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Multiple sclerosis genetic 
and non‑genetic factors 
interact through the transient 
transcriptome
Renato Umeton1,2,3,4,14*, Gianmarco Bellucci5,14, Rachele Bigi5,6, 
Silvia Romano5, Maria Chiara Buscarinu5,6, Roberta Reniè5, Virginia Rinaldi5, 
Raffaella Pizzolato Umeton7,8,9,10, Emanuele Morena5, Carmela Romano5, 
Rosella Mechelli11,12, Marco Salvetti5,13* & Giovanni Ristori5,6*

A clinically actionable understanding of multiple sclerosis (MS) etiology goes through GWAS 
interpretation, prompting research on new gene regulatory models. Our previous investigations 
suggested heterogeneity in etiology components and stochasticity in the interaction between genetic 
and non-genetic factors. To find a unifying model for this evidence, we focused on the recently mapped 
transient transcriptome (TT), that is mostly coded by intergenic and intronic regions, with half-life of 
minutes. Through a colocalization analysis, here we demonstrate that genomic regions coding for the 
TT are significantly enriched for MS-associated GWAS variants and DNA binding sites for molecular 
transducers mediating putative, non-genetic, determinants of MS (vitamin D deficiency, Epstein 
Barr virus latent infection, B cell dysfunction), indicating TT-coding regions as MS etiopathogenetic 
hotspots. Future research comparing cell-specific transient and stable transcriptomes may clarify 
the interplay between genetic variability and non-genetic factors causing MS. To this purpose, our 
colocalization analysis provides a freely available data resource at www.​mscol​oc.​com.

A large body of literature agrees that regulatory genomic intervals, especially those encompassing enhancers, 
are enriched with disease-associated DNA elements. Most of this evidence comes from genome wide associa-
tion studies (GWAS) based on single polymorphism nucleotides (SNPs) representing common variants1–5, even 
though a recent study showed that low-frequency and rare coding variants may somewhat contribute to mul-
tifactorial diseases6. Several characteristics of regulatory disease-associated genetic variants complicate GWAS 
interpretation, prompting research on new gene regulatory models: (i) SNPs are chosen as haplotypes to spare the 
genotyping work needed for the large number of samples used in GWAS, therefore fine mapping and epigenetic 
studies are required to integrate GWAS data7–10; (ii) a fraction of supposedly causal disease-associated variants 
directly alters recognizable transcription factor binding motifs as it might be expected, according to their regu-
latory function4; (iii) the identified GWAS signals are likely to exert highly contextual (i.e., time- and position-
dependent) regulatory effects, that may change according to the tissue and to the time when they receive an input 
from inside or outside the cell. In summary, current gene regulatory models help only in part to fully detail which 
disease-associated SNP signals are causal, and by which exact mechanisms they are causal. Recent studies on the 
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biological spectrum of human DNase I hypersensitive sites (DHSs), that are disease-associated markers 
of regulatory DNA, may help to better rework GWAS data and particularly to contextualize the genomic 
variants according to tissue/cell states and to gene body colocalization of DHSs11. In this context, the latest 
version of the Genotype-Tissue Expression project may provide further insights into the tissue specificity 
of genetic effects, supporting the link between regulatory mechanisms and traits or complex diseases12.

Such layers of complexity are in agreement with our previous investigations on the interplay between 
genetic and non-genetic factors contributing to multiple sclerosis (MS) development: twin pairs studies13,14; 
disease modelling suggested stochastic phenomena (i.e., random events not necessarily resulting in dis-
ease in all individuals) contributing to the disease onset and progression15,16; bioinformatics analyses 
determined a significant enrichment of binding motifs for Epstein-Barr virus (EBV) nuclear antigen 2 
(EBNA2) and vitamin D receptor (VDR) in genomic regions containing MS-associated GWAS variants17. 
We also demonstrated that genomic variants of EBNA2 resulted to be MS-associated18, and other groups 
expanded our findings showing that enrichment of EBNA2-binding regions on GWAS DNA intervals is 
involved in the pathogenesis of autoimmune disorders, including MS19. The role of EBV proteins and/or 
VDR as key transcriptional regulators in MS falls within well-known sero-epidemiological evidences on 
the virus as risk factor for disease development20, and on the vitamin deficiency associated to different 
disease prevalence in diverse geographic areas21. Recent works have even reinforced the EBV causal role 
and its mechanistic link for MS development22,23.

