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ABSTRACT
The proposed study was carried out to develop a fast and efficient strategy for plas-
tic waste sensor-based sorting in recycling plants, based on hyperspectral imaging 
(HSI), combined with variable selection methods, to produce a high-quality recycled 
polyethylene terephthalate (PET) flakes stream. Variable selection techniques were 
applied in order to identify a limited number of spectral bands useful to recognize 
the presence of other plastic materials, considered as contaminant, inside a stream 
of recycled PET flakes, reducing processing time as requested by sorting online 
applications. Post-consumer plastic samples were acquired by HSI working in the 
short-wave infrared (SWIR) range (1000 - 2500 nm). As a first step, the hypercubes 
were processed applying chemometric logics to build a partial least squares dis-
criminant analysis (PLS-DA) classification model using the full investigated spectral 
range, able to identify PET and contaminant classes. As a second step, two differ-
ent variable selection methods were then applied, i.e., interval PLS-DA (i-PLSDA) and 
variable importance in projection (VIP) scores, in order to identify a limited number 
of spectral bands useful to recognize the two classes and to evaluate the best meth-
od, showing efficiency values close to those obtained by the full spectrum model. 
The best result was achieved by the VIP score method with an average efficiency 
value of 0.98. The obtained results suggested that the variables selection method 
can represent a powerful approach for the sensor-based sorting online, decreasing 
the amount of data to be processed and thus enabling faster recognition compared 
to the full spectrum model.

1. INTRODUCTION
Plastic is one of the most used materials in daily life, 

thanks to its characteristics and versatility. Moreover, 
plastic waste is among the most diverse materials, mak-
ing their recycling very complex (Ragaert et al., 2017). Due 
to the growing use of plastic, the amount of produced 
waste tends to increase over time, reaching an unsustain-
able pace for environmental reasons. It is thus necessary 
to develop and implement the best recycling strategies for 
plastic waste, guaranteeing high quality standards of the 
produced secondary raw materials and improving com-
petitiveness with virgin polymers (Eriksen et al., 2018). 
Indeed, the quality of secondary raw materials resulting 
from the post-consumer plastic recycling process is high-
ly dependent on the sorting efficiency throughout the plant 
line (Küppers, et.al, 2019). The purity degree of second-

ary plastics is certainly one of the most important quality 
characteristics required by the market (Faraca and Astrup, 
2019). Traces of contaminant inside the recycled stream of 
a single polymer, both as other materials and other types 
of polymers, can affect the final properties of the second-
ary raw material. As a consequence, the identification and 
separation steps in mechanical recycling plants for homo-
geneous plastic production are critical (Alsewailem and 
Alrefaie, 2018). Accurate separation methods are needed 
for plastic recycling, which allow to minimize contaminant 
in recycled products (Serranti et al., 2011; Wu et al., 2013; 
Cucuzza et al., 2021). Hyperspectral imaging (HSI), cou-
pled with chemometric logics, can represent an important 
tool to perform waste plastics identification and separa-
tion, such as polyethylene and polylactic acid (PLA) (Ulrici 
et al., 2013), polyolefins from building and construction 
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waste (Serranti et al., 2012), PE and polypropylene (PP) 
from household waste (Serranti et al., 2015a), low den-
sity polyethylene (LDPE) and high density polyethylene 
(HDPE) recognition along with PP, polyvinyl chloride (PVC) 
and polystyrene (PS) (Bonifazi et al., 2018a), plastic con-
taining brominated flame retardants (Bonifazi et al., 2020; 
Bonifazi et al., 2021a). HSI is a technology that integrates 
conventional imaging and spectroscopy, being able to at-
tain both spatial and spectral information from an object 
(Gowen et al., 2007). HSI can be used in recycling plant 
as sensor-based sorting method. The potential application 
of HSI is widely demonstrated in the literature in different 
sectors, in addition to plastic waste, such as food control 
(Serranti et al., 2013; Bonifazi et al., 2021b), demolition 
waste (Serranti et al., 2015b; Bonifazi et al., 2018b; Trotta 
et al., 2021), hazardous materials (Bonifazi et al., 2018c; 
2019). Therefore, HSI techniques represent an attractive 
solution for characterization, classification, quality control 
and sorting-online application also for polyethylene tere-
phthalate (PET) waste streams. 

