd + [ and
S0 T = SpSpS5(kd + ) = ko —  — 20x € N(v). We claim that kd — 3 — 205 € N(v)
implies v = sgwy pwose,sp and v = Ox. Indeed kd — B — 20y, is the highest root
in the diagram obtained by removing fs form the original diagram, and so if
ko — B — 205, € N(v) then every root in such a diagram with ¢g = 1 must be in N (v),
so N(sgwo pwosessg) C N(v). As we have seen in Lemma 3.2.30 spwg gwosesSs is

maximal so sgwg gwose,Sg = v and v = O. ]
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Lemma 3.2.32. If v € I, s5-6y, then there exists y € ZLis_oy ks—65 Such that

. >
v = yuy.

Proof. Since u,% is the minimum in Z, ys5_g,,, we can write v = u,?s with l(u%s) =

I(wX) 4+ I(s), and rewrite it as v = wu3s = yul with y = u2s(uy)™'. We want
to prove that uXs(u2)™' = 1 or uls(u)™" = sgse,s5. Let y be of smallest

length such that y(fs) = 0Oy, yu? € Tirs—os, Y # 1, y # 8Sgsegss. Since
WuZs(ur)™) > 1(uX) 4+ 1(s) — l(uX) = I(s) > 0 and § € N(uZs) = N(v) is the only
simple root in this inversion set, we see that § € N(y) = N(u3s) + usN((u3)™").
Then

y (B +205) =y ' (8) + 202 <0

since y~(8) < 0 and y1(B) # —Os =y ' (=0s). y ' (B+0s) =y '(B) + 0= <0
as well, so we can write y = $gsp.Ssy  in reduced form. But then thanks to

/

Lemma 3.2.31 we see that or y = 1, or $gse.Ssy = (5850.55)(5850:58)Y = ¥
and y'uX € T, -6, Of course y/(fs) = Oy and I(y') < I(y), but then 3y = 1

or y = sgsp, 53 With respectively y = sgsp,, s or y = 1 against the assumptions. [

Lemma 3.2.33. If v € T, j5-05, U 7 5850553, then sgwo gwose, a0 € Lis—r ko—os,-

If v e Wy, then sgwo gwosessgv € W,

Proof. Write v = vy - - - v, in reduced form, and let o; be the simple root associated
to the reflection v;. Let a; and s be as in Lemma 3.2.31 the simple roots connected

to B that are not fsx. We have
T =01 v_1(q;) = ara; + asas + S+ b0s + R

with R a sum of other simple roots. Recall that we always have a; +as+b < 2. We
compute sgwo gWoSes,Ss(T) = ko(—=14 a1 +as+b) +(—2a+1)8+ (—2a1 —2a, +2 —
b)fs — aj¢ — asan + R, thus

cg=2(—14a;+ay+0b)+1—2a; —2a, =2b— 1,

092:2(—1+a1+a2+b)—2—2@1—2a2—b:b,

ca1+ca2:2(—1—|—a1—|—a2+b)—a1—a2:a1+a2+2b—2.
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For b = 0 we get cg < 0 and for b = 1 we get c3 = 1. When b = 2 then a; = ap = 0,
so we find cg = 3, ¢y, = 2, Cay + Cap, = 2, thus spwo swosey,Ss(7) = kd + B. But then

T = SgSeqWoWo 3S5(kd + B) = ko — ko + 5 + 205 = § + 205,

and we conclude that since  + 20y, € N(v) we have v = sgsp,s3 because it is

maximal. The final statement is trivial. O

Corollary 3.2.34. If v # 0Ox,kd — Ox, then left multiplication by spwo pwoSessa

induces an isomorphism of posets between Ly p5_g;, and Lis—~ p5—os,-

Corollary 3.2.35. If any component 3 of the diagram satisfies |X| = 1 and Ox, is
of type 2, then we can use the following formula to compute the cardinality of the

set of o-minuscule elements. Let C' be the number of roots in A with coy, = 1, then
W =2C — 1.
Let’s move on now to the triple link case.

Lemma 3.2.36. If 3 is long, |X| = 1 and Ox has a triple link with 3, then the

following holds: the system is Gg); writing x for the remaining simple root we have

b
W2 = {1, sp, 55505, S35z, S350 Sx }

and in particular

Ts—oy6-05 = {1},
Lo+ pros,5-05 = {58}
L sas.5-05 = {5852},
Lospros.5-05 = {58505 1,
L vo5.5-05 = {5850552}-
Proof. Since 8 and 0y, form a diagram of type G4, there must be another simple root

x in the diagram connected to 8. Let’s write s,(8) = 8 + ax and sg(z) = = + jf
with a,j > 1. We now compute s,spse.(5) = 2ax + 25 + 30y. We claim that
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it is greater than k0. Indeed if it is smaller than kd then we apply sg obtaining
sg(2ax+20+30x) = 2ax+ (2aj+ 1)+ 305, which is greater than k¢ since its cg > 3.
Indeed 2az + (2aj + 1) + 30y = kdé + (2a5 — 1)p and so (2aj — 1) = 1 implying
a=j=1land|z| =|f|. Intheend ké = 22+25+360 but s,(kd) = kd—2z # ko which
is absurd. We conlude 2ax+25430x > k¢, but then it must be 2az+25+30y, = kd+x
so k0 = (2a — 1)z + 28 + 30y, forcing k = 1. Moreover since sg(d) = ¢ they must
have the same cg, so 14 (2a —1)j = 2 which implies a = j = 1 and |z| = ||, so the

diagram is just Ggl). The other statements are trivial. ]
Let’s move on now to the quadruple link case.

