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Abstract

Water ice is a unique material, presenting the most complex phase diagram known in
the literature, ranging from low to high temperature and from low to high pressures.
The low-pressure phases, like ordinary ice Ih and its proton-ordered counterpart ice
XI, show intriguing physical properties, such as negative thermal expansion and
anomalous volume isotope effect (VIE). In the opposite regime, at high pressure, the
features of the phase transition of dense ices VII/VIII to the symmetric ice X are still
open questions. The signatures of the phase transition are indirect (hydrogen atoms
are invisible to X-ray diffraction and the limited data quality and uncertainties in
the procedure of data correction in neutron scattering hampers an unambiguous
interpretation) and come from vibrational spectroscopies that give contrasting results
because of the strong anharmonic regime close to the phase transition. Experimental
data need the support of theoretical simulations to understand the high-pressure
phase diagram.

In this thesis, I explore the paramount importance of nuclear quantum fluctuations
in the thermodynamic and vibrational properties of low- and high-pressure ice by
employing the stochastic self-consistent harmonic approximation. For what concerns
the VIE in low-pressure ices, I prove that quantum effects on hydrogen are so strong
to be in a nonlinear regime: when progressively increasing the mass of hydrogen from
protium to infinity (classical limit), the volume first expands and then contracts, with
a maximum slightly above the mass of tritium. I manage to accurately reproduce,
for the first time, the low-energy phonon dispersion, possible thanks to the correct
treatment of nuclear quantum fluctuations, paving to way for the study of thermal
transport in ice from first-principles.

I establish the second-order character of the high-pressure phase transition
combining the results from classical and quantum simulations, where a continuous
transformation of one phase into the other, the presence of soft modes, and the
absence of an hysteresis cycle is proven. I show the importance of including quantum
fluctuations that reduce the critical pressure of about 55 GPa at T=0 K, solving
the problem of the strong underestimation of the critical pressure by the classical
approximations. I simulate the Infrared absorption spectra sampling a fine pressure
grid close to the transition, revealing the sudden collapse of the stretching mode
toward the low-energy regime in less than 10 GPa. Simultaneously, in the same
range, I show that the low-energy translational mode (situated in a region where
there are no published data to date) increases its intensity by an order of magnitude.
These two features can be regarded as unique signatures of the phase transition.
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Chapter 1

Introduction

1.1 Main topic and motivations

Water is essential for life. It is ubiquitous on Earth in all states of aggregation, the
cryosphere covers part of the Earth’s atmosphere and surface, both land and sea
in the form of ice or snow. Ice influences the refrigeration, transportation and the
climate [1] system: The albedo and radiative balance on Earth are determined by
the extent of ice cover, the geometry of the upper atmosphere waves is affected by
the height of the ice sheets, melt water influences the ocean circulation [2]. The
presence of ice is not limited to our planet, it is found in many celestial bodies in
the Universe and interstellar space.

Ice is a molecular crystal composed of individual water molecules held to one
another by hydrogen bonds, whose importance ranges from biology to astrophysics.
Ice exhibits the polymorphism typical of molecular crystals. It has been found so far
in 17 different crystalline structure phases (Fig. 1.1) embodying the most complex
phase diagram known in literature [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In each phase, the
oxygen atoms are long-range ordered in a specific symmetry with the hydrogen atoms
arranged around the oxygen according to the Bernal-Fowler ice rules [13]. The rules
state that each oxygen atom forms two covalent bonds with two hydrogen atoms
and it is hydrogen-bonded to two other water molecules so that there is precisely
one hydrogen between each pair of oxygen atoms [14] (Fig. 1.2). Ice structures can
be depicted as fully connected tetrahedral networks of water molecules satisfying
the ice rules.

In the low-pressure phases (as ordinary ice Ih) the angle between oxygen atoms
is close to that of an ideal tetrahedron, upon compression, initially, the structure
undergoes an angle distortion and with a further pressure increase, the reduced
volume cannot be filled by increasing the distortion and in the denser phases of ice
(like ice VII-VIII) the water molecules form interpenetrated (but not interconnected)
four-coordinated networks. This picture holds for the oxygen atoms of the water
molecules, while for the hydrogen atoms the situation is more cumbersome: the
central water molecule of the tetrahedral network can be oriented in six different
ways in order to satisfy the Bernal-Fowler rules. As a consequence, the hydrogen
atoms are not topologically ordered and do not relate to an underlying lattice as the
oxygen ones, but they decorate the oxygen framework with the only constraint to
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Figure 1.1. Phase diagram of ice. The phases shaded in orange, close to the liquid (red) are
hydrogen disordered phases. Proton ordered structures are shaded in blue. The stable
phases are indicated by bold Roman numbers, while metastable ones are highlighted by
smaller font sizes. The green shaded area indicates the nonmolecular phase X, where
the proton lies in the midpoint between two neighboring oxygen atoms. Figure taken
from: Advances in the experimental exploration of water’s phase diagram, Salzmann, J.
Chem. Phys. 150, 060901 (2019) [3]
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Figure 1.2. Local tetrahedron coordination of water molecules. Each oxygen atom forms
two covalent bonds and two hydrogen bonds (dotted lines). Grey and white balls stand
for oxygen and hydrogen atoms respectively. Figure taken from: Ice structures, patterns,
and processes: A view across the icefields, Bartels-Rausch et al. Rev. Mod. Phys. 84,
885 [2]

have one hydrogen atom along each hydrogen bond.
Several hydrogen arrangements are possible for proton disordered structures,

depending on the number of molecules in the cell. In 1935, Pauling estimated the
number of possible configurations as M = WN . In the absence of the ice rules
W = 4, since, for each N oxygen atoms in the piece of ice, the are 2N hydrogen
atoms, each of them can sit in two different locations. Pauling recognizes that the
Bernal-Fowler rules reduce the number of possible configurations so that W ' 1.5.
The accuracy of his estimation was confirmed later in 1966 by Nagle’s numerical
calculations [15]. The ensemble of many possible hydrogen arrangements results in
a residual entropy S = kbN logW , where kb is the Boltzmann constant.

All the phases that share a phase boundary with the liquid (Ih,III,V,VI,VII) are
orientationally disordered, while the others are proton-ordered.

The exploration of the full phase diagram of ice is a wonderful but challenging
task and cannot be concluded in the relatively short time of a Ph.D. course. So, in
the following, I will investigate the ordinary ice Ih and its proton-ordered counterpart
ice XI [5] in the low-pressure region of the phase diagram, and I will explore in detail
the high-pressure region, where the dense form of ice, phases VII and VIII transform
into the symmetric ice X [16].

The proton ordered ice XI is thermodynamically stable below T = 72 K and it was
discovered by calorimetric measurements on KOH doped ice Ih [17, 18, 19]. These
phases show peculiar thermodynamic properties, like negative thermal expansion at
low temperatures and anomalous volume isotope effect [20, 21] widely investigated
which makes them a very interesting topic. Phases VII-VIII are another example
of the ordered-disordered structures that fill the ice phase diagram, they occupy
most of the high-pressure region up to P ' 60GPa, where the symmetrization of
the hydrogen bond occurs [16, 22]: the proton lies midway the two oxygen atoms
of neighboring water molecules. This new ice phase, named ice X, loses completely
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the molecular character of ice. The phase transition toward this nonmolecular
structure is very debated in literature [22, 23, 24, 25]; the critical pressure is hard
to determine since the position of the hydrogen atoms cannot be identified by X-
ray spectroscopy and in neutron scattering experiments, the limited quality of the
data as well as the uncertainties in the procedure of data correction hamper an
unambiguous interpretation of the results. All the evidence for the phase transition
is indirect and comes mainly from spectroscopic experiments [26, 27] or from the
study of the equation of state [16]. The full picture is still unclear, whether the
transition is direct or if it exists an intermediate phase between ices VII/VIII and X,
hypothesized because of the presence of broad spectra at the critical pressure that
become narrower increasing the pressure [25, 16], is still under debate. Therefore,
accurate numerical simulations can shed light on the problem.

More detailed descriptions of the ice phases investigated and their relative crystal
structure are postponed to the dedicated chapters. In this work, I will perform
numerical simulations on these ice phases. Through the years, the description of
nuclear motion has undergone continuous improvement. The well-known failure of
the harmonic approximation has been overcome by more sophisticated techniques.
The quasi-harmonic approximation (QHA) is the commonly used technique to
go beyond the harmonic approach. It has been shown to perform very well in
the description of the low-pressure phases [28, 29, 30, 31], especially in the low-
temperature regime, while at high temperatures, some discrepancies with respect
to more accurate techniques arise. I will carry out the simulations of both low and
high-pressure ice phases with the stochastic implementation of the Self Consistent
Harmonic Approximation (SSCHA) [32] devised by the group and its time-dependent
extension (TD-SSCHA) [33]. The SSCHA is based on a variable principle on the free
energy and it allows me to include quantum anharmonicity in the nuclear motion at
a non-perturbative level.

1.2 Structure of the thesis

This thesis is structured as follows, besides this brief introductory chapter in which I
recall the main topic of the work and the motivations beyond it, I dedicated an entire
chapter (Chap. 2) to the theoretical methodologies. There, I describe the SSCHA
theory that we developed. Almost all the simulations done to achieve the results
presented in this thesis are performed within the SSCHA framework and in the
section dedicated to it, I describe also some improvements I applied to the code (Sec.
2.6) to have to possibility to simulate structures with many atoms (like the objects
of this thesis) in a more efficient way. In Sec. 2.7, I report the time-dependent
extension of the SSCHA, recently developed in Ref. [33] and I describe the force
fields used for energies and forces calculations in Sec. 2.9.

The main results of the simulations on low- and high-pressure ices are in Chapter 3
and Chapter 4, respectively. The first one is completely dedicated to the investigation
of ordinary ice Ih and its proton-ordered counterpart ice XI. First, I discuss their
thermodynamic properties in Sec. 3.3.1, where, beyond the thermal expansion and
the bulk modulus, I study in great detail the effect of quantum fluctuations on
the anomalous isotopic effect. Vibrational spectroscopies, both Raman and IR, are
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simulated in Sec. 3.3.5.
The high-pressure phase transition of ices VII/VIII to the symmetric phase X is

reported in Chapter 4. There, I first investigate the order of the phase transition at
a classical level at T=0 K for both the ordered and disordered phases in Sec. 4.4.1
and I confirm the result in the quantum regime in Sec. 4.4.2, where the effect of
quantum fluctuations on the critical pressure and on the structural parameters of
the ice phases investigated is underlined. The establishment of the phase diagram
obtained through structure relaxation with and without quantum effects is then
confirmed with the simulation of Infrared spectroscopy within the TD-SSCHA in Sec.
4.5. Since the experimental evidence of the phase transition are all indirect and come
from the spectroscopy, I analyze in detail the comparison with the experiments (Sec.
4.5.2). In the end, Sec. 4.5.3 and 4.5.4 are dedicated to the analysis of quantum
effects on the IR spectra and the comparison with MD simulations, respectively.
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Chapter 2

Methods

2.1 Introduction

In this chapter, I report the theoretical methods and tools used to perform the
numerical simulations necessary to reproduce all the results shown in this thesis.
First, I describe the self-consistent harmonic approximation, a computational tool
to study nuclear motion, including thermal and quantum anharmonic effects at a
non-perturbative level (Sec. 2.2 - 2.6). We already published a full review of the
SSCHA method [33] and released the code https://github.com/SSCHAcode.

I recall briefly the time-dependent extension of the SSCHA that consents the
reproduction of vibrational spectra, infrared and Raman spectroscopy for instance,
where atoms interact with a time-evolving external field. In the final part, I compare
the SSCHA with other state-of-the-art approximations, mainly the QHA, highlighting
the differences between the two approaches.

In the end, I describe the force fields used for the computation of energies
and forces. The use of a force field based approach allows me to overcome the
computational limitations coming from an ab initio method that would prevent the
huge amount of calculations performed.

2.2 The Self-Consistent Harmonic Approximation

Ions fluctuate at any temperature in matter, also at zero kelvin due to the quantum
zero-point motion. Even if the energy of ionic fluctuations is considerably smaller
than the electronic one, many physical and chemical properties of materials and
molecules cannot be understood without considering ionic vibrations. Since ionic
vibrations are excited at much lower temperatures than electrons, ionic fluctuations
are mainly responsible for the temperature dependence of thermodynamic properties
of materials. They also determine heat and electrical transport through the electron-
phonon and/or phonon-phonon interactions, as well as spectroscopic signatures
detected in infrared, Raman, and inelastic x-ray or neutron scattering experiments.
The large computational power available today has paved the way to material design
and characterization, but advanced and reliable methods that accurately calculate
vibrational properties of materials in the limit of strong quantum anharmonicity and
that are easily interfaced with modern ab initio codes are required for accurately

https://github.com/SSCHAcode
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describing materials’ properties in silico.
Since electrons are faster than ions, the ionic motion is assumed to be described

by the Born-Oppenheimer potential V (R), which, at an ionic configuration R, is
given by the electronic ground state energy. In the standard harmonic approximation
V (R) is Taylor-expanded up to second-order around the R0 ionic positions that
minimize V (R). The resulting Hamiltonian is exactly diagonalizable in terms of
phonons, the quanta of vibrations. Harmonic phonons are well-defined quasiparticles
with an infinite lifetime, which energies do not depend on temperature. These two
features are intrinsic failures of this approximation: phonons acquire a finite lifetime
due to their anharmonic interaction with other phonons (also because of other
types of interactions such as the electron-phonon coupling), and phonon energies do
depend on temperature experimentally. When higher-order anharmonic terms are
small compared to harmonic ones, anharmonicity can be treated within perturbation
theory[34, 35, 36]. Even if within perturbative approaches phonons’ temperature
dependence and lifetimes can be understood, whenever anharmonic terms of the
V (R) potential are similar or larger than the harmonic terms in the range sampled
by the ionic fluctuations, perturbative approaches collapse and are not valid[37].
This is often the case when light ions are present, as well as when the system is close
to melting or a displacive phase transition, such as a ferroelectric or charge-density
wave (CDW) instability.

In order to calculate from first principles vibrational properties of solids beyond
perturbation theory and overcome these difficulties, several methods have been
developed in the last years[38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. Many of them are based on extracting
renormalized phonon frequencies from ab initio molecular dynamics (AIMD) through
velocity autocorrelation functions[39, 40, 41, 42] or by extracting effective force
constants from the AIMD trajectory[43, 44, 45]. In order to include quantum effects
on the ionic motion, which are neglected on AIMD, the AIMD trajectory may be
substituted by a path-integral molecular dynamics (PIMD) one[46]. Other methods
are based on variational principles[49, 51, 55, 56, 57, 64], which are mainly inspired
on the self-consistent harmonic approximation[65] or vibrational self-consistent
field [66] theories, and yield free energies and/or phonon frequencies corrected by
anharmonicity non-perturbatively.

Even if these methods have often successfully incorporated the effect of anhar-
monicity beyond perturbation theory in different materials, they usually lack a
consistent procedure that prevents them from capturing properly both quantum
effects and anharmonicity in the compound. For instance, many of them simply
correct the free energy and/or the phonon frequencies assuming that the ions remain
fixed at the R0 classical positions. However, as it has been shown recently in several
compounds[48, 67, 68, 69], the ionic positions can be strongly altered by quantum
effects and anharmonicity even at zero Kelvin. The structural changes are impor-
tant for both internal degrees of freedom (the Wyckoff positions), and the lattice
parameters themselves. Moreover, in many of the aforementioned methods, it is not
clear what the meaning of the renormalized phonon frequencies is, i.e., whether they
are auxiliary phonon frequencies intrinsic to the devised theoretical framework or if
they really represent the physical vibrational excitations probed experimentally.

The stochastic self-consistent harmonic approximation (SSCHA)[55, 56, 57] is
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a unique method that provides a full and complete way of incorporating ionic
quantum and anharmonic effects on materials’ properties without approximating
the V (R) potential. The SSCHA is defined from a rigorous variational method that
directly yields the anharmonic free energy. It can optimize completely the crystal
structure, including both internal and lattice degrees of freedom, accounting for the
quantum nature of the ions at any target pressure or temperature. It computes
thermal expansion even in highly anharmonic crystals. Furthermore, the SSCHA
provides a well-defined approach to estimate at which thermodynamic conditions
displacive second-order phase transitions occur. This is particularly challenging in
ab initio molecular dynamics simulations, both for the dynamical slowing down that
may hamper the thermalization close to the critical point, and for the difficulties in
resolving the two distinct phases that continuously transform one into the other. Also,
the rigorous theoretical approach of the SSCHA yields a clear distinction between
auxiliary phonons of the theory and the phonon spectra probed experimentally,
which can be accessed from a rigorous dynamical extension of the theory[33, 56, 70].
Lastly, the code provides non-perturbative third- and fourth-order phonon-phonon
scattering matrices that can be fed in any external thermal transport code to compute
thermal conductivity and lattice transport properties.

This section is organized to introduce the SSCHA algorithm and to review the
recent developments in the SSCHA theory that lead to the SSCHA code. In Sec. 2.3,
there is a simple overview of the method, presenting a simple picture of how it works
with a model calculation on a highly anharmonic system with one particle in one
dimension. Then, I review the full theory of the SSCHA in details, starting from the
free energy calculation and structure optimization in Sec. 2.4. Then, I describe, in
Sec. 2.5, the post-processing features of the code, which include calculations of the
free energy Hessian for second-order phase transitions, as well as phonon spectral
function and linewidth calculations. In Sec. 2.6, I provide some details of the Python
code, including implementation of parallelized portion of the code that lead to an
impressive speedup.

2.3 The variational free energy
The SSCHA is a theory that aims at describing the thermodynamics of a crystal,
fully accounting for quantum, thermal, and anharmonic effects of nuclei within the
Born-Oppenheimer approximation. The basis of all equilibrium thermodynamics is
that a system in equilibrium at fixed volume, temperature, and number of particles
is at the minimum of the free energy. The free energy is expressed by the sum of
the internal energy E, which includes the energy of the interaction between the
particles (kinetic and potential), and the product between the temperature T and the
entropy S, which accounts for “disorder” and is related to the number of microstates
corresponding to the same macrostate of the system:

F = E − TS. (2.1)

In a classical picture, the free energy can be thus expressed in terms of the
microscopic states of the system, which are determined by the classical probability
distribution of atoms ρcla(R). We remind that R is a vector of coordinates of all
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atoms in the system (we will use bold symbols to denote vectors and tensors in
component free notation). The same holds for a quantum system, but we need
to account also for quantum interference. This is achieved by calculating the free
energy with the many-body density matrix. As the system at equilibrium is at the
minimum of the free energy, the Gibbs-Bogoliubov variational principle[71] states
that between all possible trial density matrices ρ̃, the true free energy of the system
is reached at the minimum of the functional F [ρ̃]:

F [ρ̃] = E[ρ̃]− TS[ρ̃] ≥ F, (2.2)

where
E[ρ̃] = 〈K + V (R)〉ρ̃ (2.3)

is the total energy (K is the kinetic energy operator and V (R) the potential energy),
and S[ρ̃] the entropy calculated with the trial density matrix. 〈·|·〉ρ̃ = Tr[ρ̃ ·]
indicates the quantum average of the the operator · taken with ρ̃.

If we pick any trial density matrix ρ̃, F [ρ̃] is an upper bound of the true free
energy of the system. The SSCHA follows this principle: we optimize a trial density
matrix ρ̃ to minimize the free energy functional F [ρ̃] of Eq. (2.2). Performing the
optimization on any possible trial density matrix is, however, an unfeasible task due
its many-body character that hinders an efficient parametrization. This is true also
for a classical system: no exact parametrization of ρcla(R) can be obtained in a
computer with a finite memory.

The SSCHA solves the problem by imposing a constraint on the density matrix.
In particular, the quantum probability distribution function that the SSCHA density
matrix defines, ρ̃R,Φ(R) = 〈R| ρ̃R,Φ |R〉, is a Gaussian. ρ̃R,Φ(R) is the quantum
analogue of ρcla(R), and determines the probability to find the atoms in the configu-
ration R. The trial SSCHA density matrix ρ̃R,Φ is uniquely identified by the average
atomic positions (centroids) R and the quantum-thermal fluctuations around them
Φ (we have explicitly expressed the dependence of ρ̃ on R and Φ by adding them
as subindexes), just like any Gaussian is defined by the average and mean square
displacements. Within the SSCHA, we optimize R and Φ to minimize the free
energy of the system. In this way, we compress the memory requested to store
ρ̃R,Φ, as R depends only on 3Na numbers (the coordinates of the atoms), while the
fluctuations Φ are encoded in a symmetric square real matrix of 3Na × 3Na. Na is
the total number of atoms in the system. The free parameters in R and Φ can be
further reduced by exploiting translation and point group symmetries of the crystal,
resulting in an efficient and compact representation of the density matrix ρ̃R,Φ.

The “harmonic” in the SSCHA name comes from the fact that any Gaussian
density matrix that describes a physical system is the equilibrium solution of a
particular harmonic Hamiltonian. Therefore, there is a one-to-one mapping between
the trial density matrix ρ̃R,Φ and an auxiliary trial harmonic Hamiltonian HR,Φ:

HR,Φ = K + 1
2
∑
ab

(Ra −Ra)Φab(Rb −Rb). (2.4)

Here, R is a real vector and Φ a real matrix that parametrize the trial Hamiltonian,
while K and R are quantum operators that measure the kinetic energy and the
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position of the state. For simplicity, unless otherwise specified, all indices a, b, etc.
run over both atomic and Cartesian coordinates from 1 to 3Na. Let us note here,
that, inspired by the harmonic shape of HR,Φ, we will also refer to Φ as the auxiliary
force constants.

This mapping with a harmonic Hamiltonian is very useful, as both 〈K|K〉ρ̃R,Φ

and S[ρ̃R,Φ] become simply the kinetic energy and entropy of the auxiliary harmonic
system HR,Φ, which are analytic functions of Φ. Hence, the only quantity that
we really need to compute is the average over the interacting Born-Oppenheimer
potential

〈V (R)〉ρ̃ =
∫
dR V (R)ρ̃(R). (2.5)

The potential V (R) is the Born-Oppenheimer energy landscape, and can be easily
computed ab initio by any DFT code (or by any energy and force engine).

The SSCHA algorithm starts with an initial guess on R and Φ, and proceeds as
follows:

• Use the trial Gaussian probability distribution function ρ̃R,Φ(R) to extract an
ensemble of random nuclear configurations in a supercell.

• For each nuclear configuration in the ensemble, compute total energies and
forces with an external code, either ab initio or via a force field.

• Use total energy and forces on the ensemble to compute the free energy
functional and its derivatives with respect to the free parameters of our
distribution R and Φ.

• Update R and Φ to minimize the free energy.

These steps are repeated until the minimum of the free energy is found.
To illustrate better the philosophy of the method, we report in Figure 2.1 a

simple application of the SSCHA to a one particle in one dimension at T = 0 K. In
panel a, we plot the very anharmonic “Born-Oppenheimer” (BO) energy landscape
V (R) of our one-dimensional particle (of mass of an electron). In Hartree atomic
units it is given by

V (R) = 3R4 + 1
2R

3 − 3R2. (2.6)

We first study the classical harmonic result, obtained by Taylor-expanding the
potential in Eq. (2.6) to second order around the minimum R0. Then, we use the
harmonic solution to build our initial guess for the SSCHA density matrix ρ̃R,Φ and
update the parameters (Φ and R) until we reach the minimum of the free energy. In
Figure 2.1(a), we compare the average atomic position and equilibrium free energy
obtained with the harmonic approximation, with the SSCHA, and the result we
obtained with the exact diagonalization of the potential. While the harmonic result
clearly overestimates the energy and yields an average atomic position far from
the exact result, the SSCHA energy and average position are very close to the
exact solution. In Figure 2.1(b), we report the probability distribution functions
of the particle for the different approximations compared with the exact result.
By definition, both the harmonic and SSCHA results have Gaussian probability
distributions. However, while the harmonic solution is centered in the minimum of
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Figure 2.1. Illustration of the SSCHA method to a one dimensional particle problem at
T = 0 K. Panel a: The one dimensional Born-Oppenheimer energy landscape V (R)
as a function of the particle position R. The points represent the solution of the
Harmonic approximation, the SSCHA, and the exact solution. The y coordinate of the
points are the quantum total energy (including the zero-point motion), while the x axis
coordinate is the average position of the particle. The SSCHA outperforms the harmonic
approximation and it is very close to the exact solution. Panel b: Representation of
the nuclear quantum distribution functions in the different approaches. The arrows
point the average position of the particle in each distribution. Both harmonic and the
SSCHA are Gaussians, while the exact solution is more complex. The harmonic solution
is centered around the minimum of the energy landscape R0, while the SSCHA centroid
position R and width are optimized to satisfy the least energy principle. The average
position in the exact case is however obtained as 〈R〉ρexact

.

the BO energy landscape (and the width is fixed by the harmonic frequencies), the
SSCHA distribution is optimized to minimize the free energy. Notice how, even if the
exact equilibrium distribution deviates from the Gaussian line-shape, the SSCHA
energy and average nuclear position match almost perfectly the exact solution as
stated above. The very good result on the free energy reflects that the SSCHA error
is variational: the free energy of the exact density matrix is the minimum. This
means that the free energy is stationary around the exact solution, assuring that
even an approximate density matrix (like the SSCHA solution) describes very well
the exact free energy. This is an excellent feature of the SSCHA, as the free energy
and its derivatives fully characterize thermodynamic properties. Even if this simple
calculation is performed at T = 0 K, the SSCHA can simulate any finite temperature
by mixing quantum and thermal fluctuations on the nuclear distribution.

The previously outlined straightforward implementation of the SSCHA becomes
too cumbersome on a real system composed of many particles, especially if ab initio
methods are used to extract V (R). The reason is that at any minimization step
we need to calculate total energies and forces for many ionic configurations with
displaced atoms in a supercell. The bottleneck is the computational cost of the
force engine adopted. In the next sections we will show how the number of force
calculations can be minimized and how these issues can be overcome by the code
implementation proposed here. The resulting SSCHA code is very efficient, and, in
most of the core cases, much faster than standard AIMD, with the advantage of
fully accounting for the quantum nature of nuclei.
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Symbol Meaning First use
R Atomic position (canonical variable) Eq. (2.3)

V (R) Potential energy Eq. (2.3)
R Trial centroid positions (parameter) Eq. (2.4)
u Displacement from the average atomic position R Eq. (2.15)
Φ Trial harmonic matrix (parameter) Eq. (2.4)
Ψ Static displacement-displacement correlation matrix relative to Φ Eq. (2.15)
HR,Φ Trial harmonic Hamiltonian for given R, Φ Eq. (2.4)
ρ̃R,Φ Density matrix of HR,Φ (trial density matrix) Pag. 10-1

ρ̃R,Φ(R) Gaussian positional probability density for ρ̃R,Φ Pag. 10-1
F [R,Φ] SSCHA Helmholtz free energy functional Eq. (2.7)
G[R,Φ] SSCHA Gibbs free energy functional Eq. (2.10)
fHR,Φ(R) Forces for the Hamiltonian HR,Φ acting on the ions when they are in the R positions Eq. (2.12)
f (BO)(R) Born-Oppenheimer forces acting on the ions when they are in the R positions Eq. (2.12)
P (BO)(R) Born-Oppenheimer stress tensor when the ions are in the R positions Eq. (2.19)

ΦR 2nd SSCHA force constants for a given R, it is the trial Φ that minimizes F [R,Φ] Pag. 25-2
DR ΦR divided by the square root of the masses Eq. (2.52)

(3)
ΦR,

(4)
ΦR 3rd and 4th order SSCHA force constants for a given R Eqs. (2.53), (2.54)

(3)
DR,

(4)
DR

(3)
ΦR,

(4)
ΦR divided by the square root of the masses Eqs. (2.53), (2.54)

F (R) SSCHA positional Helmholtz free energy, given by F [R,ΦR] Eq. (2.50)
Req SSCHA equilibrium centroids, trial centroids that minimizes F (R) Eq. (2.8)
Φeq SSCHA harmonic matrix ΦReq , the trial Φ at the minimum of the free energy functional Eq. (2.8)
H(S) SSCHA effective harmonic Hamiltonian, given by HReq,Φeq Eq. (2.60)
D(S) Dynamical matrix of H(S), given by DReq Pag. 28-2

(3)
Deq,

(4)
Deq Symbols indicating

(3)
DReq and

(4)
DReq , respectively Eq. (2.62)

D(F) Positional Helmholtz free energy Hessian divided by the square root of the masses Pag. 25-1
G(z) One-phonon Green function Eq. (2.67)

Π(0), Π(z) Static and dynamic SSCHA self-energy Eqs. (2.62), (2.68)
(B)
Π(0),

(B)
Π(z) Static and dynamic SSCHA bubble self-energy Eqs. (2.64), (2.69)

σ(q,Ω) Phonon spectral function (with the reciprocal lattice vector made explicit) eq.(2.70)
ωµ(q) Frequency of the (µ, q) SSCHA auxiliary phonon Eq. (2.16)
Ωµ(q) Frequency of the (µ, q) static approximation phonon from D(F) Pag. 29-1


µ(q),Γµ(q) Frequency and linewidth of the (µ, q) anharmonic phonon in the Lorentzian approximation Eq. (2.81)

Table 2.1. Collection of some symbols frequently used in the method section. First column,
the symbol used. Second column, a short description. Third column, equation or
page-column of the first occurrence.

2.4 Structure relaxation and free energy minimization
In this section, I explain the simplest and most common use of the code: the calcu-
lation of the free energy and the optimization of a structure by fully accounting for
temperature and quantum effects. This enables the simulation of finite temperature
and pressure phase-diagrams (with first order boundaries), as well as the calculation
of the lattice thermal expansion. I start by briefly reviewing the theory of the
SSCHA method and then the details of the implementation are explained.

2.4.1 The SSCHA free energy minimization

In the simplest and most standard usage, the SSCHA free energy functional that is
minimized depends on the centroid positions R and the auxiliary force constants Φ
as

F [R,Φ] = 〈K + V (R)〉ρ̃R,Φ
− T Sion [ρ̃R,Φ] . (2.7)

Here, we explicit that the entropy Sion only accounts for ionic degrees of freedom (not
electronic). After the SSCHA minimization, the final estimate of the equilibrium
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free energy is given by

F = min
R,Φ
F [R,Φ] = F [Req,Φeq] . (2.8)

Therefore, the final result of a SSCHA free energy calculation is in general given
in terms of the equilibrium configuration Req, the free energy F , and the SSCHA
auxiliary force constants Φeq. The final free energy accounts for quantum and
thermal ionic fluctuations without approximating the BO energy surface, valid
to study thermodynamic properties, and the Req positions determine the most
probable atomic positions also taken into account quantum/thermal flluctuations
and anharmonicity. It is important to remark, however, that the Gaussian variance
Φ has, in principle, no relation with the experimentally observed phonon frequencies,
as it is just a variable parametrizing the density matrix. The relation of it with the
physical phonon frequencies is discussed in Sec. 2.5.3.

The SSCHA can also perform the free energy minimization at fixed pressure
instead. In this case, the Gibbs-Bogoliubov inequality is satisfied by the Gibbs free
energy G, defined as

G = F + P ∗ΩVol, (2.9)

where P ∗ is the target pressure, ΩVol is the simulation box volume, and F is the
Helmholtz free energy. In this case, the code optimizes

G ≤ G[R,Φ] = F [R,Φ] + P ∗ΩVol, (2.10)

which can be used, for instance, to estimate the structural changes imposed by
pressure by fully accounting for fluctuations.