The proposed study was carried out to build a fast and 
efficient strategy to produce a high-quality recycled PET 
stream, based on HSI working in the SWIR range (1000-
2500 nm), recognizing PET flakes and other polymers 
(considered as a single class of contaminant). Indeed, it is 
essential to continuously refine research on PET recycling, 
as it is one of the most used polymers for food and bever-
age packaging, thanks to its physical and chemical charac-
teristics (Welle, 2011). Furthermore, the use of HSI in the 
SWIR range ensures the recognition of the slight spectral 
differences between polymers, reducing errors of misclas-
sification (Singh et al., 2017; Lorenzo-Navarro et al., 2021). 
In order to increase the data processing speed, as request-
ed by the application of the classification logic to be uti-
lized at industrial plant level, a variable selection approach 
was tested, allowing to select the most useful wavelengths 
for the identification of PET and contaminant inside the full 
investigated spectrum. In fact, in the sensor-based sorting 
process based on HSI the wavelength selection is strictly 
necessary in order to obtain an identification of materials 
with minor time and production costs. Different variable se-
lection methods can be applied to near infrared data anal-
ysis (Yun et al., 2019; Mehmood et al., 2012). In the pro-
posed case study, among the most used variable selection 
methods, i-PLSDA (Interval Partial Least Square Discrimi-
nant Analysis) and VIP (Variable Importance in Projection) 
were tested. In detail, a classification model based on PLS-
DA in full spectrum mode was set up to identify classes of 
polymers, i.e., PET and other polymers considered as a sin-
gle class of contaminants. Subsequently, i-PLSDA and VIP 
methods were applied. Finally, the results obtained were 
compared in order to identify the best variables selection 
method with the best predictive performance close to full 
spectrum classification model.

2. MATERIALS AND METHODS
2.1 The investigated samples

The plastic waste flakes used for this study, collected 
from a recycling plant, were randomly sampled and are 

representative of an online sorting scenario. They have an 
average size of 16 mm. In detail, the samples are constitut-
ed of PET flakes contaminated by small quantities of other 
polymers (such as PE, PP and PS) (Figure 1). 

The dataset used to build and validate the model was 
composed by 55 PET and 55 contaminant flakes (Figure 
1a), divided into a calibration (33 PET and 33 contami-
nant flakes) and a validation (22 PET and 22 contaminant 
flakes) set, as shown in Figure 1b. Finally, the classification 
model was applied to 3 different test sets (Figure 1c, d and 
e) composed by 389 randomly sampled plastic particles 
collected from the same output flakes stream of the cali-
bration and validation datasets. 

2.2 Data acquisition 
Data acquisition was performed at the Raw Materials 

Laboratory (RawMaLab) of the Department of Chemical 
Engineering, Materials & Environment of Sapienza Univer-
sity of Rome, using the hyperspectral system SisuCHEMA 
XL (Specim, Spectral Imaging Ltd, Oulu, Finland), working 
in the SWIR region (1000 - 2500 nm), with the Imspec-
tor N25E spectrograph, spectral sampling/pixel: 6.3 nm; 
spectral resolution: 10 nm (30 µm slit), spatial resolution: 
root-mean-square spot radius <15 µm (320), field of view 
of 20 cm with 15mm lens, scanning speed (mm/s): 72.50 
and active pixels: 320 (spatial) × 240 (spectral). The light-
ing was reproduced by applying a diffuse line illumination 
unit. Images were acquired performing a line by line scan 
of each investigated dataset. Instrument was equipped 
with an integrate hardware and software spectral calibra-
tion architecture. Image data were automatically calibrated 
by measuring an internal standard reference target before 
each dataset scan.