Lemma 3.2.37. If § is long, |X| =1 and Ox, has a quadruple link with (3, then the
following holds: the system is A§2),

We" = {1, 55, 55505 }
and in particular

Tos—0s 20-05 = {1},
Ls130s,20—05 = {58},

T105,25-05 = 158505 }-

Proof. We have s, () = f+46x < ko because cz < 2. So sg(f+460x) = 30+40x =
kd+ g and ko = 23 + 40x. This shows that £ = 2 and § = [+ 20x, proving that the

diagram is A§2). The other statements are trivial. ]

Case d.

We assume that 3 is a long root, and we consider ;4 = kd + . This case is
very similar to the case of abelian ideals in Chapter 2. We show in Lemma 3.2.39
that if v € K%, then if uf is the minimal element in Wy such that u?(v) = ké — f3,
then Sﬁuf =minZ,,. After some technicalities, we find in Lemma 3.2.41 conditions
under which we can add chains of simple reflections fixing v to sﬁug in order to find

other elements in Z.

s and that every element in Z, ,, can be written adding a chain
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of simple reflections fixing v to s/mg. We conclude showing in Lemma 3.2.42 that if
v & ﬁé U {kd + S}, then Z,,, = 0, proving that ﬁu = ﬁ}f U {ké + B}.

.....

reflections different from s4,...,s,. Note that Wz = W,,.

Lemma 3.2.38. Let v € A be a long root such that cs(y) = 1, then there exists
u € Wy such that

u(y) = .

Proof. Let’s consider the set
I' = {r € Alr is long, cs(1) = Lw(T) # B Yw € Wy}

and suppose it is not empty. Consider also the height map h : I' — N defined by
v = > ,a;; — > .a;, and pick v € T' such that h(y) realizes a minimum on T
Thus Yw € Wy we have h(w(y)) > h(v), otherwise w(y) ¢ I' implying that there
exists v € Wy such that vw(y) = 5 and vw € Wy. Then h(sg(y)) < h(y), otherwise
h(g(v)) > h(y) > 1 Vg € W since ~v # [, against the fact that every root is W-
connected to a simple root. We must have sg(y) = 7 — jf and the only possibility is
j =1, since if v — jB < 0 then + is a positive multiple of 3, i.e. y =& T If oy is
the only simple root connected to 5 in Supp (), we must have ¢, () = co(y—f) = 1.
For all w € Wg,, we have

hwsg(v)) = h(w(y = B)) = h(w(y)) = h(w(B)) = h(7) = h(B) = h(ss(7))

thus again, since for all w € W,, h(wssg(y)) > h(sz(y)) we have h(sq,s5(7)) <
h(sg(7)) forcing sa,s3(y) = v — B — a3 or sa,s5(7) = v — f — 20q. The former
implies Supp (Sa,55(7)) C Supp (sp(7y)) and the root connected to ay, let’s say as,
satisfies cq, (V) = Can(7 — f — 1) = 1 and oy is not shorter than ay. In the latter
case 7 — B — 2aq < 0 implies v = 8 + ay and o is long since oy = sg(7y). Now let
B~4a1+as+- - -+, the longest stretch of connected simple roots of height 1 in 7 that

can be removed applying s;, i.e. s, ...s158(7) =7—F—o1—---—a,. Let’s call a4
the only remaining root that was linked to c,. Then for all w € W3, . an.ans: W
have h(wsy, ...s155(7)) = h(w(y))—n—1> h(y)—n—1=h(y—F—a1— - —a,) =

62



h(sy...s153(7y)) thus for all w € W, ., h(ws,...s155(7)) > h(sn...s158(7))
implying that h(s,415,...5153(7)) < h(Sy ...s153(7)). But then

Sp41Sn .- 5158(y) =y =B —a1 — - —ap — 2,41 <0

and so vy =B+ + g+ -+ ap + apyq and apy1 = Sy, ... 5155(7) is long. But
then all the «; for i = 1,...,n are long as well, because v = sgs; -+ - S, (n11) and

Ca;(7) =1 for every i = 1,...,n. In the end

Snt1Sn - --$281(8) =~

which is absurd, thus I = (). O

Using this lemma we can give a new proof of Corollary 3.2.2, ie. that
wo(B) = kd—B. Let u € Wy be of maximal length such that u(8) = kd— . Then for
every simple root 7 not connected to 3 in the diagram, since s,u(kd—3) = s, (8) =
we have [(s;u) < l(u). Let’s pick a connected to 3, then since us,(kd — ) =
uw(ké — B — aa) = B — au(e) € A with a > 0, we have that u(a) < 0, thus
l(squ) < l(u). In the end for every simple root 7 € W, we have I(s,u) < [(u) forcing

U = woy.

If v is long and cg(y) = 1, then also kd — v has the same properties, and the
map v +— (ko — ) is invertible. We call ufj the shortest element in Wy such that
ug(y) = kd — [ for a given long root v with cz(y) = 1.

Lemma 3.2.39. 35u§ € L, ks+p and is its minimum.

