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Abstract: In many low-income countries, the poor availability of lung biopsy leads to delayed
diagnosis of lung cancer (LC), which can appear radiologically similar to tuberculosis (TB). To assess
the ability of CT Radiomics in differentiating between TB and LC, and to evaluate the potential
predictive role of clinical parameters, from March 2020 to September 2021, patients with histological
diagnosis of TB or LC underwent chest CT evaluation and were retrospectively enrolled. Exclusion
criteria were: availability of only enhanced CT scans, previous lung surgery and significant CT motion
artefacts. After manual 3D segmentation of enhanced CT, two radiologists, in consensus, extracted
and compared radiomics features (T-test or Mann–Whitney), and they tested their performance,
in differentiating LC from TB, via Receiver operating characteristic (ROC) curves. Forty patients
(28 LC and 12 TB) were finally enrolled, and 31 were male, with a mean age of 59 ± 13 years.
Significant differences were found in normal WBC count (p < 0.019) and age (p < 0.001), in favor of
the LC group (89% vs. 58%) and with an older population in LC group, respectively. Significant
differences were found in 16/107 radiomic features (all p < 0.05). LargeDependenceEmphasis and
LargeAreaLowGrayLevelEmphasis showed the best performance in discriminating LC from TB,
(AUC: 0.92, sensitivity: 85.7%, specificity: 91.7%, p < 0.0001; AUC: 0.92, sensitivity: 75%, specificity:
100%, p < 0.0001, respectively). Radiomics may be a non-invasive imaging tool in many poor nations,
for differentiating LC from TB, with a pivotal role in improving oncological patients’ management;
however, future prospective studies will be necessary to validate these initial findings.

Keywords: chest CT; radiomics; lung cancer; tuberculosis; multidetector computed tomography;
texture analysis; oncology; precision medicine; lung imaging

1. Introduction

Tuberculosis (TB) and lung cancer (LC) are the most common lung diseases con-
tributing to mortality in developing nations, and both have associations with the human
development index of the country or region [1]. LC is the second most common subsite,
contributing 11.4% of new cases and 18% of new deaths, according to the Global cancer
statistics 2020-GLOBOCAN estimates [2].
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LC and TB are often known to coexist. In fact, some studies have shown chronic
inflammation of TB as carcinogenic [3,4]. In previous studies, the coexistence of TB and LC,
in a small percentage of patients, was documented [5–7]. Furthermore, lung malignancy
and the different drugs used for the treatment are associated with immunosuppression,
which often leads to mycobacterial infection [8,9].

Due to the high prevalence of TB in endemic areas, lung consolidation is presumptively
treated with antibiotics and antituberculosis drugs with a wait and watch policy [10]. The
lack of response to treatment is considered an indication to suspect malignancy, and thus,
the treatment may be delayed [11]. This often results in LC presenting at an advanced
stage, with a dramatic impact on the survival [12]. The limited access to pulmonary biopsy
usually results in the upstaging of the malignancy or, in uncertain diagnoses or a watch
and wait strategy, results in increased mortality and morbidity [13].

Imaging examinations, such as computed tomography (CT), demonstrated key tools
in differential diagnosis between TB and LC [14]. Nevertheless, in clinical practice, due to
the radiological similarities between these pathologies, even expert radiologists, relying
on CT data, are often subject to misdiagnosis [15]. In particular, the presence of chest CT
findings, as consolidation and a nodular pattern, especially those with spiculations and
irregular margins in many tuberculous bacteria, can mimic primary LC [16]. As a corollary
finding, in a case of known malignancy, a tubercular non-calcified granuloma is sometimes
misdiagnosed as a metastatic nodule [17]. Thus, a non-invasive and diagnostic alternative
is required to improve the discrimination between TB and LC.

In this contest, Radiomics is an emerging medical imaging tool that turns the qualita-
tive analysis of multimodal medical images into quantitative data [18,19]. After imaging
feature extraction with dedicated software, trained algorithms provide diagnostic aid or
exact quantitative information by calculating the extracted features [20]. Thus, Radiomics
can reflect biological information regarding the analyzed lung lesions, such as cell mor-
phology, internal heterogeneity, and molecular and gene expression, which can provide a
more accurate differential diagnosis for confused masses, in a non-invasive way [21–23].