2.3 Hyperspectral data analysis
The acquired hyperspectral images were analyzed 

through the PLS_toolbox (ver. 8.8 Eigenvector Research, 
Inc.) running in the Matlab environment (version R2020a, 
The Mathworks, Inc.).

As this paper aimed to identify plastic contaminants 
inside a flow stream of PET, independently from their na-
ture, a two-classes model was built, based on a PET class 
and a single class of contaminants. A data preprocessing 
to improve the collected spectral characteristics and an 
exploratory analysis of the data based on Principal Com-
ponent Analysis (PCA), were performed. PCA was chosen 
to perform exploratory analysis about classes variability, to 
identify and remove outliers (Bro and Smilde, 2014). Par-
tial least square discriminant analysis (PLS-DA) models 
in full spectrum and variable selection mode were defined 
and applied. PLS-DA is a supervised technique that needs 
a prior knowledge of the data (Barker and Rayens, 2003), 
which is based on the reduction of dimensionality through 
partial least squares regression (PLS-R) with discriminat-
ing characteristics (Ballabio and Todeschini, 2009; Ballabio 
and Consonni, 2013).

Different pre-processing techniques and combinations 
of algorithms were tested following the examples usual-
ly adopted in literature (Amigo et al., 2008; Rinnan et al., 
2009; Amigo, 2010; Martens and Næs, 2011; Vidal and 
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Amigo, 2012; Calvini et al., 2016). Multiplicative Scatter 
Correction (MSC - median) method was used to remove 
scaling and offset effects, Savitzky - Golay smoothing (win-
dow 15 points) was chosen to delete high-frequency noise 
from samples, 1st derivative (polynomial order: 2, derivative 
order: 1 and window points: 21) was used to emphasize 
the characteristics of the bands and mean centering (MC) 
was applied to remove mean value and further improve the 
spectral differences between samples. The Contiguous 
Block (with a number of data splits equal to 10) cross-val-
idation method was chosen (Figure 2) (Ballabio and Con-
sonni 2013), in order to evaluate the complexity of models 
and to select the appropriate number of latent variables 

(LVs). Moreover, the optimal number of 3 LVs was decid-
ed by the smaller difference between RMSEC and RMSECV 
(Balage et al., 2018; Currà et al., 2019; Suhandy and Yulia, 
2019).

Three PLS-DA classification models were built. The 
first model was developed using the full SWIR spectrum 
(1000-2500 nm), whereas the other two models using only 
wavelengths selected by i-PLSDA and VIP scores method. 
In detail, i-PLSDA selects a subset of variables by perform-
ing a sequential and exhaustive search for the best vari-
able or combination of variables (Nergaard et al., 2000). 
The variable selection was made in "forward" mode, where 
the intervals was then included in the search, specifically 

FIGURE 1: Source image of the investigated plastic samples divided in PET and contaminant flakes (a), false color image of the samples 
divided into calibration (red) and validation dataset (green) (b), source images of the randomly selected plastic flakes (contaminant 
marked by blue circles) for test 1 (c), test 2 (d) and test 3 (e).
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3 intervals with an interval size of 10. VIP scores estimate 
the importance of each variable in the projection used in 
a model (Chong and Jun 2005). VIP scores method was 
made considering 3 intervals with a dimension of 10 wave-
lengths. Such dimension was used as it corresponds to a 
wide spectral range of 60 nm, similar to that of common in-
frared broadband filters. In addition, 3 intervals were used 
to achieve an efficiency close to the full spectrum with a 
minimum number of wavelengths.

In order to compare the classification results, based on 
pixel detection, i.e., the attribution to one of the two classes 
(PET or contaminant) with reference to the number of pix-
els, the values of sensitivity, specificity and efficiency were 
calculated (equations 1, 2 and 3).