As made explicit in Eq. (2.7), only thermal effects on the ions are taken into
account so far, whereas the electrons are considered at zero temperature. However,
at very high temperatures the entropy associated to electrons may be important.
Within the SSCHA, it is possible to explicitly include finite-temperature effects on
the electrons too. The key is to replace in Eq. (2.7) the electronic ground state energy
V (R) with the finite-temperature electronic free energy Fel(R) = Eel(R)− TSel(R)
(if electrons have finite temperature, in the adiabatic approximation forces and
equilibrium position of the ions are ruled by the electronic free energy). In this case
the SSCHA method minimizes the functional

F [R,Φ] = 〈K + Fel(R)〉ρ̃R,Φ
− T Sion [ρ̃R,Φ] =

= 〈K + Eel(R)〉ρ̃R,Φ
− T S [ρ̃R,Φ] , (2.11)

where S [ρ̃R,Φ] = 〈Sel(R)〉ρ̃R,Φ
+ Sion [ρ̃R,Φ]. The same trick can be applied to the

Gibbs free energy minimization as well. Therefore, the SSCHA estimation of the
system’s entropy can also incorporate contributions from both electrons (averaged
through the ionic distribution ρ̃R,Φ) and ions. In a DFT framework, for example, this
simply comes down to including the electronic temperature in the energy/forces/stress
calculations for the ensemble elements through the Fermi-Dirac occupation of the
Kohn-Sham states [72].
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2.4.2 The implementation of the free energy minimization

In the SSCHA code, the minimization of F [R,Φ] is performed through a precondi-
tioned gradient descent approach, which requires the calculation of the gradient of the
free energy with respect to the centroid positionsR and the auxiliary force constants
Φ. The partial derivatives are evaluated through the exact analytic formulas

∂F
∂Ra

= −
〈
f (BO)
a (R)− fHR,Φ

a (R)
〉
ρ̃R,Φ

(2.12)

and

∂F
∂Φcd

= 1
2
∑
ab

∂Ψab
∂Φcd

×
〈(

f(BO)
b (R)− fHR,Φ

b (R)
)∑

e

Ψ−1
ae (Re −Re)

〉
ρ̃R,Φ

. (2.13)

Here f (BO)(R) are the Born-Oppenheimer forces that act on the ions when they are in
the R positions; fHR,Φ(R) is the force given by the auxiliary harmonic Hamiltonian
HR,Φ,

fHR,Φ
a (R) = −

∑
b

Φab(Rb −Rb); (2.14)

and Ψ is the displacement-displacement correlation matrix

Ψab = 〈uaub〉ρ̃R,Φ
, (2.15)

where with u = R −R we indicate the displacement from the average atomic
position. Explicitly,

Ψab = 1√
MaMb

∑
µ

~(2nµ + 1)
2ωµ

eaµe
b
µ. (2.16)

In Eq. (2.16), ωµ and eµ are the eigenvalues and eigenvectors of the mass rescaled
auxiliary force constants Φab/

√
MaMb, and nµ is the Bose-Einstein occupation num-

ber for the ωµ frequency. We underline again here that ωµ are not the phonon
frequencies of the system, but just the frequencies of the auxiliary harmonic Hamil-
tonian HR,Φ. In other words, they are only used to define the trial density matrix
ρ̃R,Φ. We show how to compute the physical anharmonic phonon frequencies of the
system in Sec. 2.5.

It is convenient to give an explicit expression for the gradient of the free energy
with respect to the auxiliary force constants in terms of the ωµ eigenvalues and eµ
eigenvectors. As shown in Ref. [56] (see Appendix B), the gradient can be rewritten
as

∂F
∂Φcd

=
∑
ab

Λ[0]abcd√
MaMbMcMd

×
〈(

f(BO)
b (R)− fHR,Φ

b (R)
)∑

e

Ψ−1
ae (Re −Re)

〉
ρ̃R,Φ

, (2.17)
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where

Λ[0]abcd =
∑
µν

~
4ωνωµ

eaνe
b
µe
c
νe
d
µ

×


dnµ
dωµ
− 2nµ+1

2ωµ , ων = ωµ
nµ−nν
ωµ−ων −

1+nµ+nν
ωµ+ων , ων 6= ωµ

. (2.18)

Here, nµ = 1/(eβ~ωµ − 1). The reason for the introduction of the Λ[0] tensor will be
evident in Sec. 2.5. Even if Eq. (2.17) looks different to the gradient introduced in
the original SSCHA work in Ref. [55], it can be demonstrated that both expressions
are equivalent by simply playing with the permutation symmetry of

〈
∂2V

∂Ra∂Rb

〉
ρ̃R,Φ

.
However, Eq. (2.18) unambiguously determines the value taken by the Λ[0] tensor
for the ων = ωµ case, while the gradient in Ref. [55] did not describe explicitly what
to do in this degenerate limit.

At the end of the SSCHA optimization, apart from the temperature-dependent
Req positions and the equilibrium auxiliary force constant matrix Φeq, the code
also calculates the anharmonic stress tensor P , which includes both quantum and
thermal ionic fluctuations, as derivatives of the free energy with respect to a strain
tensor ε:

Pαβ = − 1
ΩVol

∂F
∂εαβ

∣∣∣∣∣
ε=0

=
〈
P

(BO)
αβ (R)

〉
ρ̃R,Φ

− 1
2ΩVol

Na∑
s=1

〈
uαs f (BO)β

s + uβs f (BO)α
s

〉
ρ̃R,Φ

. (2.19)

Here, we have made explicit the atomic index s (lower index) and Cartesian α, β
(upper index) of u and f (BO). P (BO)(R) is the Born-Oppenheimer stress tensor
of the configuration with ions displaced in the R coordinates. This equation is
slightly different from the stress tensor equation presented in [57]. The two equations
coincide at equilibrium, but this is more general. The derivation of Eq. (2.19) is
reported in Appendix A. Thanks to the temperature-dependent stress, the SSCHA
code can optimize also the lattice parameters and the volume. Thus, by relaxing the
lattice at different temperatures, we get the thermal expansion straightforwardly.

Remarkably, the stress tensor of Eq. (2.19) can be computed with a single
SSCHA minimization at fixed volume. This is a huge advantage with respect to
the standard quasi-harmonic approximation, not only because it includes quantum
and anharmonic effects, but also because it is computationally much more efficient.
In fact, the quasiharmonic approximation requires performing harmonic phonon
calculations at different volumes (and/or internal lattice positions) to estimate the
minimum of the quasi-harmonic free energy with finite differences. This process is
extremely cumbersome for crystals with few symmetries and lots of internal degrees
of freedom in the structure.

In the current implementation of the code, the symmetries of the space group are
imposed a posteriori on the gradients of Eqs. (2.12) and (2.13), as well as on (2.19).
This assures that the density matrix satisfies all the symmetries at each step of the
minimization. Thus, during the geometry optimization, the system cannot lose any
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symmetry, though it can gain them. The symmetries are imposed following the
methodology explained in Appendix D, which is different to the method originally
conceived[55]. The current SSCHA code can also work without imposing symmetries,
allowing for symmetry loss, though the stochastic number of configurations needed
to converge the minimization is larger (see Sec. 2.4.2).

The stochastic sampling

The stochastic nature of the SSCHA comes from the Monte Carlo evaluation of the
averages in Eqs. (2.12), (2.13), and (2.19). A set of random ionic configurations are
created in a chosen supercell according to the Gaussian ionic probability distribution

ρ̃R,Φ(R) =
√

det(Ψ−1/2π)

× exp
[
−1

2
∑
ab

(Ra −Ra)Ψ−1
ab(Rb −Rb)

]
. (2.20)

The Monte Carlo average of a generic observable O(R), function only of the ionic
position R, is calculated then as weighted sum over the created ensemble:

〈O(R)〉ρ̃R,Φ
= 1∑Nc

j=1 ρj

Nc∑
j=1

ρjO(R{j}). (2.21)

Here, Nc is the total number of configurations in the ensemble, while R{j} is the
j-th ionic randomly displaced configuration. Each of the R{j} configurations is
generated according to the initial trial ionic distribution ρ̃R(0),Φ(0)(R) from which the
minimization starts. To improve the stochastic accuracy, for each R{j} configuration
also −R{j} is created, benefiting from ρ̃R,Φ(R) = ρ̃R,Φ(−R) property of the Gaussian
distribution.

The ρj weights are computed and updated along the free energy minimization
as the values of R and Φ change:

ρj =
ρ̃R,Φ

(
R{j}

)
ρ̃R(0),Φ(0)

(
R{j}

) . (2.22)

At the beginning, when the ensemble has just been generated and R =R(0) and
Φ = Φ(0), all values of ρj = 1. However, as the R and Φ are updated during the
minimization, the weights change. This reweighting technique is commonly used
in Monte Carlo methods[73, 74] and takes the name of importance sampling. This
allows avoiding generating a new ensemble and computing ab initio energies and
forces at each step of the minimization, speeding up the SSCHA calculation.

Minimization algorithm

The minimization strategy implemented in the SSCHA code for the free energy is
based on a preconditioned gradient descent. At each step, the R and Φ are updated
as

Φ(n+1) = Φ(n) − λΦ
∑
ab

(
∂2F

∂Φ∂Φab

)−1
∂F
∂Φab

(2.23)
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R(n+1) =R(n) − λR
∑
a

(
∂2F

∂R∂Ra

)−1
∂F
∂Ra

. (2.24)

In a perfectly quadratic landscape, this algorithm assures the convergence in just
one step if both λΦ and λR are set equal to one. However, in order to avoid too
big steps in the minimization, often it is more convenient to chose λΦ|R < 1. This
algorithm, with Hessian matrices that multiplies the gradient, is the preconditioned
steepest descent. If the preconditioning option is set to false, a standard steepest
descent minimization is followed instead, with λΦ and λR re-scaled to the maximum
eigenvalue of the ∂2F

∂Φ2 and ∂2F
∂R2 Hessian matrices, respectively, in order to have

adimensional values independent on the system.
The preconditioning Hessian matrices that multiplies the gradients in Eq. (2.23)

and Eq. (2.24) are approximated by the code. Following the procedure introduced in
Ref.[57], we use the exact Hessian in the minimum of a perfectly harmonic oscillator
with the same frequencies as the SSCHA auxiliary Hamiltonian. In particular, they
are:

∂2F
∂Φab∂Φcd

≈ 1
2
∂Ψab
∂Φcd

(2.25)

and
∂2F

∂R∂R ≈ Φ. (2.26)

Eq. (2.25) is presented differently from the original work in which it was derived[57].
We prove in Appendix B that they are exactly the same. Considering that the
Hessian preconditioner cancels out the 1

2
∂Ψab
∂Φcd

term in Eq. (2.13), the resulting update
of the variational parameters at each step in the minimization is performed as

Φ
(n+1)
ab = Φ

(n)
ab +

− λΦ

〈(
f (BO)
b (R)− fHR,Φ

b (R)
)∑

c

Ψ−1
ac (Rc −Rc)

〉
ρ̃R,Φ

(2.27)

and
R(n+1)
a = R(n)

a + λR
∑
b

Φ−1
ab

〈
f (BO)
b (R)− fHR,Φ

b (R)
〉
ρ̃R,Φ

. (2.28)

This implementation is very efficient, especially for Eq. (2.27), as there is no need to
calculate the ΛR[0] tensor. Therefore, computing directly Eq. (2.27) is much faster
than calculating the gradient of Eq. (2.13).

The code allows the user to select a different minimization algorithm specifically
for the minimization with respect to Φ: the root representation. Since the mini-
mization with respect to Φ is the more challenging, this technique aims to further
improving the Φ optimization. In particular, the gradient has a stochastic error and
the minimization is performed with a finite step size. For these reasons, Φ could
become non positive definite during the optimization (i.e. the dynamical matrix
has imaginary frequencies). If this occurs, the minimization is halted raising an
error, as the density matrix of Eq. (2.20) diverges. In such a case, the minimization
must be manually restarted, either by taking a smaller step or by stopping the
minimization before reaching imaginary frequencies (fixing the maximum number of
steps). This kind of halts do not occur often when using the preconditioning in the
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minimization. However, they may be encountered if few configurations are generated
for each ensemble or the starting dynamical matrix is very far from equilibrium.

To solve these problems, we implement the root representation, in which, instead
of updating Φ as in Eq. (2.23), it updates a root of Φ:

n
√
Φ

(i+1) = n
√
Φ

(i)
− λΦGn. (2.29)

The updating direction Gn depends depends on the root order n:

G2 =
√
Φ · ∂F

∂Φ
+ ∂F
∂Φ
·
√
Φ, (2.30)

where with the · we indicate a matrix product. Similarly,

G4 = 4√
Φ · G2 + G2 ·

4√
Φ. (2.31)

We select the positive definite root matrix. Indeed, after the step of Eq. (2.29) the
original force constant matrix is obtained as

Φ(i+1) =
(

n
√
Φ

(i+1)
)n

. (2.32)

Thanks to the definition in Eq. (2.32), the dynamical matrix is always positive
definite for any even value of n.

The root representation is independent of the preconditioning. With precondi-
tioning, we replace the free energy gradient in Eq. (2.30) with the preconditioned
direction in Eq. (2.27) (the gradient multiplied by the approximated Hessian). This is
different from what was proposed in the original work[57], where the Hessian matrix
was computed also for the

√
Φ and 4√Φ cases. However, we noticed that in systems

with many atoms, the Hessian matrix calculation becomes the bottleneck as it scales
with N6

a . The implementation here described allows for a much faster Φ update and
avoids calculating the Hessian matrix. The drawback is that the optimization step
is not as optimal as it would be if the proposal in Ref. [57] was followed. The code
offers six combinations for the minimization procedure: no root, square root (n = 2),
and fourth-root (n = 4), all of them with or without the preconditioned direction.
The optimal minimization step is n = 1 with preconditioning. If the square root
is employed (n = 2), it is preferable to use the preconditioning. If fourth-root is
employed (n = 4), the best performances are without preconditioning.

The lattice geometry optimization

The lattice degrees of freedom {ai} are relaxed only after the minimization of
the free energy with respect to R and Φ at a constant volume stops (see Sec.
2.4.2 for a detailed description of the stopping criteria). For this reason, the lattice
geometry optimization is an “outer” optimization: at each step of the lattice geometry
optimization, we perform a full free energy minimization with respect to the centroids
R and auxiliary force constants Φ. This means that each step of the lattice geometry
optimization is performed with a different ensemble, whose configurations are all
generated with the same lattice vectors.
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To update the lattice, the code calculates the stress tensor with Eq. (2.19), and
generates a strain for the lattice as

εαβ = ΩVol (Pαβ − P ∗δαβ) , (2.33)

where P ∗ is the target pressure of the relaxation and δαβ is the Kronecker delta.
The lattice parameters {ai} are updated as

a′iα = aiα + λ{ai}
∑
β

εαβaiβ, (2.34)

where λ{ai} is the update step. Since each step requires a new ensemble, it is crucial
to reduce the number of steps to reach convergence by properly picking the right
value for λ{ai}. In an isotropic material with a constant bulk modulus

B0 = ΩVol
d2V (BO)

dΩ2
Vol

∣∣∣∣∣
R=R

, (2.35)

the optimal value of the step is

λ{ai} = 1
3ΩVolB0

. (2.36)

B0 is an input parameter given in GPa units. Good values of B0 may range from
10 GPa for crystals at ambient conditions, like ice, up to 800 GPa in systems at Mbar
pressures (or for diamond). Remember that increasing the value of B0 produces
smaller steps in the cell parameters. The optimal value of B0 to assure the fastest
convergence can be estimated by manually computing it from Eq. (2.35), by taking
finite differences of the pressure obtained at two uniformly strained volumes, or by
looking for the experimental value of similar compounds.

Alternatively to the fixed pressure optimization, it is also possible to perform the
geometry lattice optimization at fixed volume. In this case P ∗ is recomputed at each
step so that Tr{ε} = 0. In this case, the final lattice parameters are also rescaled so
that the final volume matches the one before the step. Since this algorithm has one
less degree of freedom than the fixed pressure one, it usually converges faster.

The code flowchart

To start a SSCHA simulation, we need a starting guess on the trial positive definite
force constants matrix Φ(0) and on the average atomic positions R(0). Even if in
principle the starting point is arbitrary, the closer to the solution we begin, the
faster the minimization converges. Thus, the coordinates at the minimum of the
Born-Oppenheimer energy landscape and the harmonic force constants are usually
good starting points, which can be obtained from any code that computes phonons.
The supercell of the simulation is given by the dimension of the input force constants
matrix, while the centroids R are defined in the unit cell (they satisfy translational
symmetry). If the original dynamical matrix contains imaginary frequencies, it can
be reverted to positive definite as

Φ
(0)
ab =

√
MaMb

∑
µ

|ω2
µ|eaµebµ. (2.37)
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Then, the first random ensemble (that we call population in the SSCHA language)
can be generated. For each configuration inside the population, its total Born-
Oppenheimer energy as well as its classical atomic forces f (BO) and stress tensor
P (BO) must be computed. This is done with an external code, either manually (by
computing externally the energies, forces, and stress tensor, and loading them back
into the SSCHA code), or automatically (with an appropriate configuration discussed
in Sec. 2.6). Once the Born-Oppenheimer energies, forces, and stress tensor of all the
configurations have been computed, the minimization starts. The gradients of the
free energy are computed as described in Sec. 2.4.2 and the minimization continues
either until the stochastic sampling is not good or the algorithm converges.

If R and Φ change a lot during the minimization of the free energy, the original
ensemble no longer describes well the new probability distribution ρ̃R,Φ(R), and the
stochastic error increases. This occurrence is automatically checked by the SSCHA
code calculating the Kong-Liu[75, 76] effective sample size Neff :

Neff =
∑Nc
j=1 ρ

2
j(∑Nc

j=1 ρj
)2 . (2.38)

The minimization is halted when the ratio between Neff and the number of configu-
rations Nc is lower than a parameter η defined by the user:

Neff

Nc
< η. (2.39)

A standard value of η that ensures a correct minimization is 0.5, but it can be
convenient to lower it a bit to accelerate convergence in the first steps.

The convergence, on the contrary, is achieved only if the two gradients with
respect to R and Φ are lower than a given threshold:∣∣∣∣∂F∂Φ

∣∣∣∣ < δΦ (2.40)

∣∣∣∣ ∂F∂R
∣∣∣∣ < δR. (2.41)

The δ threshold is provided by the user and re-scaled at each step by the estimation
of the stochastic error on the corresponding gradient (meaningful_factor). So, at
each step, δ is

δΦ = meaningful_factor ·
∣∣∣∣∆∂F
∂Φ

∣∣∣∣ (2.42)

δR = meaningful_factor ·
∣∣∣∣∆ ∂F
∂R

∣∣∣∣ . (2.43)

In this way, the variable meaningful_factor is independent on the system size or the
number of configurations used.

If the lattice parameters are free to move, then an additional condition must be
fulfilled in order to end the minimization: each component of the strain per unit-cell
volume ΩVol must be smaller than the stochastic error on the stress tensor:

εαβ
ΩVol

≤ ∆Pαβ. (2.44)
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Figure 2.2. Flowchart of the SSCHA code. The most time consuming part of the diagram
is the ab initio calculation of the Born-Oppenheimer forces, energies, and stress tensors
for all the configurations inside the ensemble, and it is shaded in red. All the other steps
usually take few seconds when executed on a standard workstation, even in systems that
contain several hundreds of atoms.

If Eq. (2.44) is not fulfilled, even if all the gradients are lower than the chosen
threshold, the code generates a new ensemble and continues (until both conditions
are satisfied).

At the end of the minimization, the output of the SSCHA minimization gives
the total free energy (with stochastic error), the average equilibrium ionic positions
Req, the equilibrium auxiliary force constant matrix Φeq, and the stress tensor P .
All output quantities are temperature-dependent, and include quantum-thermal
fluctuations and anharmonicity. A flowchart that represents the whole execution
of a SSCHA run is presented in Figure 2.2. If the SSCHA code is coupled with
an ab initio total-energy engine, the most expensive calculation in the flowchart is
by far the calculation of Born-Oppenheimer energy, forces, and stress tensors on
the whole ensemble, which may contain up to several hundreds or thousands of
configurations. For this reason, the pretty complex workflow we set up is aimed to
pass by the calculation of a new ensemble as few times as possible. Most materials
studied are converged within 3 populations, and the CPU time required to minimize
each population is few minutes on a single CPU of modern laptops.
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2.4.3 The self-consistent equation and possible alternative imple-
mentations of the SSCHA

The preconditioned gradient descent approach sketched above offers a very efficient
implementation of the SSCHA theory, in which the anharmonic free energy is
optimized by all degrees of freedom in the crystal structure, including internal
coordinates as well as lattice vectors. If the centroid positions R are kept fixed in
the minimization, the SSCHA self-consistent equation

Φab(R) =
〈

∂2V

∂Ra∂Rb

〉
ρ̃R,Φ(R)

(2.45)

offers an alternative way of implementing the SSCHA theory (see Ref. [56] for
a proof of Eq. (2.45)). It is important to underline the self-consistent condition
required by the equation above, as the quantum statistical average is taken with
a density matrix dependent on Φ(R), which must equal the result of the average.
As in this approach the centroid positions are not optimized, the obtained auxiliary
force constant matrix depends parametrically on R.

The self-consistent equation can be implemented stochastically, following the
procedure outlined in Sec. 2.4.2. By using integration by parts [56], the right-hand-
side of Eq. (2.45) can be rewritten in terms of forces and displacements. Thus, with
the importance sampling technique and reweighting, the equation can be solved
by calculating forces in supercells generated with the SSCHA density matrix. An
equivalent approach [63] is to extract the auxiliary force constants by fitting the
obtained forces in the supercells generated with the SSCHA density matrix to Eq.
(2.14). This approach has been followed recently [63, 77, 78], where a least-squares
technique is followed for the fitting.

The use of the self-consistent equation is valid, thus, only for fixed centroid
positions. If the centroid positions want to be optimized as well within this approach,
the self-consistent procedure should be repeated for different values of R, calculate
the free energy for these positions, and see where its minimum is. Clearly this
is a very cumbersome procedure unless centroid positions are fixed by symmetry.
Moreover, solving the self-consistent equation fixing the centroid positions at the
classical R0 positions, which it is usually the case [63, 77, 78], neglects all the
effects of quantum and thermal fluctuations on the structure. Since within our
approach based on the gradient descent we can optimize the free energy not only
with respect to the auxiliary force constants but also all degrees of freedom in the
crystal structure, the workflow outlined in Sec. 2.4.2 provides a full picture of the
effect of quantum/thermal fluctuations as well as anharmonicity on crystals, much
more efficient than the approaches based on Eq. (2.45).

2.5 Post-minimization tools: positional free energy Hes-
sian, phonon spectral functions, and phonon linewidths

In the previous section we described how to compute the free energy of a system
and fully optimize its structure by taking into account the anharmonicity that arises
from both thermal and quantum fluctuations. After the free energy functional
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minimization, additional information can be extracted from the results obtained,
namely, the second derivative (Hessian) of the positional free energy with respect
to the centroids, the anharmonic phonon spectral functions, and the anharmonic
frequency linewidths and shifts. In the next subsections I will explain why these
quantities are of physical interest and what is the strategy adopted by the code
to computing them. The theory here reviewed was introduced in Ref. [56] and
extensively applied for the first time in ab initio calculations to H3S in Ref. [79].

2.5.1 Positional free energy Hessian

As shown in Sec. 2.3, for a given temperature the free energy at equilibrium F of a
system with Hamiltonian H is obtained by minimizing the density-matrix functional
F [ρ̃] = 〈K + V (R)〉ρ̃ − TS[ρ̃]:

F = min
ρ̃
F [ρ̃] = F [ρ] , (2.46)

where ρ is the equilibrium density matrix of the system obtained at the minimum.
The average atomic positions at equilibrium are 〈R〉ρ = Req. By minimizing the
functional keeping fixed the average atomic positions in a generic configuration R,
〈R〉ρ̃ =R, we define the positional free energy F (R):

F (R) = min
ρ̃

〈R〉ρ̃=R

F [ρ̃] = F [ρR] , (2.47)

where ρR is the density matrix giving the constrained minimum for the considered
average position R. Since

F = F (Req) = min
R

F (R) , (2.48)

R and F (R) can be interpreted as a multidimensional order parameter and a
thermodynamic potential, respectively, in the study of displacive phase transitions
according to Landau’s theory. Properly speaking, the “order” parameter would be
R −Rhs, where Rhs is the average position of the atoms when the system is in
the high-symmetry phase. Therefore, the knowledge of the positional free energy
landscape as a function of external parameters, like temperature or pressure, gives
crucial information about the structural stability and evolution of a system, as it
allows to determine the (meta-)stable configurations corresponding to (local) minima
of the positional free energy.

The Hessian of the positional free energy F (R) in the equilibrium configuration
is the inverse response function to a static perturbation on the nuclei (i.e. the inverse
of the static susceptibility). In presence of a second order phase transition the static
response function diverges, which results in one or more eigenvalues of the positional
free energy Hessian going to zero. This means that the occurrence of displacive second-
order phase transitions, like CDW or ferroelectric transitions [72, 80, 81, 82, 83],
can be characterized by analyzing the evolution with temperature of the eigenvalues
of the equilibrium positional free energy Hessian. Typically, in these cases at high
temperature the minimum point of the free energy, i.e. the equilibrium configuration
Req, is a high-symmetry configuration Rhs. Therefore, at high temperature the free
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energy Hessian in Rhs is positive definite, i.e. its eigenvalues are positive. As the
temperature decreases, the minimum in Rhs becomes less and less deep, until it
becomes a saddle point at the transition temperature (i.e. at least one eigenvalue is
zero), so that a second-order displacive phase transition occurs and the equilibrium
configuration Req moves towards lower-symmetry configurations that reduce the
free energy as the temperature decreases further (following the pattern indicated by
the eigenvector of the vanishing eigenvalue). Using the same approach, it is possible
to characterize second-order displacive phase transitions driven by other external
parameters, like the pressure in high-pressure superconducting hydrides [54, 67, 68,
79, 84].

The role played by the eigenvalues and eigenvectors of the positional free energy
Hessian in tracing the system’s structural stability recalls the role played by the
harmonic dynamical matrix in the standard harmonic approximation, but now
including lattice thermal and quantum anharmonic effects in the dynamics of the
nuclei. Therefore, the Hessian of the positional free energy, divided by the masses,
D(F)
ab = ∂2F/∂Ra∂Rb

∣∣∣
Req

/
√
MaMb, can be considered a natural generalization of

the harmonic dynamical matrix that, however, includes thermal and quantum effects.
What is explained hitherto about the role played by the positional free energy

and its Hessian is general. In particular, the evaluation of the positional free energy
within the SSCHA is pretty straightforward. Indeed, the average position for a trial
harmonic density matrix ρ̃R,Φ coincides with the centroid parameter R,

〈R〉ρ̃R,Φ
=R . (2.49)

Thus, within the SSCHA the positional free energy is obtained by minimizing the
SSCHA free energy functional F [R,Φ] with respect to the trial quadratic amplitude
Φ only:

F (R) = min
Φ
F [R,Φ] . (2.50)

The auxiliary force constants that minimize Eq. (2.50) for a given R position of
the centroids will be labeled in the following as ΦR. Solving Eq. (2.50) allows to
employ the SSCHA code to have direct access to F (R) for any R and, in principle,
to compute the Hessian by finite differences. However, as discussed above, such a
finite-difference approach would be extremely expensive for two main reasons. First,
it would require a large number of configurations in the ensemble to reduce the
stochastic error and calculate the derivatives by finite differences. Second, because
the large number of degrees of freedom in R prevents any realistic finite-difference
approach. Luckily the SSCHA code allows to avoid any cumbersome finite-difference
approach by exploiting an analytic formula for the positional free energy Hessian.

Before describing the analytic formula, let us introduce a notation that will
simplify the mathematical expressions. Given two tensors X and Y , with the single
dot product X · Y we will indicate the contraction of the last index of X with the
first index of Y ,

∑
cX...c Yc.... Likewise, with the double-dot product X :Y we will

indicate the contraction of the last two indices of X with the first two indices of
Y ,

∑
cdX...cd Ycd.... Moreover, any fourth-order tensor Xpqlm can be interpreted as

a “super" matrix XAB, with the composite indices A = (pq) and B = (lm), and
vice versa (through this correspondence we can define, for example, the inverse of
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a fourth-order tensor and the identity fourth-order tensor 1). Using this notation,
we can express the positional free energy Hessian, 1/

√
MaMb ∂

2F/∂Ra∂Rb, in
component-free form as

1√
M
· ∂2F

∂R∂R ·
1√
M

=

= DR +
(3)
DR :ΛR[0] :

[
1−

(4)
DR :ΛR[0]

]−1
:

(3)
DR , (2.51)

where Mab = δabMa is the mass matrix,

(DR)ab = 1√
MaMb

〈
∂2V

∂Ra∂Rb

〉
ρR,ΦR

= (ΦR)ab√
MaMb

, (2.52)

(
(3)
DR)abc = 1√

MaMbMc

〈
∂3V

∂Ra∂Rb∂Rc

〉
ρR,ΦR

= (
(3)
ΦR)abc√
MaMbMc

, (2.53)

(
(4)
DR)abcd = 1√

MaMbMcMd

〈
∂4V

∂Ra∂Rb∂Rc∂Rd

〉
ρR,ΦR

= (
(4)
ΦR)abcd√

MaMbMcMd
, (2.54)

and ΛR[0] is the z = 0 value of the fourth-order tensor ΛR[z], already introduced in
Eq. (2.18). In the equations above the quantum statistical averages are taken with
ρR,ΦR , which for a given R position of the centroids is taken with the ΦR auxiliary
force constants that minimize the free energy. ΛR[z] is given in components by

(ΛR[z])abcd =
∑
µν

F (z, ωµ, ων) eaνebµecνedµ, (2.55)

where ω2
µ and eaν are the eigenvalues and eigenvectors of DR, and

F (z, ων , ωµ) = ~
4ωµων

[(ωµ − ων)(nµ − nν)
(ωµ − ων)2 − z2 +

− (ωµ + ων)(1 + nµ + nν)
(ωµ + ων)2 − z2

]
. (2.56)

The only difference between ΛR[0] and Λ[0] (introduced in Eq. (2.18)) is that in the
former the eigenvalues and eigenvectors entering the equation are those associated
to the ΦR auxiliary force constants at the centroid positions R, while in the latter
this is not necessarily the case. The subindex R in the equations above precisely
indicates that the averages are calculated with a density matrix defined by R and
ΦR (after a full SSCHA relaxation at fixed nuclei position R). We will refer to
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the
(n)
ΦR tensors as the nth-order SSCHA force constants (FCs). Note that for the

second-order we drop the (2) upper index.
The SSCHA code computes the free energy positional Hessian through Eq. (2.51).

At the end of a SSCHA free energy functional minimization, the SSCHA matrix
Eq. (2.52), with its eigenvectors and eigenvalues, is available. Thus, ΛR[0] is readily
computable and the only quantities that need some effort to be calculated are the
averages of Eqs. (2.53) and (2.54). The code computes them through these equivalent
expressions (obtained by integrating by parts):

(
(3)
ΦR)abc = −

∑
pq

(Ψ−1
R )ap (Ψ−1

R )bq 〈upuqfc 〉ρR,ΦR
(2.57a)

(
(4)
ΦR)abcd = −

∑
pqr

(Ψ−1
R )ap (Ψ−1

R )bq (Ψ−1
R )cr 〈upuqurfd 〉ρR,ΦR

, (2.57b)

where ΨR is the Ψ matrix with Φ = ΦR and

fff(R) = f (BO)(R)−
〈
f (BO)(R)

〉
ρR,ΦR

− fHR,ΦR (R). (2.58)

These averages are computed employing the stochastic approach already described
in Sec. 2.4.2 (indeed, as explained in Ref. [56], the choice of Eq. (2.58), among
other possible alternatives, aims at reducing the statistical noise). Note that if the
calculation of the free energy Hessian is performed at Req,

〈
f (BO)(R)

〉
ρR,ΦR

vanishes.
In order to minimize the number of energy-force calculations needed, it is

advisable to compute these averages using the same ensemble used to minimize
the free energy functional and obtain ΦR (at most adding new elements to reduce
the statistical noise, if needed). Of course, since in this case the ensemble is not
generated from ΦR, an importance sampling reweighting has to be employed in
order to evaluate the averages 〈 · 〉ρR,ΦR

. After computing the averages, the code
symmetrizes the results with respect to the space group symmetries (including the
lattice translation symmetries) and the index-permutation symmetry, following the
approach described in Appendix D.