In recent literature, only a few studies have investigated the role of quantitative
radiomic features to differentiate lung TB from LC [24–26].

The aim of the study was to identify and compare the CT radiomic features of both TB
and LC, as well as identify the best ones, in order to demonstrate the potential key role of
radiomics in differentiating between these two diseases, allowing the accurate assessment
and early diagnosis of LC in developing nations.

2. Materials and Methods
2.1. Patient Population and Study Design

This retrospective observational study was in accordance with the Declaration of
Helsinki. All participants provided informed consent, and the approval of the Institu-
tional Review Board was not necessary in this observational non-interventional retrospec-
tive study.

Sixty patients admitted at Apollo Adlux Hospital, Kerala, India, from March 2020
to September 2021, were selected according to the following inclusion criteria: patients
with (a) histological diagnosis of TB or LC, as well as patients (b) who underwent chest CT
during hospitalization.

Exclusion criteria were: (a) negative chest CT for pulmonary consolidation, (b) avail-
ability of the only CT scans with contrast media administration, (c) previous surgical
pulmonary resection, and (d) significant motion artefacts on chest CT.

Patients’ demographic characteristics, clinical findings, and laboratory results, in-
cluding sex, age, comorbidities, smoking habits, respiratory symptoms, fever, erythrocyte
sedimentation ratio (ESR), white blood cell (WBC) count, hemoglobin (HB), and histopathol-
ogy results, were also retrieved from the internal hospital records and analyzed.
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2.2. CT Acquisition Technique

All patients underwent unenhanced Chest CT scans during hospitalization. Chest
CT acquisitions were obtained with the patients in supine position during end-inspiration,
without contrast medium injection, and with the scans performed in the cranio-caudal
direction. CT exams were obtained by using 160-slice CT (CANON Aquilion SP Prime
Scanner, Canon Medical Systems Corporation, Otawara, Japan). CT scans were obtained by
setting the following technical parameters: tube voltage 120 kV; tube current modulation
300 mAs, spiral pitch factor 0.98; collimation 64 × 0.625 mm; time of rotation 0.5 s. Standard
soft tissue reconstruction, by Iterative Reconstruction, was used for all CT images at a slice
thickness of 0.5 mm.

2.3. CT Scans Evaluation and Segmentation Analysis

Digital Imaging and Communications in Medicine (DICOM) data were transferred into
a picture archiving and communication system (PACS) workstation (Centricity Universal
Viewer, version 6.0; GE Medical Systems, Boston, Massachussets, United States). Two
radiologists, in consensus (G.G. and D.C., with 5 years and 15 years in thoracic imaging
experience, respectively), evaluated the CT scans eligible for segmentation analysis; they
then performed CT scan segmentation analysis. The volumetric lung segmentation of each
CT scan was performed by using open-source 3D Slicer software (version 4.11.20210226,
http://www.slicer.org, accessed on 28 February 2021). Slice-by-slice, a volumetric region of
interest (VOI) was manually drawn on mediastinal window scans, with the goal of covering
total consolidation volume and avoiding the pulmonary vessels, or bronchi, and cavitations.

2.4. Radiomic Features Extraction

The 3D Slicer Radiomics extension (pyradiomics library [18]) was used to extract
107 radiomic features from the mediastinal window of unenhanced Chest CT scans, includ-
ing first and second order features: 19 features first order statistics, 13 features 2D and 3D
shapes, 16 features Grey Level Size Zone Matrix (GLSZM), 5 features Neighbouring Gray
Tone Difference Matrix (NGTDM), 14 features Gray Level Dependence Matrix (GLDM),
24 features gray-level co-occurrence matrix (GLCM), and 16 features gray level run length
matrix (GLRLM).