A recent sequencing innovation (namely, TT-seq) allowed to map the transient transcriptome that 
has a typical half-life within minutes, compared to stable RNA elements, such as protein-coding mRNAs, 
long-noncoding RNAs, and micro-RNAs, that persists at least a few hours24–26. The transient transcrip-
tome (TT) includes mostly enhancer RNAs (eRNA), short intergenic non-coding RNAs (sincRNA) and 
antisense RNAs (asRNA). eRNAs are bidirectionally transcribed by mammalian genome regions having 
specific histone modifications to finely regulate chromatin conformation and transcription. Unlike pro-
moters, enhancers can execute their functions regardless of orientation, position and spatial segregation 
from target genes that may be affected both in cis and in trans by eRNAs. Most sincRNAs are defined 
as genomic regions located within 10 kbp of a GENOME mRNA transcription start site. Overall, these 
transient RNAs (trRNA) are relatively short in length, generally lack a secondary structure, and would not 
present those chemical modifications that characterize unidirectional and polyadenylated stable RNAs24,27. 
Other recent works based on time-resolved analysis, agree on the eRNAs very rapid functional dynamics 
model while interacting with the transcriptional co-activator acetyltransferase CBP/p300 complex28,29. 
This confirms the highly contextual role of eRNAs through the control of transcription burst frequencies, 
which are known to influence cell-type-specific gene expression profiles30. Along these lines, a recent study 
showed that T cells selectively filter oscillatory signals within the minute timescale31, further supporting 
the aforementioned model.

On these bases, we leveraged the recent sequencing innovations in the mapping of the transient tran-
scriptome, in particular the work by Michel et al. on T lymphocytes (that are known to play a major 
role in MS pathogenesis), that applied both the TT-seq and the RNA-seq protocol in Jukart cells dur-
ing their immediate response to the stimulation with ionomycin and phorbol 12-myristate 13-acetate 
(PMA). Michel’s study allowed to compare the trRNAs and mRNAs with high temporal resolution, show-
ing that TT-seq, but not RNAseq, caught rapid changes in transcriptional activity just after 15 min after 
stimulation24,25. We hypothesized that MS-associated GWAS signals prevalently fall within regulatory 
regions of DNA coding for trRNAs. In theory, the genomic intervals coding for this transient transcriptome 
may be the hotspots where temporospatial occurrences may coalesce and so contribute to physiological 
(developmental and/or adaptive) outcomes, or possibly give rise to disease onset or progression. This study 
is aimed at verifying this working hypothesis through a colocalization analysis and its further dissection 
in the context of MS.

Results
MS‑associated GWAS signals colocalize with regulatory regions of DNA plausibly coding 
for trRNAs.  We set up our region-of-interest (ROI) inside GWAS catalogue32 by considering all MS 
GWAS that were published, extracting all SNP positions, and creating a single set of genomic coordinates 
that therefore encompass all GWAS-derived or GWAS-verified signal for MS. We then refined the SNP 
list by pruning out about 1.5% of the SNPs as they did not contain intelligible genomic annotations or 
were duplicates. The final ROI list is reported in Additional File: Table  S1 and consists of 603 unique 
single-nucleotide regions; to provide a “threshold” against which the match ROI <  > Database would be 
benchmarked, we used 107,423 regions as Universe, that corresponded to the signals coming from the 
entire GWAS Catalog.

Next, we matched through colocalization analyses our ROI with lists of regions resulting from the 
work by Michel et al., which mapped the transient and stable transcriptome captured by TT-seq after T 
cell stimulation24. We found a significant enrichment of MS-associated genetic variants in the transient 
transcriptome (p-value = 2.80 × 10−9; Table 1). Of note, when we split the transcriptome list in two subsets 
for long (≥ 60 min) and short (< 60 min) half-life, we found that only the short half-life subset significantly 
colocalized with the ROI (p-value 2.06 × 10−8 vs. 0.09). This finding was indicative of the relationship 
between MS-associated GWAS signals and the regulatory regions of DNA coding for trRNAs.
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When we further dissected the mapping of the ROI colocalization signals, we found a significant 
excess of intergenic and intron regions (as anticipated), as well as their prevalent distribution away from 
the transcription start site (TSS; Figure Supplement 1A). Notably, when we extended this analysis to 
GWAS data coming from other multifactorial diseases or traits, dividing immune-mediated and other 
complex conditions, we found highly comparable profiles (supplementary Fig. S1B–C, Additional File: 
Table S2), suggesting that the colocalization between MS-associated DNA intervals and intergenic or 
intronic sequences, plausibly referring to trRNA coding regions, is shared by the genetic architecture of 
most multifactorial disorders.