Proof. Write ug = 5152... 8, in reduced form, «a; the simple root associated to s;
for every j, and N(ufj) ={ay, s1(2),...,5182...Sp—1(cv,) }. We want to show that
every root in [NV (ug) has in its support exactly one root linked to S in the diagram.

Write 7; = 51+ -+ 5j_1(¢;) and
S1++8j-18j41 - Sn(y) = kd — B — a;7;.

We have ¢s(7;) = 0 by construction of u and a; # 0 for the minimality of uf, so

a; > 0. Since 7; € X for some s, the root linked to 8 has height at most 1 and the
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claim follows. Now call 7; the rootlet associated to sy - - - s;, i.e. s1---s;(7;) = kd+ 0.

Since a; > 0 for every j, we see that
kb+B=7>n>">m=7
and the second claim follows as in Lemma 3.2.8. [

The proof of the following lemma is similar to that of Lemma 2.2.5. We include

it for completeness.
Lemma 3.2.40. Let v be a long root such that cg(y) = 1. Then
sq(y) =7 <= Sgu,ﬁy(q) = uf(q) Vq € I1.

Proof. Assume first that ¢ # . Suppose s4(y) = v and SBU?Y(Q) + wj(q), then
sgul(q) = uf(q) + aff with a = %1 since the simple root connected to § in uf(q)

must have coefficient 1. Thus

ugsq(uf)_l(uf(q)jLaﬁ) = ufsq(q+ak(5—a'y) = ug(—q+ak5—a'y) = —ug(q)jtaﬁ cA

which is absurd because a and uf (q) have the same sign. Suppose s,(y) # v and

saul(q) = uf(q), then sy(y) = v + ag with a # 0. So
ug(fy +aq) =kd— [+ auf(q) cA
implying that a and ug (q) have opposite signs. But also
sp(kd — B+ au’(q)) = kd + B+ au’(q) € A

implying a and uf(q) have the same sign, absurd. Let’s now assume ¢ = 3. Suppose
sg(7) = and sgul(B) # ul(B), then sgul(B) = uf(8) + af with a # 0. Thus

—sﬁugsﬁ(uf)_l(ug(ﬁ) +ap) = —sﬁugsﬁ(ﬁ + akd — avy) =

= —sﬁuf(—ﬁ + akéd —avy) = sﬂuf(ﬁ) —af) = ug(ﬂ) +2a8 € A.

Moreover also
—ufsﬂuﬁ)’%uf(ﬁ) +2ap) = —uf&@(ﬁ + 2akd — 2av) =
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= —u'ﬁ(?ak(s — B —2ay) = ug(ﬁ) —2af € A.
Without loss of generality we can take a > 0, then ug(ﬁ) — 2af < 0 since
cp(ul(B)) = 1, then uf(3) = B, but uf(B) + 2af = (2a+1)5 € A which is absurd.
Suppose s3(7) # v and sgul(B) = uf(B), then sz(7) = v + af with a # 0. Thus

—s5(u]) spul(—2k0 + v + af) = —sp(u]) sp(—kd — B+ aul(B)) =

= —s5(ul) N (—kS + B+ aul(B)) = —sp(—y +af) = +2a8 € A

Moreover also

—(u) " sgul(—2k0 + v + 2aB) = —(u5) T sp(—kd — B+ 2au(B)) =

= —(uf) (=6 + B+ 2auP(B)) = 7 — 2aB € A.

y
Without loss of generality we can take a > 0, then v — 2a8 < 0 since cg(v) = 1, so
v = /3. But then

spul(B) = sgul () = kd + B £ kd — B = ul(v) = u(B)
which is absurd. -

Lemma 3.2.41. Suppose sguw is such that I(sgulw) = I(sgul) + L(w) and write
w =818, in reduced form. Then sﬁugw €T ks = wE W and s;(y) =~

for everyi=1,...,n.

Proof. Suppose s;(y) = « for every i = 1,...,n and write «; for the simple root
associated to s;. Then by Lemma 3.2.40 55u§(q) = ug(q) for every g € II. If ¢ # 3
then cg(spul(q)) = cg(uf(q)) = 0, if ¢ = § then cz(sgul(B)) = cs(ul(8)) = 1.
Now just consider sgu?(s;---s;_1(a;)) € N(ufw) for every j and the equivalence
follows. Suppose now there is an s; such that s;(y) # . Then there exists a rootlet
7/, a simple root ¢ and a o-minuscule element vs, with {(vs,) = I(v) + 1, such that

v8,(7) = kd + 8 and s,(v') =+ — aq for some positive a, so
v(y') = ké + B+ av(q).

Since vs, is o-minuscule cg(av(q)) = a > 1, moreover § € N(vs,) and v(q) € N(vs,)
so B+ av(q) € N(vs,), but c¢g(8 + av(q)) = 1 + a > 2 which is absurd. O
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Lemma 3.2.42. If 7 € A is such that cs(T) # 1, then

Trkstp =0
orT=ko+f and I, js5:5 = {1}.