2.5. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). Categorical variables were
described as counts and percentages. Gaussian distribution was tested by the Shapiro–Wilk
test: continuous parametric variables were compared by using the Student t-test, while non-
parametric variables were compared with the Mann–Whitney U test. Statistical significance
was assessed with p < 0.05. For inferential comparisons, correction for multiple testing
was done with the Holm–Bonferroni method; that is, the smallest p value was compared
to 0.05/107 = 0.00047 [27]. Statistical analysis was performed using MedCalc Statistical
Software version 20.013 (MedCalc Software bvba, Ostend, Belgium).

Receiver operating characteristic (ROC) curves, and the calculated areas under the
curve (AUCs), were calculated to test the significant performance of chest CT radiomic
features in differentiating LC from TB; sensitivity and specificity were evaluated too.

3. Results
3.1. Study Population and Patients Data

From an initial population of 60 patients, ten (16%) were excluded for the absence of
TB consolidation at chest CT examination, three (5%) were for previous pulmonary surgery,
two (3%) were for the availability of only CT scans with contrast media administration,
and five (8%) patients were excluded for the presence of severe motion artifacts on chest
CT images.

Thus, the final population comprised forty patients who were finally enrolled, where
31 were male (77%) and 9 were female (23%), with a mean age of 59 ± 13 (SD) years and an

http://www.slicer.org
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age range of 21–82. Among those, 28 patients (70%) were affected by LC, and 12 patients
(30%) were affected by TB. The enrollment flowchart of the study is shown in Figure 1.

Figure 1. Patients’ enrollment flowchart.

There were 19 (48%) patients who had a current smoking habit, and 21 (52%) had
never smoked. Additionally, 29 (73%) participants had at least one underlying comorbidity,
and diabetes mellitus and hypertension were the most common reported. Among the
patients, 33 (82%) reported symptoms such as cough (16/40), dyspnea (7/40), fever (11/40),
and weight-loss (9/40), while seven patients (18%) were asymptomatic. The correlation
of patients’ data and clinical parameters, between the two patient groups, showed that
significant differences were found in normal WBC count (p < 0.019) and age (p < 0.001), in
favor of the LC group (89% vs. 58%) and with an older population in LC group, respectively.
No other statistically significant differences were found, despite LC patients presenting
cough more than the TB group (13 vs. 3).

Full data about patients’ demographics, clinical records, and laboratory findings are
reported in Table 1.

Table 1. Patients’ demographics, clinical records, and laboratory findings.

Patients Data Total Patients
(n = 40)

LC Patients
(n = 28)

TB Patients
(n = 12) p Values

Mean age 59 ± 13 61 ± 8 55 ± 20 <0.001

Years (range) 21–82 52–77 21–82

Male 31 (77%) 23 (82%) 8 (67%) 0.289

Female 9 (23%) 5 (21%) 4 (33%)

Smokers 19 (48%) 16 (57%) 3 (25%)
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Table 1. Cont.

Patients Data Total Patients
(n = 40)

LC Patients
(n = 28)

TB Patients
(n = 12) p Values

Non-smokers 30 (52%) 12 (43%) 9 (75%) 0.065

Comorbidities 29 (73%) 21 (75%) 8 (67%) 0.593

Blood test data

Normal WBC count 32 (80%) 25 (89%) 7 (58%) 0.019

Reduced WBC count 3 (7%) 2 (7%) 1 (8%)

Increased WBC count 5 (13%) 1 (3%) 4 (33%)

Normal ESR 16 (40%) 14 (50%) 2 (17%) 0.052

Increased ESR 24 (60%) 14 (50%) 10 (83%)

Normal HB 11 (28%) 21 (75%) 8 (67%)

Reduces HB 29 (72%) 7 (25%) 4 (33%)

Signs and symptoms

Dyspnea 7 (18%) 6 (21%) 1 (8%) 0.445

Cough 16 (40%) 13 (46%) 3 (25%) 0.291

Fever 11 (28%) 7 (25%) 4(33%) 0.298

Weight-loss 9 (23%) 4 (14%) 5 (42%) 0.431

Asymptomatic 7 (18%) 4 (14%) 3 (25%) 0.609
Note: All significant p values are highlighted in bold. Normal values: WBC count 4.00–11.0 × 109/L; ESR
0–13 mm/h; HB 12–18 g/dL. Abbreviations: WBC (White Blood Cell), ESR (Erythrocyte Sedimentation Rate),
HB (Hemoglobin).