To consolidate this result and gain a deeper biological insight, we extended the colocalization analysis 
matching the ROI with a vast set of databases of regulatory DNA regions, including enhancers and super-
enhancers, derived from experiments on diverse tissue types (a total of 4,697,782 DNA regions, plausibly 
coding for trRNA, were extracted from a wide variety of raw data sources; referenced in Additional File: 
Table S3). To improve interpretability of the results through ranking, we implemented a harmonic score 

Table 1.   Enrichment of MS-associated genetic variants in lists of T-cell transient transcripts extracted from 
Michel et al., 2017. The whole transcriptome list was split in two sub-lists depending on the transcripts’ half-
life: short (< 60′) and long (≥ 60′), respectively. Results are considered significant at p < 0.05 and are highlighted 
in bold.

List − log (p-value) p-value Odds ratio Support List size

Whole transient transcriptome 8.55 2.80 × 10−9 1.65 241 22,126

Short half-life transcripts 7.68 2.06 × 10−8 1.63 209 20,143

Long half-life transcripts 1.05 0.09 1.29 35 1993
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Figure 1.   Enrichment of MS-associated SNPs in databases of regulatory elements, sorted by experiment/cell 
lines. X-axis shows the Odd Ratio, y-axis shows the − log (pValue); dot size is proportional to to the Harmonic 
Score (HS), a comprehensive estimation of the relevance of hits, as derived by merging and balancing the OR, 
pValue and Support ( i.e., the number of hits resulting from the colocalization analysis) of each match. Thus, 
prioritized hits are represented by dots that occupy the upper-right area of the chart. Dots are coloured by cell 
type. Labeled points have HS > 50. Labels were arbitrarily designated according to the database of origin and the 
cell lineage where the enrichment occurred. Supplementary Table S4displays in detail the results that generated 
this plot.
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(HS), based on the Odd Ratio, the − log (p-value), and the support of each match. Statistically significant 
results came from sets included in SEA, seDB, dbSuper and other single lists of enhancers and non-coding 
RNAs derived from experiments on diverse tissue types, not necessarily belonging to the immune cells 
lineages (Fig. 1, black dots; Additional File: Table S4). On another hand, we found a strong enrichment 
of MS-associated genetic variants in cell lines of hematopoietic lineage, including CD19 + and CD20 + B 
lymphocytes, CD4 + T helper cells, and CD14 + monocytes. This is in line with the GWAS data and the known 
immunopathogenesis of the disease, as well as with the fact that we consider a TT collection coming from a 
lymphoid line for the co-localization analysis. Moreover, among the significant hits, we found collections coming 
from brain resident cell, in particular microglial-specific enhancers, which is in line with recent reports on brain 
cell type-specific enhancer-promoter interactome activities, and the latest GWAS on MS genomic mapping33,34. 
Non-relevant tissues serving as controls (such as kidney, muscle, glands, etc.) scored low in the ranking, crowd-
ing the bottom-left corner of Fig. 1 (grey dots; see also Additional File: Table S4).

Genetic and non‑genetic factors for MS etiology converge in genomic regions plausibly cod‑
ing for the transient transcriptome.  Independent studies support the fact that MS GWAS intervals are 
enriched with DNA binding regions (DBRs) for protein ‘transducers’ mediating non-genetic factors of puta-
tive etiologic relevance in MS, such as vitamin D deficiency or EBV latent infection17,19. Therefore, we further 
inquired whether DNA regions plausibly coding for trRNA would share these features (i.e., they colocalize with 
such DRBs). We set up 4 new ROIs corresponding to the DBRs for VDR, activation-induced cytidine deaminase 
(AID), EBNA2, and Epstein Barr nuclear antigen 3 (EBNA3C), chosen among viral or host’s nuclear factors 
potentially associated to MS etiopathogenesis35–37. The DBRs for each nuclear factor were derived from recent 
literature (Additional File: Table S5) and matched with the GWAS-derived MS signals to confirm and expand 
previous results. We found statistically significant results for VDR, EBNA2, and AID for all the SNP position 
extensions (± 50, 100, 200 kb up- and down-stream), while for EBNA3C significant results came out at exten-
sion of ± 100 and 200 kilobases. This finding suggests that several DBRs can impact on the MS-associated DNA 
intervals through colocalization (Table 2).