In order to reduce the computational cost, the SSCHA code can also compute the
free energy Hessian discarding the contribution coming from the higher-order terms
of the geometric-series expansion in Eq. (2.51), i.e. discarding the terms coming

from
(4)
DR. In many cases this approximation is extremely good, but it must be

checked case by case. Within this so called “bubble" approximation, the free energy
Hessian becomes

1√
M
· ∂2F

∂R∂R ·
1√
M
'DR +

(3)
DR :ΛR[0] :

(3)
DR. (2.59)

Using Eq. (2.51), or its approximated expression Eq. (2.59), the SSCHA code
can compute the Hessian of the free energy at any R. However, as said, its most
significant usage is inReq, due to its relevance to characterize displacive second-order
phase transitions. In this case, Eq. (2.51) can be written in a quite explanatory
form. At the end of a full SSCHA minimization, the obtained Req and Φeq define
the so-called SSCHA effective harmonic Hamiltonian

H(S) = K + 1
2(R−Req) ·Φeq · (R−Req) , (2.60)
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which replaces the conventional harmonic Hamiltonian to define non-interacting
bosonic quasiparticles as a basis to describe the collective vibrational excitations
in presence of strong anharmonic effects. In terms of the dynamical matrix D(S)

ab =
(Φeq)ab/

√
MaMb of the SSCHA Hamiltonian H(S), the anharmonic generalization of

the dynamical matrix D(F) can be written as

D(F) = D(S) + Π(0) , (2.61)

where
Π(0) =

(3)
Deq :Λeq[0] :

[
1−

(4)
Deq :Λeq[0]

]−1
:

(3)
Deq (2.62)

is the static SSCHA self-energy (the reason behind the use of this name will be clear
in the Sec. 2.5.3). In particular, in the bubble approximation we have

D(F) = D(S) +
(B)
Π(0) , (2.63)

where
(B)
Π(0) =

(3)
Deq :Λeq[0] :

(3)
Deq (2.64)

is the so called “bubble” static self-energy.
In conclusion, after the SSCHA minimization, the code allows to compute

the high-order SSCHA force constants, Eqs. (2.57), and the free energy Hessian
dynamical matrix

D(F)(q) = D(S)(q) +

Π(q, 0)
(B)
Π(q, 0)

(2.65a)

(2.65b)

(depending on whether the full or only the “bubble” static self-energy is computed)
on the q-points belonging to the reciprocal space grid commensurate with the real
space supercell used to generate the ensemble. Here we are explicitly using the
reciprocal-space formalism, i.e. we are Fourier transforming the quantities with
respect to the lattice vector indices (see Appendix E.1 for more details). From the
softening of the eigenvalues of D(F)(q) as a function of external parameters (like
temperature or pressure), it is possbile to observe the occurrence of second order
displacive phase transitions, characterize the distortion patterns and compute the
critical value of the external parameters driving it. Examples of the employ of this
method are given for H3S in Fig. 3 of Ref. [79], with the softening of an optical mode
driven by pressure release, and for SnSe in Fig. 2 of Ref. [81], with the softening of
the distortion mode obtained by decreasing the temperature.

2.5.2 Static bubble self-energy calculation: improved free energy
Hessian calculation

The SSCHA code also allows to compute the free energy Hessian dynamical matrix
D(F)(q) on any reciprocal space q-point, allowing to analyze the structural insta-
bilities incommensurate with the used supercell. After the free energy evaluation
and the subsequent free energy Hessian calculation, the real-space D(S)(l1, l2) and



2.5 Post-minimization tools: positional free energy Hessian, phonon spectral
functions, and phonon linewidths 29

(3)
Deq(l1, l2, l3) are available. Here, D(S)

ab (l1, l2) is the real space D(S) matrix in which
we made explicit the dependence of the lattice vectors l1 and l2 that identify the
unit cells in which atom a and b are located, respectively. Using them, the code
allows to compute the static bubble

(B)
Π(q, 0) in any q-point, through the formula

(B)
Πµν(q, 0) = 1

Nk

∑
k1k2
ρ1ρ2

∑
G

δG,q+k1+k2F (0, ωρ1(k1), ωρ2(k2))

×
(3)
Dµρ1ρ2(−q,−k1,−k2)

(3)
Dρ1ρ2ν(k1,k2, q) . (2.66)

This equation is Eq. (2.64) written in reciprocal space and SSCHA normal mode
components, i.e. in components of the D(S)(q)’s eigenvector basis. In Eq. (2.66), the

ki sums are performed on a Brillouin zone (BZ) mesh of Nk points;
(3)
Dµρ1ρ2(k1,k2, q)

are the SSCHA normal components of
(3)
Deq(k1,k2, q), the Fourier transform of

(3)
Deq(l1, l2, l3) in (k1,k2, q); ωρ(k) are the frequencies of D(S)(k); the function F
is defined by Eq. (2.56); G are reciprocal lattice vectors; and δG,q+k1+k2 preserves
crystal momentum. In this formula the q and the ki’s are not confined to the grid
commensurate with the supercell used in the SSCHA minimization, as long as the
ranges of the real space D(S)(l1, l2) and

(3)
D(l1, l2, l3) are smaller than the supercell

size, so as to be legitimately Fourier interpolated on any reciprocal space points
(more about the Fourier interpolation in appendix E). This allows to obtain two
results at once. First, the k-mesh in Eq. (2.66) can be arbitrarly increased up to
convergence, so as to reach the thermodynamic limit in the evaluation of the bubble
static self-energy. Second, from

(B)
Π(q, 0) and D(S)(q), through Eq. (2.65b) the code

allows to compute the free energy Hessian dynamical matrixD(F)(q) (useful to detect
and characterize the system instabilities) in q points not necessarily commensurate
with the supercell (at variance with what is obtained with the simple Hessian
calculation). This can be used, for instance, to study incommensurate second-order
displacive phase transitions. In particular, this is the correct way to compute the
frequencies Ωµ(q) along a reciprocal-space path, where Ω2

µ(q) are the eigenvalues
of D(F)(q). This is, for example, the procedure followed to compute the (static)
SSCHA phonon dispersions of NbS2 shown in Figs. 2, 3 of Ref. [82], and to compute
the interpolation-based convergence analysis shown in Fig. 3 of Ref. [85] for TiSe2
monolayer.

2.5.3 Dynamic bubble self-energy calculation: spectral functions,
phonon linewidth and shift

The anharmonic generalization of the harmonic dynamical matrix described in the
previous sections is the starting point to build a quantum anharmonic ionic dynamical
theory. As shown in Refs. [56, 79], in the context of the SSCHA it is possible to
formulate an ansatz to give the expression of the one-phonon Green function G(z)
for the variable

√
Ma(Ra −Raeq). This ansatz has been rigorously proven within the

Time Dependent Self-Consistent Harmonic Approximation (TD-SCHA)[33, 70]. In
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this dynamical theory

G−1(z) = z21−
(
D(S) + Π(z)

)
, (2.67)

where D(S) is the dynamical matrix of the SSCHA effective harmonic Hamiltonian
H(S), and Π(z) is the SSCHA self-energy, in general given by

Π(z) =
(3)
Deq :Λeq(z) :

[
1−

(4)
Deq :Λeq(z)

]−1
:

(3)
Deq , (2.68)

and in the bubble approximation by

(B)
Π(z) =

(3)
Deq :Λeq(z) :

(3)
Deq . (2.69)

In the equations above we use the “eq” subindex to specify that the eigenvalues
and eigenfunctions entering the equations are obtained from Φeq with the centroid
positions at Req.

With the Green function, we obtain the spectral function σ(Ω) = −2 ImTr
[
G(Ω + i0+)

]
,

which provides the information that can be obtained with inelastic scattering ex-
periments. Taking explicitly into account the lattice translational symmetry (i.e.
Fourier transforming the quantities with respect to the lattice vector indices) we
can write

σ(q,Ω) = −Ω
π

ImTr
[
G(q,Ω + i0+)

]
(2.70)

or

σ(q,Ω) = −Ω
π

ImTr
[(

Ω + i0+)21+

−
(
D(S)(q) + Π(q,Ω + i0+)

)]−1
, (2.71)

where the multiplicative factor Ω/2π has been included to have, for each q, a function
that integrated on the real axis gives the total number of modes 3na (na is the number
of atoms in the unit cell, that may be different from the total number of atoms in
the supercell Na).

In the so-called “static approximation”, we replace the full self-energy Π(z) with
the static self-energy Π(0), where z is blocked at zero. In this case the spectral
function is

(stat)
σ (q,Ω) = −Ω

π
ImTr

[(
Ω + i0+)21− (D(S)(q) + Π(q, 0)

)]−1

= −Ω
π

ImTr
[(

Ω + i0+)21−D(F)(q)
]−1

, (2.72)

where in the last line we have used Eq. (2.65). Therefore,

(stat)
σ (q,Ω) =

∑
µ

(stat)
σµ(q,Ω) (2.73)
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with
(stat)
σµ(q,Ω) = 1

2 [δ(Ω− Ωµ(q)) + δ(Ω + Ωµ(q))] , (2.74)

where Ω2
µ(q) are the eigenvalues of the free energy Hessian matrix D(F)(q). In other

words, the spectral function in the static limit is formed with delta peaks at the
eigenvalues of D(F)(q).

In the current version, the SSCHA code computes the full dynamical SSCHA
self-energy (z 6= 0) only in the bubble approximation with the equation (see
Eqs. (2.64), (2.66), and (2.69)))

(B)
Πµν(q,Ω + iδse) = 1

Nc

∑
k1k2
ρ1ρ2

∑
G

δG,q+k1+k2

× F (Ω + iδse, ωρ1(k1), ωρ2(k2))

×
(3)
Dµρ1ρ2(−q,−k1,−k2)

(3)
Dρ1ρ2ν(k1,k2, q) , (2.75)

where the summation k-grid can be arbitrarily fine as long as the interpolation of
the third-order SSCHA FCs can be performed (as in the static case Eq. (2.66)), and
δse is an arbitrary small, but finite, positive smearing value used to obtain converged
results in the computation. In fact, the exact result corresponds to the limiting
value obtained with an infinite k-grid and a zero δse smearing. In actual, finite-time
calculations, the converged value of the dynamic self-energy is therefore estimated
in this way. For a given summation k-grid, the corresponding self-energy converged
value is estimated by analyzing the result given by Eq. (2.75) for smaller and smaller
δse values (for the used k-grid, there will be a minimum value of δse under which the
result shows numerical instability). This analysis is performed with finer and finer
summation grids until the converged value in the thermodynamic limit is obtained.
In principle, a dedicated convergence study of this kind has to be performed for all
the specific observables of interest.

With the dynamical SSCHA bubble self-energy, the code allows to compute the
spectral function by the equation (see Eq. (2.71))

σ(q,Ω) = −Ω
π

ImTr
[(

Ω + iδid
)2
1+

−
(
D(S)(q) +

(B)
Π(q,Ω + iδse)

)]−1
, (2.76)

with δid another arbitrary small, but finite, positive smearing value. The role of
δid is significant when the imaginary part of the self-energy is small. A prominent
example where this happens is when the spectral function is calculated in the static
approximation, i.e. when the bubble self-energy is kept fixed at the static value
(B)
Πµν(q, 0) (see Eq. (2.72)). Indeed, in this case the self-energy is real (Hermitian)
and the computed spectral function becomes

(stat)
σ (q,Ω) =

∑
µ

1
2Im

[ 1
π

1
Ω− Ωµ(q) + iδid

+

+ 1
π

1
Ω + Ωµ(q) + iδid

]
, (2.77)
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where Ω2
µ(q) are the eigenvalues of D(F)(q) in the bubble approximation. Therefore,

for the numerical computation of the static spectral function, a finite δid value
is necessary to recover the analytical result, Eq. (2.74), but with smeared Dirac
delta functions. Actually, this is not just an extreme example, since the code really
gives the opportunity to compute the spectral function in the static approximation,
replacing in Eq. (2.76) the full bubble self-energy with its static value computed
through Eq. (2.66). This can be used to double-check that, as expected from
Eqs. (2.74) and (2.77), the obtained spectral function is given by spikes around
the frequencies of the Hessian free energy matrix D(F) (computed in the bubble
approximation). However, the role played by δid is not as critical as δse since it is
not typically system-dependent and it does not require a convergence study: in the
code its default value is automatically set depending on the spacing of the energy
Ω-grid used to compute the spectral function.

Given a q, the calculation of the full spectral function σ(q,Ω) through Eq. (2.76)
turns out to be quite a heavy task due to the inversion of a different 3na×3na matrix
for each Ω value. The code also allows to employ a much less computational demand-
ing approach by discarding the off-diagonal elements of the computed dynamical
self-energy in the SSCHA normal modes components (i.e. the components in the
D(S)(q)’s eigenvector basis). Within this “no mode-mixing" approximation, which
usually proves to be extremely good, the SSCHA modes keep their individuality
even after the renormalization due to anharmonic effects. Indeed in this case, as
in the static approximation, Eq. (2.73), the total spectral function is given by the
superposition of individual mode spectral functions:

σ(q,Ω) =
∑
µ

σµ(q,Ω), (2.78)

where now the (q, µ)-mode spectral function σµ(q,Ω) is computed with

σµ(q,Ω) =1
2

[ 1
π

−ImZµ(q,Ω)
[Ω− ReZµ(q,Ω)]2 + [ImZµ(q,Ω)]2 +

+ 1
π

ImZµ(q,Ω)
[Ω + ReZµ(q,Ω)]2 + [ImZµ(q,Ω)]2

]
(2.79)

and
Zµ(q,Ω) =

√
ω2
µ(q) + Πµµ(q,Ω + iδse) . (2.80)

Therefore, computing the spectral function in the “no mode-mixing" approximation,
by measuring the deviation of σµ(q,Ω) from a Dirac delta function around Ωµ(q),
it is possible to asses the impact that anharmonicity has on the different SSCHA
modes (q, µ), separately.

The form of the (q, µ)-mode spectral function σµ(q,Ω) in Eq. (2.79) resembles a
Lorentzian, but with frequency-dependent center and width, meaning that the actual
form of the spectral function σ(q,Ω) can be quite different from the superposition
of true Lorentzian functions. However, in some cases the σµ(q,Ω) can be expressed
with good approximation as a true Lorentzian with a certain half width at half
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maximum (HWHM) Γµ(q) and center 
µ(q),

σµ(q,Ω) = 1
2

[
1
π

Γµ(q)
[Ω− 
µ(q)]2 + [Γµ(q)]2

+ 1
π

Γµ(q)
[Ω + 
µ(q)]2 + [Γµ(q)]2

]
, (2.81)

meaning that the quasiparticle picture is still valid, even after the inclusion of
anharmonicity, with the (µ, q) quasiparticle having frequency (energy) 
µ(q) and
lifetime τµ(q) = 1/(2Γµ(q)). The difference between the renormalized and the “bare”
SSCHA frequency, ∆µ(q) = 
µ(q)− ωµ(q), is called the frequency shift of the (µ, q)
mode.

The SSCHA code offers several tools to perform such a “Lorentzian analysis”. In
general, the best Lorentzian approximation is obtained with


µ(q) = ReZµ(q,
µ(q)) (2.82)

Γµ(q) = −ImZµ(q,
µ(q)). (2.83)

Once the dynamical self-energy and the Zµ(q,Ω) are computed, the SSCHA code
allows to compute the single-mode spectral functions in the Lorentzian approximation,
estimating the frequency 
µ(q) and HWHMs Γµ(q) in different ways. One, optional,
possibility is to solve self-consistently Eq. (2.82) to estimate 
µ(q), and then Γµ(q),
through Eq. (2.83). However, by default, the “one-shot” approximation is employed
with

(os)

µ(q) = ReZµ(q, ωµ(q)) (2.84)

(os)
Γµ(q) = −ImZµ(q, ωµ(q)) . (2.85)

If the SSCHA self-energy Π is a (small) perturbation on the SSCHA free propagator
(not meaning that we are in a perturbative regime with respect to the harmonic
approximation), then perturbation theory can be employed to evaluate the spectral
function. If we keep the first order in the self-consistent equations Eq. (2.85), we
get:

(pert)

µ(q) = 1

2ωµ(q)ReΠµµ(q, ωµ(q)) (2.86)

(pert)
Γµ(q) = − 1

2ωµ(q)ImΠµµ(q, ωµ(q) + iδse) . (2.87)

This perturbative approach is also employed by the SSCHA code to evaluate the
quasiparticles’ energies and lifetimes. Examples of spectral function calculations
done with Eq. (2.76), Eqs. (2.78)- (2.80) and Eq. (2.81) can be found in Fig. 4 of
Ref. [79]. In Fig. 5 of the same reference, the anaharmonic phonon frequencies and
linewidths along a path, computed using the Lorenztian approximation through
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Eqs. (2.82) and (2.83), are shown. The spectral function computed with Eq. (2.79)
along a path is shown with a colorpolot in Fig. 3 of Ref. [80] for PbTe, and in Fig. 4
of Ref. [81] for SnSe.

In conclusion, with the SSCHA code we can calculate three frequencies for
a mode (q, µ): ωµ(q),Ωµ(q), and 
µ(q), which are the frequency of the SSCHA
auxiliary boson, the frequency coming from the SSCHA free energy Hessian (i.e.
from the static approximation), and the frequency of the SSCHA quasiparticle in
the Lorentzian approximation. Only the last one is a true physical quantity as it can
be measured in experiments. However, the static Ωµ(q) is also a physical meaningful
quantity, as its zero value corresponds to a structural instability driving a second-
order phase transition along the pattern characterized by the mode (q, µ). The
SSCHA provides a specific physical meaning of each of these frequencies, in contrast
to other approaches used to estimate anharmonic phonons, where no distinction is
usually done.

2.6 The Python code

During the last years, the code to implement all the SSCHA machinery has undergone
substantial modification and improvements with respect to its original version. In
the current version, two different Python libraries are provided with the SSCHA
code: CellConstructor and Python-sscha. The latter is the library that performs
the SSCHA minimization itself, while the former is a library that deals with the
dynamical matrix, the crystal structure, the symmetrization, and performs the
calculation of phonon spectral functions and linewidths as a post-processing tool.

After the generation of the ensemble the code requires the computation of atomic
forces and energies and it is possible to implement interfaces with the most common
ab initio codes like Quantum ESPRESSO[48, 86], VASP[87], SIESTA[88], CP2K[89],
and many more. Force-field codes like LAMMPS[90] may also be used. The use of
first-principles calculation of such energies and forces poses a serious limitation on
the number of configuration to use because of the high computational cost.

My biggest contributions to the method development are related to the code
optimization. I report in this section, some of the improvement I applied to allow a
smart application of the SSCHA algorithm to systems with many atoms. In order
to obtain accurate results with less configurations, I checked if one can use some
shortcuts. For instance, for all the results in this work, one needs to relax crystal
structures at a given pressure. Consequently, it was crucial to try to reduce the
pressure fluctuations with the generated configurations. The Taylor expansion of
the pressure for small displacements u gives a hint for a possible improvement of the
code. We can generate couples of symmetric {−u, u} configurations and consider
the fluctuations of the even and odd part of stress tensor, where, for a generic f(x)
function, feven(x) = 1

2(f(x) + f(−x)) and fodd(x) = 1
2(f(x) − f(−x)). Now, the

odd part has a linear dependence on the displacement (unless it vanishes for some
reason) while the even part is quadratic in the displacement. So, in principle, for
small displacement generation, I expect smaller fluctuations for the even term.

I report in Fig. 2.3 the even and odd contributions of the pressure extracted
from an ensemble of 2000 symmetric configurations. The fluctuations around the
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Figure 2.3. Pxx component of the stress tensor, computed within the SSCHA as in Eq.
(2.19). The red filled points are the even part of the stress tensor Pxx(u)+Pxx(−u)

2 for each
{u,−u} configuration, while the blue empty ones indicate the odd part Pxx(u)−Pxx(−u)

2 .

mean value of the odd contribution are three times bigger than that of the even
one, as expected. This proves that the use of the even term of the pressure (that
by construction has the same average value of the stress tensor computed with the
original ensemble) grants a better accuracy with the same computational effort.

The SSCHA algorithm takes includes quantum anharmonicity in a nonperturba-
tive way. In principle, in the self-energy term of the dynamical Green function in
Eq. (2.69), all the phonon modes interact together. Sometimes, it is useful to isolate
the interaction of given phonon bands in Eq. (2.56) to understand the origin of
specific features in the spectral function as the combination modes (see Sec. 3.3.4).
To achieve these results, I modified the original routines to give the possibility to
consider the interaction of few selected phonon modes alone.

2.6.1 Parallelization

The nature of the algorithm makes it very simple to exploit massive parallelization
strategies available in high performance computing (HPC) facilities. In particular,
the most expensive part of the code is the calculation of Born-Oppenheimer energies,
forces, and stress tensors of the generated ionic configurations in each population
(the red shaded cell in the code flowchart in Figure 2.2). Each of this calculation
is independent from the others, so they can be trivially run in parallel on different
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computing nodes. This is a huge advantage with respect to other methods based on
AIMD or PIMD, which mimic a time evolution of the system and thus require to
calculate atomic forces on one configuration after the other.

Usually, all the other steps of the code are computationally very cheap compared
to the energy and force calculation. This is not true when they are computed with
force fields (like for the ice in this work) instead then from first-principles. In this
case, when the supercell used contain many atoms, as it is for ices Ih/XI in Chapter
3, both the generation of the ensemble and the minimization itself can be challenging
and their computational cost can be comparable or exceeding that necessary for the
energies and forces computation. The SSCHA minimization cannot exploit so well
the possibilities offered by parallelization, since each step of the main cycle depends
on the previous one. Most of the computations executed in the cycle are linear
algebra calculations but some of them can be speeded up with an explicit Fortran
implementation. So, to study the convergence of the results with the supercell size,
I completely rewrote some subroutines used for the generation of the ensembles and
for the minimization. For the latter, in particular, I worked on the updating of the
weights at each step that could be heavily slimmed down and some functions could
be written in Fortran. Moreover, a massive parallelization of these subroutines gave
me a huge speedup. Just to give a flavour of the improvement, the time elapsed to
perform each minimization step in a structure with 768 atoms passed from t ' 2500s
to t ' 200s, with a speedup of an order of magnitude. I obtained even better
results for the generation of the ensemble, that for structure with many atoms were
stuck in very slow loops that could avoided by rewriting the code in a more efficient
way, gaining almost two order of magnitudes in the elapsed time for the complete
generation.

2.7 Time dependent SSCHA

I will use the dynamical ansatz postulated in Sec. 2.5.3 to define the one-phonon
Green function in Chapter 3 to study the low-pressure ices Ih/XI. In a following
work, Monacelli et al. [33] rigorously extended the SSCHA theory to account for
the quantum time evolution of nuclear vibrations, proving the exactness of the
dynamical ansatz. In the following, I will use the TD-SSCHA extension and in
particular, the Lanczos algorithm (see below) to study high-pressure ice in Chapter
4. In this section, I report the main results and equation of the TD-SSCHA to make
clear what is done in Chapter 4.

The idea is to describe how the nuclear physical properties change in time when
the system in equilibrium is perturbed with an external probe. So, the system is set
in equilibrium for t < t0 and at t = t0 it interacts with an external time-dependent
perturbation V ext(R, t). Then, the aim is to describe the evolution of the expectation
value of a generic nuclear observable Â for t > t0:

A(t) = 〈ψ(t)|Â|ψ(t)〉 , (2.88)

where, the time evolution of the wave function is governed by the time-dependent
Schrödinger equation, through the time-dependent Hamiltonian
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Ĥtd(t) = Ĥ + V ext(R̂, t) (2.89)

At finite temperature, the wave function has to be replaced with the density
matrix ρ̂ that can describe also mixture of states. The equilibrium density matrix
acquires time dependence for t > t0 when the external perturbation is switched on

ρ̂(t) =
∑
i

pi |ψ(t)〉 〈ψ(t)| , (2.90)

where

pi = e−βEi

Z
,Z =

∑
i

e−βEi , β = 1
kbT

(2.91)

In isolated systems, pi does not depend on time, and the density matrix satisfy
the Liouville-Von Neumann equation

i~
d

dt
ρ̂(t) = Ĥtd(t)ρ̂(t)− ρ̂(t)Ĥtd(t) (2.92)

In this case, the average of the observable can be written as

A(t) =
〈
Â
〉
ρ̂(t)

= Tr
[
ρ̂(t)Â

]
(2.93)

This approach can be very useful to study linear response as Infrared absorption
in Sec. 4.5, when the external perturbation does not change the status of the system,
neither breaking chemical bonds, nor triggering a macroscopic rearrangement of the
atoms, nor heating the sample. The small external time-dependent perturbation can
be split in a term that depends only on the nuclear positions B̂ = B(R̂) and the
time envelop V(t)

V ext(R, t) = V (1)(R, t) = B(R̂)V(t) (2.94)

Now, the time dependence of an observable can be expressed as

A(t) = A(t0) +
∫ +∞

−∞
χAB(t− t′)V(t′)dt′ (2.95)

and the response function is directly related to time correlation functions through
the Kubo formula

χAB(t) = − i
~

〈[
e
i
~ ĤtAe−

i
~ Ĥt, B̂

]〉
ρ̂(0)

θ(t) (2.96)

In Eq. (2.96), e−
i
~ Ĥt is the time evolution of an operator in absence of the

external perturbation and θ(t) is the Heaviside function. In the frequency domain,
the average of the observable A can be readily written as the product of the response
function and the time envelop of the perturbation.

The SSCHA theory depicted in the first part of this Chapter is a static theory
that cannot describe physical phonons. In the most general case, the nuclear time-
dependent evolution cannot be described by the dynamics of pure states (suitable
only at T=0 K), but mixed states have to be used. Shortly, one has to substitute
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the time-dependent Schrödinger equation with the Liouville-Von Neumann equation
of Eq. (2.92). As for the static SSCHA theory, the wave function is constrained to
the most general Gaussian, but in this case, time dependence is introduced:

〈
R′
∣∣ρ̂(t)

∣∣R〉 =N (t)exp(i
∑
a

Qa(t)(R′a −Ra)

−
∑
ab

[Θab(t)
4 − iCab(t)

]
(Ra −Ra(t))(Rb −Rb(t))

−
∑
ab

[Θab(t)
4 + iCab(t)

]
(R′a −Ra(t))(R′b −Rb(t))

+
∑
ab

Aab(t)(Ra −Ra(t))(R′b −Rb(t)))

(2.97)

Here, the Θ matrix encodes pure quantum fluctuations, while the complex
Hermitian A(t) matrix, absent in pure states, has a real part ReA related to thermal
fluctuations and an imaginary part ImA that plays the role of momentum of thermal
fluctuations. The Qi variables represent the momentum of the i-th atom. C is a
quadratic phase that represents the chirp along the quantum fluctuations.

The equation of motion can be derived by minimizing the Dirac action

A = 1
t− t0

∫ t

t0

〈
ψ(t′)

∣∣Ĥtd(t′)− i~ d

dt′
∣∣ψ(t′)

〉
dt′ (2.98)

I show in Eq. (2.99) the final equation of motions, all the intermediate passages
can be found in Ref. [33].

dR̃
dt

= ~Q̃, dQa
dt

=

〈
f

(tot)
a

〉
ρ(t)

~
dΥ̃
dt

= ~[Υ̃(2C̃ + ImÃ) + (2C̃− ImÃ)Υ̃]

dReÃ
dt

= ~
2(4C̃ReÃ + 4ReÃC̃− Θ̃ImÃ + ImÃΘ̃)

dImÃ
dt

= ~
2(4C̃ImÃ + 4ImÃC̃ + Θ̃ReÃ− ReÃΘ̃)

dC̃
dt

= 1
2~

〈
∂2V (tot)

∂R̃∂R̃

〉
ρ(t)

+ ~
2

[
C̃2 − 1

4Θ̃2 + Re(ÃÃ†)
]

dN
dt

= 2~N Tr C̃

(2.99)

where variables with a tilde are scaled by the square root of the masses.

2.7.1 Linear response theory

Experimental data are collected by probing the response of the system to an external
time-dependent perturbation V (1)(R, t). The perturbation can be either electro-
magnetic radiation or particles, like neutrons or electrons. When it is small with
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respect to the nuclear potential V (R), the density matrix can be separated into an
equilibrium solution ρ̂(0) and a small perturbation ρ̂(1)(t):

ρ̂(t) = ρ̂(0) + ρ̂(1)(t). (2.100)

A linear expansion of the TD-SSCHA equation around equilibrium brings to Eq.
(2.101) for the perturbed density matrix

i~
d

dt
ρ̂(1)(t) = Lscρ̂

(1)(t) +
[
V̂ (1)
sc (t), ρ̂(0)

]
, (2.101)

where Lsc is a super-operator that describes the unperturbed anharmonic evolu-
tion according to the self-consistent Hamiltonian and V̂ (1)

sc is the interaction with
the external potential:

Lsc
ˆρ(1)(t) =

[
Ĥ[ρ(0)], ρ̂(1)(t)

]
+
[
Ĥ[ρ(1)(t)], ρ̂(0)

]
(2.102)

V̂ (1)
sc = 1

2
∑
ab

(R̂a−R(0)
a )

〈
d2V (1)(t)
dRadRb

〉
ρ(0)

(R̂b−R
(0)
b )+

∑
a

〈
∂V (1)(t)
dRa

〉
ρ(0)

(R̂a−R(0)
a )

(2.103)
Eq. (2.101) can be solved passing to Fourier space. In the following, I indicate

with (0) all the equilibrium quantities and with (1) a small perturbation around
the SSCHA equilibrium. ˆρ(1)(t) depends on the perturbation of all the variables
appearing in the density matrix definition in Eq. (2.97). We can get rid of some of
them by taking the time derivative of Eq. (2.101) leading to the general expression for
the linear response of the system to any external perturbation on nuclei V (1)(R, ω) Υ̃(1)(ω)

ReÃ(1)(ω)
R̃(1)(ω)

 = G(ω)

 f
(1)
Υ (ω)

f
(1)
ReA(ω)
f

(1)
R (ω)

 (2.104)

In this way, we can introduce the Green function G(ω)

G(ω) = −(ω2 − L)−1. (2.105)

The L kernel and f vector are the free (anharmonic) evolution and the coupling of
the phonons with the bare perturbation, respectively, in the space of the parameter
of the Gaussian and their full expression can be found in Ref. [33].

Finally, a first-order expansion of the average of the observable Â around the
equilibrium solution can be written as

〈
Â
〉
ρ(1)(ω)

= p ·

 Υ̃(1)(ω)
ReÃ(1)(ω)
R̃(1)(ω)

 , (2.106)

where

p =
(
∂ < Â >ρ(ω)

∂Υ̃
∂ < Â >ρ(ω)

∂ReÃ
∂ < Â >ρ(ω)

∂R̃

)
(2.107)
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We can also separate the frequency dependence of the f vector as f (1)(ω) =
f (1)V(ω) [33], and define the q vector:

q =

 f (1)
Υ

f (1)
ReA
f (1)
R

 (2.108)

So that, at the end, the average of an operator can be written as in Eq. (2.109)〈
Â
〉
ρ(1)(ω)

= pG(ω)qV(ω) (2.109)

and the response function

χAB(ω) = pG(ω)q (2.110)

2.7.2 IR and Raman response

Infrared absorption is related to the dipole-dipole correlation function

Â = Mα(R̂) B̂ = Mα′(R̂).

where Mα(R̂) is the α Cartesian component of the net dipole moment when the
ions are displaced in the R position

p and q vector are related to first and second-order derivative of Â and B̂
operators, respectively, with respect to nuclear displacements [33].