Proof. Suppose that there is 7 € A with c3(7) # 1 for which there is a w € Z; k545,
w # 1. Write w = sgsy ... s, in reduced form. Since cg(7) # 1 and c(sz. .. $,(7)) =
cs(kd — B) = 1, there must be an index j € [2,n] such that s; = sg is the last simple
reflection in w that changes the [-coefficient of 7 in the sequence of simple reflections

S3...Sp. S0 Y 1= 88Sj41-..5,(7) is such that cz(y) =1 and

5852...58j—1 € Ly ks4p-

Thanks to Lemma 3.2.41, since sg(y) # 7, sgS2 ... Sj—1 is the minimum in the poset

1L, k548,50 8852 ... 551 = sBufj. But then sBufsB can’t be o-minuscule due to Lemma

3.2.40, since sguf(B) # u2(B) and thus cs(szsa ... 5;-1(8)) = ca(spul(B)) # 1.
[

Corollary 3.2.43. For every «y long root such that cg(y) = 1, I, ys+p and Lys—~ ko+3

are 1somorphic as posets. The isomorphism 1is given by left multiplication by

SpWo,pW0SgB-

Proof. 1f s is a simple reflection, s(y) = « if and only if s(kd — ) = kd — ~, thus
we can attach to the minima of the two posets the same o-minuscule elements. We

just need to prove that sgwo gwosgsgul = sgwopwot € Ty psrp- Indeed
sawo gwoul (k6 — ) = sgwoswo(8) = ké + f.
To see that it is o-minuscule write
N (spwo,pwoul) = N(sgwogwo) + sgwo gwoN (uf).

We know that N (uf) contains only roots contained in some ¥;, with one simple root
linked to 8 in the diagram. wy makes them negative with the same property, wp g
doesn’t change coefficients of simple roots linked to 3, so it stays negative, and sg

just adds —f, so the final root is always negative and the claim follows. m
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Case e.

We assume that § is a long root, and we consider u = ké — Oy, with |X| > 1
and 6y, of type 2. Note that there can be two simple roots &; and @y in the diagram
adjacent to ay, and since I'(X) = {ayx}, this situation occurs exactly when there
are 4 simple roots in the diagram, i.e. {8} U A3 = Ag). We write & for a generic
simple root adjacent to ay, and with c¢; we mean in this case cs, + ca,. After
some technicalities, we show in Lemmas 3.2.46 and 3.2.47 that if v is such that
|v| = |0s| and v € 332 U 3(112 U{d +as} U{d+ ax + B}, then v, as defined
in Lemma 3.2.46, is such that u} = minZ,,. Then we show in Corollary 3.2.49
conditions under which we can add chains of simple reflections fixing ~ to u?,
in order to find other elements in Z,,. In Lemma 3.2.50 we show that every

element in Z,, can be written in such way. Finally, in Lemma 3.2.53, we show
that A, = {y € A2 UAL |y = 0=} U {6 +as} U {5 +as + B},

Lemma 3.2.44. The following relations hold: ¢, (0s) = 1, Sax(0s) = Os, k = 2,
0= 92 + oy + 5 and F(Z) = {O@}.

Proof. ¢, (0s) = 1 because [ is long . For the second part suppose s, (fx) =
Os, — ay, then there is only one simple root oy adjacent to ax; in Oy and c,, (fs) = 1.
Repeating the argument on sy — ax as the highest root in ¥ \ {ax}, we see
by induction that ¥ = A, for some n > 1. Then sy, (8) = B + 20 is the
highest root of the diagram of finite type ¥ U {8} = C, and thus there must
be another simple root adjacent to § in the affine diagram, let’s call it x. So
T = 5pSp.55(x) = 4+ 2 + 205 has cg(7) = 2, and is such that there exists a simple
reflection s, € W(X) such that s,(7) < 7, so kd — 7 € ¥. Moreover for every simple
reflection s € W(X) we see that s(7) < 7, so for every simple reflection s € W (X)
we have s(kd — 7) > kd — 7 which is absurd. In conclusion s, (fs) = 0s. For the
third and forth claims just compute Say.S¢.. (5) = 5+ 205 + 2y, since it has ¢,,, = 4
then ké — (8 + 20x + 2ax) =  and so kd = 25 + 20y, + 2ax which implies k = 2
and 0 = B+ Oy + ax. For the last claim pick a simple reflection a; € ¥ adjacent to
as, then s,,(0s) = 54, (0 —f—ag) =0 — f—ag —aa; = 0s —aoy with a #0. [
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Lemma 3.2.45. Let 7 € (X), |7| = |0s| , and & be a simple root adjacent to ayx, € X.
If ca(T) =2, then T = bx.

Proof. 1f T # ~ then take v to be the shortest element in W (3) such that v(7) = 6.
Write v = $1 - - - 5, in reduced form; then sy - - - s,(7) = 0x — aj;aq. Consider the root
d — Os + ajaq = ax + B+ ajaq, thanks to the previous lemma. Since s, (05) = 05,

a; # ax and so «; is adjacent to ay and c5(7) < 2. O

Lemma 3.2.46. If |y| = |0s| and v € 332 U ﬁig U{0+as} U{d+as + 5}, then
T o5-05 # 0.

Proof. Assume first v € 332 U 83‘12, |v| = |0s| and v € (X). Note that
v € 332 U 332 implies ¢,(7) < ¢-(6 — ax) = (8 + 0y) for every 7 € II. Take
v as the shortest element in W(X) such that v(y) = 0s. If 7, € N(v), from the

previous lemma it follows that cz(7%x) > 1. Moreover c5(7) < 2, if (1) = 2

then 7, = 60y again for the previous lemma, so v = v !1(fx) = v'!(m) < 0
but v > 0. We see then that c5(7) = 1. Consider u? = $3545530. We have
uZ(Y) = 8p5ay5p(fx) = Oz + 28 + 205 = 20 — fg. Moreover

N(u>) =A{B,8+ as, B+ 2as} U sgsayssN (v).