Building once again on the work by Michel et al.25, we inquired whether there was a colocalization between 
genomic regions containing MS-associated variants, DBRs for VDR, EBNA2, EBNA3C, AID, and DNA intervals 
plausibly coding for trRNA. To this end, we considered the transient transcriptome that proved to be enriched 
with MS-associated variants (Table 1), and we then matched the corresponding coding regions with the DBRs 
for the four molecular transducers. For this analysis DBRs for EBNA2 (6880 regions), EBNA3C (3835 regions), 
AID (4823 regions), and VDR (23,409 regions), represented the ROI, while the ENCODE database of Transcrip-
tion Factors Binding Sites served as Universe (13,202,334 regions; Fig. 2a). We report the results of this analysis 
in Table 3, which shows the significant colocalization of DNA regions plausibly coding for trRNAs with both 
MS-relevant GWAS signals, and DBR of 3 out of 4 factors active at nuclear level, and potentially associated with 
MS. The DBR for EBNA3C did not reach statistical significance, though it showed higher values of support for 
short half-life transcripts.

To review and confirm previous colocalizations, we considered the genomic regions resulting from the above 
reported match between the MS-associated GWAS intervals and the databases of regulatory DNA regions, con-
taining enhancers and super-enhancers, plausibly enriched in trRNA-coding sequences (Fig. 2 and the online 
data resource). We therefore matched these DNA regions with the DBR for VDR, EBNA2, EBNA3C and AID, 
finding significant enrichments that allow to contextualize and prioritize genomic positions, cell/tissue identity 
or cell status associated to MS. Considering the harmonic score obtained from these colocalization analyses, the 
top hits in EBNA2, EBNA3C, and AID involved lymphoid (CD19 + B cell lines and lymphomas; T regulatory cells; 
tonsils) and monocyte-macrophage lineages (peripheral macrophages; dendritic cells) from experiments included 
in the ENCODE, dbsuper, roadmapEpigenomics databases; however, also global collections of superenhancers/
enhancers and brain resident lineages appeared far from the bottom-left corner of Fig. 2 (the control datasets) 
(Fig. 2A–C, see also Additional File: Table S6 and the online resource). Even though immune cells prevailed 
also in VDR top hits, a less stringent polarization was seen, somehow reflecting the wide-spreading actions of 

Table 2.   Enrichment of MS-GWAS regions (at ± 50,100,200 kb range of extension) in lists (number in brackets 
in the right-most column) of DNA binding sites of human and viral molecular transducers; significant results 
(p < 0.05, corresponding to a − log (p) > 1.301) in bold.

 ±  50 KB  ± 100 KB  ± 200 KB

− log 
(pValue) Odds ratio Support

Harmonic 
score

− log 
(pValue) Odds ratio Support

Harmonic 
score

− log 
(pValue) Odds ratio Support

Harmonic 
score

EBNA2 
(6880) 10.658 1.790 158 45.544 8.616 1.509 239 38.327 15.444 1.542 421 41.913

EBNA3C 
(3335) 0.614 1.108 55 11.765 1.647 1.227 109 20.956 3.448 1.294 199 28.098

AID (4823) 4.963 1.596 99 35.793 3.890 1.374 153 30.259 13.924 1.619 309 43.308

VDR 
(23,409) 19.348 1.575 474 43.564 19.181 1.422 767 39.635 32.090 1.424 1329 40.872
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this transducer in human biology (Fig. 2D). However, with a more stringent cutoff of Harmonic Score > 40 that 
selects the most significant hits (Fig. Supplement 2), a core subset of MS-relevant cell lineages, shared across all 
four examined transducers, became evident (Additional File: Table S7).

A data resource for future research on transcriptional regulation in MS.  A public web interface 
for browsing the results of our colocalization analysis is freely available at www.​mscol​oc.​com. This is a compre-
hensive genomic atlas disentangling specific aspects of MS gene-environment interactions to support further 
research on transcriptional regulation in MS. It includes the whole list of results derived from ROI, DBRs and 
database matches (Fig. 3a) across all performed experiments that yielded significant results. The user can navi-
gate across the results and perform tailored queries searching and filtering for a variety of parameters, includ-
ing MS-associated variant, DBR, experimental cell type, other match details (see Fig. 3b for all available search 
and filter modalities). Moreover, personalized HS, p-value, support and Odd Ratio threshold can easily be set 
to screen results, that are readily displayed in tabular format. To provide an example, we select “AID, EBNA2, 
EBNA3C, VDR” in the ‘Matched DBR region (s)’ panel and obtain the list of MS-associated SNPs (that proved 
to be enriched in genomic regions plausibly coding for trRNA) targeted by all four transducers (Fig.  3b,c). 
Through this approach we searched for MS-associated regions shared by the DBRs analyzed, and we were able 
to prioritize 275 genomic regions (almost half of the MS-associated GWAS SNPs) capable of binding at least 2 
molecular transducers. These regions are ‘hotspots’ of interactions between genetic and nongenetic modifier of 
MS risk/protection: all four proteins (VDR, AID, EBNA2, EBNA3C) proved to target 24 regions, 3 of them 115 
regions, and 2 of them 136 regions. A detailed legend and more example queries may be found on the online 
data resource website.