Since the dipole can be written as Mα(R) = |e|
∑
a Zαa(R)ua, the averages of

the dipole derivative are readily computed:〈
∂Mα(R)
∂Ra

〉
ρ(0)

= 〈Zαa(R)〉ρ(0) (2.111)

The effective charges Z indicate how the atoms are displaced when an electric
field is applied and they are related to the second derivative of the electronic energy:

Zαa = ∂2Eel
∂Eα∂Ra

(2.112)

The second order derivative can be easily written by integrating by parts:〈
∂2Mα(R)
∂Ra∂Rb

〉
ρ(0)

=
∑
c

Υac 〈(Rc −Rc)Zαb(R)〉ρ(0) (2.113)

In the case of linear coupling to the probe, the second order derivative in Eq.
(2.113) vanishes, and if the effective charges do not depend on nuclear positions

〈Zαa(R)〉ρ(0) = Zαa(R)

and it can be shown that only the R block of the p and q vectors are different
from zero [33]. In this case, the response function is
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χMαMα′ (ω) =
∑
ab

ZαaZα′b√
MaMb

Gab(ω) (2.114)

If the external perturbations is nonlinear in the ionic displacements, a contribution
from the Υ and ReA blocks of the p and q vectors arises and in some systems it
can be important [23]. The two-phonon propagation gives a non-zero response also
in purely harmonic crystals. For example, the harmonic two-phonon IR response is

χ
(2ph)
MαMα′

(ω) =
∑

abcdµν

eaµe
b
νe
c
µe
d
ν√

MaMbMcMd

dZαa
dRb

χµνµν(ω)dZα
′c

dRd
(2.115)

To obtain the interacting response, it is sufficient to replace the harmonic two-
phonon Green function χµνµν with the interacting one.

The same procedure applies to Raman scattering. Here, the Â and B̂ observable
are the polarizability ααβ(R̂) of the sample along α (incoming) and β (outcoming)
directions of the light polarization, when ions are displaced.

Â = ααβ(R̂) B̂ = αα′β′(R̂),
The polarizability of a molecule is its ability to respond to an electric field E and

acquire a dipole moment, thus, it can be related to the electronic energy as

ααβ = ∂2Eel
∂Eα∂Eβ

where α and β are Cartesian indices. By assuming a linear dependence of the
polarizability on the atomic displacement u, it can be recast as in Eq. (2.116)

ααβ(t) =
∑
a

Aαβaua(t) (2.116)

where the Raman tensor Aαβa describes the coupling between the two electric
fields and the sample

Aαβa = ∂3Eel
∂Eα∂Eβ∂Ra

(2.117)

The p and q vectors are derived in the same way as for Infrared absorption. It
is sufficient to compute the first and second-order derivative of the polarizability as〈

∂2ααβ(R
∂Ra

〉
ρ(0)

= 〈Aαβa〉ρ(0) (2.118)

〈
∂2ααβ(R
∂Ra∂Rb

〉
ρ(0)

=
∑
c

Υac 〈(Rc −Rc)Aαβa〉ρ(0) (2.119)

Again, in the case of linear coupling to the probe and no dependence of the
Raman tensor on the ionic displacement, the response function can be easily written

χααβαα′β′ =
∑
ab

AαβaAα′β′b√
MaMb

Gab(ω) (2.120)

The two-phonon form is analogous to the Infrared one in Eq. (2.115).
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2.7.3 Lanczos algorithm

The computational cost of the one-phonon Green function as in Sec. 2.5.3 diverges
quickly with the number of atoms and so the application of the full dynamical Green
function has been performed in realistic systems under the assumption that the
fourth-order term

(4)
D is negligibly small. Moreover, the one phonon Green function

does not provide the most general response to the experimental probe, but it is
limited to probes interacting linearly with atomic displacements. In Ref. [33], an
efficient algorithm that allows to compute the elements of the response function to
any general external perturbation, computationally achievable in systems of hundreds
of atoms in the full anharmonic regime, even with

(4)
D 6= 0, is derived.

Shortly, the biconjugate Lanczos algorithm computes in one shot the response
function of Eq. (2.110) for any value of ω. This is done by building, with an iterative
procedure, a basis-changing Q matrix so that

Q−1LQ = T (2.121)

is tridiagonal, with αk, βk, γk coefficients.

T =



α1 γ1 · · · 0

β1 α2
. . . 0

. . . . . . . . .
... . . . . . . γn−1
0 · · · βn−1 αn


(2.122)

the basis in which the L is tridiagonal is represented by the column of the Q
matrix:

Q =
(
q1 · · · qn

)
(2.123)

and the rows of the inverse matrix define the conjugate vectors

Q−1 =

p1
...

pn

 (2.124)

and both the coefficients of the tridiagonal matrix and the qk and pk vectors are
found through the iterative biconjugate Lanczos algorithm; the algorithm formally
ends when qk and pk are linear combinations of the previous vectors or when
pk · qk = 0. See Ref. [33] for further details. In the end, one can show that the
response function can be written as

χAB(ω) = −(p · q)[(T + ω2)−1]11 (2.125)

It depends only on the first element of the inverse matrix in the tridiagonal basis
that can be written as a continued fraction.
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χAB(ω) = −(p · q)
α1 + ω2 − γ1β1

α2+ω2− γ2β2
...

(2.126)

This method is limited to response functions where the perturbation and the
response are not orthogonal p · q 6= 0

2.8 Comparison with other approximations

We work within the Born-Oppenheimer (BO) approximation [91] to separate elec-
tronic and nuclear degrees of freedom. In Sec. 2.2 and 2.7, I described the SSCHA
approximation and its time-dependent extension, used to solve the nuclear BO
Hamiltonian. It is a very sophisticated technique that allows to include nuclear
quantum anharmonic effect in a non-perturbative way. In literature, there are a
great number of theoretical approximations to treat the nuclear problem. The most
used approach, which overcomes the limitations of the harmonic theory and gives
very good results, is the so-called quasi-harmonic approximation (QHA) already
mentioned in Sec. 2.2. In this section, I briefly describe the QHA theory and I
highlight the differences and similarities with the SSCHA.

In the QHA, the BO energy surface is expanded as a quadratic function around
its minimum at each volume. The free energy is the sum of the BO energy V (R, {~ai})
at fixed nuclear position R and cell parameters {~ai}, and the harmonic vibrational
contribution:

FQHA(R, {~ai}) = V (R, {~ai}) + Fvib(R, {~ai}) (2.127)

where

Fvib(R, {~ai}) = 1
Nq

∑
q∈BZ

3N∑
µ=1

[~ωHqµ(R, {~ai})
2 +

+ 1
β

ln
(
1− e−β~ωHqµ(R,{~ai})

)]
.

(2.128)

Here, Nq is the number of q points in the Brillouin zone, β = (kBT )−1, and
ωHqµ are the volume-dependent harmonic frequencies in the q-point for the µ mode.
However, as in the harmonic model, the frequencies show no temperature dependence
for a fixed volume.

In principle, the QHA free energy is obtained by minimizing the functional FQHA
in Eq. (2.127) at fixed volume and temperature. However, this minimization is
computationally expensive for systems with many degrees of freedom like ice, since
it requires the calculation of the harmonic phonon frequencies for each value of the
nuclear positions.

As commonly done, in the study of low-pressure ice, the QHA free energy is
computed in the minimum R0 of the BO energy V (R, {~ai}), obtained by relaxing
both the internal coordinates and the cell vectors without vibrations at a fixed
pressure.
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A direct comparison with the SSCHA is available if we rewrite the SSCHA
free energy of Eq. (2.7) in a more fashionable form by adding and subtracting the
auxiliary trial harmonic Hamiltonian HR,Φ = K + VHR,Φ (as in Eq. A.8):

F [R,Φ] =
〈
V − VHR,Φ

〉
ρ̃R,Φ

+ Fvib(R,Φ), (2.129)

where the vibrational term has the same functional dependence as in Eq. (2.128).
The average is computed in an ensemble of configurations generated according to
the density matrix ρ̃.

The differences between the two approaches rely upon three main points:

a) The centroid position R
As mentioned earlier, it is hard to optimize the centroids within the QHA at a
reasonable computational cost, so I employ their equilibrium value without
vibrations. In contrast, the minimization procedure in the SSCHA consents
fully optimization of the geometry at any temperature, including the average
nuclear position R with thermal and quantum anharmonic effects included.

b) The frequencies:
In the QHA approach, they are the harmonic frequencies. In the SSCHA
framework, the frequencies are the eigenvalues of the dynamical matrix obtained
through free energy minimization. Thus, they account for anharmonic quantum
and thermal fluctuations. Moreover, the dynamical extension of the SSCHA
and the methodology reported in Sec. 2.5.3 allows computing the physical
phonons, probed in spectroscopic experiments.

c) The SSCHA explicitly accounts for deviation of the real ionic energy landscape
from the Harmonic approximation:

〈
V − VHR,Φ

〉
ρR,Φ

in Eq. (2.129). The
inclusion of this term makes the SSCHA free energy variational with respect
to the exact one. This property is not shared by the QHA free energy.

Although an approximate technique, this self-consistent approach revealed to
perform quite accurately in describing free energy differences, (See Ref. [92]), that
determine the thermodynamic properties investigated in low- and high-pressure
ice, for instance. Moreover, the large amount of simulations performed in this
work prevents the use of more accurate path integral methods. In addition, most
of the properties, like the VIE, are studied at zero temperature, a limit that is
computationally very expensive and difficult to achieve through PI simulations.
Furthermore, PI is a static theory and it requires alternative formulations to describe
dynamical spectral functions, while the TD-SSCHA is a dynamical theory that
grants direct access to the spectral functions.

2.9 Force Fields
The first-principle computation of energy and forces necessary to the SSCHA ma-
chinery is computational demanding. In systems with many atoms or that require
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a huge number of configurations to converge or to achieve results with low un-
certainties, the computational cost of an ab initio approach can be prohibitively
expensive. Moreover, when one wants to use a hybrid functional where part of the
exact exchange functional is used, the computational cost grows even more and it is
almost mandatory to resort to alternative approaches.

Commonly, empirical force fields are used to overcome the great cost of DFT
functionals. However, in recent years, the upcoming of machine learning techniques
provided a new approach to obtain more accurate and versatile force fields. Shortly,
the use of neural networks (NNs) allows learning the energy and forces output by the
ab initio approach by training the network itself with a number of different atomic
configurations that sample the phase space as much as possible.

By paying the price of lower accuracy, but with the advantage of a speedup of
several orders of magnitudes, one can use the force fields fitted on DFT functionals
by the NN. The computations performed to produce the data of this thesis exploit
the availability of such force fields. In this section, I will describe the two adopted
very briefly.

2.9.1 revPBE0-D3

I used this force field in the study of ordinary ice Ih and its ordered counterpart ice XI
in Chapter 3. revPBE0-D3 is the hybrid counterpart [93, 94] of the Revised Perdew-
Burke-Ernzerhof (revPBE) functional of the generalized gradient approximation
(GGA) which incorporates 25 % of exact exchange with Grimme D3 dispersion
correction [95]. It has been demonstrated to accurately predict structure, dynamics
and spectroscopy of water systems in molecular dynamics (MD) and path integral
MD simulations [96]. Since the sampling of the phase space of water at the revPBE0-
D3 level of theory is prohibitively expensive, Cheng et al. [97] sampled the phase
space using a surrogate machine learning (ML) potential energy surface (PES).

They built a flexible and fully dissociable neural network potential for bulk
liquid water and ice, following the framework of Behler and Parrinello [98] using
the RuNNer code [99], which was trained with revPBE0-D3 energies and forces
computed on 1593 different reference structures of 64 water molecules, a 2× 2× 2
supercell of the conventional 8 molecules orthorhombic unit cell of ordinary ice.
Energy cutoffs for the plane-wave expansion of 1200 Ry have been used within the
CP2K package [89].

The NN computes the total energy of the system as a sum of environment-
dependent atomic energies. For each atom, the position of all neighboring atoms
within a cutoff radius (to be converged), is described by a set of atom-centered
many-body symmetry functions, that are used as an input for the NN, yielding the
atomic energy contributions. Analytic total energy expression is available as the
sum of all the individual atomic energies contribution and analytic gradients for the
calculation of the forces are available too. The NN outputs also the stress tensor.
Atomic environments within a cutoff radius of 12 Å are described using symmetry
functions set (27 functions for hydrogens and 30 for oxygen atoms). The hydrogen
and oxygen atomic NNs are made up of two hidden layers with 20 nodes each.

The 1593 reference structures were split into an 80% training set and a 20% test
set to estimate the quality of the NN and avoid over-fitting. Structures were chosen
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Figure 2.4. Schematic representation of the neural network of Ref. [100]. The enlarged
box is the DNN itself. Ri are the input coordinate and a {Rij} represent the relative
positions of all neighboring atoms with respect to atom i. {Dij} represent the local
coordinate information and they serve as input for each hidden layer to compute the
atomic energies Ei, whose sum gives the total energy. Figure taken from: Deep Potential
Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics, Zhang
et al. PRL 120, 143001 (2018) [101]

to cover the phase space as much as possible since the accuracy of the predicted
energy and forces for a given atomic environment is dictated by the structural
similarity between this environment and the ones contained in the reference training
set. Inaccurate energy predictions tend to lead the system to explore a non-physical
part of the phase space.

2.9.2 PBE

Perdew–Burke–Ernzerhof (PBE) [102] functional is the most common choice in
ab initio atomistic simulations of water [29, 103, 104]. The computational cost
of performing DFT simulation using this kind of non-hybrid functional is smaller
with respect to that expected if a hybrid functional, as revPBE0-D3 described in
Sec. 2.9.1, is used. However, if the mole of numerical computations to carry out
is important, the cumulative cost of using a first-principle approach can become
prohibitive even with the PBE approximation of DFT.

This is the case, in the simulation of the phase transition of high-pressure ice,
where several pressures, temperatures and structures are sampled. To overcome
the computational limitation posed by the ab initio approach, I will exploit a Deep
Neural Network (DNN) realization of the PBE approximation of DFT by Zhang et
al. [24].

In the DNN scheme [101], a local reference frame and a local environment
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are assigned to each atom. Each environment contains a finite number of atoms,
whose local coordinates are arranged in a symmetry preserving way following the
prescription of the deep potential method. The learning process is improved thanks
to the use of a flexible family of loss functions. Despite being different from the NN
used to produce the revPBE0-D3 force field of Sec. 2.9.1 it works in a very similar
way.

In Fig. 2.4 there is a schematic diagram of the DNN used to fit the PBE force field.
The atomic positions are rearranged to give the relative positions with respect to all
neighbors {Rij} for atom i and then transformed into local coordinate information
(radial and angular) {Dij} within a given cutoff radius Rc. {Dij} serve as input for
the DNN, made up of multiple hidden layers each with several nodes. Finally the
atomic energies Ei are summed up to give the total energy (as in Sec. 2.9.1).

The training data are generated with an iterative learning procedure. The code
for this work is integrated into the open-source software package DEEPMD-KIT
[105] and the authors used the DP-GEN [100] package for the iterative scheme. The
DNN model is an end-to-end scheme that does not use any ad-hoc construction in
addition to the coordinate information and the network itself.

The model is size extensive, preserves translational, rotational and permutational
symmetry, and yields also a polarization that varies continuously with the atomic
coordinates. The authors built Deep Potentials (DP) for ice using 2248 single-
shot DFT calculations with a 16 water molecules cell and 2400 single-shot DFT
calculations with a 128 molecules cell. Recently, ML methods have been used to
represent the polarization and its time derivatives [106] needed for IR or Raman
calculations. Zhang et al, in their work, propose an approach based on DNN
and maximally localized Wannier functions (MLWFs) to predict polarization and
polarizability. It exploits the use of Wannier Centers (WC) in which the input
atomic coordinates are mapped into output WC coordinates. For the moment, I
have not yet exploited the availability of configuration-dependent polarization and
polarizability (and so effective charges and Raman tensors) but I plan to do this
in the following to analyze the spectral dependence on nonlinearity on the effective
charges and Raman tensors.
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Chapter 3

Low pressure ice: the Ih and XI
phases

3.1 Introduction

In this chapter, I apply the theoretical methods developed in Chapter 2 to study
the stable ice phases in the low-pressure region, that is the ordinary ice Ih and
its proton-ordered counterpart ice XI. First, I report some information about the
structure of the ice phases involved as well as a brief review of the experimental
and theoretical literature (Sec. 3.2) that motivates the study of these low-pressure
structures. I show that the thermodynamic properties of ice (Sec. 3.3.1), like its
peculiar negative thermal expansion or the compressibility and internal geometry, are
perfectly reproduced within the self-consistent harmonic approximation framework
which provides some improvements with respect to other approximated theories. Ice
exhibits an anomalous isotopic effect, and I show that quantum effects on hydrogen
are in a strongly nonlinear regime (Sec. 3.3.2): when progressively increasing the
mass of hydrogen from protium to infinity (classical limit), the volume first expands
and then contracts, with a maximum slightly above the mass of tritium. The last
part is dedicated to vibrational spectroscopies (Sec. 3.3.3 - 3.3.5). There, for the
first time, I report an accurate comparison of the low-energy phonon dispersion with
the experimental data, crucial for the study of thermal transport or to simulate ice
under pressure. Finally, I describe the anharmonic renormalization of stretching and
bending modes probed in Raman and IR spectroscopies.

The results reported in this chapter have been already published in Ref. [107]:
The microscopic origin of the anomalous isotopic properties of ice relies on the strong
quantum anharmonic regime of atomic vibration

3.2 Ice structures and motivations

Ice Ih [4] is the hexagonal crystal form of ordinary ice in the biosphere (frozen water).
It has a completely proton disordered structure, with P63/mmc space group and
D6h symmetry, the space group of any configuration in accord with the ice rules must
be a subgroup of P63/mmc. In accordance with the third law of thermodynamics,
one ordered configuration must have slightly lower energy than the others, resulting
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Figure 3.1. Orthorhombic unit cell of phase XI. The unit cell contains 4 water molecules
(red and white balls in the figure are oxygen and hydrogen atoms respectively). The
structure is ferroelectric, with a permanent electric dipole along the vertical axis.

in the equilibrium structure at low temperatures. The ordered structure, phase XI,
is found to be thermodynamically stable below T = 72 K. However, at such low
temperatures, the proton is essentially immobile so that on the laboratory time
scale, in pure ice, the transition to proton ordered structure never occurs and the
disordered ice Ih persists to low temperatures. The timescales to achieve proton
order are expected to be of the order of 106 years, so that ice XI is the stable form
of low-pressure ice on planets where the surface temperature is lower than 72 K, like
Pluto.

However, the transformation can be catalyzed by doping Ih with KOH or other
hydroxides that promote the migration of protons and the associated change in the
proton configuration. Calorimetric measurements [17, 18, 19], in which the doped
ice was kept some degrees below the critical temperature for several days to allow
the ordering of the crystal and dielectric experiments [108] revealed the ordering
transition at T=72 K.

Before the definitive establishment of the structure of ice XI, several proton-
ordered structures, with different symmetries, were proposed. Neutron diffraction
measurements [5, 109] determined the ferroelectric orthorhombic structure of phase
XI. It belongs to Cmc21 space group with 4 water molecules per unit cell (Fig. 3.1),
with oxygen and hydrogen atoms in the 4a e 8b Wyckoff position respectively (see
Tab. 3.1)

Thermodynamic properties of the ordered and disordered structures present
negligible differences [110], making ice XI a perfect prototype system to simulate
ordinary ice Ih. This entails several advantages from a computational perspective:
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Atom Wyckoff position site symmetry Coordinates +(1/2,1/2,0)

O 4a m.. (0,y,z)(0,-y,z+1/2)

H 8b 1 (x,y,z) (-x,-y,z+1/2) (x,-y,z+1/2) (-x,y,z)

Table 3.1. Space group (Cmc21), site symmetry and Wyckoff positions of ice XI. The
orthorhombic unit cell contains 4 water molecules. The values of the free parameters
in the SSCHA optimized structure at T=0 K are y=0.316 and z=0.060 for the oxygen
atoms and x=0.089, y=0.4747, z=0.480 for the hydrogen atoms.

ordered ice has a smaller unit cell and it exists in only one configuration.
Liquid and crystalline water have been extensively studied in the last decades.

The great effort that researchers devoted to the investigation of water is not at-
tributable only to its pivotal role in biological processes, its anomalous properties
attract scientific attention and make theoretical prediction challenging. The great
difference in strength between the intermolecular hydrogen bonds and the intra-
molecular covalent OH bonds produces a vibrational spectrum with a wide energy
range, from low energy rotons to high energy vibrons [111, 112, 113]. The stretching
vibrational modes of the water molecule have an energy of about 3400 cm−1, which
requires a temperature of 4900 K to populate the first excited state. Thus, the
nuclear motion at room temperature is completely quantum mechanical.

Anharmonic effects play a key role in ice, determining, for example, its anomalous
thermal expansion [20, 21, 114] at low temperatures, the inverse volume isotope effect
(VIE) [29, 115, 116] and the shifts in the vibrational spectra. The thermodynamic
properties of ice have been investigated by using several approximations. Force-field
and first-principles based path integral molecular dynamics (PIMD) and quasi-
harmonic approximation (QHA) [28, 29, 30, 115, 116] were employed to describe
the negative thermal expansion and VIE, enlightening the strong dependence of the
results on the force field or the DFT functional [117] used as well as some discrepancies
of the QHA at high temperatures and the improvement of the simulations of water
and ice obtained by including long-range van der Waals interactions [31, 118]. The
vibrational properties of ice have been widely investigated by using mainly Raman,
Infrared and neutron spectroscopy [119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133]. Alongside experimental works, several theoretical studies
focused on the librational modes [134, 135, 136, 137] and on the OH stretching
bands [138, 139], where the authors were able to calculate linewidths in good
agreement with experimental data but shifted peak positions. The low energy modes
computed using standard ab initio techniques display a severe disagreement with
experiments. This prevents the study of thermal transport properties in ice ab
initio and its characterization under pressure, an area of extensive experimental
research [140, 141, 142, 143, 144, 145, 146]. An accurate description of atomic
vibrations is of paramount importance to reproduce thermodynamic and dynamical
properties. In the study of low-pressure ice, I overcome the intrinsic limitations of
other methodologies by using the self-consistent harmonic approximation (SSCHA)
[32, 55, 56, 57] which exploits a full-quantum variational principle on the free
energy to account for the effect of anharmonicity arising from thermal and quantum
fluctuations.
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3.3 Results

In this section, I report a detailed investigation of ordinary ice Ih and phase XI, its
proton-ordered counterpart [17], stable below 72 K. Quantum anharmonic effects on
the nuclei affect the properties of the hydrogen bonds, producing exotic behaviors,
like negative thermal expansion or anomalous VIE. Soft intermolecular hydrogen
bonds coexist with harder intra-molecular covalent OH bonds producing phonons
with a very wide energy range, heavily impacted by anharmonicity.

We work within the Born-Oppenheimer (BO) approximation [91] to separate
electronic and nuclear degrees of freedom. The total electronic energy at fixed nuclei
is calculated using a Neural Network Potential (NNP) developed in Ref. [97], trained
on the revPBE0 [93, 94, 147] functional with Grimme D3 dispersion correction
[95, 147] to properly account for long-range van der Waals interactions. A detailed
description of the force field can be found in Sec. 2.9.1.

It is known in the literature that the commonly used QHA produces accurate
predictions of thermodynamic properties at low temperatures ( T ≤ 100 K), man-
ifesting instead some inaccuracies at higher temperatures. Therefore, I solve the
nuclear BO Hamiltonian by using both the QHA and the SSCHA. The description
of the QHA method and the differences with respect to the SSCHA approach can
be found in Sec. 2.8.

Both the harmonic and the SSCHA calculations are performed in supercells
with periodic boundary conditions. Simulation details and a discussion about
the convergence properties of the SSCHA and QHA calculations can be found in
Appendix F. Results are converged for a 3x3x2 supercell in the SSCHA and a
14x14x14 for the QHA.

The following section is dedicated to the anomalous thermal expansion of ice,
the bulk modulus, the temperature dependence of the crystalline properties and the
anomalous isotope effect. For each temperature, I estimated the equilibrium volume
Ωeq(T ) as the one where the pressure, defined as the derivative of the free energy
with respect to a strain tensor ε, P = −1/Ω ∂F/∂ε , vanishes.

Ωeq(T ) : P (Ωeq(T ), T ) = 0 (3.1)

In the SSCHA framework, we have the analytical expression for the pressure in
Eq. (2.19) [57], while in the QHA a finite difference approach is employed.

The application of external pressure to a solid produces a volume change; the
bulk modulus is how a crystal withstands modifications of volume under pressure.

B(T ) = −Ωeq(T )∂P (Ω, T )
∂Ω

∣∣∣∣
Ωeq(T )

(3.2)

The simulation of spectroscopic experiments, Raman and IR, can be found in
the last part of this section. Throughout all this chapter and in the following one, I
replace the volume denomination Ωvol of Chapter 2 with the simple Ω to avoid a
cumbersome and hard-to-read notation in the figures.



3.3 Results 53

0 50 100 150 200 250 300
T (K)

31.75

32.00

32.25

32.50

32.75

33.00

33.25

33.50

 Ω
eq

  (
Å
3 )

SCHA
QHA
Experiment Fortes
Experiment Buckingham
No fluctuations

0 50 100 150 200 250 300
T (K)

1.000

1.005

1.010

1.015

1.020

1.025

1.030

 Ω
eq
/Ω

0 

SCHA
QHA
Experiment Fortes
Experiment Buckingham

(a) (b)

Figure 3.2. Equilibrium volume per H2O molecule of ice XI as a function of temperature.
a Comparison of the absolute value of the volume in the SSCHA (black circles) and
QHA (solid red line) with the experimental measurements by Fortes [21] (blue dotted
line) and Buckingham [148] (brown stars). The classical equilibrium volume, where
thermal and quantum fluctuations are neglected, is the green dot-dashed line. b The
normalized equilibrium volume Ωeq(T )/Ωeq(T=0) in the SSCHA (black circles) and QHA
(red solid line) is compared to the experimental data (blue dotted line and brown starts).

3.3.1 Thermodynamic properties

The absolute value of the equilibrium volume per H2O molecule is in Fig. 3.2 (a).
We notice a considerable effect of the zero point motion that shifts the curves one
respect to the other. The zero-temperature equilibrium volumes predicted by the
different theories and their percentage shift with respect to the classical limit are
reported in the first part of Table 3.2. The agreement with the experiment is much
better in the SSCHA than in the QHA picture. This data are discussed in detail
in Sec. 3.3.2, concerning the isotope volume effect. Since Ωeq(T = 0) is theory
dependent, to compare the thermal expansion, in Fig. 3.2 (b) I report the normalized
volume Ωeq(T )/Ωeq(T=0).

In the low-temperature regime, T ≤ 50K, the predictions for the normalized
equilibrium volume in the QHA and SSCHA are very similar and in a good match
with the experimental data [21, 148]. For higher temperatures, essential differences
between the two theories arise. The SSCHA agrees with the experimental mea-
surements by Fortes [21] within a 0.1 % up to 200 K and the agreement with the
Buckingham [148] data is almost perfect in all the temperature range explored. The
QHA, otherwise, deviates from the experimental data above 100 K. This estab-
lishes the success of the SSCHA theory in describing the thermal expansion of ice,
overcoming the limitations of commonly used techniques based on the harmonic
approximation.

The temperature dependence of the internal geometry parameters is strictly
correlated to the thermal expansion. Within the SSCHA framework we are able to
extract information about the covalent and hydrogen bond lengths. The former is
reported in Fig. 3.3.
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Figure 3.3. Temperature dependence of the covalent bond length. The SSCHA bond length
(black circles) is compared with the classical result (red squares), computed from the
minimization of the BO energy V (R, {~ai}), where, the effect of the thermal expansion is
introduced by fixing the volume to be the SSCHA equilibrium one at each temperature,
in order to point out the contribution of thermal and quantum fluctuations.

Counterintuitively, the water molecules shrink upon heating at high temperatures.
This is only marginally a consequence of intermolecular hydrogen bond weakening
due to the increasing distance between molecules with temperature, but rather a
complex effect of anharmonicity triggered by molecular vibration. If we relax the
structure with static nuclei at the SSCHA equilibrium volume for each temperature
(Fig. 3.3, red squares), we explain only the 15% of this effect.

Since the vibration that deforms the water molecule is a stretching mode, with
ω ' 3400cm−1 and excitation temperature T ' 4900K, this relevant temperature
dependence can only be explained by the anharmonic interaction between transla-
tional molecular modes, the only ones whose population changes in this temperature
range, and the stretching mode, that affects the OH bond length.

Conversely, the volume expansion explains thoroughly the widening of the
hydrogen bond with temperature (Fig. 3.4).

The bulk modulus

Within the thermodynamic properties of a solid, the bulk modulus is worth of a
paragraph on its own. In geophysics, the correct description of the compressibility
of a solid is of paramount importance for studying the inner composition of Earth
and other planets [149, 150]. In fact, it is possible to put in a close relationship the
velocity of propagation of sound waves, as those produced in an earthquake, with
the bulk modulus of the media through which they propagate, having, in such a
way, the possibility to identify its composition given the pressure and temperature
conditions.

Eq. (3.2) suggests a direct dependence between equilibrium volume and bulk
modulus. The absolute value and the normalized one B(T )/B(T=0) of the bulk
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Figure 3.4. Temperature dependence of the hydrogen bond length. The SSCHA bond
length (black circles) is compared with the classical result (red squares), computed
from the minimization of the BO energy V (R, {~ai}), where, the effect of the thermal
expansion is introduced by fixing the volume to be the SSCHA equilibrium one at each
temperature, in order to point out the contribution of thermal and quantum fluctuations.

modulus are reported in Fig. 3.5. Already at T = 0 K, the bulk modulus is strongly
renormalized by ionic quantum fluctuations by a 22% and 15% in the QHA and
SSCHA, respectively (Fig. 3.5 (a) ).

The bulk modulus has an anomalous strong temperature dependence; experimen-
tal data [21] show a 20% reduction from 0 to 300 K. The SSCHA reproduces this
behavior perfectly (Fig. 3.5 (b) ), while the QHA overestimates the bulk modulus
reduction of 10%.

In order to understand the origin of this strong temperature dependence it is
possible to separate the bulk modulus, computed from Eq. (3.2) into a static and a
vibrational contribution as for the free energy in Eq. (2.127). By restricting to the
QHA picture, the static and vibrational bulk modulus can be expressed through Eq.
(3.3):

Bstat(T ) = Ωeq(T )∂
2V (R, {~ai})

∂Ω2

∣∣∣∣
Ωeq(T )

(3.3a)

Bvib(T ) = Ωeq(T )∂
2Fvib(R, {~ai})

∂Ω2

∣∣∣∣
Ωeq(T )

(3.3b)

Fig. 3.6 (a) shows the static bulk modulus, where fluctuations are neglected.
I computed the curves at the QHA and SSCHA equilibrium volumes, in order to

introduce the effect of thermal expansion. The continuous line is the classic result,
where quantum and thermal effects are not included. The vibrational contribution
of Eq. (3.3b), for the QHA and SSCHA volumes, is reported in Fig. 3.6 (b). It is
always negative, meaning that it would increase the volume under compression.

Both the static and the vibrational bulk modulus have a non negligible tempera-
ture dependence, contributing to the total one for the 64% and 36% respectively.
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Figure 3.5. a Temperature dependence of the bulk modulus. The QHA (red solid line)
and SSCHA (black circles) results are compared with the experiment [21] (blue dashed
line). The green dot-dashed line is the classical value for the bulk modulus, obtained
by neglecting thermal and quantum fluctuations. b Comparison of the normalized bulk
modulus B(T )/B(T=0) in QHA and SSCHA with the experiment. The bulk modulus is
computed as in Eq. (3.2).
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Figure 3.6. Analysis of the different contributions to the bulk modulus. a The static QHA
bulk modulus is computed at the QHA equilibrium volumes (solid red line) and at the
SSCHA equilibrium volumes (black circles). The green solid line is the classical bulk
modulus where fluctuations are neglected. b Vibrational QHA bulk modulus computed
at the SSCHA (black circles) and QHA (red solid line) equilibrium volumes.
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Moreover, the effect of different equilibrium volumes is almost temperature
independent in the vibrational term, being unable to explain the different thermal
behaviour of the two theories, that can instead be addressed partially to the effect
of volumes in the static bulk modulus as evident in Fig. 3.6 (a).

The combined employment of high accuracy in the electronic exchange-correlation
and the accurate description of quantum nuclear motion provided by the SSCHA
correctly describe the thermodynamics properties of ice beyond the accuracy of quasi
harmonic simulations.