  (1)

  (2)

  (3)

3. RESULTS AND DISCUSSION
3.1 Mean reflectance spectra

The average raw and pre-processed reflectance spec-
tra of PET and contaminant classes are shown in Figure 3. 
PET spectrum was characterized by absorption bands of 
C-H2 and C-H of the third harmonic region (1138 and 1180 
nm), C-H of the second harmonic region (1400, 1660, 1720, 
1830, 1910 and 1955 nm) and C-H stretching vibrations + 
C-H deformation of first combination region (2100, 2136, 
2160, 2186 and 2261 nm). The mean spectrum of contam-
inant showed a complex fingerprint due the presence of 
different types of polymers. The main absorption bands 
detected for contaminant average spectrum were located 
around 1220, 1400, 1735 and 2320 nm. Finally, the pre-pro-
cessed spectra allowed a differentiation between the two 

classes of materials.

3.2 Principal component analysis
PCA results are shown in Figure 4. Most of the variance 

was captured by the first two PCs, as shown in the PC1-
PC2 score plot (Figure 4a), where PC1 and PC2 explained 
74.61% and 13.76% of the variance, respectively. As shown 
in the PCA score plot, a separation was achieved between 
the clouds of PET and contaminants. In more detail, con-
taminant class showed higher variability, due to the pres-
ence of different type of polymers, being clustered across 
all quadrants in various groups mainly characterized by 
PC1 negative values. PET is characterized by a vertical 
cluster characterized by PC1 positive values. The loadings 
plot of PC1 and PC2 was shown in Figure 4b. The main PC1 
variability is given by the wavelengths around 1170, 1375, 
1705 and 2235 nm for positive values, while the negative 
values of PC1 are given mostly by the wavelengths 1265, 
1475, 1865 and 2090 nm. PC2 is principally influenced by 
wavelengths around 1100, 1350, 1650 and 2100 nm for 
positive values, whereas negative values are more marked 
by wavelengths about 1235, 1470, 1750 and 2270 nm.

3.3 Full spectrum PLS-DA classification model
The results of the full spectrum PLS-DA classification 

model applied to the validation (Figure 5a) and test data-
sets (Figure 5b, c and d) are reported through the predic-
tion images called “class predicted member”. PET and con-
taminant classes were correctly predicted in all datasets 
(cf. Figure 1 and 5).

The model correctly identified in the validation dataset 
22 PET and 22 contaminant flakes (cf. Figure 1a, b and 5a), 
in the test 1 133 PET and 10 contaminant flakes (cf. Figure 
1c and 5b), in the test 2 106 PET and 6 contaminant flakes 
(cf. Figure 1d and 5c), and in the test 3 126 PET and 8 con-

FIGURE 2: Results of the application of the contiguous block algorithm as cross-validation method on calibration dataset.
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taminant flakes (cf. Figure 1e and 5d).
The mean values of sensitivity and specificity, based on 

pixel detection, in calibration, cross-validation and predic-
tion (Table 1) of validation, test 1, 2 and 3 datasets, showed 
the good performance of the model, with values of 1.00 for 
both classes. 

Based on the application of i-PLSDA, the selected wave-
lengths were 1698-1754 nm corresponding to C-H of the 
second harmonic region, 1949-2005 nm and 2199-2255 
nm corresponding to C-H stretching vibrations + C-H defor-
mation of combination region of PET spectrum. Meanwhile 

the spectral bands selected using VIP scores method were 
1138-1194 nm coinciding with C-H2 and C-H of the third 
harmonic region, 1673-1729 nm corresponding to C-H of 
the second harmonic region and 2267-2324 nm correlated 
to C-H stretching vibrations + C-H deformation of combina-
tion region of PET spectrum. The spectral bands selected 
by i-PLSDA and VIP scores superimposed on the average 
spectra of the PET and contaminant classes are shown in 
Figure 6.

i-PLSDA classification model:. The results of i-PLSDA, 
in terms of prediction images, for the validation and test 

FIGURE 3: Average raw (a) and pre-processed reflectance spectra (b) of PET and contaminant classes.