Finally, to obtain a functional mapping of MS-TrRNA regions, we attempted to identify MS-relevant genes by 
integrating our results with the ‘activity-by-contact’ (ABC) model (Fulco et al., 2019; Nasser et al., 2021), which 
was recently developed to define cell-specific, gene-enhancers connections according to chromatin conformation 
and accessibility, as well as to histone acethylation-methylation status. We retrieved a total of 77 gene-enhancers 
pairings (Additional File: Table S8), enriched in IL6-JAK-STAT3, IL-18, IL2RB pathways. Among these, we 
focused on MS variants-trRNA colocalization hotspots targeted by all four (AID, EBNA2, EBNA3C, VDR, n = 24) 
or three (AID, EBNA2, VDR, n = 60; see also Fig. 3c) molecular transducers, excluding EBNA3C, as it did not 
reach statistical significance in previous analysis (Table 3): ABC gene-enhancers connections were found for 
for 10 out of 84 hotspot SNPs, corresponding to 31 genes (Table 4 and Fig. 4). As expected from the pleiotropy 
of enhancer activity, many MS-trRNA hotspots were linked to multiple genes differentially regulated in distinct 
cell types: for example, the MS-trRNA hotspot in rs11026091 was linked to MRGPRE in T cells and MRGPRG-
AS1 in B cells (see also Additional File: Table S9). Results included regulators of immune cell activity (MAP3K8, 
GIMAP8, TMEM176A, TMEM176B), ion channels and solute carriers (KCNH2, KCNMA1, SLC25A42), and 
transcriptional modulators (ICE2, SIN3B, NWD1). 

Moreover, in most cases, the ABC-identified genes differed from the candidate genes reported in MS GWAS, 
underscoring the relevance of integrative approaches to annotate statistical genomic associations.

Discussion
Our study supports the hypothesis that investigations on the transient transcriptome may contribute to clarify 
how the GWAS signals affect the etiopathogenesis of MS and possibly of other complex disorders. Specifically, we 
show that genomic regions coding for the transient transcriptome recently described in T cells25, are significantly 
enriched for both MS-associated GWAS variants, as well as for DNA binding sites for protein ‘transducers’ of 
non-genetic signals, chosen among those plausibly associated to MS. The colocalization of GWAS intervals and 
some DNA-binding factors involved in MS etiology has already been reported17–19. Here we reinforce this premise 
and extend the result to AID, whose DBRs were not previously correlated to MS-associated genetic signals. The 
result is of relevance considering the role of AID in B cell biology and the high effectiveness of B cell-depleting 
approaches recently introduced in clinical practice to tackle the disease progression (Cencioni et al. 2021). Our 
colocalization analysis suggests a model in which trRNA-coding regions are hotspots of convergence between 
genetic ad non-genetic factors of risk/protection for MS. These hotspots are shared by two or more of the chosen 
transducers, indicating possible additive pathogenic effects or a multi-hits model to reach the threshold for MS 
development (see Fig. 3c and Additional File: Table S4). This model may reconcile previous evidences coming 
from ours and others’ studies on MS etiology: genetic susceptibility plausibly exerts a soft effect (with the notable 
exception of the major histocompatibility complex variants, that are known to directly shape the repertoire of 
the (auto-)immune effectors); in fact, single base changes in GWAS loci could conceivably lead to subtle changes 
in TT expression, and twin studies in Mediterranean areas showed a disease concordance as low as 1 out of 10 
identical twin pairs (Ristori et al. 2006). A likely higher weight has the non-genetic component, that seems to 
be multiple and heterogenous (with the notable exception of EBV, the most recurring and convincing risk fac-
tor for MS development; Ascherio et al., 2001), and that may favor stochastic events, by prevalently acting on 
genome regions coding for TT.