3.3.2 Volume Isotope Effect

According to classical mechanics, the equilibrium volume does not depend on the
mass of the atoms, and, thus, it is isotope independent. Quantum effects overturn
this simple situation. In most crystalline systems, the heavier the isotopes the smaller
the equilibrium volume. In rare exceptions, like ice, by substituting hydrogen with
deuterium the equilibrium volume increases [29, 115]. This is known as anomalous
volume isotope effect.

In Table 3.2, I report the equilibrium volume per water molecule at zero temper-
ature with protium mass of hydrogen, computed without thermal fluctuations, with
quantum effects and harmonic phonons (QHA) and with full anharmonic quantum
zero point motion (SSCHA) compared with the experiment in Ref. [21].

As seen, the quantum anharmonic theory is the closest match with the experiment,
with an error smaller than 0.5%. The discrepancy between the SSCHA results
and those obtained within the QHA, which account for volume effects but not for
vibrational anharmonicity, is comparable in size to neglecting ionic motion altogether.

Anharmonicity affects the results in two ways: it changes the average position of
nuclei (See Fig. 3.3) and modifies the vibrational frequencies. To shed light on which
effect dominates the volume expansion, I repeated the harmonic calculation by fixing
nuclear positions to the SSCHA result (QHA @ {R}SSCHA) and by employing also
the frequencies shifted by the anharmonicity (QHA @ {R, ω}SSCHA). The results
are reported in the second part of Table 3.2. The last row indicates the volume
difference with respect to the full anharmonic theory.

This analysis reveals the origin of the discrepancies between a quasi-harmonic
approach and a full non perturbative anharmonic treatment of nuclear vibrations, un-
veiling how the key role played by anharmonicity is on the frequency renormalization
rather than the significative structural changes.

Elucidated the crucial role of anharmonicity in describing the correct volume
expansion, I systematically explored the volume effect by varying the mass of the
isotopes, both hydrogen and oxygen.

At first, I investigate the dependence of the equilibrium volume at T=0 K on the
hydrogen mass, numerical simulations give the possibility to modify this parameter
without limitations, while experiments are available only for hydrogen and deuterium
[20, 21].

In Fig. 3.7, the equilibrium volumes per water molecule obtained at different
levels of the theory are compared with two experimental measurements [20, 21]. The
solid line is the classical limit used as a reference. The numerical values for the
volume difference at T = 0 K in the theoretical models and the experiments are
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Classic QHA SSCHA Exp. [21]

Ωeq(Å3) 31.771 32.555 32.207 32.055
% 0 2.47 1.38

QHA @ {R}SSCHA QHA @ {R, ω}SSCHA

Ωeq(Å3) 32.613 32.068
∆(Å3) 0.406 -0.139

Table 3.2. The first part of the table reports the equilibrium volume per water molecule of
ice XI at T=0 K. In the first row there is the comparison of the volume computed in the
QHA and SSCHA with the experiment [21] and with the classical result, where quantum
and thermal fluctuations are neglected. In the second row, we report the percentage shift
with respect to the classical volume. The second part of the table shows the equilibrium
volume per water molecule in the QHA when free energy of Eq. (2.127) is computed
using the SSCHA equilibrium positions {R}SSCHA or using both the SSCHA positions
and frequencies and their error with respect to the SSCHA result.

SSCHA QHA Exp. [21] Exp. [20] SSCHA RPBE-D3

∆Ω(Å3) 0.112 -0.075 0.017 0.029 0.156
Table 3.3. Equilibrium volume per water molecule difference ΩD2O − ΩH2O at T=0 K.

The SSCHA and QHA results computed in the converged meshes are compared with
two experimental measurements [20, 21]. The last column shows the volume difference
computed in the SSCHA by using the NNP RPBE-D3 functional devised in Ref. [97] in
order to analyze the dependence of the VIE on the functional used.

reported in Table 3.3. The anharmonic theory (SSCHA) correctly predicts the sign
of the VIE, while the quasi-harmonic approach fails, predicting a volume reduction.
However, the SSCHA heavily overestimates the experiment, resulting in a volume
difference from 3.8 to 6.7 larger than the measured data.

Experimental data are measured on hydrogen-disordered samples of ice Ih, while
the simulation is performed on the hydrogen-ordered ice XI. To unveil the role of
hydrogen ordering, I repeated the calculation of the VIE in a hydrogen-disordered
structure for ice Ih. I generated disordered cells containing 24 atoms and I ran
convergence tests (see App. F) using supercells containing up to 432 atoms (144
water molecules). I found converged properties for supercells with 192 atoms (64
molecules). This result is in agreement with previous theoretical works [97, 151],
where 64 molecules simulation cells are used to attain convergence.

I obtained a result deviating by a 3.5 % from the hydrogen-ordered structure,
unveiling how hydrogen ordering doesn’t significantly affect the VIE, and it is not in
origin beyond the discrepancy between theory and experiments.

Our calculation’s most relevant source of error is in the electronic correlation:
we repeated the simulation employing a different electronic energy engine (a neural
network trained on RPBE with Grimme D3 dispersion correction [97]). I obtained
a result deviating by a 38% from our simulation, giving a rough estimation of the
error introduced by the DFT functional.
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Figure 3.7. Dependence of the equilibrium volume per water molecule of ice on the
hydrogen mass at T=0 K. The results obtained in the QHA (red squares) and in the
SSCHA (black circles) are compared with two experimental results (yellow triangles and
blue diamonds) [20, 21]. The mass independent classical equilibrium volume is reported
as a reference (green solid line).

The QHA and SSCHA volumes are different for the physical isotopes of hydrogen
(protium, deuterium, and tritium). The difference disappears as we increase the
hydrogen mass. This derives from the reduced role of anharmonicity for higher mass
where quantum fluctuations at zero temperature are smaller. The crossover above
which the QHA correctly reproduces the VIE occurs for an isotope mass of five times
the hydrogen’s one, not a stable isotope. This means that the quantum regime of
protium, deuterium, and tritium is anharmonic, beyond the range of validity of the
quasi-harmonic theories.

In Fig. 3.8, I show the equilibrium volume of the solid when the mass of each
atomic species (hydrogen and oxygen) is varied separately until the classical limit of
infinite mass is reached, as well as the evolution of the equilibrium volume when
the mass of the whole molecule is increased. Obviously, there are only few of these
combinations in nature that are stable, but we can infer the quantum nature of each
element from this plot.

By increasing the mass of the whole solid, we manage to approach the classical
limit (the continuous line) for m/mH2O & 10000.

The largest natural atomic species weighs only 238 times the mass of protium.
This unveils how quantum effects on nuclei, usually neglected in atomistic calculations,
are of paramount importance even with "heavy" atoms. This is further proved by the
isotope volume effect of oxygen that, scaled to its much lower mass ratio between its
natural isotopes, is bigger than hydrogen.

Fig. 3.8 reveals a nonmonotonous volume expansion compared with quantum
fluctuations for the hydrogen isotopes. First, the equilibrium volume expands when
we increase the mass, reaching the maximum value for m ' 5mH , then we observe a
contraction to the classical value for bigger masses. This behavior explains that the
VIE is due to a crucial nonlinear regime of quantum fluctuations in ice, overturning
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Figure 3.8. Volume isotope effect for all the atomic species in ice XI in the SSCHA
framework at T=0 K. Black circles indicate the equilibrium volume per H2O molecule
when the hydrogen mass is increased by keeping the oxygen mass fixed to its 16O isotope
value. Red diamonds show the equilibrium volume when the oxygen mass is varied with
fixed hydrogen mass. Blue squares stand for the equilibrium volumes when the mass
of the entire water molecule is increased until reaching the classical limit shown as a
reference (green solid line).

the hypothesis of a monotonous volume reduction due to quantum effects. This
exotic behavior cannot be explained in a quasi-harmonic picture, as evident from
Fig. 3.7.

To check the dependence of the nonmonotonous volume expansion for hydrogen
isotopes on the DFT functional adopted, I repeated the simulation (see Fig. 3.9)
with the NNP BLYP-D3 functional devised in Ref. [97]. The increase of the
equilibrium volume with the mass of the hydrogen isotope is confirmed, as well as
the maximum value reached for a hydrogen mass between three and five times the
natural one and the successive decrease toward the classical limit. The use of a
different approximation of the exchange and correlation DFT functional modifies the
absolute value of the equilibrium volume and the relation between the quantum and
classical results. BLYP-D3 predicts an anomalous VIE with a classical equilibrium
volume that lies between the hydrogen and deuterium value, while revPBE0-D3
shows an anomalous VIE with volume expansion with respect to neglecting quantum
fluctuations.

The correct inclusion of quantum anharmonic fluctuations within the SSCHA
managed to explain the role of nuclear quantum effect (NQE) for what concerns the
anomalous VIE in water ice. Indeed, NQE plays a major role in several properties
of solid and liquid water. It is known that there are competing quantum effects.
While NQE extends the covalent bond, delocalizing the protons and strengthening
the hydrogen bond, if one takes into consideration the quantum fluctuations in other
directions, along the bending modes, that lead to distortion we observe the weakening
of the hydrogen bond and it would be interesting to separate the two contributions
to understand which of them dominates. Moreover, the present analysis of VIE can
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Figure 3.9. Volume isotope effect at T=0 K for the hydrogen atoms within the SSCHA
framework by using the NNP BLYP-D3 functional devised in Ref. [97]. The black circles
indicate the equilibrium volume per water molecule when the hydrogen mass is increased
progressively, keeping the oxygen mass fixed to its 16O isotope value. The green solid
line is the classical reference for the particular force field adopted.

be easily extended to the finite temperature case, where the difference between the
deuterated and hydrogenated ices equilibrium volumes is expected to increase.

Nuclear quantum effects play an important role also in the determination of the
melting point of ice, in fact, D2O ice forms a stronger hydrogen bond that increases
the stability of ice over the liquid, increasing the melting temperature. In general,
the effect of the NQE on the bond lengths has not been deeply investigated in this
work, giving hints for future works. The impact of quantum fluctuations on hydrogen
and covalent bonds is expected to give also further explanations to the VIE. Normal
VIE is observed when the covalent bond length is small compared to the hydrogen
bond one, as for ice VIII in the low-pressure regime (see Chap. 4.4) and vice-versa
for the anomalous VIE.

3.3.3 Phonon dispersion

The coexistence of strong intra-molecular and weak intermolecular bonds in ice
produces a vast vibrational spectrum. To compare with experimental results, I
computed the real phonons from the dynamical interacting Green function within
the time-dependent SSCHA [33, 56] (TD-SSCHA) to fully account for dynamical
quantum anharmonic effects (see Sec. 2.5.3 for further details).

Acoustic modes play a major role in thermal transport. I compared the simulated
phonon dispersion of deuterated ice at T=140 K and P=0.05 GPa in Fig. 3.10
with the experiment [143]. In the low energy regime, the static approximation of
the self-energy of Eq. (2.63) is suitable to describe the real phonon dispersion. A
comparison between the harmonic and the SSCHA auxiliary phonons and DOS is in
App. G.

I consider the lowest order self-energy correction, the bubble of Eq. (2.64).
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Figure 3.10. Comparison of the low-energy phonon dispersion (molecular translations)
with the experiment [143] (blue circles) for deuterated ice at T = 140 K and P = 0.05
GPa. Harmonic (red dashed lines) and anharmonic phonons (black solid line), computed
as the poles of the interacting one-phonon Green function in the static limit (using the
hybrid revPBE0-D3 functional fitted with the NNP [97]) are shown. The effect of the
DFT functional on the harmonic phonon dispersion is reported by showing the harmonic
dispersion calculated with PBE [102] functional (green dot dashed lines).

This approximation is reasonable and routinely employed in many system with
hydrogen[152, 153]. In the present case, I checked the approximation against the
exact static self-energy, where phonon energies change less than 1 cm−1.

While the harmonic phonons can be computed without effort in the supercell
described above, the computational cost of the bubble term is huge, and it is not
possible to perform the calculations in the same supercell used for the SSCHA
dynamical matrix D(S). To overcome this problem, I first computed the bubble
correction in a smaller supercell, namely a 3x3x2, and then I interpolated it to a
finer supercell to obtain the Hessian matrix D(F).

D(F)
4x4x4 = D(S)

4x4x4 +
[
D(F)

3x3x2 −D
(S)
3x3x2

]4x4x4
(3.4)

The harmonic acoustic phonons are in good agreement with the experiment
and deviate significantly from experimental data at high frequency (ω ≥ 120 cm−1).
Anharmonic effects correct the deviation, obtaining a perfect match between the-
ory and experimental data. The harmonic energy of the lowest acoustic branch
overestimates the speed of sound of 20%, introducing a substantial error in the
determination of thermal transport properties, further stressing the fundamental
role of anharmonicity in thermal conductivity.

I report an excellent agreement between experimental data and a simulation of
ice with ab initio accuracy for the first time. This result has a profound impact
enabling the first principles simulation of thermal transport, where an accurate
description of the acoustic phonons is required. Moreover, low-energy phonons are
the only modes detectable at high pressure; our work paves the way to characterize
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ice under pressure further.
The astonishingly good agreement I achieve is merit of the combined effect of

the correct treatment of anharmonicity and of the electronic functional adopted for
the calculation: the harmonic phonons with PBE, the common choice in ab initio
atomistic simulations of water [29, 103, 104] are reported in Fig. 3.10 (green dot
dashed lines), offering a comparison with phonons computed with NN-revPBE0
(employed in our work). We notice a considerable dependence on the DFT functional.
The use of the NNP improves the PBE harmonic dispersion, where the error
committed approximating the experimental points ranges from 30% to 36% e.g. in
the A point.

In Fig. 3.10, I restricted the original path of the experiment (the same as in Fig.
G.1) to the Γ-A direction. I report the phonon dispersion along the Γ-K direction in
App. G.

3.3.4 Combination modes

The phonon spectral function σ(q, ω) gives access to the quasiparticles energies and
lifetime. The spectral function is proportional to the signal probed in scattering
experiments, as neutron or X-ray scattering, and it is computed from the diagonal
elements of the dynamical one-phonon Green function G(q, ω) as in Eq. (2.70).

The phonon density of states (DOS) computed with the SSCHA dynamical
matrix at equilibrium (without the self-energy correction) describes anharmonic
non-interacting phonons, while the dynamical spectral function encapsulates all the
effects of phonon-phonon interactions, where, the addition of the self-energy term
Eq. (2.59) may produce combination of modes: the Λ tensor in the definition of the
bubble correction of Eq. (2.55) is defined though the F function of Eq. (2.56) that
has poles at the sum and differences of the SSCHA frequencies.

In Fig. 3.11, I report the comparison between the phonon DOS and the spectral
function at Γ of H2O ice XI to enlighten the presence of combination modes and
anharmonic overtones. I reveal the presence of two structures in the spectral function
that are absent in the DOS: one occurs at energies between the bending and stretching
bands, the other at twice the frequency of the stretching modes.

The same results apply for the deuterated ice XI in Fig. 3.12, where the
occurrence of features absent in the phonon DOS hints the presence of combination
of modes due to phonon-phonon interaction.

The interaction between phonon bands can be dissected to unveil which modes
originate these satellite peaks in the spectral function. I do this by restricting the
sum over the modes µ, ν in Eq. (2.55) only to the phonon modes I want to make
interact.

I report the results for H2O ice at T = 200 K, but the same also holds in
deuterated ice at T = 140 K and P = 0.05 GPa. I show in Fig. 3.13 that the
first combination mode, occurring for ω ∈ [2250, 2800]cm−1, is originated from the
interaction between the libration and bending bands, as the peak appears only if
we account for their reciprocal interaction. If we account only for librational or
bending modes in the calculations, the peak vanishes. The residual mismatch in the
low-frequency tail with the full spectral function reveals a nonnegligible contribution
of the other phonon branches (mainly translations).
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Figure 3.11. Comparison of the density of states and spectral function at Γ. H2O ice
XI at T=200 K and ambient pressure. Spectral function (black solid line) and DOS
(red dashed line) are shown. The DOS is computed by using the SSCHA dynamical
matrix at equilibrium without the inclusion of the self-energy term and by adding an
artificial smearing factor of 20 cm−1. Blue arrows indicate the combination modes and
anharmonic overtones.
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Figure 3.12. Comparison of the density of states and spectral function at Γ. D2O ice
XI at T=140 K and P = 0.05 GPa. Spectral function (black solid line) and DOS
(red dashed line) are shown. The DOS is computed by using the SSCHA dynamical
matrix at equilibrium without the inclusion of the self-energy term and by adding an
artificial smearing factor of 20 cm−1. Blue arrows indicate the combination modes and
anharmonic overtones.
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Figure 3.13. Spectral function of H2O ice XI at T = 200 K in the energy range of the first
combination mode at Γ. A comparison between the full spectral function (solid black
line) and that obtained by selecting only the interaction between the librations and the
bending band (red dashed line) is provided. Spectral functions obtained through the
interaction of bending band with themselves (green dot dashed line) and librations with
themselves (blue dotted line) are shown too.

The overtone at twice the stretching frequency is analyzed in Fig. 3.14. The
perfect matching between the full spectral function and the same computed only
considering stretching modes unveils how this peak is entirely generated by stretching
modes interacting with themselves, without a significative contribution of other
phonon branches. It is, in fact, the overtone of the stretching modes.

From the spectral function, we can extract the real phonon energies and their
lifetimes in different ways as depicted in Sec. 2.5.3. In this case, I solve Eq. (2.82)
and Eq. (2.83) self-consistently. I report in Table 3.4 the phonon energies and their
linewidths for few selected intense modes at T = 0 K and T = 300 K in the Brillouin
zone center.

We observe an essential reduction of the lifetime increasing the temperature.
The phonon energies are less temperature-dependent than their lifetime. Stretching
modes gain energy upon heating while all the others become softer.

3.3.5 Spectroscopy: Raman and IR

Anharmonicity shifts the frequencies of phonons and introduces a finite lifetime.
Here, I simulate the Raman and IR vibrational spectroscopy on ice, adequately
accounting for quantum and thermal anharmonic nuclear motion.

Raman scattering and infrared absorption are complementary tools to probe
phonon energies at Γ. The former is based on an inelastic scattering process that
detects modes due to changes in the polarizability, while the latter relies on the
absorption process and the vibrations detected involve modifications of the dipole
moment. Consequently, the selection rules for the two spectroscopies are different,
and often active IR modes are Raman inactive (or vice versa).
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Figure 3.14. Spectral function of H2O ice XI at T = 200 K in the energy range of the
second combination mode at Γ. The full spectral function (solid black line) is compared
to that obtained by selecting only the interaction of the stretching band with itself (red
dashed line).

(a) T=0 K

µ [cm−1] Γµ [cm−1]

208 12
tr. 326 11

602 4
740 5

lib. 851 12
968 16
1565 16

bend. 1606 20
3102 13

str. 3207 16
3399 47

(b) T=300 K

µ [cm−1] Γµ [cm−1]

211 75
311 52
557 20
682 43
808 47
940 54
1551 31
1594 40
3080 68
3237 77
3439 97

Table 3.4. Peak frequency and linewidths of some selected intense modes in H2O ice XI
at ambient pressure for two values of temperature, T=0 K and 300 K at Γ. The first
column indicates to which band the modes belong. See Sec. 2.5.3 for details about the
calculations of frequencies and linewidths.
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The Raman spectrum is proportional to the polarizability correlation function
〈α(t)α(0)〉. The Raman response function, when the Raman tensor does not depend
on the ionic displacements can be easily expressed as a function of the one-phonon
Green function as in Eq. (2.120). Details on the computation of the Raman tensor
are in App. F

Considering the coupling of the polarizability with the incident and scattered
electric field [125, 129, 130], we can define a "reduced" Raman tensor, depending
only on the Cartesian indices, by contraction with the polarization vector of the
incident (E in) and scattered (Eout) light:

A′c = E in
a ·Aabc · Eout

b

Finally, considering all the factors, the intensity of the Raman signal can be
evaluated as:

IRaman(ω) ∝ (ω − ωL)4
3N∑
a,b=1

A′aA
′
b√

MaMb
ImGab(ω) (3.5)

where ωL is the frequency of the laser.
In most cases, the laser frequency is much bigger than the phonon frequencies,

so that the approximation |ω − ωL| ' ωL holds. This is not completely true in
ice, where phonons can be very energetic ( ω ' 3400 cm−1). Here, that difference
provides a slight reshaping of the spectra, and it is safer to avoid approximations.

In Fig. 3.15 (a), I compare the simulated Raman spectra with the experiment
[130] for the same geometry c(a,*)b in H2O ice XI at T=65 K. We report deuterated
ice at T=269 K in the c(a,a)b geometry [125] in Fig. 3.15 (b) .

The result obtained in the anharmonic dynamical theory (TD-SSCHA) matches
perfectly with the experimental results, correcting a shift of the harmonic phonon
energy in the stretching modes of about 10% (7%) of the energy in H2O (D2O) ice.
The theory can predict the presence of the combination mode (indicated by the blue
arrow in Fig. 3.15 (a) ) for H2O ice in the considered geometry. Instead, this mode
has very low intensity in the experimental geometry of D2O ice.

Finite linewidths in the harmonic model are for presentation purposes only, as
harmonic phonons have infinite lifetimes.

Phonon vibrations impact the low energy optical properties of any material. The
physical quantity determining the Infrared absorption is the dielectric function and
standard electromagnetism provides a simple relation between the dielectric tensor
and the susceptibility.

ε(ω) = 1 + 4πχ(tot)

Ω (ω) = εel + 4π
Ω χion(ω) (3.6)

The electronic part εel is computed ab initio. The absence of electronic transitions
in the phonon energy range makes it real and it is frequency independent, εel = 1.65.
The ionic susceptibility of Eq. (3.6) is the Fourier transform of the dipole-dipole
correlation function and it has been computed in Sec. 2.7.2, Eq. (2.110), in the case
when the effective charges do not depend on the ionic atomic positions. Details on
the computation of the effective charges are in App. F.
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Figure 3.15. a Raman scattering spectra at T=65 K in H2O ice XI in the a(c,*)b geometry.
The experimental spectrum [130] (blue dotted line) is compared with the harmonic (red
dashed line) and the anharmonic phonons (solid black line), computed in the SSCHA
framework with the inclusion of the bubble term in Eq. (2.59). b Raman scattering
spectra for deuterated ice at T=269 K in the c(a,a)b geometry. Comparison between
harmonic (red dashed line), anharmonic SSCHA phonons with the bubble correction
(solid black line) spectra, and the experiment [125] (blue dotted line). Blue arrows
indicate the position of the combination mode. An artificial broadening is employed in
the harmonic approximation to guide the eyes in the comparison of the spectrum with
the experiment of 35 cm−1 ( 45 cm−1) in D2O (H2O). Instead, the broadening of the
anharmonic simulation is fully obtained ab initio from phonon-phonon scattering.
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In analogy with the Raman case, the dielectric function can be expressed as a
function of the one-phonon Green function:

εαβ(ω) = εel
αβ + 4π|e|2

Ω
∑
ab

ZαaZβb√
MaMb

Gab(ω) (3.7)

and we averaged over all possible orientation of the crystal:

ε(ω) = 1
3

3∑
α=1

εαα(ω) (3.8)
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Figure 3.16. Real part of the dielectric function of H2O ice at T=200 K. All the possible
orientations of the crystal are taken into account by reporting the trace of the dielectric
tensor as in Eq. (3.8). The results within the harmonic approximation (red dashed
curve) and the anharmonic phonons (black solid line), computed in SSCHA framework
with the inclusion of the bubble term of Eq. (2.59), are compared with the experiment
[126] (blue dotted line). The blue arrow indicates a combination mode. I employed an
artificial broadening of 50 cm−1 in the harmonic spectrum. Instead, the broadening of
the anharmonic simulation is fully obtained ab initio from phonon-phonon scattering.

In Fig. 3.16 and Fig. 3.17, I report the real and imaginary part of the dielectric
function at 200 K of H2O ice. To include all the crystal orientations, I plot the trace
of the dielectric tensor as in Eq. (3.8). As for the Raman, anharmonicity reduces
by 10% the harmonic stretching band energy, providing perfect agreement with the
experiment [126]. Also, the combination mode located at 2300 cm−1 (highlighted by
the blue arrow in Fig. 3.17) observed experimentally is correctly reproduced by the
anharmonic spectrum.

Both the dielectric function of Fig. 3.17 and the Raman scattering spectra in
Fig. 3.15 confirm the importance of anharmonicity. They further demonstrate how
it is fundamental to reproduce the experimental results and make the SSCHA (and
its time-dependent extension) as the best tool for ice simulation.
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Figure 3.17. Imaginary part of the dielectric function of H2O ice at T=200 K. The trace
of the dielectric tensor as in Eq. (3.8) is reported to take into consideration all the
possible orientation of the crystal. The experimental spectrum [126] (blue dotted line)
is compared with the results within the harmonic approximation (red dashed curve) and
the anharmonic phonons (black solid line), computed in SSCHA framework with the
inclusion of the bubble term of Eq. (2.59). The blue arrow indicates a combination mode.
An artificial broadening of 50 cm−1 is used in the harmonic spectrum. Instead, the
broadening of the anharmonic simulation is fully obtained ab initio from phonon-phonon
scattering.

3.4 Conclusions

Exploring the thermodynamic structural and vibrational properties of ice XI (hydrogen-
ordered counterpart of ordinary ice Ih), I further elucidated the importance of quan-
tum anharmonic effects. The anomalous strong temperature dependence of the bulk
modulus, 20% variation from 0 to 300 K, is fully explained by thermal and quantum
anharmonic fluctuations, revealing the combined effect of the vibrations (64%) and
the thermal expansion (36%).

I highlight the inaccuracy of the quasi-harmonic approximation in reproducing
the anomalous VIE. Only an anharmonic treatment of quantum nuclear motion
enables the reproduction of the experimental results. In particular, I proved how the
negative VIE originates from a nonmonotonous volume expansion due to quantum
fluctuations. If we increase the mass of the hydrogen isotopes, the volume first
expands, saturating slightly above the tritium mass, and then contracts to the
classical value. This means that the VIE is due to a strongly nonlinear regime of
quantum fluctuations in ice, which commonly employed approximate theories (such
as the QHA) do not grasp. Notably, also oxygen is in a strong quantum mechanical
regime, being responsible for a 2% volume reduction in the classical limit.

We observe an anharmonic renormalization of 8 − 10% in the bending and
stretching modes that grants a good prediction of Raman scattering spectra and
dielectric function of H2O and D2O ice XI.

For the first time, the low-energy range of phonon dispersion of deuterated ice
at T=140 K is excellently reproduced by the anharmonic renormalized phonons and
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correct treatment of the electron exchange and correlation. This result paves the
way for the study of thermal transport from first principles and the simulation of ice
under pressure, where acoustic phonons are the only modes detectable.

The simulations deciphered the microscopic origin of many anomalous properties
of ice, proving how anharmonicity and quantum fluctuations of ions are a mandatory
ingredient to reproduce the thermodynamic structural and vibrational properties of
ice. The work done does not cover all the roles of the nuclear quantum effects in
ice but it can pave the way for further investigation. In particular, as discussed in
Sec. 3.3.2, in solid and liquid water there are competing quantum effects that act
as weakeners and strengtheners of hydrogen bonds and it would be interesting to
separate their contribution within the SSCHA to understand which one dominates.
The effect of the NQE on the bond lengths is also related to the presence or not of
the anomalous VIE, so its analysis would give further strength to the explanation of
the VIE given here.
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Chapter 4

High pressure ice

4.1 Introduction

The symmetrization of the hydrogen bond length at high pressure is a long-debated
issue. From the experiments, it is not clear if the transition from ice VII (or its proton-
ordered counterpart, ice VIII, stable at low temperature) to ice X (the symmetric
phase) is direct or if an intermediate phase exists. The experimental signatures of the
phase transition are all indirect (hydrogen atoms are not visible by X-ray diffraction
and the limited data quality and uncertainties in the procedure of data correction
in neutron scattering hampers an unambiguous interpretation of the experiments)
and come from vibrational spectroscopy. However, they give contrasting results
because of the strong anharmonic regime close to the phase transition. Classical
simulations fail in the prediction of the critical pressure, providing a value that
strongly overestimates the physical one.

In this chapter, I solve the problem by simulating the structural and thermo-
dynamic properties of the phase transition (Sec. 4.4), where I show that quantum
effects play a major role, they reduce the classical critical pressure, producing a
good agreement with the experimental value and reproducing perfectly the isotopic
effect (the substitution of hydrogen with deuterium brings a 10 GPa increase of the
critical pressure). Then, with the TD-SSCHA simulations of the vibrational spectra
(Sec. 4.5), I show that the assignment of spectra to an intermediate phase is an
error due to the strong anharmonicity. The analysis of the spectra with the clear
underlying crystal structure allows me to identify uniquely the signatures of the
phase transition as the strong intensity increase of the translational mode and the
sudden collapse of the stretching mode in a small pressure range.

The results shown in this chapter have not been published yet.

4.2 Ice structures

The high-pressure region of the ice phase diagram has been widely investigated in
recent years for many reasons. Besides the important role it plays in planetary
physics, it offers the possibility to inspect the hydrogen bond interaction. The
distance between the oxygens of two neighboring water molecules can be modified by
acting on the pressure, leading to the symmetrization of the O−H · · ·O bond. The
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Figure 4.1. Unit cell of the nonmolecular ice X. Red and white atoms are oxygen
and hydrogen atoms respectively. The cubic ~a,~b,~c lattice parameters are reported.
Symmetrized H-bonds are evident from the shared bonds with two oxygens.

idea of H-bond symmetrization relies on the correlation between the covalent bond
length dOH and the O · · ·O distance dOO known at ambient pressure. A nonlinear
covalent bond stretching is observed upon dOO decreasing [154, 155]. This implies
that during compression in hydrogen-bonded compounds, as the distance between
oxygens decreases the covalent bond length increases, as supported by the observation
of the softening of the stretching frequencies[26]. Upon further compression, at a
critical value of the dOO distance, the proton occupies the midpoint between the two
neighboring oxygen atoms. In this phase (ice X) the arrangement of ice is isomorphic
to the Cu2O structure and the picture of ice as a molecular crystal breaks down:
the water molecule cannot be identified anymore and the system is better described
in terms of H+ and O2− ions. The resulting ionic arrangement of the atoms is
characteristic of hydrogen-bonded compounds at high pressure. Ice X has a cubic
structure, belonging to the Pn3̄m space group. Its unit cell contains two water
molecules that occupy high symmetry positions. Structure and Wyckoff positions
are in Fig. 4.1 and Tab. 4.1, respectively.

AtomWyckoff position Coordinates

O 2a (0,0,0) (1/2,1/2,1/2)
H 4b (1/4,1/4,1/4) (3/4,1/4,3/4) (1/4,3/4,3/4) (3/4,3/4,1/4)

Table 4.1. Space group (Pn3̄m) and Wyckoff positions of Ice X. The body centered cubic
(bcc) unit cell contains 2 water molecules.
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Figure 4.2. Fraction of the local structure of ice VII. Only one of the two hydrogen-bonded
networks is shown. Oxygen and hydrogen atoms are in red and white colors respectively.
Solid black lines indicate the cubic Pn3̄m unit cell. Partially transparent spheres are
the two unoccupied hydrogen sites around each oxygen atom, in accordance with Bernal-
Fowler ice rules. Figure taken from: Structure and disorder in ice VII on the approach
to hydrogen-bond symmetrization, Guthrie et al, Phys. Rev. B 99, 184112 (2019) [156]

Before approaching the symmetrized phase X, the pressure-temperature phase
space is occupied by the high-density ice phases VII and VIII. In all the dense ice
phases, VII, VIII and X, each oxygen atom is surrounded by eight others, and four
of them belong to the same sublattice that is interpenetrated but not interconnected
with that of the remnant four water molecules. Each molecule can have six possible
orientations in the unit cell that satisfy the ice rules.