FIGURE 4: PCA score plot (PC1 - PC2) (a) and PCs loadings plot (b) of PET and contaminant classes.

FIGURE 5: Full spectrum PLS-DA prediction maps for the validation (a), test 1 (b), test 2 (c) and test 3 (d) datasets.
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datasets are shown in Figure 7.
PET and contaminant classes were correctly predicted, 

mainly in the validation dataset (cf. Figure 1a, 1b and 7a) 
and test 3 (cf. Figure 1e and 7d), except for some pixels 
due to border-effect (Figure 7b, 7c and 7d) and few sam-
ples attributed to the erroneous class (marked by yellow 
circles in Figure 7b and 7c), i.e., in the test 1: 4 badly as-
signed samples (cf. Figure 1c and 7b) and in the test 2: 2 
badly assigned samples (cf. Figure 1d and 7c). The classi-
fication performances, based on pixel detection, obtained 
by i-PLSDA, shown in Table 2, revealed ranging values of 
sensitivity and specificity in calibration, cross-validation 
and prediction from 0.90 to 0.98.

VIP scores: The classification results obtained by the 
application VIP are shown in the prediction maps (Figure 
8). PET and contaminant classes were correctly predicted, 

mostly in the validation dataset (cf. Figure 1a, 1b and 8a) 
and test 3 (cf. Figure 1e and 8d), except for some pixels 
due to border-effect (Figure 8b, 8c and 8d) and some whole 
samples assigned to the wrong class, marked by yellow 
circles in Figure 8b and 8c, i.e., test 1: 1 badly assigned 
sample (cf. Figure 1c and 8b) and test 2: 2 badly assigned 
samples (cf. Figure 1d and 8c). The classification perfor-
mances, based on pixel detection, obtained by VIP (Table 
2) revealed as sensitivity and specificity in calibration, 
cross-validation and prediction range from 0.97 to 0.99.

The classification performances, based on pixel detec-
tion, in term of efficiency in cross-validation and in predic-
tion, were compared in Table 3. In more detail, good perfor-
mances were obtained by both variable selection methods 
(i.e., i-PLSDA efficiency in prediction = 0.94 and VIP scores 
efficiency in prediction = 0.98), in fact the results were very 
close to the full spectrum PLS-DA model results (full spec-
trum PLS-DA efficiency in prediction = 1.00), considered as 
an ideal classification. In conclusion, the VIP scores meth-
od was the best variables reduction technique in terms of 
average values of sensitivity, specificity and efficiency.

4. CONCLUSIONS
In the present study, SWIR hyperspectral imaging 

(1000 - 2500 nm) was applied to evaluate three different 
PLSDA-based classification models (i.e., full spectrum 
PLS-DA, i-PLSDA and VIP scores) in order to develop fast 
and robust strategies for sensor-based sorting of PET flow 
stream with reference to the presence of other plastics 
flakes considered as contaminant. The best prediction re-
sults were provided by VIP scores method, with sensitivity, 
specificity and efficiency average values close to the full 
spectrum PLS-DA, considered as an ideal prediction mod-
el. The results demonstrated how it was possible to obtain 
a good identification of contaminant in a PET stream, not 
only considering the full investigated spectral range, but 
also using a reduced number of wavelength bands from 
240 to 30 obtained by variable selection methods, allowing 
the increase of processing speed and the construction of 
a simpler analytical logic with reduced costs, being both 
necessary requirements for industrial applications.

Sensitivity Specificity

Calibration 1.00 1.00

Cross-validation 1.00 1.00

Prediction 1.00 1.00

TABLE 1: Mean performance values of full spectrum PLSDA clas-
sification for PET class in calibration, cross-validation and predic-
tion phases. Selected LVs: 3.

FIGURE 7: i-PLSDA prediction maps for the validation (a), test 1 (b), test 2 (c) and test 3 (d) datasets.

FIGURE 6: i-PLSDA prediction maps for the validation (a), test 1 (b), 
test 2 (c) and test 3 (d) datasets.
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