In homeostatic conditions, it can be hypothesized that DNA sequences coding for trRNA are composed of 
regulatory regions where genetic variability and non-genetic signals interact to finely regulate the gene expression 
according to cell identity, developmental or adaptive states, and time-dependent stimuli. As a matter of fact, the 
sequence variability of these regions and the strict time-dependence of their transcription could be instrumental 
to adaptive features; however, these same features make these regions susceptible to become dysfunctional or to 

http://www.mscoloc.com
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be the targets of pathogenic interaction. In some instances, these detrimental interactions come from outside 
the cell, such as in the case of EBV interference with host transcription38,39, and the pathogenic consequences of 
vitamin D deficiency; in other cases, the dysfunction develops within the cell, such as the tumorigenic activity 
of AID in B cells40,41.

To support the relationship between trRNA and transcription of regulatory DNA regions, we matched a large 
dataset of enhancers and super-enhancers with MS-GWAS signals and DBR for VDR, EBNA2, EBNA3C and 
AID. The significant enrichment in cell lines and cell status coming from the hematopoietic lineages and the 
CNS-specific cell subsets corroborates data coming from recent reports showing the relevance of contextualizing 
and prioritizing the role of MS-associated GWAS signals33,34,42,43). Our analysis supports the pivotal regulatory 
role of enhancer transcription (i.e., a main component of transient transcriptome) that was recently reported as 
not dispensable for gene expression at the immunoglobulin locus and for antibody class switch recombination44, 
though more research is needed to unravel such topic at a finer grain.

Reports on the dynamics of time-course data are a recent area of focus within the analysis of gene expres-
sion, specifically in immune cells. Although current studies use methods that investigate time points related to 
the stable transcriptome (RNA-seq performed with time spans of hours), they clearly show that gene expression 
dynamics may influence allele specificity, regulatory programs that seem to depend on autoimmune disease-
associated loci, and different transcriptional profiles based on cell status after stimulation45. A recent work showed 
that an IL2ra enhancer, which harbors autoimmunity risk variants and was one of the first MS-associated loci 
from GWAS, has no impact on the gene level expression, but rather affects gene activation by delaying transcrip-
tion in response to extracellular stimuli46. The importance of the timing in the gene expression control emerges 
also from several studies implicating enhancers and super-enhancers in the process of phase separation and 
formation of nuclear condensates, where the transcriptional apparatus steps-up to drive robust genic responses 
(Sabari et al., 2018). The overall process seems to be highly dynamic, with time spans of seconds or minutes, and 
hence compatible with the temporal features of the transient transcriptome, which could somehow contribute 
to the formation of these phase-separated condensates.

We suggest that studies on transient transcriptomes may integrate previous RNA-seq data in accounting for 
the interplay between genetic variability and non-genetic etiologic factors leading to MS development. Possible 
correlation between transient and persisting transcriptome obtained in ex-vivo and in-vivo experimental set-
tings of neuroinflammation may help to better decipher the genomic regulatory syntax driven by non-coding 
DNA variants. In this context our results on ‘hotspots’, MS-associated trRNAs, and those obtained in the paper 
describing ABC mapping (Nasser et al., 2021) are concordant in identifying regulated additional genes, besides 
those resulting from current interpretations on GWAS data (Table 4 and Additional File: Table S6), thus reveal-
ing a complex scenario in cell-specific gene-enhancers interaction that supports the need of a wider approach 
in characterizing plausibly causal genes.

Components of a more-complex-than-anticipated regulation of gene expression could include transcriptional 
noise, transitory time-courses, erratic dynamics, and highly flexibility of some DNA regions, possibly oscillating 
between bistable states of enhancer and silencer47. Our analysis provides a platform for future studies on tran-
sient transcriptome, which we support by making our data resource available at www.​mscol​oc.​com. New gene 
regulatory models may emerge from this approach in order to better evaluate the meaning of GWAS in complex 

Figure 2.   Colocalization analysis of DBRs for human and viral molecular transducers, MS-associated SNPs and 
DNA regulatory regions derived from databases. (A) Schematic representation of the colocalization analysis. 
(ROI region of interest, DBR DNA binding regions, ENCODE TFBS transcription factor binding site). The 
figure shows the tracks we considered for the colocalization analyses. In brief, the ROI included the DBRs of 
MS-related viral and human transducers and was matched with MS-associated SNPs extended by 50, 100, and 
200 kilobases that colocalize with regions plausibly coding for trRNAs (Database). As a control (Universe), we 
took from ENCODE the entire list of transcription factors binding sites. Results were considered significant if a 
colocalization was found across ROI and a Databases element without occurring in the Universe as a statistically 
significant match. (B–E), Colocalization results of EBNA2, EBNA3C, AID, VDR. The charts display results of 
all matches, i.e., with MS-associated SNPs and their extension at ± 50, 100, 200 kb. X-axis shows the Odd Ratio, 
y-axis shows the − log (pValue); dot size is proportional to to the Harmonic Score (HS). Thus, prioritized hits 
are represented by dots that occupy the upper-right area of the chart. Dots are coloured by cell type. Top-scoring 
hits in each subgroup are labeled; labels were arbitrarily designated according to the database of origin and the 
cell lineage where the enrichment occurred.