If oy (%) = 0 then sgSay,55(Tk) = SgSay (k) = ax + 7 + [ with ¢g = 1. If otherwise
Cas, (k) = 1 then spSay5s(Tk) = SaSas (T + ) = s5(Tk + B+ ax) = ax + 7 + [ with
¢ = 1. In the end uZ € W5, Assume now 7 € ﬁgz UAL  |y|=|6s|and v = B+7

axn’?
with 7 € (¥). Take v as the shortest element in W (X) such that v(7) = x. Consider
U2 = 5g54,0. Note that since coy,(7) = cay(fy) = 1, v can be written in reduced

form without using s,., and so v(f) = 8 and v(y) = v(B+7) = 5 + Ox. We have
u'zyl(fy) = 8580{2’0(’}/) = SgSax (ﬁ + 92) = Sﬁ(ﬂ +2ax + 92) =28+ 2as +0s = 20 — Os.
Moreover

N(u) = {8, 8+ as} Uspsay N(v).
Again since v can be written in reduced form without using Su, Cay(7:) = 0 and
again from the previous lemma c5(7) = 1, 80 SgSay (k) = T + ax + 8 with ¢ = 1.
We conclude that when v € 332 U 3}12, [y = 10s|, then u> € Wi*. For v =0 + ax

we take uX = sg. For y =6 + ax +  we take u} = 1. O
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Lemma 3.2.47. Let v and u? be as in the previous lemma, then u3

=minZ, 25—y,

Proof. Write u,% = S1-+8, in reduced form and consider the rootlet v, of sy --- s

for every k. Then in every case we see that
Y=Y <Y1 < <o =20 — Oy
so the proof follows as in Lemma 3.2.8. n

Lemma 3.2.48. Let vy and u§ be as in the previous lemma, and s, a simple reflection

associated to the simple root q with s,(y) =~. Then

(1) if ¢ =B then cﬂu?(ﬁ)) =1,
(2) if ¢ # ax, B then cs(u>(q)) = 0,

(3) if g = ax and v # ax + § then cz(u(ax)) = 0.

Proof. Notice first that if s4(v) =  then u>(¢) > 0, otherwise v’ has a reduced form
ending in s,, and the remaining element is still o-minuscule, against the minimality
of u§ in Z, 95_¢,. For v =0+ ax,v =0 + ax + B the claims are obvious. Consider
then |y| = |fs| and v € A UA] .

(1) If sg(y) = 7, then v € (¥) and ca(y) = 0 (recall that our +’s have
Cap,(7) < 1). Then u3(8) = 5p5ay580(8) = 55ay5s(6 + 208 4 2R) with
R a sum of other simple roots, because there is exactly one s, in a reduced
form of v, and all the other roots can be added or removed only with an
even coefficient. R # 0 because otherwise v(f) = S + 2a which implies
v 1(B) = B—2v"!(ax) but v~ !(ax) > 0 becasue for every 7, € N(v) we have
ca =1, and cg(v ™ (ax)) = 0 so v™1(B) can’t exist which is absurd. We can go
on calculating u (8) = 5g5ay58(06+20m +2R) = 554, (6 +2ax +2R). Since
R # 0 we can have s, (6+2ax+2R) = f+2ax+2R or s, (f+2ax+2R) =
f+4as+2R (and no more because otherwise subracting 2§ we get a root with
different signs in ¢z and cqy,). If S0y (84205 +2R) = f+4ax+2R=20—0
which is clear subtratting 24, then v(5) = $4,(20 — ) = 26 — 5 — 2ax =
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8+ 20s, but this is impossible because it implies v () = 8 — 2y but v > 0

and v € (¥). In conclusion

u?(ﬁ) = $3Say, (0 + 202 + 2R) = s3(f + 2ax + 2R) = f + 2ax + 2R

with cg = 1.

(2) v(q) € (¥), we claim v(g) > 0. If v(¢g) < 0 then since u>(5) > 0 we must
have v(q) € {(as, ) and thus v(q) = —ay and so v (ag) = —¢ < 0 that as

we know it’s not possible.

— I oy (0(4)) = calv(g)) = 0 then sy (s5(0())) = v(q) with c5 = 0.

— If cor(v(q)) = 1 and c5(v(q)) = 0 then v(q) = ax but in case
cg(7) = 1 spsay(ax) < 0 against u2(¢) > 0, and in case cz(y) = 0

SgSaxSp(ax) = ax with ¢z = 0.

— If coy(v(g)) = 0 and c5(v(g)) = 1 then (in both cases for cg(y) = 0,1)
$85asV(q) = $8Sas5s0(q) = v(q) + ax + B. But this root cannot exist
because, indeed write v = aff + 7 with a = 0,1 and 7 € (¥). Then
v(q) +ax+ B =v(q) +J — Ox and thus v (v(q) +6 —0y) =g+ — 7.
This implies that also s,(7 — ¢) = 7 + ¢ is a root (s,(7) = 7 because
q # ax, f) and so also v(7+¢q) = 0y, +v(g) which is in (X) and v(g) > 0,

absurd.