Ice VII-VIII are related by an order-disorder transition. Ice VII is characterized
by orientational proton disorder and it has a cubic (space group Pn3̄m) paraelectric
structure. Indeed, due to proton disorder, the average unit cell, measured through
crystallographic experiments, differs from the real (instantaneous and local) structure.
The interest in ice VII is not purely academic, since scientists hypothesize that it
may comprise the ocean floor of Europa as well as extrasolar planets that are largely
made of water. Fig. 4.2 depicts a fraction of the local structure of phase VII, where
only one of the two hydrogen-bonded networks is shown.

In the disordered phases, the ice configurations that arise from the combination
of the six different orientations that a water molecule can take in the structure
according to the Bernal-Fowler ice rules, are very close in energy and can be regarded
as degenerated. Ice VII is a prototype of a disordered structure, and depending on
the number of water molecules present in the cell, several hydrogen arrangements
are possible, resulting in a residual entropy, estimated by Pauling. The number of
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Atom Wyckoff position Coordinates +(1/2,1/2,1/2)

O 8e (0,0,z+1/8) (0,1/2,z+3/8) (1/2,0,-z+5/8) (1/2,1/2,-z+3/8)

H 16h (0,y+3/4,z+1/8)(1/2,-y+3/4,z+5/8)(-y+1/4,1/2,z+3/8) (y+1/4,0,z+7/8)
(1/2,y+3/4,-z+5/8) (0,-y+3/4,-z+1/8) (y+1/4,1/2,-z+3/8) (-y+1/4,0,-z+7/8)

Table 4.2. Space group (I41/amd) and Wyckoff positions of ice VIII. The tetragonal unit
cell contains 8 water molecules.

possible hydrogen configurations is M = WN , where N is the number of oxygen
atoms in the piece of ice. The ice rule reduces W from 4 (there are 2N hydrogen
atoms with two possible locations) to W ' 1.5.

In the case of degenerate structures, the resulting residual entropy can be easily
accounted for. If we call F the free energy of each hydrogen configuration (identical
for each hydrogen atom arrangement in the degenerate case), we can express the
free energy of phase VII as

F̃ = F − kbTN logW (4.1)

Conversely, in the most general case, where the ice configurations are not de-
generate, it can be easily shown that the free energy can be written as in Eq.
(4.2)

F̃ =
∑
i

e−βFi

ZF
Fi + 1

β

∑
i

e−βFi

ZF
log e

−βFi

ZF
, (4.2)

where Fi is the free energy of the i-th configuration and ZF =
∑
i e
βFi . It is

straightforward to demonstrate that this expression reduces to Eq. (4.1) in the
degenerate case.

Ice VII orders under pressure, above 2.1 GPa and on cooling below 278 K. The
ordered solid was named ice VIII, its lattice can be obtained by slightly distorting the
cubic cell of phase VII into a tetragonal parallelepiped followed by a displacement of
one of the two sublattices in the ~c axis direction. In this phase, the two sublattices
of ice VIII have opposite dipole moments, resulting in an antiferroelectric structure
that belongs to the I41/amd space group.

The tetragonal unit cell of ice VIII with 8 water molecules is shown in Fig.
4.3 (a). Fig. 4.3 (b) contains a bigger supercell needed for computational reasons
elucidated in Sec. 4.4.1.

Tab. 4.2 reports the symmetry properties of phases VIII. We can notice that
while the atomic positions of ice X in Tab. 4.1 are fixed by symmetry, with the proton
lying in the midpoint of the two neighboring oxygen atoms, the lower symmetry of
phase VIII leaves free parameters in the atomic coordinates.

4.3 Experimental observations

The VII/VIII phase boundary has been studied extensively using Infrared and
Raman spectroscopies [16, 25, 157] in a 10-300 K temperature range and in the
pressure region of 2-60 GPa and by neutron scattering experiments [158, 159]. The
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a) b)

Figure 4.3. Phase VIII structure. Panel a shows the unit cell of ice VIII, a tetragonal
cell with 8 water molecules. Panel b; a supercell of phase VIII containing 16 water
molecules, commensurate with a supercell of phase X. The latter structure is the one
used in the numerical simulations. White and red atoms are oxygen and hydrogen atoms
respectively. The tetragonal lattice vectors ~a,~b,~c are reported.

experimental high-pressure phase diagram of ice taken from [16] is reported in Fig.
4.17 (a). The domain of stability of phases VII and VIII are very well established.
By looking at the Clapeyron slope dTc

dP , where Tc is the transition temperature, three
different regimes can be identified. At low pressure, from 2 to 15 GPa the transition
is driven by pure thermal effects where the transition temperature is almost pressure
independent. In this region, the residual entropy of the disordered phase VII of
Eq. (4.2) stabilizes this phase with respect to the ordered one. In the intermediate
region, pressure and temperature are linearly dependent and here the system can be
described with a pseudo-spin model [16]. Finally, in the third regime, the critical
temperature drops abruptly to zero and the transition is dominated by quantum
effects. At higher temperatures, a superionic VII” phase is observed [160].

While the VII/VIII transition is quite clear and well understood, the symmetriza-
tion of the hydrogen bond length is a long time debated issue. Theoretical studies
[22, 23] predict that the energy barrier between a double-well potential description for
the proton motion along the oxygen-oxygen (O−O) line is depressed with increasing
pressure up to a critical pressure where the two potential minima eventually merge
to a single minimum shape where the proton occupies the midpoint of the O-O
distance so that the molecular solid becomes an ionic material at high pressure.
From the experimental side, no definitive evidence of the transition is present at
the moment. The optimal tool to probe atomic positions within a crystal would be
X-ray diffraction (XRD). The intensity of the diffracted peaks is proportional to the
arrangement of atoms in the entire crystal

Ihkl ∝ |Fhkl|2

where {h, k, l} indicate the lattice planes and the structure factor
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Fhkl =
m∑
j=1

Njfje
2πi(hxj+kyj+lzj)

sums the result of scattering from all of the m atoms in the unit cell. Nj is
the fraction of equivalent positions that are occupied by atom j. So, the scattered
intensity is determined by where and what the atoms are, in particular, the scattering
factor fj quantifies the efficiency of X-ray scattering and it is proportional to the
electronic density of the given atomic species. Unfortunately, hydrogen atoms have
only one electron and this results in a very little cross-section that makes them
practically invisible to the X-ray diffraction experiments.

Conversely, XRD is suitable to sample the oxygen atoms sublattice in the unit
cell thanks to their bigger cross-section. Different X-ray diffraction experiments
[161, 162, 163] on phase VII under pressure revealed that the ice structure retains a
body-centered close-packed oxygen sublattice from above 2.1 GPa up to over 100
GPa. XRD consents to analyze the equation of state of ice under pressure providing
indirect evidence for the hydrogen bond symmetrization through abrupt changes
in the EOS. However, direct evidence for the transition is still lacking. Neutron
diffraction experiments [164], where the peak intensity is no more proportional to
the electronic density, would be better suitable to probe the position of deuterium
atoms [165]. Low-pressure neutron diffraction [166] confirmed the interpenetrated
H-bond network structure and subsequent higher pressure measurements revealed
little changes in the molecular geometry up to 20 GPa. However, the lack of neutron
diffraction data at even higher pressure prevents the direct determination of the
proton positions approaching the symmetrization.

The evolution of ice under pressure is even more complicated and "mysteri-
ous" because of the complication of the hydrogen-bond variation. Some quantum-
mechanical calculations proposed the possibility of the existence of an intermediate
phase prior to the VII/VIII to X transition [22, 167]. At the same time, several ex-
perimental anomalies, both in X-ray diffraction and spectroscopic experiments, were
reported indicating a number of transitions occurring at moderate pressure ranges
[157, 163, 168, 169, 170]. The hypothesis of the intermediate phase mainly rely on
the presence of very broad peaks in the vibrational spectra at the critical pressure
whose intensity enlarges (and they become narrower) increasing the pressure in the
phase X [16]. Recently, neutron diffraction experiments [166] detected anomalies
from 13 GPa that cannot be explained by conventional structure networks above 26
GPa, where structures with proton localization on the octahedral interstitial sites in
the oxygen sublattice seem to fit well the data.

Hints for the symmetrization of the hydrogen bond can be detected from changes
in spectroscopic observations. All the experimental and theoretical studies agree
with a second-order character of the phase transition [16]. Hence, vibrational spec-
troscopies are suitable tools to identify the soft mode behavior of the transition.
Unfortunately, experimental measurements are not easy to perform: Raman spec-
troscopy is a sensitive probe for phase transitions but Raman intensities for H2O
ices are very weak making it hard to measure signals under pressure. Opposite
difficulties arise for infrared spectroscopy; the O-H stretching modes (the ones which
soften) are so intense that the absorbance maxima saturate resulting in such a broad
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band that the peak position cannot be identified with sufficient precision. Finally,
the transmission through the diamond anvil cell, necessary to achieve high pressure,
is around 0.05% in the frequency range from 1800 to 2400 cm−1, a critical interval
to study the softening of the stretching modes. The diamond absorption issue is
overcome in [171], where a striking number of Fermi resonances between the soft
antisymmetric stretching mode and the rotational mode, bending mode and their
combination are observed during the softening of the mode.

Direct evidence of the hydrogen bond symmetrization is not available and the
existence of an intermediate phase proposed in several works, both theoretical and
experimental, is not clear. In the following, I elucidate on this problem by using
the SSCHA theory [32] and its dynamical extension [33]. The phase diagram is
investigated in Sec. 4.4, while in Sec. 4.5 I discuss spectroscopic simulations to give
more reliability to the obtained results.

4.4 Phase Diagram

The SSCHA theory described in Chapter 2 provides the inclusion of quantum
anharmonic effects in the description of nuclear vibrations. However, a qualitative
analysis of some features, like the order of the phase transition can be done at a
classical level at T=0 K, where thermal and quantum effects are completely neglected
and numerical simulations are much faster. In this section, I will describe first the
classical phase diagram and then the full quantum anharmonic case.

The Born-Oppenheimer energy landscape is represented by the deep neural
network of Ref. [172] (fitted on the PBE functional approximation of DFT) described
in Sec. 2.9.2.

4.4.1 The classical phase transition at zero temperature, namely
neglecting quantum and thermal fluctuations

Since second-order phase transitions require a continuous transformation of one
phase into the other, it is useful to have commensurated structures for the phases of
interest. To this purpose, it is better not to use the conventional unit cell of ice VIII
in Fig. 4.3 (a) but the supercell shown in Fig. 4.3 (b), that is a

√
2 ×
√

2 × 1 of
the unit cell obtained by summing and subtracting the lattice vectors in the basal
plane. This unit cell, containing 16 water molecules, is commensurated to a 2× 2× 2
supercell of the body-centered cubic unit cell of phase X, and a disordered structure
for phase VII with the same number of molecules can be easily generated.

In this section, I analysis the phase transition in the classical approximation at
T=0 K, where both quantum and thermal fluctuations are neglected, in the next
sections, I will discuss the classical phase transition at finite temperature, where
thermal fluctuations are included within the SSCHA but I keep neglecting quantum
effects.

Ice structures for phases VIII and X have been relaxed at fixed external pressure
and then I compared their Gibbs free energy. Notably, at T=0 K, the difference
between the Gibbs free energy G(P, T ) = H − TS and the Hentalpy H = U + PΩ
vanishes (also for the disordered phase VII, that has a non zero residual entropy S



80 4. High pressure ice

0 25 50 75 100 125 150 175
P (GPa)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
G

X
G

VI
II (

eV
)

Gibbs Free energy difference

90 100 110
P (GPa)

0

2

4

6

G
X

G
VI

II (
eV

)

1e 3

Figure 4.4. Gibbs free energy difference per molecule between phase VIII and phase X
in the classical approximation at T=0 K. In the inset, a finer pressure sampling in
the region close to the phase transition is shown. Ice structures containing 16 water
molecules were used. The red line is a guide for the eye that indicates zero Gibbs free
energy difference, the phase transition is located at P ' 107 GPa.

at zero Kelvin that gets anyway multiplied by T=0). Details on the simulations are
in Appendix H.

I report the Gibbs free energy difference as a function of pressure in Fig. 4.4.
The inset is a zoom around the region close to the phase transition, where a finer
range of pressures is sampled. The behavior of the Gibbs free energy is that typical
of a second-order phase transition, where one structure continuously transforms into
the other so that the Gibbs free energy difference approaches zero smoothly. Looking
at the inset of Fig. 4.4, I can locate the classical phase transition at Pc ' 107 GPa.

Experimentally, it is really hard to detect signatures of the phase transitions.
X-ray diffraction cannot detect the position of the hydrogen atoms but it is well
suited to identify the oxygen atoms that allows to determine the volume of the
structure and consequently the equation of state. Changes in the EOS can be used to
detect the phase transition as in Fig. 4.5 (a). The pressure as a function of volume
for phases VIII and X (blue circles and red squares) are shown. While in phase X
the positions are fixed by symmetry, in phase VIII they are free to evolve and for
P >= 107, the EOS of the two phases are identical, indicating the occurrence of a
second-order phase transition. To give further evidence of the phase transition, I
report in Fig. 4.5 (b), the order parameter, ∆ = lOO

2 − lOH, as function of pressure.
The symmetrization of the hydrogen bond occurs when ∆ = 0 at P = 107 GPa,
confirming the change in the EOS in Fig. 4.5 (a).
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Figure 4.5. Structural parameters of the phase transition in the classical approximation
at T=0 K. Panel a : Equation of state of phases VIII and X as a function of pressure.
Pressure as a function of the equilibrium volume per molecule for phase VIII and X
are shown as blue filled circles and red filled squares respectively. Green empty circles
and black empty squares are data computed ab initio with the PBE approximation of
DFT. The blue and black crosses indicate the phase transition at the force-field and ab
initio level respectively. Panel b: Order parameter, defined as lOO

2 − lOH as a function
of pressure when the force field (blue filled circles) or the DFT functional (green empty
circles) are used.

The use of the force field necessarily introduces a source of error with respect
to the pure ab initio approach. In order to quantify such an error, I repeat the
same classical calculation at the ab initio level, using the PBE functional within
Quantum ESPRESSO [86]. The green empty circles and the black empty squares in
Fig. 4.5 (a) are the EOS for phases VIII and X, respectively computed ab initio.
The corresponding order parameter is in Fig. 4.5 (b).

At the ab initio level, the phase transition occurs at Pc = 112 GPa and the use
of the force field underestimates the critical pressure of about 5 GPa.

Another hint for the second-order character of the phase transition can be inferred
from the energy profile. By starting from the relaxed ice X structure at a given
pressure, I moved the position of all the hydrogen atoms simultaneously far from
equilibrium, along the OO. The energy of each configuration as a function of the
distance of the hydrogen atom from the equilibrium position for several pressures,
inside and outside the stability domain of ice X is reported in Fig. 4.6. The
resulting fourth-order potential is typical of second-order phase transitions, outside
the stability region, for P < 107 GPa, the midpoint is unstable and the energy profile
presents two well distinct minima. By increasing the pressure, approaching the phase
transition, the double wells merge into a single minimum and at the critical pressure
the energy profile is flat, since the second-order term in the potential expansion
vanishes.

Actually, this cannot be considered the real energy profile since we are dealing
with a multidimensional problem. The unstable modes, that lead the transition from
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Figure 4.6. Energy profile at fixed pressure for phase X in the classical approximation at
T=0 K. From left to right and top to bottom, the pressure is increased from below to
above the critical pressure Pc=107 GPa. Starting from the midpoint, all the hydrogen
atoms in the simulation cells have been moved along the OO direction, far from the
equilibrium positions. The parameter ∆ indicates the displacement with respect to
the symmetric position. The energy profile changes from a single well to a double-well
potential going through the region of instability of phase X.
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Figure 4.7. The figure shows the phonons in the q-points commensurated to the 2×2×2
supercell of phase X as a function of pressure in the classical approximation at T=0 K.
For each pressure, the system is forced to stay in the symmetric phase X and out of
all the 3N modes, I show the ones that are unstable below the critical pressure. Panel
a describes the phonons computed with the force field (Pc =107 GPa) and in panel b
there are the phonons at the DFT-PBE level (Pc=112 GPa). In both the approaches,
phonons at R = ( 1

2 ,
1
2 ,

1
2 ) are the green circles, blue diamonds indicate the X = ( 1

2 , 0, 0)
point. Instead, the phonons in M = ( 1

2 ,
1
2 , 0) are the red upper triangle and the black

squares stand for the phonons at Γ. Phonons in R and Γ are triple degenerate while
those in X and M are double degenerate.

one phase to the other will be stretching modes along the OO direction. So, Fig. 4.6
is a reasonable picture to grasp the qualitative feature of the phase transition. For
instance, in the unstable region, the curvature is negative in the symmetric position
of phase X leading to imaginary phonons. These are characteristic of second-order
phase transitions, where the phonons that connect the two phases go soft at the
critical pressure and then become imaginary in the unstable region.

The imaginary modes, that drive the phase transition, can be observed if we
force the system to stay in the symmetric phase X for each pressure. In Fig. 4.7 (a),
I report the frequency squared of the phonon modes observed in the q-point of the
Brillouin zone commensurated to the 2×2×2 supercell of phase X as a function of
pressure computed with the DNN of Sec. 2.9.2.

The R = (1
2 ,

1
2 .

1
2) point is commensurate to the transformation from phase X to

VIII and we expect an instability there, with the zero-energy located exactly at the
critical pressure Pc = 107 GPa. As further evidence, I check that the displacement of
the atoms along this unstable mode followed by a structure relaxation leads exactly
to phase VIII.

At the same pressure, the phonons in the X = (1
2 , 0, 0) point (not commensurate

with the expected transformation to phase VIII) become imaginary. The relaxation
of the structure displaced along that mode leads to a tetragonal structure belonging
to P41212 space group, which is similar to phase VIII. This raises the question about
the existence of a competing phase. Energetically, phase VIII is slightly favorite
with respect to the structure related to the instability in point X. By lowering again
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Figure 4.8. First-principles simulations of the structural instability in phase X taken from
Dynamical Instabilities of Ice X; Caracas, Phys. Rev. Lett. 101, 085502 (2008). a:
Dispersion of the phonon band in ice X at P=100 GPa. b: Pressure variation of the
lowest-frequency modes in ice X in R = ( 1

2 ,
1
2 ,

1
2 ), M = ( 1

2 ,
1
2 , 0) and X = ( 1

2 , 0, 0). The
study detected also an instability above 400 GPa in the M point not investigated in my
work.

the pressure, in the region of instability of phase X, we can notice that also the
modes in M and Γ become imaginary simultaneously at P=104 GPa. For instance,
the relaxation of the structure along the M mode leads to tetragonal structures
belonging to I41 space group. Actually, below the critical pressure, a whole phonon
branch becomes imaginary and the instability for each q point is related to the
existence of the disordered phase. This picture can be found also at the DFT-PBE
level, where the phonon in the same q points are reported in Fig. 4.7 (b). The
main difference is that in DFT the phonon at R is the only one that goes to zero at
the critical pressure (112 GPa) while the others become imaginary simultaneously
2 GPa below. Also in the ab initio approach, a whole branch becomes imaginary
by decreasing the pressure (not shown here). These results are in agreement with
previous theoretical calculations in the classical approximation at T=0 K performed
by Caracas in Ref. [167], reported in Fig. 4.8.

This concludes the classical analysis of the phase transition, where I have shown
several elements to confirm its second-order character. The same kind of conclusions
can be drawn about the disordered phase VII, where the transition toward the
symmetric phase occurs exactly at the same pressure as for phase VIII. Details on
the study of phase VII in the classical approximations are in App. I.

4.4.2 Quantum phase transition at T=0 K and T=300 K

The inclusion of quantum anharmonic effects within the SSCHA framework com-
pletely overturns the classical T=0 K picture. All the details about the SSCHA
simulations are in App. H. Starting from phase VIII, I relaxed the crystal structures
at zero Kelvin and at finite temperature, T=300 K, for increasing pressures until
reaching the symmetric phase and beyond by using the SSCHA technique [32]. The
equations of state are reported in Fig. 4.9, critical points for all the temperatures
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Figure 4.9. SSCHA Equation of state with quantum and thermal fluctuations included
for phase VIII. Blue filled circles and red filled squares are hydrogenated ice at T=0 K
and T=300 K respectively. Empty symbols, instead, describe deuterated ice at T=0
K (green circles) and T=300 K (black squares). The transformation to the symmetric
phase can be spotted by the change in the EOS, where the black crosses are located.

and isotopes inspected are indicated with black crosses. The very tiny temperature
dependence of both phases VIII and X stands out, notably, the only relevant differ-
ence for hydrogenated ice is for the critical pressure, where, a very tiny increase from
Pc = 52 GPa to Pc = 54 GPa from T=0 K to T=300 K is detected. This difference
in the critical pressure is probably an artifact of the discretization of the pressures
calculated (see App. H).

Quantum effects heavily renormalize the critical pressure with respect to the
purely classical case described in Sec. 4.4.1. A reduction of the critical pressure of
about 30 GPa due to quantum effects is known from numerical simulations [22, 173].
However, within the SSCHA framework, an even bigger difference, of about 55 GPa
at T=0 K, is observed.

Our data manage to well reproduce the isotopic shift of 10 GPa between hydro-
genated and deuterated ice observed experimentally [16]. Empty symbols in Fig. 4.9
describe the EOS for D2O ice VIII. Its critical pressure Pc = 62 GPa is temperature
independent consistently with the experiment.

The error introduced by the SSCHA approximation is expected to lead to an
overestimation of the transition pressure. The SSCHA theory is based on variational
principle on the free energy of the system, so the Gaussian description of the SSCHA
wavefunction describes well the minimum of the double-well potential of phase VIII,
with hydrogen atoms well-localized close to the relative oxygen atom. Conversely, we
expect a bigger error in the description of the single well potential in the symmetric
phase. Such overestimation is instead harmless when dealing with pressure differences
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Figure 4.10. Order parameter, ∆ = lOO
2 − lOH computed within the SSCHA, with thermal

and quantum fluctuations included. Filled blue circles and red squares are data for
H2O ice VIII at T=0 K and T=300 K, respectively. Instead, empty green circles and
black squares refer to deuterated ice. The order parameter approaches zero at the phase
transition, where phase VIII turns into the symmetric phase X.

like for the isotopic shift that is perfectly reproduced.
If we take into consideration the 5 GPa underestimation of the critical pressure

by the DNN with respect to DFT-PBE, we recover an almost perfect agreement
with the experimental data. The residual error with respect to the experiment is
probably due to the exchange-correlation of the PBE functional used to fit the DNN.

As for the classical T=0 K case, the phase transition can be spotted more easily
by looking directly at the order parameter in Fig. 4.10. The points where it vanishes
for deuterated and hydrogenated ices at T=0 K and T=300 K correspond to the
changes in the slope of the EOS of Fig. 4.9. For H2O ice, a tiny temperature effect
can be spotted as for the EOS, while in D2O the order parameter seems really
temperature insensitive. After the phase transition, the order parameter stays close
to zero as expected for the symmetric phase X. The tiny and negligible oscillations
are due to the fact that the phase X symmetries are not imposed above the critical
pressure.

The critical pressure can be identified also by looking at displacement parameters,
from diffraction experiments one can extract the anisotropic displacement parameters
(ADP), related to the Debye-Waller factor introduced to keep into consideration
thermal fluctuations. The anisotropic displacement parameters matrix is formally
defined for each atom s as in Eq. (4.3),

ADPαβs =< uαs u
β
s >= ~

NqMs

∑
µq

1 + 2nµ(q)
2ωµ(q) εsαµ (q)εsβµ (q), (4.3)
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Figure 4.11. Trace of the anisotropic displacement matrix for oxygen (panel a) and
hydrogen atoms (panel b) at T=300K in phase VIII within the SSCHA approximation.
The red vertical line indicates the critical pressure at the given temperature. The ADPs
in the disordered phase, not reported here, show the same behavior as in the ordered
structure.

where Nq is the number of unit cells considered. The trace of the ADP matrices
for hydrogen and oxygen atoms are shown in Fig. 4.11. Here, I report the results
for the ordered phase at T=300 K. However, the same results can be drawn for the
disordered structure, whose displacements factors are almost identical to those of
phase VIII. In the latter, the ADPs along the x and y directions are degenerate, with
a slightly different value along the vertical axis, conversely, disorder makes them
different along the three Cartesian directions. Fig. 4.11 shows that these parameters
can be adopted to spot the critical pressure from experiments. For the oxygen atoms,
their value falls very rapidly approaching the transition pressure and then stabilizes
in the symmetric phase, while, more interestingly, the displacement factors for the
hydrogen atoms first decrease and then increase very rapidly close to the critical
pressure, to decrease again in phase X.

First-order phase transition differentiates themselves from second-order ones for
the existence of hysteresis cycles, that is if the state of the system has memory
of what happened in the past, i.e if it reached that point upon compression or
decompression. In the compression runs, the starting guess for each pressure is the
minimized structure at the preceding lower pressure, instead in the decompression,
the starting guess is that at the preceding higher pressure.

All the discussion in Sec. 4.4.1, as well as the continuous transformation between
the two phases in the quantum regime in Fig. 4.9 and Fig. 4.10, hinted at a second-
order character for the phase transition. Furthermore, I rule out the possibility of
a first-order phase transition by excluding the presence of the hysteresis cycle in
Fig. 4.12. There, the covalent and hydrogen bond lengths at T=0 K are reported
as a function of pressure, in the region close to the VIII-X phase transition. The
two bond lengths merge at the phase transition as expected from Fig. 4.10 and stay
identical in phase X.

Sometimes, when studying phase transitions, a weekly first-order character can
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Figure 4.12. Hysteresis cycle for phase VIII close to the phase transition at T=0 K
within the SSCHA framework. Hydrogen and covalent bond lengths are plotted as a
function of pressure, above and below the transition to the symmetric ice, where they
are identical. Red circle and blue diamonds are compression and decompression run in
the unit cell with 16 water molecules. To check the convergence with a supercell, we
report compression and decompression in a supercell with 128 water molecules: green
circles and yellow diamond respectively.

appear because of the use of too small supercells. This is not the case, and moreover,
to further check the convergence of the results, I include the calculation in a bigger
supercell with 128 water molecules. Green circles and yellow diamonds in Fig. 4.12,
show the hydrogen and covalent bond lengths in the compression and decompression
run respectively in the supercell. The results are almost identical to those in the unit
cell with 16 water molecules, where convergence is already granted. Consequently,
in the following, all the results, when not specified, are in the cell with 16 molecules.

The study of the phase transition can be readily extended to the disordered
phase VII. In principle, one should analyze all the possible nonequivalent hydrogen
arrangements in the given simulation cell as depicted in the last part of Sec. 4.2.
The large computational cost of the SSCHA method prevents the simulation of such
a big number of structures, so I took 3 random configurations and I relaxed their
structure for different pressures until reaching the symmetrized phase as for phase
VIII.

In Fig. 4.13, I report the structural parameters, namely the EOS and the order
parameter for phase VII at T=0 K. Sets 1-3 indicate the three different hydrogen
arrangements. As we can see, the difference between the three structures is negligible
far from the phase transition, while some discrepancies arise close to the critical
pressure. Indeed, for two structures Pc = 52 GPa, while the third one reaches
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Figure 4.13. Structural parameters for ice VII at T=0 K within the SSCHA. Three
different instances of proton decoration of the oxygen structure for H2O ice are reported:
red circles, green diamonds and blue upper triangles. The equation of states is in panel
a and the order parameter, ∆ = lOO

2 − lOH, is in panel b. Data for deuterated ice for
the analysis of the isotopic shift are added as cyan empty circles.

symmetrization at P=50 GPa. The difference between the transition pressures
is small compared to the usual experimental uncertainties in detecting the phase
transition, so, we can safely take their average to give an estimate of the critical
pressure Pc = 51± 2 GPa.

The isotopic shift of 10 GPa is present also in the disordered phase at T=0 K.
The EOS and order parameter of deuterated ice in a specific hydrogen arrangement
(Set 2) is added for comparison in Fig. 4.13.

As for the ordered phase VIII, temperature affects negligibly the critical pressure
of the disordered structures. Fig. 4.14 illustrates the EOS and ordered parameter
of the same three disordered configurations described above at T=300 K. There,
the critical pressures range from P=52 GPa to P=54 GPa, showing again, a little
difference with respect to the experimental uncertainties.

Most experimental works adopt a linearization of the Vinet et al. EOS [174] to
detect changes in its slope that suggest a phase transition. In Fig. 4.15, I show the
natural logarithm ln(H) of the H function defined in Eq. 4.4,

H(x) = Px2

3(1− x) = B0 exp
{3

2(B′0 − 1)(1− x)
}
, (4.4)

as a function of 1−x, where x = ( VV0
)

1
3 . Its slope is related to the derivative of the

bulk modulus with respect to pressure, B′0, and the offset is lnB0. The comparison
with experimental results in Ref. [16], obtained through X-ray diffraction is quite
good; the location of the change in the slope is in an optimal agreement, but the two
curves are a shifted one with respect to the other, meaning a non-perfect description
of the bulk modulus.

The structure of disordered ice shows some strange behavior during relaxation.
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Figure 4.14. Structural parameters for ice VII at T=300 K within the SSCHA. Red
circles, green diamonds and blue upper triangles are three different configuration of
proton disordered ice H2O structures. The equation of states is in panel a and the order
parameter, ∆ = lOO
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Figure 4.15. Linearized form of the Vinet et al. EOS [174]: lnH(x) as a function of 1− x,
where x = ( VV0
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3 . See text for further explanation. SSCHA simulations for H2O ice VII

at 300 K are compared to experimental data [16]. Changes in the slope in the linearized
EOS indicate phase transitions.



4.4 Phase Diagram 91

Figure 4.16. Front view of the relaxed structure of a disordered ice VII configuration at
P=48GPa and T = 0 K within the SSCHA. The structure correspond to the hydro-
gen arrangements denominates Set 2 in Fig. 4.13. Some of the hydrogen bonds are
symmetrized while others are not yet symmetric.

In a tiny pressure range close to the phase transition, some of the chosen hydrogen
atoms arrangements display partial ordering. Fig. 4.16 shows a front view of the
the relaxed structure at P = 48 GPa and T=0 K for the arrangement denoted Set 2
in Fig. 4.13. We can notice that some of the hydrogen bonds are fully symmetrized,
while others are not. This situation persists at most in a range of 4 GPa before the
phase transition, since at P=50 GPa phase X with all symmetrized bonds is reached.
We argue if this structure, where not all the hydrogen bonds are symmetrized, can
be related to the hypothesized disordered symmetric phase between phases VII and
X. However, the very small pressure range in which this phase is observed probably
rules out this possibility. Moreover, if we look at the Infrared absorption of Fig. 4.19
of Sec. 4.5, we see that the spectrum of this structure presents the same features as
those of the purely disordered phase, with broader peaks but similar positions to
those of ice VIII.

I have shown that quantum effects play a major role in the description of the
phase transition. Within the SSCHA framework, it is possible to remove quantum
effects, with a trick that consists in setting infinite masses for the nuclei (achieved
by multiplying the physical ones by a factor 106), keeping instead only thermal
fluctuations. The final results are indicated by the blue empty circles in Fig. 4.17 (b).
Interestingly, now temperature plays an important role. The critical temperature
decreases from Pc ' 107 GPa at T=0 K to Pc ' 80 GPa at T=300 K in a nonlinear
way, where the stronger temperature dependence is in the low-temperature limit.
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Figure 4.17. Panel a: Experimental phase diagram. Data are extracted from Pruzan
et al. [16]. The stability domain of phases VIII and VII as a function of pressure
and temperature is indicated. Open and closed squares are the transition lines for
H2O and D2O ice, respectively [25], whereas dashed and dotted lines are fitted curves.
Crosses are experimental data for the VII-X phase transition obtained through Raman
scattering [26]. The horizontal dash-dotted and dashed lines are the expected VII-X
transition lines for H2O and D2O ice, respectively. Experimentally, it is not clear if the
transition to phase X (indicated above 100 GPa) is direct or if an intermediate state,
indicated with ?? text in the figure, exists. Panel b: Theoretical phase diagram within
the SSCHA framework. Only the phase boundaries between phase VIII/VII and X are
shown. The transition VIII-VII is not reported. Red diamonds and black squares are
the critical pressure for the VIII-X and VII-X transition respectively in hydrogenated
ice. Deuterated VIII-X and VII-X transitions are indicated with green circles and brown
upper triangles respectively. Empty blue circles stand for the critical pressures as a
function of temperature in the SSCHA framework that includes thermal fluctuations
but with removed quantum effects.
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The critical pressure difference at T = 300 K is about 30 GPa as reported in some
theoretical works [22, 173], justifying somehow the comparison of classical and
quantum results with that pressure shift. Anyway, my results clearly show that it is
not possible to adopt a constant shift but is it crucial to adopt a different one as
a function of the temperature analyzed. Moreover, as I will show in Sec. 4.5 it is
not even correct to use a constant pressure shift for fixed temperature. Convergence
tests confirm that the unit cell with 16 water molecules is sufficient to give converged
results for the thermodynamic case also in the classical approximation at finite
temperature (I probed structures with up to 128 water molecules).