3.2. 3D Segmentation and Radiomic Features

Figures 2 and 3 show CT scan examples of LC and TB; volumetric segmentations of
both LC and TB are shown in Figures 4 and 5.

Figure 2. (a) Lung window and (b) mediastinal window of axial thin-section unenhanced chest CT
images of a 76-year-old man, who is a former smoker. Images show multiple gross consolidation
opacities without air-bronchogram, with irregular margins in the left upper lobe, as well as a
cavitation (asterisks) within the contest and interstitial septal thickening. Diagnosis of lung cancer
was confirmed by pulmonary biopsy.

From the volumetric segmentation of lung parenchyma, the software itself has rou-
tinely extracted 107 radiomic features from chest CT scans. In the comparison between
LC patients and TB patients, 16 radiomic parameters showed significantly different results
after correction for multiple testing (Table 2).
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Figure 3. (a) Lung window and (b) mediastinal window of axial thin-section unenhanced chest CT
images of a 21-year-old man. Images show a single consolidation opacity with air bronchogram and
irregular margins in the right upper lobe, associated with one gross cavitation (asterisks). Diagnosis
of pulmonary tuberculosis was confirmed by pulmonary biopsy.

Figure 4. Mediastinal window of axial thin-section unenhanced chest CT images in a 67-year-old
man with proven diagnosis of lung cancer. (a) Chest CT image shows, in the left inferior lobe, a
consolidative opacity without air bronchogram. (b) The same image showing the consolidative
opacity after radiomic volumetric segmentation (in green).

Figure 5. Mediastinal window of axial thin-section unenhanced chest CT images in a 84-year-old man
with proven diagnosis of pulmonary tuberculosis. (a) Chest CT image shows, in the left inferior lobe,
a consolidative opacity without air bronchogram. (b) The same image showing the consolidative
opacity after radiomic volumetric segmentation (in green).

In particular, among Shape features, only Surface Volume Ratio was able to signif-
icantly differentiate between two patient groups (p = 0.0003) after adjustment for multi-
ple testing, with a good performance (AUC: 0.868, sensitivity: 85.7%, specificity: 83.3%,
p < 0.0001) in discriminating LC patients.

Among First Order features, two (10Percentile and Mean) significantly differentiated
LC and TB patients (p = 0.0002 and p =0.0003 respectively); 10Percentile showed the
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best performance (AUC: 0.881, sensitivity: 75%, specificity: 91.7%, p <0.0001) for LC
patients’ individuation.

Table 2. Radiomic features. * Holm–Bonferroni correction.

RADIOMIC FEATURES LC Patients TB Patients

SHAPE Mean ± SD Mean ± SD p Value *

Surface Volume Ratio 0.19 ± 0.07 0.40 ± 0.29 0.0003

FIRST ORDER

10Percentile −17.00 ± 98.34 −272.02 ± 365.81 0.0002

Mean 21.39 ± 28.18 −41.16 ± 77.67 0.0003

GLCM

Difference Average 0.35 ± 0.41 1.31± 0.97 0.0004

Idm 0.90 ± 0.08 0.75 ± 0.11 0.0004

GLDM

Large Dependence Emphasis 412.52 ± 99.93 217.46 ± 101.43 <0.0001

Small Dependence Emphasis 0.05 ± 0.03 0.13 ± 0.05 <0.0001

GLRLM

Long Run Emphasis 26.40 ± 17.96 6.57 ± 3.61 <0.0001

Run Length Non Uniformity
Normalized 0.26 ± 0.11 0.47 ± 0.15 <0.0001

Run Percentage 0.32 ± 0.12 0.57 ± 0.15 <0.0001

Run Variance 11.48 ± 7.45 2.71 ± 1.77 <0.0001

Short Run Emphasis 0.50 ± 0.12 0.70 ± 0.11 <0.0001

GLSZM

Large Area Emphasis 101,975.94 ± 128,709.67 12,348.75 ± 14,796.78 0.0002

Large Area Low Gray Level
Emphasis 5224.23 ± 21,362.92 58.69 ± 53.66 <0.0001

Zone Percentage 0.05 ± 0.04 0.15 ± 0.08 <0.0001

Zone Variance 100,830.32 ± 127,515.59 12,256.00 ± 14,766.60 0.0002

Significant differences were found in two Grey Level Co-occurrence Matrix (GLCM)
features, (Difference Average and Idm) which demonstrated significant differences between
two groups (both p = 0.0004) with the best performance of Idm (AUC: 0.857, sensitivity:
92.9%, specificity: 66.7%, p < 0.0001) in discriminating LC.