If can(v(q)) = 1 and cs(v(g)) = 1 then if cg(y) = 0 we have

uZ(q) = 855ax,550(q) = v(q) + B + ax which is again impossible, and if

"
cs(y) = 1 we have ug(q) = $35a50(q) = v(q) — ax with ¢z = 0.
If o (v(q)) = 1 and c5(v(q)) = 2 then v(q) = O from Lemma 3.2.45

and so ¢ = v but s,(v) = s,(q) # ¢ = 7.

(3) If say(7) = then v = B+ ax or v = Oy or v € (X) and cay (7) = ca(y) = 0.
If v = s, then v = 1 and ug(&g) = $3SaxSp(axn) = ax with ¢z = 0. Finally
if v € (¥) and cuy () = ca(y) = 0 then following the steps as in part (2) we
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only need to check what happens if ay + 4 v(ayx) is a root. In this case
as + B+ v(ag) =6 — Os + v(axg) and so v (0 — Oy +v(ax)) =5 — v+ ax
but 7 — ax can’t be a root due to v € (X) and cay(7) = ca(y) = 0. In the
end if v # ax + ( then cg(u (ax)) = 0.

]

Corollary 3.2.49. Let || = |0s| and vy € ﬁgzuﬁ}m with v # as+3, ory = 0+as
ory=90+ax+ B, and let u? = minZ, o5_g,. If s can be written in reduced form

with simple reflections fizing v, then u§5 €L, 05 0, = sEWD

Lemma 3.2.50. Let |y| = |fs| and v € 332 Uﬁég ory=0+ay ory=0+as+p,
and let u§ =minZ, o5_¢,. If u%s € I, 95-95 then s can be written in reduced form

with simple reflections fixing .

Proof. Suppose there are any w € W2, s, a simple reflection and ' € At with
sq(7) =+ — aq for some a > 0, l(ws,) = l(w) + 1, such that ws, € W and
wsy(y') = 20 — 6x. Then as in Lemma 3.2.11 § + 0y € N(ws,) and thus ws,

starts with sgwo aewo = Swo gwo, which is maximal in W2

o)

SO WSy = SgWp gWy €
Zos+825—0s- Then ¢ = 3, the only removable simple root in ay + 8. This implies

w = sgwo pwoss ¢ W2, absurd. O

Corollary 3.2.51. Let |y| = |0s| and v € ﬁgzuﬁéz with v # as+ B3, ory = 0+ax
orvy=0+as+ 5, and let u§ = minZ, o5, u?s €Ly 2505 iff s € W and can be

written in reduced form with simple reflections fixing .
Corollary 3.2.52. 7, g25—0s, = {S5W0,8W0Say, S5W0,8W0 } .

Proof. As usual write v for the shortest element it W (X) such that v(ay) = fx. We
claim that wpgwy = SayVSqy. Indeed we show that they have the same inversion
set, recall that if 7, € N(v) then c5(7) = 1 and since oy (@x) = oy (fs) = 1 then

Cas, (T6) = 0.

N(SagSay) = {az} U{os + 7 e U{sayv(as) = s}
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Since Oy, € N(SapVSay) and ay is its unique simple root, every root 7 € (X) with
Cas(T) = 1 is such that 7 € N(Sa.VSay). To see this just write 0y, = 7+ R and
v 1(0s) = v (1) + v }(R) < 0 and recall that v™'(R) > 0. The claim follows. In
the end we get u% . 5 = 5554,V = W0 sWoSay,. The only simpe reflection that can

extend szwp gWoSay, and fixes as, + 3 is 84y, which indeed gives sgwg gwy € WP, [

Lemma 3.2.53. If T, 95, # 0, then |y| = |0s| and v € 332 U 3}12 U{d+ax}tU
{6+ ax + 5}.

Proof. Suppose there is a root v outside of our set of rootlets, and let w € Z 254,
Then write w = s; - - s, in reduced form, and ~; for the rootlet of s; ---s,. There
must be an index ¢ such that 7; is not in our set of rootlets, and v;_; is in it instead.
Lemma 3.2.50 shows that in any case v;,_; > ;, and our assumption gives of course
Yi—1 > ;. But then if 4,1 < 0 — ag then also v; < 7,1 < 0 — ayg, and so it is in

our set, absurd. If v,_1 = 0 + ayx then v; = § — ax which is in our set, absurd, and

if 7,1 =6 4+ ax + B then v; = § + ax which is again in our set, absurd. O
Case f.
We assume [ is a short root, and we consider p = ko — f0x. After some

technicalities, we show in Lemma 3.2.56 that if v € (A(X));, then the minimal
element v in W(A(X)) such that u>(y) = kd — 0y is such that v> = minZ,,.
Then we find in Lemma 3.2.57 conditions under which we can add chains of simple
reflections fixing v to u?, in order to find other elements in Z, ,, and that every

element in Z, , can be written in such way. Finally, in Lemma 3.2.58, we show that

Ay = (AE))
Lemma 3.2.54. If 5 is short then Oy is long.