Direct comparison of Fig. 4.17 (a) and (b) confirms the good description of the
high-pressure phase diagram within the SSCHA framework. The critical pressures
are temperature independent in the quantum phase coherently with the experimental
data, however, about 10 GPa reduction with respect to the experimental phase
transition is observed, which can be explained by the different sources of error, like
the employment of a force field description of the PBE functional as well as the
adoption of the DFT methodology. However, we show that the DNN fitted potential
shows a transition pressure lower of about 5 GPa with respect to PBE in the static
case. If we correct our result with this constant shift, we get an almost perfect
agreement between the SSCHA phase diagram and the experimental phase diagram.
The isotopic shift of 10 GPa in Fig. 4.17 is well described within the SSCHA.

4.4.3 Conclusions

The study of the phase transition in the classical approximation at T=0 K (without
thermal and quantum effects) provided useful insights on the second-order character
of the phase transition; a continuous transformation of one phase into the other has
been observed, both looking at the structural parameters, like the EOS or the order
parameter, and at the Gibbs free energy. A fourth-order energy profile projected on
a single dimension with a relative soft mode behavior is detected. The inclusion of
thermal fluctuations in the classical approximation within the SSCHA framework
reveals a strongly nonlinear temperature dependence of the critical pressure that is
not observed in the quantum regime. The critical pressure decreases from Pc = 107
GPa at T=0 K to Pc = 80 GPa at T=300 K demonstrating that the approximation
of the quantum case (where the critical pressure is temperature independent) by
the application of a rigid pressure shift to the classical results is wrong, as the shift
should depend on the temperature considered. The SSCHA result for the classical
approximation at finite temperature, T=300 K, overestimates the critical pressure
computed from the spectral analysis of the MD simulation in Ref. [24] (Pc =70 GPa)
with the same DNN. The origin of the discrepancy cannot be addressed to size effects,
since convergence tests confirm that the results in the cell with 16 water molecules
are converged. Partially, the difference can be explained by the discretization of the
pressure sampled and by the fact that in the MD simulations the critical pressure is
extracted from an indirect observable, namely the changes in the IR spectra; and
the results in Sec. 4.5.4 reveal that the MD spectrum at the critical pressure is
similar to the SSCHA one at about 7 GPa below (still in phase VII), questioning
the location of the critical pressure from the MD simulations. Further details on
this problem can be found in Sec. 4.5.4 that is fully dedicated to the comparison
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with MD simulations. The remnant part of the error has to be addressed to the
SSCHA approximation.

Quantum effects overturn the classical picture, inducing a 55 GPa reduction
of the critical pressure at T=0 K, with a critical pressure that is temperature
independent in agreement with the experiments. The analysis of the order and
disordered phases has not reported remarkable differences in the symmetrization
process, both phases VIII and VII symmetrize the hydrogen bond lengths at about
52 GPa turning into phase X. The unit cell with 16 water molecules is sufficient
to produce converged results; a comparison with a 128 molecules supercell gave
the same results and excluded the presence of hysteresis cycle and consequently a
first-order phase transition.

Three of the many possible hydrogen arrangements for the disordered phase have
been analyzed, with at most 2 GPa difference in the critical pressure, negligible with
respect to typical experimental uncertainties. Fig. 4.17 confirms a good agreement
with the experimental data, the critical pressure is shifted about 10 GPa below the
experiment but the 10 GPa isotopic shift, between deuterated and hydrogenated
ice, is perfectly described. If we correct the SSCHA critical pressure with the 5
GPa error found in the force field description with respect to DFT-PBE, we have
an almost perfect agreement with the experimental transition pressure P exp

c ' 60
GPa. The "mysterious" phase indicated by the question mark in Fig. 4.17 (a),
hypothesized because of the shape of the absorption spectra with a broad peak
at the critical pressure that becomes narrower above, is not detected but a direct
transition between phase VIII/VII to X is observed. We did not show the VIII-VII
phase boundary as it has been widely studied theoretically.

4.5 Spectroscopy
This section is dedicated to the analysis of infrared spectroscopy in high-pressure
ices. As broadly explained in Sec. 4.3, all the signatures of the high-pressure phase
transition are indirect. Apart from X-ray or neutron scattering, all of them are
spectroscopy-based. First, I review the experimental observations in the field of IR
absorption (Sec. 4.5.1) and then I show the simulated spectra within the TD-SSCHA
framework in Sec. 4.5.2, offering a comparison with experimental measurements [26]
and previous theoretical calculations [24] and the analysis of the role of quantum
anharmonic effects and disorder. All the details of the simulations can be found in
App. H.

4.5.1 Infrared spectroscopy: Experimental observations

Infrared absorption experiments can provide strong insights into the features of
the phase transition. Group theory analysis of the vibrational modes predicts six
Infrared active modes in phase VIII, namely symmetric (ν1(A2u)) and asymmetric
(ν3(Eu)) stretching, a bending mode (ν2(A2u)), two rotational modes (νR and νR′
with Eu symmetry) and a low energy translational mode (νT (Eu)). Modes with Eu
symmetry are double degenerate. The normal mode analysis is not available for ice
VII, which has a cubic structure with proton disorder. However, the absorption bands
observed for ice VII can be assigned on analogy with the mode assignments for ice
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VIII [27, 175]. The fully centered ice X has only two infrared active modes, related
to a deformational mode νD and a stretching mode νS , both with T1u symmetry
and triple degenerate.

Reflectivity measurements on ice VII by Goncharov et al. [26] allows us to
follow the evolution of the IR-active modes as a function of pressure. The authors
transformed the reflectivity data into the imaginary part of the dielectric function,
through Kramers-Kronig transformations. The spectra for several pressures are
reported in Fig. 4.18 (a). The strong absorption of the diamond anvil cell in the
region between 1800 cm−1 and 2400 cm−1 prevents the acquisition of data and the
dashed line in that region were obtained with a classical oscillator model fit.

In the low-pressure regime, the stretching mode near 3000 cm−1 softens with
increasing pressure and splits in the pressure range of 25 to 45 GPa as can be seen
from the pressure dependence of the vibrational modes in Fig. 4.18 (b). At still
higher pressures, the stretching vibration continues to soften and intersect with
the vibrational mode νR at ω ' 1250 cm−1 that hardens with pressure. The other
IR-active rotational mode predicted by group theory in phase VII is not detected
in the experiment because of its low intensity. During the softening, the stretching
bands becomes always broader at it is hard to distinguish the peak position. At
P=60 GPa the Infrared spectrum changes abruptly; the stretching mode becomes
much weaker and a strong low-frequency band is observed. This abrupt change in
the spectrum is considered the signature of the phase transition, the deformational
mode νD is thought to be related to the transformation into the symmetric structure.
It originated from the merging of the rotational mode νR and the bending mode, that
in the experiment is not detected, probably because of its low intensity (as can be
seen from the SSCHA simulations in Fig. 4.19) but predicted from the group theory
analysis. For pressures above Pc = 60 GPa, the spectra are drastically different
from those in phase VII. With increasing pressure, the two IR-active modes increase
in frequency and gain intensity. Then, between P=150 GPa and P=160 GPa, a
resonance between the stretching and the deformational mode occurs, characterized
by the approach and separation of the two vibrations followed by an exchange of
intensity, with the stretching modes that become dominant in the high-pressure
region. Notably, there is a family of stretching modes that soften approaching the
critical pressure, however, only one of these is the mode that goes exactly to zero
driving phase transition. However, this is a silent mode in the symmetric phase: we
saw in Sec. 4.4.1 that it is a mode in the R-point of the Brillouin zone, consequently,
it can be neither Raman nor Infrared active.

4.5.2 TD-SSCHA simulations of Infrared spectroscopy

I compare the experimental measurements with the Infrared simulations of the
ordered and disordered phases within TD-SSCHA (with thermal and quantum
fluctuations included) at T=300 K in Fig. 4.19. Since at the phase transition the
low-energy modes are much more intense than the high-energy ones, I plot the
product of the imaginary part of the dielectric function ε2 by the frequency ω to
weigh more the high-frequency structures. Moreover, it can be proven that this
quantity is related to the physical properties of the system that can be measured:
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Figure 4.18. Experimental Infrared absorption data from: Compression of ice to 210
gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase. Goncharov et al.
Science, 273(5272):218–220, July 1996 [26]. Panel a: imaginary part of the dielectric
function ε2 of H2O ice VII at T=295 K obtained from a Kramers-Kronig analysis of
reflectivity spectra. Continuous lines are the Kramers-Kronig transformation of the
experimental data, while the dashed curves are derived from oscillator fit to fill the
empty region due to strong diamond absorption. The critical pressure is identified at
P=60 GPa. In the upper part of panel a the phase transition has already occurred and
the system is in phase X. Panel b: pressure dependence of the IR-active vibrational
frequencies. Stretching modes are labeled ν1 and ν3 before the phase transition and νs
after. In phase VII, νR and νT are rotational and translational modes, respectively. νD
is a deformational mode that arises at the phase transition.
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α(ω)n(ω) = 4πωε2(ω), (4.5)

where, α(ω) is the energy-dispersive absorption coefficient and n(ω) the frequency
dependent real part of the refractive index.

The comparison with the experiment is done in such a way that the claimed
transition pressures coincide, (the VIII phase is plotted at 2 GPa above phase VII:
P V IIc = 52 GPa, P V IIIc = 54 GPa) so that, for each panel, the experimental spectra
are about 10 GPa above the SSCHA ones according to the pressures available in the
simulations. The pressure at which each spectrum is calculated can be read in the
labels of Fig. 4.19. Notably, the experimental measurements are in phase VII which
is the one stable at T=300 K.

The SSCHA manages to reproduce very well the infrared spectra at low pressure,
P=30 GPa and P=40 GPa. The differences between the ordered and disordered
phases are mostly in the line shape and become more remarkable close to the
phase transition. Unfortunately, approaching the critical pressure, there are no
experimental data in a small pressure range, where the SSCHA spectra reveal the
most interesting changes, with the abrupt collapse of the soft stretching vibrations.
The phonon frequencies of the IR-active modes as a function of pressure are reported
in Fig. 4.20 (a). Notice that the analysis of the active modes in the SSCHA relaxed
structure is in perfect agreement with group theory. In the SSCHA simulations, we
barely detected the non-dispersive bending mode ν2 at ω ' 1300 cm−1 invisible in
the experiment. Its intensity is negligible as can be seen from the size of the dots
that is a measure of the IR intensities (see App. H for further details). The same
is for the IR activity of the second rotational mode ν ′R , explaining why it is not
detected experimentally, in combination with the fact that has energy very close
to the other rotation and probably cannot be distinguished. In a range of 10 GPa,
from 40 to 50 GPa, the symmetric stretching vibration suffers 70% energy reduction.
Within the TD-SSCHA, while softening, the stretching modes interact with the
other modes, in a series of resonances followed by intensity exchanges, reproducing
correctly the experimental trend. Increasing the pressure, the two rotational modes
become indistinguishable and one of them is no more IR-active right before the phase
transition. Following the abrupt collapse of the stretching modes toward the low
energy regime, which can be understood very well by looking at the labeled peaks
in Fig. 4.21 and from Fig. 4.20 (a), the spectra change abruptly. The intensity of
the low-energy modes, in the region where there are no experimental data published
to date, increases by an order of magnitude. The change in intensity of the modes
cannot be grasped very well from Fig. 4.19 where I used panels of the same height,
one should look at the scale of the ordinate axis that is different in each panel.
Instead, it can be understood from Fig. 4.22, where the spectra are not rescaled.

The intensity increase of the translational mode, in combination with the birth of
the deformational mode νD (coming from the merging of the rotational and bending
modes), gives a clear sign of the transition to the symmetric phase. Experimentally,
the signature of the phase transition is the birth of the asymmetric and broad
deformational mode and the disappearing of all the other bands at P ' 60 GPa.
The failure in the reproduction of the asymmetric shape of the νD in the TD-
SSCHA simulations can be ascribed to the use of a small simulation cell and I’m
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Figure 4.19. Comparison of the IR spectra of the ordered and disordered phases within
TD-SSCHA framework at T=300 K with the experimental measurements in Ref. [26].
In the figure, the product of the ε2(ω)ω ∝ n(ω)α(ω) is shown. The labeled pressure in
the title of each panel refers to the SSCHA simulated disordered phase (blue dashed
lines), and, in order to match the phase transition (PV IIc = 52 GPa, PV IIIc = 54 GPa),
the spectra of phase VIII (red lines) are reported at 2 GPa above those of the disordered
phase. The experimental spectra are in continuous thick grey lines and they are compared
at around 10 GPa above to match the difference in the critical pressure P exp

c = 60 GPa.
When no experimental measurements are available at the given pressure only the SSCHA
results are shown. Above 52 GPa (54 GPa) phase VII(VIII) transforms into phase X
and so also the difference between the two vanishes. Details on the computation of the
spectra are in App. H.
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Figure 4.20. Panel a: Infrared active modes at T=300 K as a function of pressure. The
six IR-active modes in phase VIII within the SSCHA framework are indicated with
blue and red points for Eu and A2u symmetry respectively. There are two stretching
modes (asymmetric ν3 and symmetric ν1), a bending mode (ν2), two rotational ones
(νR and νR′) and a translational mode νT . Green points indicate the two infrared active
modes in phase X, namely a deformational (νD) and a stretching mode (νS). The size
of the area of the points is a measure of the Infrared activity of each mode compared to
that of the most intense one (See App. H for further details). The degeneracy of each
representation is reported in the upper panel of the figure inside the parenthesis, while
the number in front of the label indicates the number of different modes. The pressure
scale is logarithmic to emphasize the pressure dispersion of the modes in phase VIII.
Panel b: Comparison of the six IR-active modes with the experiment [26]. Here, the
experimental frequencies are the black empty circles, and the denomination of the modes
can be found written in black. In this case, the simulated spectra are reported with
points of the same size in accordance with the experiment, where the intensity of each
mode is not discussed. The experimental data are shifted to make the critical pressures
(red vertical line) coincide (P exp

c '60 GPa). The ν3 mode, addressed as the stretching
mode in the experiment is probably a combination mode (see text for further details).
In this panel the pressure scale is linear.

running simulating simulations in a cell with 128 water molecules to verify this
hypothesis. Within the SSCHA, we observe the existence of a combination mode
at 1800 cm−1 in phase X that blueshifts with increasing pressure and that is not
detected experimentally.

In the experiment, the deformational mode assumes a symmetric shape as soon as
the pressure is increased in phase X, and its non-dispersive character, as well the line
shape are perfectly described within the SSCHA. Increasing again the pressure, the
stretching mode that lies in the low-energy region at the critical pressure increases
its frequency and loses intensity. At P ' 110 GPa, we manage to reproduce the
intensity exchange of the νD and νS modes as evident from Fig. 4.19 and Fig. 4.20
(a) and (b), where the size of the dots is a measure of the IR-activity with respect
to the most intense mode. Already for P &150 GPa, the stretching mode is the only
one observable in the SSCHA, while in the experiment the deformational mode loses
intensity slowlier and it is detectable even at P=210 GPa. The comparison of the
TD-SSCHA IR-active modes with the experiment can be found in Fig. 4.20 (b),
where I describe the SSCHA frequencies with dots of the same size, disregarding the
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intensity of each mode, as did in the experiment. As discussed above, the SSCHA
describes perfectly almost all of the IR-active modes in phase VIII. We can notice a
visible error in the description of the ν3 stretching mode, that in the experiment it is
located around 2750 cm−1. However, a deeper analysis of the asymmetric stretching
mode with the Lanczos algorithm revealed that probably the mode indicated by
ν3 in the experiment is the combination mode indicated in Fig. 4.22 that crosses
with the stretching as seen in Ref. [27]. Indeed, the asymmetric stretching mode is
very close in energy with the symmetric one and the broad peak does not allow to
distinguish the two of them. Anyway, a deeper analysis of the combinations is yet
to be performed and it is scheduled for the future. The correct behavior of the two
IR-active modes in the symmetric ice is correctly reproduced within the TD-SSCHA
even if the evolution of the peak position is not perfectly grasped as evident in the
region at the right of the red line in Fig. 4.20 (b).

In phase VII, the spectra are calculated on the disordered configuration denoted
Set 2 in Sec. 4.4.2. The structure with partial symmetrization of Fig. 4.16 at
T=0, arises at P=50 GPa at finite temperature, T=300 K. The comparison of the
spectrum at P=50 GPa in Fig. 4.19 with those at 2 GPa below and above reveals a
similar behavior. The peaks are very broad in the proximity of the phase transition,
both in the purely disordered phase (P=48 GPa), in the partially ordered (50 GPa),
and in phase X at the critical pressure. This definitely rules out the interpretation
of the partially ordered structure as the hypothesized intermediate phase.

4.5.3 Quantum vs Classical SSCHA

Usually, theoreticians utilize the classical spectra to simulate the quantum absorption
by applying a constant pressure shift according to the difference in the critical
pressures. My simulations reveal that this procedure is not very accurate. In this
section, I compare the quantum spectra computed within TD-SSCHA, including
thermal and quantum effects, with the classical ones. The latter are again computed
with the TD-SSCHA technique, but the quantum fluctuations are removed by
substituting the physical masses of the atoms with "infinite" values (106 times the
real ones), instead thermal fluctuations are considered to compute the IR absorption
spectra at finite temperature.

In Fig. 4.21, I compare the quantum and classical spectra of phase VIII at
T=300 K with classical simulations. The classical simulations are compared with
the quantum ones at a pressure 26 GPa below to match the difference in the critical
pressures (P quantum

c = 54 GPa and P cl
c = 80 GPa). When the classical spectra at the

exact pressure difference required have not been calculated, I choose the simulation
at the pressure value that matches the pressure difference the best.

There is an evident renormalization of the phonon frequencies due to quantum
effects. The most relevant differences appear close to the phase transition, where
the sudden collapse of the stretching modes toward the low energy region is faster
in the quantum regime, albeit the same qualitative behavior can be observed in the
classical simulations. The label over each mode indicates its name and symmetry
and it allows to follow unambiguously their evolution as a function of pressure. In
the region at the left of the black vertical line, there are no experimental data to
date, and we can see there the importance of the quantum renormalization of the
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Figure 4.21. Direct comparison of the classical and quantum simulations of Infrared
spectrum in phase VIII at T=300 K within the SSCHA. For a correct comparison, the
26 GPa difference of classical with respect to quantum critical pressure is taken into
consideration. So, in each panel, the quantum IR spectra are compared with the classical
ones computed at about 26 GPa above. When quantum spectra at exactly the correct
pressure difference have not been computed, the closest ones are chosen. The black
vertical line separates the region accessible experimentally. Above each peak, the name
and the symmetry of the mode are reported, so that their evolution with pressure can
be followed unambiguously. In phase VIII, the spectra at the right of the green dashed
line are magnified by a factor 4 to make visible the combination modes, indicated by the
arrows. Conversely, in phase X the scale is the same for each energy and the combination
modes can be identified with the peaks without the label appended. Details on the
computation of the spectra are in App. H.
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Figure 4.22. Imaginary part of the dielectric function in phase VIII at different pressures at
T=300 K. a : Classical computations with critical pressure P cl

c = 80 GPa. b : Quantum
simulations with P quantum

c = 54 GPa. The two panels are aligned in such a way that
the critical pressures (red spectra) in the quantum and classical case are at the same
height, so a 26 GPa difference shift is set. Within each panel, the plots are linearly
shifted with the pressure along the vertical axis. Blue color gradient spectra indicate
ice phase VIII structures and they are multiplied by a factor 2, as indicated in figure,
to make them more visible against the more intense modes in the symmetric phase X
(green color gradient spectra). Both quantum and classical spectra have been computed
with the Lanczos algorithm of Sec. 2.7.3 and a smearing factor of 25 cm−1 has been
used (see also App. H). In the region at the left of the black vertical line, there are no
experimental data up to now.

frequency: the translational mode is predicted to be partially visible at the critical
pressure in the classical regime, while in the quantum simulations it is detectable
only at higher pressures.

The increased intensity of the translational mode by approaching the critical
pressure from below is common in both the picture, as well as the blueshift of the
stretching mode in phase X and the intensity exchange with the deformational mode.
However, the stretching mode is more dispersive in the quantum regime while the
non-dispersive deformational mode is perfectly described in the classical simulations
apart from the frequency renormalization. At high pressure, the classical spectra
present a stretching peak with a shoulder at his right that is absent in the quantum
simulations. The region at the right of the vertical green dashed line in phase VIII
is magnified by a factor 4 to make more visible the combination modes, indicated by
the arrows. This is not done in phase X, from P=54 GPa and above, where they are
more easily identifiable.

In Fig. 4.21, the panels for different pressures are all equispaced and have the
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same height, disregarding the different intensity value (visible from the different scale
for each panel) and the nonconstant pressure shift between a panel and the following
one. The absolute values of the intensity and the pressure evolution of the spectra
with pressure in both quantum and classical simulation can be better understood
from Fig. 4.22, where I show the imaginary part of the dielectric function for all the
pressure analyzed, applying a shift in the vertical direction that is linear with the
pressure. The spectra in phase VIII, below the red one that indicates the critical
pressure, are magnified (x2) to compensate for their low intensity with respect to
the high-pressure ones.

In conclusion, the direct comparison of quantum and classical infrared simulations
reveals that is not correct to use a constant pressure shift to deduce the quantum
regime from the classical one, but in principle, one should use a different pressure
shift for each quantum pressure albeit classical simulations manage to reproduce
qualitatively the evolution of the spectra under pressure.

4.5.4 Comparison with MD simulations

Most recent and accurate Infrared spectra simulations have been performed by Zhang
et al. [24], from whom we borrowed the force field described in Sec. 2.9.2. The
authors ran MD simulations on ice VII at T = 300 K as a function of pressure, crossing
the phase transition toward symmetric ice X, using a simulation cell containing 128
water molecules.

In order to compare with the MD results, I computed the classical IR absorption
spectra for the disordered phase too within the time-dependent extension of the
SSCHA as in Sec. 4.5.3. Out of all the possible hydrogen atoms arrangements,
I choose the one denoted Set 2 in Sec. 4.4.2 at T=300 K. All the details of the
calculations are in App. H.

In principle, apart from quantum effects (that can be included with path integral
methods), MD is exact as it can grasp anharmonicity at all orders. So, the comparison
with MD in Fig. 4.23 is also useful to set a benchmark on the quality of the SSCHA
simulations.

The agreement between MD and SSCHA spectra is quite good at low pressure,
where the difference between ordered and disordered structures is also negligible.
Instead, discrepancies both between MD and SSCHA and between ordered and
disordered phases start to arise when approaching the phase transition. Already
at P = 50 GPa, the position of the broad peak at about 2200 cm−1 is shifted with
respect to that in the MD spectra, and also the peak shapes of ice VII and VIII
differ. The abrupt change in the IR spectra at P = 70 GPa lead the authors of
the MD simulations to position the phase transition at that pressure, while in the
SSCHA simulations, the structure is still that of VIII/VII phases. The SSCHA
phase transition occurs at P=82 GPa in the disordered phase and at P=80 GPa for
the ordered one, where from the structure relaxations the symmetrization of the
hydrogen bond is observed. The small difference in the critical pressure explains the
visible differences between the infrared spectra of ice VII and VIII at P=70 GPa.
In fact, as for the quantum case, the spectra suffer drastic and sudden variations
in a small pressure range close to the phase transition, and a difference of 2 GPa
implies a great difference in the spectra as can be better seen in Fig. 4.24, where I
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Figure 4.23. Comparison of MD simulations [24] with classical SSCHA results at T=300 K.
The imaginary part of the dielectric function times the frequency for different pressure,
below and above the phase transition are reported as a function or the frequency. The
product ωε2(ω) is related to the absorption coefficient and the real part of the refractive
index (see Eq. (4.5)) that are easily accessible experimentally. Changes in the MD
spectra set the phase transition at P=70 GPa, while within the SSCHA P cl,VIII

c = 80
GPa and P cl,VII

c = 82 GPa. MD spectra are the thick grey lines. Spectra for phases
VIII and VII within the SSCHA formalism are shown as solid red lines and dashed
blue lines, respectively. The simulation cells contain 128 water molecules in MD and 16
water molecules within TD-SSCHA. Both the classical spectra of phases VIII and VII
have been computed with the Lanczos algorithm of Sec. 2.7.3 and a smearing factor of
40 cm−1 is used (see also App. H). No experimental measurements are available in the
region at the left of the black vertical line to date.
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Figure 4.24. Zoom of the classical IR spectra close to the phase transition at T=300
K. The product of the imaginary part of the dielectric function times the frequency is
reported ωε2(ω). Panel a and b represent the ordered and disordered phase respectively.
The pressure are displayed vertically from P=70 GPa to the critical pressure PV IIIc = 80
GPa (PV IIc = 82 GPa) and each one is compared to the classical MD spectrum at the
critical pressure PMD

c = 70 GPa [24] (solid thick grey line). Solid red lines are the
spectra in phase VIII, while the blue dashed ones represent the disordered phase VII. In
the region at the left of the black vertical line, there are no published experimental data.

report the spectra of both the ordered and disordered phase from P=70 GPa up
to the critical pressure. However, the different critical pressures can be explained
by taking into consideration the results for the different hydrogen arrangements in
phase VII of Sec. 4.4.2, since that 2 GPa difference is comparable to pressure shift
in the phase transition for the different disordered configurations.

The discrepancies between the MD and phase VIII Infrared spectrum at P=70
GPa are evident, both in the peak position and shape. However, the phase VII
spectrum shows some similarities with the MD simulation, and increasing the pressure
we can see that both the disordered and the ordered phase spectra resemble more
the MD one. In particular, for P=75 GPa, the IR spectrum of phase VII in Fig.
4.24 is very similar to that in MD and the same goes for the ordered phase in the
pressure range 75-78 GPa, right before the phase transition.

At the critical pressure, the TD-SSCHA simulations manage to reproduce well the
deformational mode of the MD but the low-energy stretching mode has a completely
different shape: very broad in MD and sharp in SSCHA. This difference in the
stretching band continuous to exist even at higher pressure, in the symmetric phase
X (where only one plot for the SSCHA is reported since VII and VIII phase transform
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both to ice X), and as discussed below I’m checking if it is due to size effects. The
peak position is in good agreement with that predicted in MD.

The difference of about 10 GPa between SSCHA and MD critical pressures can
be partially explained by a greater uncertainty in the MD value since spectra with
20 GPa steps are reported. Moreover, the similarity of the SSCHA spectra at P=75
GPa with the MD one at 70 GPa questions the occurrence of the phase transition
at that pressure in MD (in the SSCHA we know for sure that this spectrum is still
related to phase VII), reducing again the pressure difference.

Finally, the residual mismatch can be ascribed to size effects and to the SSCHA
approximation. The MD simulation in cells with 128 molecules is surely converged,
while in the SSCHA I’m checking the convergence of the classical simulations with the
cell size. I’m currently running simulations in a supercell with 128 water molecules
at P=110 GPa in phase X and at P=70 GPa in the disordered phase, to verify if the
discrepancies in the lineshapes are entirely due to finite-size effects. The importance
of including nonlinear effects in the effective charges for studying high-pressure
ice discussed in previous works [23] is discussed in App. J and it seems to play a
negligible role.

4.5.5 Conclusions and outlooks

Experimentally, the most relevant insights on the phase transition toward the
symmetric ice come from spectroscopy. In this section, I have shown that the TD-
SSCHA simulations of the IR absorption spectra shed light on the unique signature
of the transition. The possibility to run simulations with small pressure intervals
close to the critical pressure, allows me to notice sudden changes in the Infrared
spectra, where the frequency of the stretching modes collapses rapidly to the low-
energy regime in less than 10 GPa and I detected a strong intensity increase of
the low-energy translational mode, that we retain as an important signature of the
phase transition. In this low-energy region, where such important changes of spectra
happen, there are no published experimental measurements to date. If our results
were confirmed experimentally, they would set an indistinguishable signature for
the phase transition, allowing us to detect unambiguously the critical pressure. The
evolution of the modes with pressure predicted within the SSCHA framework is in
good agreement with the experiment [26], from the strongly dispersive stretching
modes to the non-dispersive bending and rotational ones, both in the high-pressure
region and below the phase transition. Moreover, as for the static study of the
hydrogen bond symmetrization in Sec. 4.4, the spectroscopic analysis does not reveal
the presence of an intermediate disordered phase. The broad band close to the
critical pressure that leads to the hypothesis of such a phase is detected also in the
pure ice X right after the transition, meaning that in that region the structure is
strongly anharmonic while increasing the pressure the anharmonicity is reduced.

The comparison of quantum and classical spectra clearly shows that despite the
latter giving a qualitatively good representation of spectra evolution under pressure,
except a quantum renormalization of the frequencies and the critical pressure shift, it
is not correct to interpret the classical spectra as the quantum ones by just applying
a rigid pressure shift as it is commonly done. Indeed, for quantitative good analysis,
it is necessary to choose a different pressure shift for each quantum pressure.
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The comparison of the classical SSCHA simulations at T=300 K with MD data
[24], that are in principle exact (apart from quantum effects) shows good agreement
in the low-pressure regime (in phase VIII/VII) with some differences arising in the
proximity of the phase transition both in the peak shape and in the position of the
critical pressure itself (PMD

c = 70 GPa and P SSCHA
c = 80 GPa). While size effects

can explain completely the different peak shape, the discrepancy in the critical
pressure is partially explained by the indirect observable coming from spectroscopy,
where the MD spectrum at the phase transition is very similar to the TD-SSCHA
one 7-8 GPa below; a fact that question the exact location of the critical pressure in
the MD simulations. To check the importance of size effects, I’m running simulations
in a bigger cell (containing 128 water molecules).

The effect of position-dependent effective charges is negligible if compared to
the results obtained by using the average of the effective charges computed from an
ensemble of 500 different configurations. A glance of the importance of nonlinear
effects, that are considered to be important [23], can be seen from the comparison
of the second derivative of the dipole moment with the effective charges, revealing a
very small contribution.

The next goals are at first to check the origin of the discrepancy with MD
simulations, completing the convergence tests in simulation cells with 128 water
molecules. Moreover, I plan to investigate in detail the origin of the combination
modes in the IR spectra and, to give further strength to the results obtained by
inspecting the Infrared response of the dense high phases, I aim at simulating also
the Raman scattering spectra, widely explored experimentally [176, 177].
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Conclusions

This thesis is focused on the exploration of the phase diagram of ice, centering
the attention on the low-pressure region, occupied by the ordinary ice Ih and its
proton-ordered counterpart ice XI, and on the high-pressure regime, dominated by
the high-density ices VII, VIII, and the symmetric ice X.

This is done through numerical simulations. I employed the stochastic self-
consistent harmonic approximation (SSCHA), which we reviewed in Ref. [32], to
fully account for the strong thermal and quantum anharmonic nuclear motion. In
the first part of the thesis, I describe the main idea behind the SSCHA and I show
how I improved the code to manage to simulate efficiently systems with many atoms
in supercells, like the ice phases investigated in this thesis.