Among Gray Level Dependence Matrix (GLDM) features, two (Large Dependence
Emphasis, and Small Dependence Emphasis,) were able to differentiate, in a significant
way, between TB and LC (p = 0.00000026–0.000016), with the best performance of Large
Dependence Emphasis (AUC: 0.92, sensitivity: 85.7%, specificity: 91.7%, p < 0.0001) in
discriminating LC.

Significant differences were found in five Grey-Level Run Length Matrix (GLRLM)
features, (Long Run Emphasis, Run Length Non Uniformity Normalized, Run Percentage,
Run Variance, Short Run Emphasis), (p < 0.0000077–0.000028); among them, Run Variance
showed the best performance (AUC: 0.938, sensitivity: 85.7%, specificity: 100%, p < 0.0001)
to distinguish LC from TB.

Among Gray Level Size Zone Matrix (GLSZM) features, four (Large Area Emphasis,
Large Area Low Gray Level Emphasis, Zone Percentage, and Zone Variance) showed
significant differences between TB and LC (p < 0.000017–0.0002), and Large Area Low
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Gray Level Emphasis demonstrated the best performance in discriminating LC (AUC: 0.92,
sensitivity: 75%, specificity: 100%, p < 0.0001).

After adjustment for multiple testing, no Neighboring Gray Tone Difference Matrix
(NGTDM) features were able to discriminate, in a significant way, between LC and TB
group. Figure 6 shows the best AUCs for each category of radiomic features.

Figure 6. Receiver operating characteristic (ROC) curves used to test the performance of Radiomic
features to discriminate lung cancer from tuberculosis, showing the best area under the curves
(AUCs) for each category: (A) Surface Volume Ratio (AUC: 0.868, sensitivity: 85.7%, specificity:
83.3%, p < 0.0001) for Shape features; (B) 10Percentile (AUC: 0.881, sensitivity: 75%, specificity:
91.7%, p < 0.0001) for First Order features; (C) Idm (AUC: 0.857, sensitivity: 92.9%, specificity: 66.7%,
p < 0.0001) in Grey Level Co-occurrence Matrix (GLCM) features; (D) Large Dependence Emphasis
(AUC: 0.92, sensitivity: 85.7%, specificity: 91.7%, p < 0.0001) in Gray Level Dependence Matrix
(GLDM) features; (E) Run Variance (AUC: 0.938, sensitivity: 85.7%, specificity: 100%, p < 0.0001) for
Grey-Level Run Length Matrix (GLRLM) features; (F) Large Area Low Gray Level Emphasis (AUC:
0.92, sensitivity: 75%, specificity: 100%, p < 0.0001) for Gray Level Size Zone Matrix (GLSZM) features.

4. Discussion

This study investigated radiomic features of pulmonary tuberculosis (TB) and lung
cancer (LC), to assess the potential role of Radiomic in differentiating between these two
diseases, in 40 patients living in developing country. Significant differences were found
after adjustment for multiple testing in 16/107 radiomic features extracted: 1 Shape, 2 First
Order, 2 GLCM, 2 GLDM, 5 GLRLM, and 4 GLSZM, all with p < 0.05. Furthermore,
Large Dependence Emphasis (GLDM feature) and Large Area Low Gray Level Emphasis
(GLSZM feature) showed the best performance in discriminating LC from TB (AUC: 0.92,
sensitivity: 85.7%, specificity: 91.7%, p < 0.0001; AUC: 0.92, sensitivity: 75%, specificity:
100%, p < 0.0001, respectively). The correlation of patients’ data and clinical parameters
showed significant differences in normal WBC count (p < 0.019) and age (p < 0.001), with
an older population in the LC group.