Proof. Suppose it is short. Then every simple root in ¥ is short. Pick a closest long
simple root ¢ to S in the diagram. Consider the path of simple short roots from ¢

to § and write aq, ..., qa,, and sq,...,s, for their reflections. Then

{::sﬂsnn-sl(q):q+22ai+25:k5—6’2
i=1
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because cg(§) = 2, Supp (§) NE =0, kd — Oy € A and 6y is maximal in (X). This

is a contradiction because ¢ is long and kd — 0y, is short. O]
Lemma 3.2.55. If 5 is short, then ko — 0x, € (A(X)) and it’s its highest root.

Proof. Since 0y, is long, 7 := sg(kd — 0y) = kd — Oy — 20 and the claim follows
because c3(7) = 0, unless 7 € (X). For every simple reflection s, # s,,, with ¢ € X
we have s,(kd — s —2/3) = ké — 0y, — 23 becuase fy, is maximal in (3). Moreover if
Sax, (0x) = Ox—aayx with a > 0, we have s, (kd—05—25) = ké—0x—20+aax—2ax <
ko — 0sx, — 23 because a < 2 (since sg(fx) = Oz +2/). This implies kd — by, — 2 = O,
because it is the highest root in (¥). Then ko = 20y + 25, forcing k = 2 and
d = O0x + B = s (), which is absurd and the claim follows. O

For every v € (A(X)); write u for an element of shortest length in W (A(X))
such that u>(y) = kd — by,

by

Lemma 3.2.56. u§ is o-minuscule, in particular uz

= miIlI%kg_gz.
Proof. 1t follows from the previous lemmas, as in Lemmas 3.2.7 and 3.2.8. O

Lemma 3.2.57. Suppose [ is short and let v € (A(X));. Let ¥ be the set of
simple roots in ¥\ T'(X) connected to A(X). Then ulv € Ty ps_gy iff v can be

written as a product of simple reflections fixing v and for every T € N(v) we have
> hewen(t) =1.

Proof. Suppose there is w' € Z, j5_g,, such that it is u§ extended with a block of
simple reflections not all fixing . At some point starting from right there must be a
simple reflection s, for which s,(7’) = 7 —aq for some positive a and some rootlet +/,
w € W® and ws, € L, 15_py, then as in Lemma 3.2.11 a = 1 and w™!(fs + 3) <0
even though it is not necessarely a root a priori. This immediately implies anyway
that w™(as + B) < 0 which is always a root, and ay is short, because otherwise
even Sgsay & W because sg(ax) = ax + 28. But then sy, (8) = s + 3 is a root,
and sg(fy) = Ox + 26 = (s + ) + B € N(ws,) is also a root, which is absurd
because c¢g = 2. Since there cannot be non fixing reflections in v, the remaining

claims follows as in Lemma 3.2.9 and Corollary 3.2.10. m
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Lemma 3.2.58. If T, x50, # 0, then v € (A(X));.
Proof. 1t follows as in Lemma 3.2.15. O

Remark 3.2.1. Note that when [ is short, o-minuscule elements can only be made
up of simple reflections associated to short roots, indeed otherwise taking the first
long simple root «; then s;---s;_1(c;) is long and must have an even cg. This
makes immediately clear that for B we have Wb = {1, s5} and for F, 4(1) we have
W = {1, 53,5350 }- Note that in some cases as C} we have ['(X) = (). For ¢tV in
the case in which fy is a simple long root, the diagram is A(X) U {fx}, but u (fx)
is long and so has an even cg, thus u§ can’t be extended. The only interesting cases
for £ short appear for OV with 12| > 1.

Case g.

We assume /3 is a short root, and we consider p = ké + 3. We write X4 for the
connected component of simple short roots containing 5. We show in Lemma 3.2.59
that if 7 € (X5) with cs(7) = 1, and we write v = kd — 7, then Z, 5, 3 # (). We prove

in Lemma 3.2.60 that 35u§ = minZ

v, Where u§ is defined as in Lemma 3.2.59.

Then we find in Lemma 3.2.61 conditions under which we can add chains of simple
reflections fixing v to u?, in order to find other elements in Z, ,,, and we prove that

every element in Z, ,, can be written in such way. Finally, in Lemma 3.2.62, we show
that A, = {y € AL 1y =kd — 7,7 € (Z5)} U {kd + B}

Lemma 3.2.59. Let 7 € (¥3) with cg(7) = 1, and write v = kd — 7. Then
I%ké—i-ﬁ 7é 0.

Proof. Let’s write 3 for the highest root in the diagram of finite type determined by
Y5. We claim that cg(0s) = 1. Indeed c5(65) < 2 since 5 < kd. Suppose cz(03) = 2.
Then take g a long simple root connected to 35, and compute s, (q) = q+265. Since
cs(q+205) = 4 and c,(q + 205) = 1 we have q + 205 = k§ + 0 with § € (Xg), which
is a short root, but sg,(g) is a long root. This contradiction proves our claim.