◂

http://www.mscoloc.com
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traits and the impact of the enhancer transcription44, which was recently reported as an ancient and conserved, 
yet flexible, genomic regulatory syntax48.

Methods
Data sources.  Analyses were performed in Python and R. A data freeze was applied on 3/1/2020. All GWAS 
data was gathered from the GWAS Catalog through its REST API32; about 1.5% of this data was filtered out 
as part of a QC process aimed at homogenizing legacy and more recent data. The MS GWAS regions were 
extracted from the overall GWAS Catalog data filtering by trait EFO_0003885. All Transcription Factor Binding 
Site regions (TFBS) were obtained from the ENCODE portal49. All data was organized in various databases and 
data pipelines as detailed below. A modular and parallel data pipeline was created to: (1) readily generate and 
evaluate all experiments in the paper, (2) manage and organize all data coming from various region collections 
(42,075 ROI regions; 4,697,782 regions plausibly coding for trRNAs; 13,309,757 Universe regions), multiple 
ROIs (MS GWAS, EBNA2, EBNA3C, VDR, AID, etc.), databases of vast background regions as they were popu-
lated with the data obtained from GWAS Catalog, ENCODE, and other raw data sources, (3) provide overlaps 
and intersection among various data elements, annotate them with the original MS GWAS loci that generated 
the signal, and (4) generate the overarching data resource available at www.​mscol​oc.​com.

ABC functional mapping.  The Activity-By-Contact model was applied to map genes regulated by selected 
MS-trRNA colocalization hotspots. Briefly, this model identifies gene-enhancers connection taking into account 
chromatin accessibility (ATAC-seq and DNase-seq experiments), histone modifications (H3K27ac ChIP–seq), 
and chromatin conformation (Hi-C)50. ABC analysis was performed using the ABC pipeline outputs for 131 cell 
types and tissues51. Gene-enhancers maps were produced through https://​fleks​chas.​github.​io/​enhan​cer-​gene-​
vis/. Pathway and process enrichment analysis of mapped genes with the highest ABC score for each coloc region 
was performed through Metascape52, using the entire human genome as background and the following ontology 

Table 3.   Colocalization of human and viral transducer DBRs and MS-GWAS positions (at ± 50,100,200 kb 
range of extension) in DNA regions coding for transient transcripts; significant results (p < 0.05, corresponding 
to a − log (p) > 1.301) in bold. The transcript half-life is considered short if < 60′ and long if ≥ 60′, respectively.

 ± 50 KB ± 50 KB  ± 100 KB  ± 200 KB

− log 
(pValue) Odds ratio Support

Harmonic 
Score

− log 
(pValue) Odds ratio Support

Harmonic 
score

− log 
(pValue) Odds ratio Support

Harmonic 
score

EBNA2

Long half-
life 0.023 0.478 3 0.644 0.062 0.717 8 1.708 1.879 1.531 33 24.679

Short half-
life 6.163 1.920 69 43.011 3.241 1.433 95 29.496 8.945 1.610 189 40.642

EBNA3C

Long half-
life 0.064 0.572 2 1.669 0.006 0.321 2 0.185 0.182 0.914 11 4.500

Short half-
life 0.070 0.794 16 1.923 0.023 0.752 28 0.661 0.066 0.875 58 1.841

AID

Long half-
life 0.089 0.682 3 2.303 0.283 1.024 8 6.477 0.051 0.726 11 1.432

Short half-
life 1.769 1.465 37 23.531 1.346 1.267 59 19.367 3.954 1.442 119 31.416

VDR

Long half-
life 1.737 1.502 32 23.571 0.845 1.187 45 14.646 2.315 1.322 97 25.031