Our results, in line with previous literature studies, reinforced the idea that Radiomics
could have a future role in the management of patients affected by pulmonary mass, in par-
ticular in low-income nations, to reach the diagnosis earlier and to avoid treatment’s delay.

To date, only a few studies investigated the role of Radiomics in differential diagnosis
between LC and TB. In particular, E.N. Cui and colleagues [25] validated a radiomics
method for distinguishing pulmonary TB from LC, based on CT images, by analyzing
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peritumoral regions with good discrimination (AUC: 0.91 for training cohort, and 0.90 for
validation cohort).

In a remarkable study conducted by Feng B. et al. [26], in line with our results, 426 pa-
tients were enrolled to investigate the radiomics nomogram’s differential diagnostic per-
formance in discriminating between tuberculous granuloma and lung adenocarcinoma,
appearing as solitary pulmonary solid nodules. Individualized radiomics nomograms,
incorporating the radiomics features and clinical factors, were constructed to validate
the diagnostic ability. Radiomics signature, age, and spiculation sign, being independent
predictors, were used to build the radiomics nomogram, which showed higher diagnos-
tic accuracy than each single model (AUCs: 0.966, 0.934, and 0.906 for training, internal
validation, and external validation cohorts, respectively).

Similarly, some studies have focused on the Radiomics performance to discriminate
between LC and atypical granulomas. In detail, Yang X. et al. investigated the ability of
quantitative CT radiomics to preoperatively differentiate solitary atypical granulomatous
nodules from lung adenocarcinoma, in 302 patients, by analyzing the predictive perfor-
mance of combined CT-based radiomics and clinical risk factors with three models, in
both enhanced and unenhanced chest CT. Their study showed that the discrimination’s
predictive performance of combined, unenhanced CT-based radiomics and clinical risk
factors performed better than simple radiomics models (AUCs: 0.935 vs. 0.843). Moreover,
the authors found that LC patients had larger CT-size and were more likely to be older
(>50 years old) than patients with granulomas, similarly to our results.

On the same line, Dennie C. and colleagues [28] reported that CT texture analysis
achieved good accuracy in differentiating LC and granulomas lesions (AUC: 0.90, 88% of
sensitivity, and 92% of specificity). These encouraging results may be reflecting the strong
tumor heterogeneity compared to granulomas.

Future perspectives on LC and TB discrimination were provided by the promising
results of Feng B. and colleagues [29], who investigated the diagnostic performance of a
CT-based deep learning nomogram (DLN) in 550 patients with solitary solid pulmonary
nodules. In their study, deep learning signature, gender, age, and lobulated shape, as
independent predictors, were used to build the DLN; this combined model showed better
diagnostic accuracy than any single model (AUCs 0.889, 0.879, and 0.809, in the training,
internal validation, and external validation cohorts, respectively).

Prompt differential diagnosis between TB and LC is crucial to provide appropriate
management and to avoid delayed diagnosis and treatment of patients affected by LC,
which frequently leads to poor outcomes and survival [11]. In developing countries, there
is limited access to invasive lung biopsy; thus, a non-invasive diagnostic method is often
required. In this contest, Radiomics has emerged in the last decades, in the imaging field,
as a supporting tool for clinicians in the proper management and workup of oncologic
patients [20].

This study has several limitations: first, the small sample size of patients enrolled,
also caused by motion artefacts on CT, could be avoided in a prospective study; secondly,
the retrospective nature of the study; thirdly, intrinsic Radiomics limits, as the lack of
standardization of image acquisition, lack of uniformization of image processing, operators’
subjectivity, and the lack of validation cohort.

In the future, these initial findings need to be validated, by further prospective studies,
in order to overcome these drawbacks and validate Radiomics as an imaging biomarker
with good reproducibility.

In conclusion, Radiomics may be a non-invasive imaging tool in many developing
countries for differentiating LC from TB, and it may have a pivotal role in avoiding delayed
diagnosis of LC and improving the management of oncological patients.
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