We claim that there exists v € W (X3 \ {8}) such that v(7) = . Indeed in every
diagram of finite type if y is a root and 6 is the highest root with |y| = |0|, then
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the shortest element v = s;---s, in reduced form with v(y) =  is such that for
every i, S;(Sit1-+Sn(y)) = Six1- - Sn(y) + a;a; with a; the simple root associated
to s; and a; > 0. This is because if otherwise a; < 0 for some i (a; # 0 due to
minimality) s1 -+ 81841 - Sn(y) = 0 — a;a; > 6 belongs to the diagram of finite
type. This implies in our case that since cz(5) = c3(f3) = 1 there is an element
vy € W(Xg \ {#}) such that v(8) = 0, and since cz(7) = c3(f3) = 1 there is an
element vy, € W (35 \ {8}) such that vy(7) = 05. So taking v = v 'vy we have
o(1) = vy 'ua(1) = Band v € W (S5 \ {B}). Let uf € W(Z5\ {f}) be an element of
shortest length such that uf(T) = 3. We see that

s/gug(w) = 35u5(k‘5 —7)=s3kd —B) =ko+p
so we only need to check the set
N(sgul) = {8} UsgN(uf).
Since uf € W (X3 \ {B}), if 7; € N(uf) then cs(r;) = 0. Writing uf = s1---s, in
reduced form, we see that
S1ecSjo8je e sa(T) = B — a;;

so for exactly one simple root ¢ in ¥g linked to § we have ¢,(r;) > 1. Finally
cq(1j) = 1 since otherwise sg(7;) = 7; + aff with @ > 1 is in (X3) but c3(63) = 1.
This implies cg(ssN (uf)) = 1. O

Lemma 3.2.60. sgu’ = minZ, 4s5.4.

Proof. Write ~; for the rootlet associated to sy ---s;, i.e. s1---8;(7) = kd + 3. We
see that

EO+B8=v%>71>">v%="7

so the claim follows as in Lemma 3.2.8. ]

Lemma 3.2.61. Suppose uSw is such that l(uSw) = 1(uf) + l(w) and write
w = 818, in reduced form. Then ugw € Liksip <= w € W and s;(y) =

for everyi=1,... n.
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Proof. It follows from Lemmas 3.2.40 and 3.2.41, as in Lemma 3.2.41. [

Lemma 3.2.62. If~ doesn’t belong to the set of roots that can be expressed as ko —T
with T € (Xg) and cz(1) =1, then T y5:5 =0, or v =ko + 5 and I, y54+5 = {1}.

Proof. Suppose there are w and v against our claim. As we have pointed out in
Remark 3.2.1, when o-minuscule elements are written in reduced form, they cannot
have simple reflections associated to long roots. Moreover it’s clear that the short
simple reflections must all be contained in 5. In addition v = w™(kd + 3) =
kd+w=t(B) < kd so cg(y) < 2. Summing up these findings we can write y = kd — 7
with 7 € ¥, 7 > 0. Suppose cg(7) # 1, then the contradiction follows as in Lemma
3.2.42. m

3.3 Data

We collect here some useful data. We number Dynkin diagrams as in Bourbaki,
and, for short we write, e.g., Dy = {aw, a3, oy, a5} to mean that the root subsystem
of 11 generated by aw,as, g, a5 is of type Dy. Let us display all possible (non

Hermitian) cases.

Untwisted
type ap | 1| A(Eq) NG PP A(X9) NG
B, > | 4, | B, 0 Bu_y | Dpro | A= {apss}
B, p | Dp | Bnept2 Ay ={ap-1} B,_, Dpio Ay ={aps1}
D, > |4, | D, 0 Doy | Di | A ={ap}
D, P | Dy | Dupi2 Ay ={op_1} Dy_p | Dp—pta | A1 ={opy1}
C v o | G, 0 Cow | G, 0
Eg 2 | 4 Ds Az = {as, a4, a5} Ay Eg 0
E; 2 | Ay Es As = {1, as, aq, a5, a6}
E; 6 | Dg D¢ Dy = {as, a3, 04,05} Aq ‘ E; ‘ U
Eg 1 | Dg Er Dg = {az, a3, a4, a5, a6, a7}
Eg 8 | Ery Dg Dg = {ag, a3, aq, 5,06, 7} | Ax Eg 0
Fy 2 | A Fy 0 Cs By By = {az, a3}
Fy 4 | By Cs 0 B, Cs By = {az, a3}
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Here we number Dynkin diagrams as in [8].

Twisted

type |a, | 5 | A(D) () S | A®) | ()
Asp, n | B, C, Ay ={an_1}

Aogp_q D, Cs Ay = {1}

Aoyt 1|, Cy Ch_q

Dpiv | p | By | Baps2 Ay ={ap1} Bup| Bpra | At ={apn}
Es 0| Fy Cy C3 ={ag,az, a3}
Es 4 | C4 Fy C3 ={ag,az, a3}

For the diagram of type Ag), where 3 different root lengths appear, we denote

them as long (1), medium (m) and short (s).

Type b= Length of 8 | Type of Il | Lengths of [ fs
BY |2<k<i—2 long Dy X Bi_y, (1,0)
BY | k=1-1 long Dy X A, (1, s)
eV l1<k<i-1 short Cy x C)_y (1,1)
DV | 2<k<i—2 long Dy x Dy (1,0)
Ggl) k= long A x Ay (1,s)
FY k= long A x Cs (1,1)
FY k= short By l
EY k= long Ay x As (1,0)
Eél) k=2 long A7 l
EM k=3 long Ay x Dyg (1,0)
EY k=1 long Ay x By (1,1)
Eél) k= long Dg l

7



Type b= ay Length of 8 | Type of IIy | Lengths of [[ fx
Ag) k= long By m

Aé?),l k=1 long D, s

AQ k=0 short C l

Dl(i)l k= short B, l

DY | 1<k<i-1 long By X By, (1,1)

EY k= short Fy l

EY k= long C, l
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