Short half-
life 2.221 1.239 152 23.734 2.336 1.181 267 23.460 11.478 1.367 548 36.561

http://www.mscoloc.com
https://flekschas.github.io/enhancer-gene-vis/
https://flekschas.github.io/enhancer-gene-vis/
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Figure 3.   A comprehensive genomic atlas on gene-environment interactions regulating transcription in MS. 
(a) Searchable results at mscoloc.com derive from the matches of GWAS MS regions, DNA binding regions of 
selected genomic transducers, and more than 4 million of regions annotated as plausible transient RNAs. (b) 
The user interface includes text panels and range sliders allowing extremely personalized queries, that combine 
statistical significance level (including Odd Ratio, pValue, support, and Harmonic Score), study source, SNP or 
reported gene, and so on. Filtered results are shown as tables ranked by HS, that can be saved, printed or shared 
through URL. In the example, the cursor selects ‘AID, EBNA2, EBNA3C, VDR’ in the ‘matched DBR region (s)’ 
panel looking for MS-associated SNPs (from the ROI, Additional File: Table S1) and their extensions at ± 50, 
100, 200 kb that colocalized within DNA binding regions of the molecular transducers. The top hit represents 
the colocalization of the DBRs, a super-enhancer region derived from experiments on CD19 + B cells included 
in sedb, and the rs8007846 MS-associated SNP on chromosome 14. (c) The Venn diagram shows the number 
of non-redundant MS-associated SNPs derived from the query: for each transducer, SNPs are considered only 
once if present in more than one match. Intersections show the numbers of regions colocalizing with DBRs of 
multiple transducers. For instance: 8 regions colocalize with both EBNA2 and EBNA3C DBRs, but not with AID 
nor VDR DBRs; 24 regions colocalize with all four DBRs, and could be identified as regulatory “hotspots” in 
MS.
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sources were used: GO Biological Processes, KEGG Pathway, Reactome Gene Sets, Hallmark Gene Sets, Canoni-
cal Pathways, BioCarta Gene Sets and WikiPathways.

Statistical analysis.  For SNP overlaps and region colocalization, we used LOLA53 and Fisher’s exact test 
with False Discovery Rate (Benjamini-Hochberg) to control for multiple testing. Linkage disequilibrium was 
considered as described in Sheffield & Bock, 2016. Resulting -log (p-value), support, and Odds Ratio (OR) were 
combined into a single score inspired by the harmonic mean54 and multi-objective optimization55 with the for-
mula below, where the spacing parameter kp was set to 10.0 and we consider all three contributors equally, setting 
therefore weights wi to 1.0. Statistical significance was taken at p < 0.05.

For pathway analysis in Metascape, enrichment p-values were calculated based through the accumulative 
hypergeometric distribution, q-values were calculated using the Benjamini–Hochberg method to account for 
multiple testing.

HarmonicScore = kp ∗

∑
i wi

w1

−logP +
w2

Supp +
w3

OR

Table 4.   Activity-By-Contact (ABC) functional mapping of MS-trRNA hotspots bound by 4/4 MS-relevant 
transducers or only 3/4 (AID,EBNA2, VDR). Genes who scored the highest ABC score are highlighted in bold.

MS SNP-TrRNA hotspot Transducers Chr Position GWAS catalog reported gene ABC linked gene

rs11026091 4/4 11 3,238,579 MRGPRE MRGPRG-AS1, MRGPRG, MRGPRE

rs11008218 4/4 10 30,744,074 SVILP1 MAP3K8

rs12048904 4/4 1 100,865,980 EXTL2 GPR88, CDC14A, RTCA-AS1, 
RTCA-AS1

rs11666377 3/4 19 17,007,623 CPAMD8 F2RL3, HAUS8, MYO9B, NWD1, 
SIN3B

rs11669861 3/4 19 19,166,593 MEF2B, MEF2BNB-MEF2B SLC25A42

rs12909611 3/4 15 60,865,204 RORA ICE2,RORA-AS1,RORA-AS2

rs1250551 3/4 10 79,299,578 ZMIZ1 KCNMA1

rs1152430 3/4 14 90,906,615 RPS6KA5 CALM1, LINC00642, LOC105370619, 
LOC105370622

rs11762408 3/4 7 150,676,640 GIMAP6 ABCB8, AOC1, GIMAP8, KCNH2, 
TMEM176A, TMEM176B

rs10931933 3/4 2 201,247,748 CASP8 SPATS2L, KCTD18
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Figure 4.   ABC gene-enhancer mapping of MS-trRNAs regulatory hotspots. The figure displays the positional 
mapping of selected MS-trRNAs-DBRs hotspots, their colocalization with regions encoding for regulatory 
elements active in specific cell types (Mononuclear phagocytes, B cells, T cells, Other haematopoietic cells, 
epithelial cells, Other), and the enhancer-gene connections that determine the ABC mapping. The gene with the 
highest ABC score for each hotspot is highlighted in pink.
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Data availability
The dataset supporting the conclusions of this article is available at the website www.​mscol​oc.​com.
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