I elucidated the importance of quantum anharmonic effects in the thermodynamic,
structural, and vibrational properties of low-pressure ices. The anomalous strong
temperature dependence of the bulk modulus, 20% variation from 0 to 300 K, is fully
explained by thermal and quantum anharmonic fluctuations, revealing the combined
effect of the vibrations (64%) and the thermal expansion (36%). I proved that the
anomalous volume isotope effect (VIE) in ice XI originates from a nonmonotonous
volume expansion due to quantum effects. When the mass of the hydrogen isotopes
is increased, the volume first expands, saturating slightly above the tritium mass,
and then contracts to the classical value. This demonstrates that the VIE is due to a
strongly nonlinear regime of quantum fluctuations in ice, which commonly employed
approximated theories (such as the QHA) do not grasp. I show that also oxygen is in
a strong quantum mechanical regime, being responsible for a 2% volume reduction
in the classical limit.

In addition, for the first time, the low-energy range of phonon dispersion of
deuterated ice at T=140 K under pressure [143] is excellently reproduced by the
anharmonic renormalized phonons and correct treatment of the electron exchange
and correlation. This result paves the way for the study of thermal transport from
first principles and the simulation of ice under pressure, where acoustic phonons
are the only detectable modes. I observe also an anharmonic renormalization of
about 10% of the bending and stretching modes that grants a good prediction of
the vibrational spectroscopies.

I solve the puzzle behind the long-debated phase transition [16, 22, 26] of
the high-density ices, VIII/VII, to the symmetric phase X, where the proton lies
in the midpoint of two neighboring oxygen atoms, by simulating the structural
and thermodynamic properties of the transition, overcoming the absence of direct
experimental signatures (the hydrogen atoms are not visible by X-ray diffraction
and the limited data quality and uncertainties in the procedure of data correction in
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neutron scattering hampers an unambiguous interpretation at high pressures).
I show that the simulations in the classical approximation at T=0 K manage

to establish the second-order character of the phase transition, the structure of ice
VIII/VII transforms continuously to the symmetric ice X by increasing the pressure
and I detected the presence of soft modes typical of second-order phase transitions.
I confirmed the result also in the quantum regime where I proved the absence of
hysteresis too.

My simulations revealed that while in the classical approximation the critical
pressure is strongly temperature-dependent, showing a nonlinear variation from Pc(0
K) ' 107 GPa to Pc(300 K) ' 80 GPa, quantum fluctuations overturn this picture,
predicting a temperature-independent critical pressure for all the isotopes (PH20

c '
52 GPa and PD20

c ' 62 GPa), in accordance with the experimental data. With this
result, I proved that it is wrong to simulate the quantum regime by simply applying
a pressure shift to the classical results as commonly done. Instead, one should apply
a different pressure shift for each temperature. In fact, the 30 GPa reduction of the
critical pressure due to quantum effects predicted in some theoretical works [22], is
valid only at T=300 K, while at T=0 K, I detected a reduction even stronger, of
about 55 GPa. Moreover, my simulations of the Infrared spectra revealed that the
shift to apply is also pressure dependent.

I manage to describe perfectly the 10 GPa isotopic shift of the critical pressures
between deuterated and hydrogenated ice. Instead, their absolute value underesti-
mates by 10 GPa the experimental data, P exp,H2O

c ' 60 GPa. However, I show that
taking into consideration the 5 GPa underestimation of the critical pressure due to
the use of a Deep Neural Network with respect to the ab initio calculation, I recover
an almost perfect agreement with the experiment.

I shed light on the presence of the hypothesized intermediate phase between ice
VIII/VII and X [16]: I show that neither the thermodynamic properties nor the
simulated vibrational spectra detected its presence since the broad bands close the
critical pressure that led to its hypothesis can be found also in pure ice X. The
possibility to run simulations in a small pressure range close to the critical pressure
allows me to notice sudden changes in the Infrared spectra in less than 10 GPa,
where the stretching mode collapses rapidly toward the low-energy regime and the
translational mode increases its intensity by about one order of magnitude. These
two features can be regarded as the signature of the phase transition. Unfortunately,
there are no published data in the low-energy regime, where the translational mode
lies to confirm the theoretical predictions.
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Appendix A

Stress tensor

Here we derive the new equation for the stress tensor reported in the main text
(Eq. (2.19)).

First we note that the quantum statistical averages taken with the trial density
matrix can be written as

〈O〉ρ̃R,Φ
=
∫
O(R+ Jy, {ai}) [dy] , (A.1)

where

[dy] =
∏
µ

exp
(
−y2

µ

2

)
√

2π
dyµ. (A.2)

This is obtained rewriting Eq. (2.20) applying the

ua =
∑
µ

Jaµyµ (A.3)

change of variables, with

Jaµ =
eaµ√
Ma

√
~(1 + nµ)

2ωµ
. (A.4)

Let’s note that
Ψab =

∑
µ

JaµJ
b
µ (A.5)

after this change of variables. Note that in Eq. (A.1) we explicitly indicate the
dependence of the operator O on the lattice parameters {ai}. Thus, in that equation,
centroid positions R refer only to the internal degrees of freedom of the crystal
structure.

When calculating the stress tensor from Eq. (2.19) we are deriving the free
energy functional in the minimum of the SSCHA free energy with respect to the
auxiliary force constants Φ for given centroid positions R. Thus, the stress tensor
should be calculated considering the derivatives

∂F(R)
∂εαβ

=
3∑
i=1

[
∂F(R)
∂ai

· ∂ai
∂εαβ

+ ∂F(R)
∂R · ∂R

∂εαβ

]
. (A.6)
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The final equation of the strain should however be calculated for the minimum of
the free energy with respect to the centroid positions, in which case the second
addend above vanishes. Therefore we will just give the expression for the equilibrium
situation:

∂F
∂εαβ

=
3∑
i=1

∂F
∂ai
· ∂ai
∂εαβ

. (A.7)

This expression coincides with the one usually employed to compute the stress
tensor from the BO energy surface, but with the V (R) potential substituted by the
anharmonic free energy.

Let us write the free energy at the minimum as

F(R) = FΦR + 〈V (R)− VR,ΦR〉ρR,ΦR
, (A.8)

where ΦR is the dynamical matrix that minimizes F fixing the average atomic
positions. FΦR = 〈K + VR,ΦR〉ρR,ΦR

and

VR,ΦR = 1
2 (R−R) ·ΦR · (R−R) . (A.9)

The first term in Eq. (A.8) does not give any contribution to the derivative (as it
depends on R through ΦR, which minimizes already the free energy). Therefore,
the only therm that survives in the stress tensor is

∂F(R)
∂εαβ

=
3∑
i=1

∂ 〈V (R)− VR,ΦR〉ρR,ΦR

∂ai
· ∂ai
∂εαβ

. (A.10)

Joining Eq. (A.10) with Eq. (A.2) we can compute the derivative of an average in
the SSCHA ensemble with respect to the strain:

∂ 〈O〉ρR,ΦR

∂εαβ
= ∂

∂εαβ

∫
O (R(ε) + Jy, {ai(ε)}) [dy] =

=
∫ 3∑

i=1

∂O

∂ai
· ∂ai
∂εαβ

[dy] , (A.11)

∂ 〈O〉ρR,ΦR

∂εαβ
=
〈 3∑
i=1

∂O

∂ai
· ∂ai
∂εαβ

〉
ρR,ΦR

. (A.12)

Replacing O by the BO energy landscape V (R) we get

∂ 〈V 〉ρR,ΦR
(R)

∂εαβ
=
〈 3∑
i=1

∂V (R)
∂ai

· ∂ai
∂εαβ

〉
ρR,ΦR

=

= −ΩVol

〈
P

(BO)
αβ (R)

〉
ρR,ΦR

. (A.13)

The term with the harmonic potential V can be derived writing its explicit
dependence on the strain tensor ε:

VR,ΦR(ε) =
∑
st

1
2 [(1 + ε) · (R−R)s] ·ΦRst [(1 + ε) · (R−R)t] , (A.14)
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where the dot product is assumed in this equation only in the Cartesian indexes and
st are atomic labels. From this equation we immediately can write the derivative

∂VR,ΦR

∂εαβ

∣∣∣∣∣
ε=0

= −1
2
∑
s

(
uαs (fHR,ΦR )βs + uβs (fHR,ΦR )αs

)
. (A.15)

From which we obtain〈
∂VR,ΦR

∂εαβ

∣∣∣∣∣
ε=0

〉
ρR,ΦR

=

− 1
2
∑
s

〈(
uαs (fHR,ΦR )βs + uβs (fHR,ΦR )αs

)〉
ρR,ΦR

. (A.16)

Combining Eqs. (A.13) and (A.16) with the definition of the stress tensor, it is
trivial to get Eq. (2.19).
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Appendix B

Gradient equation

The gradient equation presented here in Eq. (2.13) can be obtained starting from
the

∂F
∂Φcd

= 1
2
∑
ab

∂Ψab
∂Φcd

〈∂2V (R)
∂Ra∂Rb

〉
ρ̃R,Φ

− Φab

 (B.1)

equation obtained in Ref. [56]. By using the〈
∂O(R)
∂Ra

〉
ρ̃R,Φ

=
∑
b

Ψ−1
ab

〈
ubO(R)

〉
ρ̃R,Φ

(B.2)

result proved in the same reference, we have〈
∂2V (R)
∂Ra∂Rb

〉
ρ̃R,Φ

=
∑
e

Ψ−1
ae

〈
ue
∂V (R)
∂Rb

(R)
〉
ρ̃R,Φ

=

= −
∑
e

Ψ−1
ae

〈
uef (BO)

b (R)
〉
ρ̃R,Φ

. (B.3)

Anologously,
Φab = −

∑
e

Ψ−1
ae

〈
uefHR,Φ

b (R)
〉
ρ̃R,Φ

. (B.4)

Substituting Eq. (B.3) and (B.4) into Eq. (B.1) we get Eq. (2.13).
In Ref. [56] it was also shown that

1
2
∑
ab

∂Ψab
∂Φcd

Aab =
∑
ab

Λabcd[0]√
MaMbMcMd

Aab, (B.5)

where A is a symmetric matrix. This also proves Eq. (2.17).
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Appendix C

The Hessian preconditioner

In Ref. [57] it was shown that

∂2F
∂Φab∂Φcd

= Λabcd[0]√
MaMbMcMd

. (C.1)

However, due to the relationship in Eq. (B.5), we can see that we can effectively
extend this equality to

∂2F
∂Φab∂Φcd

= Λabcd[0]√
MaMbMcMd

= 1
2
∂Ψab
∂Φcd

. (C.2)

With the latter result, it is trivial to see how the preconditioned gradient that is
used along the minimization can be written as in Eq. (2.23).
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Appendix D

Symmetries

The original algorithm proposed to account for symmetry in Ref. [55] was based on
the Gram-Schmidt orthonormalization of the symmetry generators. This algorithm
is suited for systems with a reduced number of atoms in the unit cell, but scales as n6

a,
with na the number of atoms in the unit cell. This symmetrization procedure becomes
thus a real bottleneck of the SSCHA code for systems with more than 30 atoms
in the unit cell. In the version of the code we describe here, the orthonormalized
generators are not calculated and, instead, the starting dynamical matrix and the
gradient are directly symmetrized. The symmetrization of the dynamical matrix, or
its gradient, is made in q space, which allows for a very fast implementation even
for big supercells.

The code enforces all the symmetries in the auxiliary force constant matrix as

Φ(q) = 1
NS

NS∑
i=1

TŜi
(S−1
i q)Φ(S−1

i q)T†
Ŝi

(S−1
i q), (D.1)

where Si are the 3×3 point group matrices of the space group, NS the number of
symmetries of the crystal, TŜ(q) are unitary matrices that represent the S symmetry
in the q point. These matrices are reported in Refs. [178, 179, 180]. To find the
symmetries given the structure, we wrapped into the SSCHA the symmetry module
of Quantum ESPRESSO[86, 48].

This operation is performed also on the gradient of the dynamical matrix each
time it is computed. Since the dynamical matrices satisfying the symmetries define
a linear subspace, if both the gradient and the original dynamical matrix belong
to this subspace, any linear combination of them will also satisfy the symmetry
constrains. Thus, it is necessary to symmetrize the dynamical matrix once at the
beginning, and then apply the symmetry constrains only to the gradient to preserve
the symmetries in the whole simulation.

The symmetry module from Quantum ESPRESSO only recognizes symmetries
when the unit cell is the primitive one. Sometimes, it could be convenient to choose
a different unit cell. Therefore, we also interfaced the SSCHA code with the spglib
package[181] to improve the identification of symmetries. Instead of working in the
unit cell in q space, spglib provides the symmetry operations in real space. In this
case, the SSCHA code divides the symmetry matrices identified by spglib into pure
translations and point group operations. Then, symmetries are enforced in real
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space by first imposing pure translations, followed by point group operations as

Φ = 1
NS

NS∑
i=1

TŜi
ΦT†

Ŝi
. (D.2)

Then, the permutation symmetry on the indices is imposed. Finally, the code
transforms back the real space dynamical matrix (or the gradient) in q space.

This operation takes more time than the symmetrization in q space, as it
is performed in the supercell. However, due to its simplicity and to avoid the
cumbersome q-space symmetrization of higher-order force constants, the same
supercell approach is used to symmetrize the third- and fourth-order force constant
matrices, namely

(3)
Φ and

(4)
Φ introduced in Sec. 2.4.2.

Symmetries are also enforced on the average positions of the nuclei (and the
forces). After computing the SSCHA forces on atom t along direction α, fαt , we
impose symmetry as

fαt = 1
NS

NS∑
i=1

na∑
t=1

3∑
β=1

SiαβfβS−1(t), (D.3)

where S−1(t) is the atom in which the S symmetry maps the t one to. In this way,
the forces are correctly directed only along the Wyckoff coordinates, and the atomic
positions relax subsequently keeping the correct Wyckoff positions.

D.1 Acoustic sum rule on the auxiliary force constants
Besides space group symmetries, also the acoustic sum rule (ASR) must be imposed.
The acoustic sum rule is a condition that arises from the momentum conservation
(the center of mass of the system is fixed). The energy must not change after a rigid
translation of the whole system. This can be translated in a trivial condition for the
force constant matrix in the supercell:∑

t

Φαβst =
∑
s

Φαβst = 0. (D.4)

In general, the SSCHA gradient computed from a finite ensemble violates this
condition due to the stochastic noise. We enforce the sum rule on the gradient at
each step. As for the symmetries, also matrices that satisfy the acoustic sum rule
define a linear subspace. Thus we define the orthogonal projector operator that
enforces the acoustic sum rule as

Φ(asr) = PΦP †. (D.5)

The projection matrix in real space is

Pαβst = δstδαβ −
δαβ
na

na∑
u=1

δtu. (D.6)

This operation only affects the dynamical matrix at Γ. The same projector is
employed to impose the ASR on the forces:

f(asr)αs = (P f)αs = fαs −
1
na

na∑
k=1

fαk (D.7)
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Notably, it can be proved that this procedure does not spoil the symmetrization
described above.

This ASR imposition procedure analytically cancels out the frequencies of acoustic
modes at Γ and any rigid translation of the atomic positions, thus it is the most
indicated for the SSCHA minimization. A different approach, implemented for the
Fourier interpolation, is described in Appendix E.2. The latter affects not just
phonons at Γ, and, thus, it is more suited for interpolating dynamical matrices close
to the Brillouin zone center.
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Appendix E

Reciprocal space formalism and
Fourier interpolation

E.1 Reciprocal space formalism

The SSCHA code is designed to be used with crystals, thus it takes advantage of
lattice periodicity and Fourier transforms the relevant quantities with respect to
the lattice vectors. That allows to make independent analysis for each q point in
reciprocal space. When we need to stress this aspect, we will modify the notation
adopted, partitioning the supercell atomic index into a unit-cell index plus a lattice
index (s, l), with s now ranging from 1 to na (the number of atoms in the unit cell),
and l being a 3 dimensional integer vector assuming Nc total values (the numer of unit
cells forming the supercell). Thus, in this notation, in general we will have n-th order
tensors in a 3na dimensional space (indicated with bold symbols, in free-component

notation), which in real space depend on n lattice-vector parameters,
(n)
D(l1, . . . ln) (to

be precise, due to the translation symmetry, this real-space tensor actually depends
only on n − 1 independent values li). The reciprocal-space expression of such a

tensor,
(n)
D(q1, . . . , qn), is obtained through the Fourier transform

(n)
D(q1, . . . , qn) = 1

Nc

∑
l1...ln

ei
∑

h
qh·lh

(n)
D(l1, . . . , ln). (E.1)

Notice that, due to the lattice translation symmetry, D(S)(q1, . . . , qn) is zero unless∑
h qh is a reciprocal lattice vector, thus we have again only n − 1 independent

parameters qi. In particular, after the calculation performed on a real-space supercell,
for each q point of the commensurate grid of the reciprocal-space unit cell, the
SSCHA code computes the Fourier transformed matrices D(S)(−q, q), which we
will shortly indicate as D(S)(q), and the relative eigenvalues ωµ(q) and eigenvectors
eµ(q). Similarly, the Hessian calculation provides the matrix D(F)(−q, q), which we
indicate as D(F)(q), where (see Eq. (2.61))

D(F)(q) = D(S)(q) + Π(q, 0) , (E.2)

and its eigenvalues Ωµ(q) and eigenvectors fµ(q).
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E.2 Fourier interpolation: centering and acoustic sum
rule

The SSCHA code computes the FCs in real space supercells with periodic boundary
conditions (PBCs). As shown in the previous section, a crucial feature of the SSCHA
code is the use of the Fourier interpolation technique in order to extrapolate the
results to the thermodynamic limit (infinite supercell results) without recurring to
expensive large supercell calculations. In order to Fourier interpolate the computed
FCs on arbitrary points of the reciprocal space, as a first thing it is necessary to
reconstruct the real-space infinite-crystal FCs from them. Roughly speaking, this is
done by removing the PBCs, i.e. superlattice equivalent atoms are not considered
identical anymore, and assuming that only the FCs between atoms in the same
supercell are different from zero. Of course, this gives correct results as long as
the supercell used in the calculations is large enough to consider negligible the FCs
between atoms at distances comparable with the distances between the periodic
boundary replica. However, an intrinsic arbtrariness is present in this recipe, due
to the fact that the supercell is not univocally defined and the choice of different
supercells leads to different interpolation results (i.e. as long as the reciprocal-space
point in which we are interpolating does not belong to the original commensurate grid,
different - yet superlattice equivalent - lattice points give different contributions to the
Fourier transform). This problem is solved by wisely selecting the supercell according
to a prescription based on a physical principle: among equivalent superlattice points,
the ones closest to each other must be selected. This procedure defines the so called
“centering” of the FCs and, as explained, it is a necessary step to be done before
Fourier interpolating the real space FCs. The SSCHA code centers 2nd and 3rd
order FCs (with a procedure that can be generalized to any nth-order FCs. In
particular, the next release of the code will apply the same procedure to center and
interpolate the 4th order FCs). Here we explictly describe the 3rd FCs centering
algorithm [182].

The PBCs are defined on a superlattice R(S)
lat of the original lattice Rlat. The

lattice vectors set Rlat can be equivalently described as the superlattice R(S)
lat plus

the basis given by the lattice vectors in a superlattice unit cell SC. In other words,
a lattice vector l ∈ Rlat indentifies a set of superlattice-equivalent lattice vectors
{l + T with T ∈ R(S)

lat }, and we have Rlat = {l + T with l ∈ SC ,T ∈ R(S)
lat }.

Given three atoms s1, s2, s3 in the unit cells 0, l2, l3, respectively (due to the lattice
translation symmetry we can confine the first atom to the origin unit cell), they
indentify a triangle with vertices in τs1 , τs2 + l2, τs3 + l3 (τsi is the position vector
of atom si in the original unit cell). For these three points we define the weight
Ws1s2s3(0, l2, l3) in this way: it is zero if there is at least another “equivalent-vertices"
triangle having as vertices points τs1 , τs2 +l2+T2, τs3 +l3+T3 with T2,T3 ∈ R(S)

lat (i.e.
points that are superlattice-equivalent to τs1 , τs2 +l2, τs3 +l3) with smaller perimeter,
otherwise it is the inverse of the number of equivalent-vertices triangles having the
same (minimal) perimeter. In formulas, indicated with Ps1s2s3(0, l2 + T2, l3 + T3)
the perimeter of the triangle with vertices τs1 , τs2 + l2 + T2, τs3 + l3 + T3, this
amounts to
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Ws1s2s3(0, l2, l3) =



0 if ∃T2,T3 ∈ R(S)
lat :

Ps1s2s3(0, l2 + T2, l3 + T3) < Ps1s2s3(0, l2, l3)

[
#(T2,T3) ∈ R(S)

lat :
Ps1s2s3(0, l2 + T2, l3 + T3) = Ps1s2s3(0, l2, l3)

]−1

if @T2,T3 ∈ R(S)
lat :

Ps1s2s3(0, l2 + T2, l3 + T3) < Ps1s2s3(0, l2, l3)

(E.3)

The weights Ws1s2s3(0, l2, l3) are pure geometrical factors, different from zero for
“compact” three-atom clusters, and they satisfy the normalization

∑
T2,T3∈R

(S)
lat

Ws1s2s3(0, l2 + T2, l3 + T3) = 1
∀ l2, l3 ∈ Rlat

∀ s1, s2, s3 ∈ {1, . . . , na} .
(E.4)

The weights are used to define the centering. Given a 3rd-order FCs, Φα1α2α3
s1,s2,s3(0, l2, l3),

its “centered" version
(cent)
Φ α1α2α3
s1s2s3 (0, l2, l3) is given by

(cent)
Φ α1α2α3
s1s2s3 (0, l2, l3) = Φα1α2α3

s1s2s3 (0, l2, l3) × Ws1s2s3(0, l2, l3) , (E.5)

where we have separately indicated cartesian (αh) and atomic (sh) indices. The
idea behind this definition is pretty simple: once the PBCs are discarded, of the
infinite set of superlattice-equivalent atoms only the“closest one” are characterized
by a force constant different from zero. If there are several equivalent triplets at the
minimal reciprocal distance, all of them are considered (to preserve the symmetry)
and the force constants are consequently scaled (to avoid a wrong multiple counting
effect). The centering definition has some degree of arbitrariness, though, due to the
arbitrariness of the criterion employed to evaluate the “size” of a three atoms cluster.
We took the perimeter of the triangle, a criterion that is a direct generalization of
the distance between atoms, which is the one used in the 2nd order FCs centering.
More in general, for an n-atoms cluster this size measure is readily generalized as
the sum of the distances between all the n(n − 1)/2 couples of atoms. However,
even if in principle other choices could be done, this arbitrariness is immaterial as
long as the supercell calculation is large enough (in the thermodynamic limit all the
possible choices, if reasonable, are expected to be equivalent).

A delicate issue is associated with the centering: the spoiling of the acoustic sum
rule (ASR). For a nth-order FC, the acoustic sum rule is

∑
li

∑
si

Φα1...αi...αn
s1...si...sn (l1, . . . , li, . . . , ln) = 0

∀αh ∈ {x, y, z}
∀ sh ∈ {1 . . . na} with h 6= i

∀ lh ∈ Rlat with h 6= i

.

(E.6)
The ASR comes is crucial, among other things, to have the correct acoustic phonon
dispersion at and close to Γ. The FCs computed with SSCHA (in supercells with
PBCs) fulfill the acoustic sum rule but, in general, the centering spoils it (except for
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the n = 2 case). In fact, in general the centered FCs fulfill a “weaker” version of the
ASR in Eq. (E.6), since only the simultaneous sum on n− 1 indices is zero:

∑
li1 ,...,lin−1

∑
si1 ,...,sin−1

(cent)
Φ α1...αn
s1...sn (l1, . . . , ln) = 0 . (E.7)

In particular, this explains why the centering of 2nd-order FCs does not spoil the
ASR (for n = 2 the weak ASR is nothing but the proper ASR, as the sum over n− 1
indices coincides with the sum over one index).

In order to see why this happens let us consider, as an example, the 3rd-order
FCs case and the sum over the third index. It is:

∑
s3

∑
l3∈Rlat

(cent)
Φ α1α2α3
s1s2s3 (0, l2, l3) = (E.8)

=
∑
s3

∑
l3∈SC

∑
T3∈R

(S)
lat

(cent)
Φ α1α2α3
s1s2s3 (0, l2, l3 + T3) (E.9)

=
∑
s3

∑
l3∈SC

∑
T3∈R

(S)
lat

Φα1α2α3
s1s2s3 (0, l2, l3 + T3) Ws1s2s3(0, l2, l3 + T3) (E.10)

=
∑
s3

∑
l3∈SC

∑
T3∈R

(S)
lat

Φα1α2α3
s1s2s3 (0, l2, l3) Ws1s2s3(0, l2, l3 + T3) (E.11)

=
∑
s3

∑
l3∈SC

Φα1α2α3
s1s2s3 (0, l2, l3)

∑
T3∈R

(S)
lat

Ws1s2s3(0, l2, l3 + T3)

︸ ︷︷ ︸
nonconstant w.r.t. s3 and l3

. (E.12)

Since the last factor, highlighted with a brace under, in general is not constant with
respect to s3 and l3, it cannot be factored out from the sums, so that the ASR for
the original Φα1α2α3

s1s2s3 (0, l2, l3)

∑
s3

∑
l3∈SC

Φα1α2α3
s1s2s3 (0, l2, l3) = 0 (E.13)

cannot be used to obtain the ASR for the centered
(cent)
Φ α1α2α3
s1s2s3 (0, l2, l3). However,

using Eq. (E.4), with similar passages we can show that the sum over the last two
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indices is zero:∑
s2,s3

∑
l2,l3∈Rlat

(cent)
Φ α1α2α3
s1s2s3 (0, l2, l3) = (E.14)

=
∑
s2,s3

∑
l2,l3∈SC

Φα1α2α3
s1s2s3 (0, l2, l3)

∑
T2,T3∈R

(S)
lat

Ws1s2s3(0, l2 + T2, l3 + T3)

︸ ︷︷ ︸
=1

(E.15)
=
∑
s2,s3

∑
l2,l3∈SC

Φα1α2α3
s1s2s3 (0, l2, l3) (E.16)

= 0 , (E.17)

thus the weak ASR is fulfilled.
The spoling of the ASR after the centering dictates to impose it. In principle,

there is not a unique way of doing it, as imposing the ASR on FCs simply consists
in finding new FCs that fullfil the ASR and differ the least from the original FCs
(according to some reasonable but arbitrary metric). In this release of the SSCHA
code we impose the ASR by employing an iterative procedure, consisting of two
steps [182]. First, the ASR is imposed on one index (the last one, for example). This
spoils the permutation symmetry, which is consequently imposed. In general, the
resulting permutation-symmetric FCs do not fulfill the ASR yet, thus this procedure
is repeatedly applied until the permutation-symmetric FCs fulfill the ASR within a
certain tolerance. The imposition of the permutation symmetry is a straightforward
task. The ASR is imposed on the third index of a centered 3rd-order FCs by updating
its values on the compact three-atom clusters that defined the centering (in order to
preserve the short-sightdness of the centered FCs even after the ASR imposition).
Given a centered Φα1α2α3

s1s2s3 (0, l2, l3), the Φ̃α1α2α3
s1s2s3 (0, l2, l3) that fulfills the ASR on the

third index is computed with

Φ̃α1α2α3
s1s2s3 (0, l2, l3) = Φα1α2α3

s1s2s3 (0, l2, l3)−Kα1α2α3
s1s2s3 (0, l2, l3|p)×

∑
s3,l3

Φα1α2α3
s1s2s3

(0, l2, l3) ,

(E.18)
where Kα1α2α3

s1s2s3 (0, l2, l3|p) is the scaling factor

Kα1α2α3
s1s2s3 (0, l2, l3|p) =



∣∣Φα1α2α3
s1s2s3 (0, l2, l3)

∣∣p∑
s3,l3

∣∣∣Φα1α2α3
s1s2s3

(0, l2, l3)
∣∣∣p if p = 0 or p > 0 and

∑
s3,l3

∣∣∣Φα1α2α3
s1s2s3

(0, l2, l3)
∣∣∣ 6= 0

0 if p > 0 and
∑
s3,l3

∣∣∣Φα1α2α3
s1s2s3

(0, l2, l3)
∣∣∣ = 0

,

(E.19)
with p a non-negative real number which can be arbitrarily fixed to optimize the
calculation performances (in the equation above the convention 00 = 1 has been
adopted). The Φ̃α1α2α3

s1s2s3 (0, l2, l3) defined through Eq. (E.18) fulfills the ASR on the
third index, since for any p ≥ 0 the scaling factor fulfills the normalization condition∑

s3,l3

Kα1α2α3
s1s2s3 (0, l2, l3|p) = 1 . (E.20)
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The value of p has effects on the way the different terms of Φα1α2α3
s1s2s3 (0, l2, l3) are

scaled. For p = 0 the scaling factor is a pure geometric quantity related to the three
atoms clusters. Indeed, given s1, s2, l2, the scaling factor Kα1α2α3

s1s2s3 (0, l2, l3|p = 0) is
fully determined (it is the same for all the αh, s3, l3) and, in particular, it does not
depend on the FCs value. On the contrary, for p 6= 0, given αh, s1, s2, l2 we have

Kα1α2α3
s1s2s′3

(0, l2, l′3|p)
Kα1α2α3
s1s2s′′3

(0, l2, l′′3 |p)
=

∣∣∣∣∣∣
Φα1α2α3
s1s2s′′3

(0, l2, l′′3)
Φα1α2α3
s1s2s′3

(0, l2, l′3)

∣∣∣∣∣∣
p

(E.21)

so that if p > 1 the scaling factor is higher (lower) for FCs have lower (higher)
absolute value, otherwise the opposite.

E.3 Effective charges

In ionic crystals the nuclei displacement induces dipoles (proportional to the Born
effective charge tensors), and this adds a dipole-dipole interaction term to the
interatomic forces. This contribution, because of its long-range character (it goes as
the inverse of the third power of the nuclei distances), is not suited to be Fourier
interpolated and it is at the origin of the nonanalytic behavior of the dynamical
matrix at Γ, with (in general anisotropic) LO-TO splitting of the phonon frequencies
at BZ center. The long-range dipole-dipole contribution to the force constants can
be calculated analytically since it is fully determined by the Born effective charges
(Z∗s )αβ (effective charge tensor of atom s) and the electronic dielectric permittivity
tensor (ε∞)αβ, which can both be calculated from first principles. For a given
q ∈ BZ, this dipole-dipole contribution is given by [183, 184]

Φ(dd)
st (q) = Φ̂(dd)

st (q)− δst
∑
t

Φ̂(dd)
st

(q = 0) (E.22)

with

Φ̂(dd)
st (q) = 4π

ΩVol

∑
G

′ [(G+ q) ·Z∗s ]⊗ [(G+ q) ·Z∗t ]
(G+ q) · ε∞ · (G+ q) e

− (G+q)·ε∞·(G+q)
4η2 ei(G+q)·(τs−τt) ,

(E.23)
where we have explicitly indicated only the atomic indices (i.e. we are using
component-free notation for the cartesian indices), η is a parameter whose value
has to be large enough to allow to include only the reciprocal space terms in the
Ewald sum, and

∑′
G is the sum over reciprocal lattice vectors such that G+ q 6= 0

(the sum includes as many G’s as it is necessary to reach the convergence for the
considered η) [86].

Once Z∗s and ε∞ are available, the problem caused to the Fourier interpolation
by the long-range dipole-dipole interaction is thus bypassed in the SSCHA code
in two steps. First, from the Φ(q) calculated on a (coarse) grid of q point of the
Brillouin zone, the corresponding dipole-dipole terms Φ(dd)(q) are subtracted and
the resulting short range FCs is Fourier transformed to the real space. Subsequently,
this real space short-range FCs, Φ(sr)(l), can be Fourier transformed back to any
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k ∈ BZ and the corresponding long-range dipole-dipole analytical contribution
Φ(dd)(k) is added [86]:

Φ(q)
on BZ q-grid

Subtract dipole-dipole interaction terms
Φ(dd)(q)

+
Fourier transform

to real space−−−−−−−−−−−−−−−−−−−−−−−−→ Φ(sr)(l)

Fourier transform
back to k ∈ BZ

+
Add dipole-dipole interaction term

Φ(dd)(k)−−−−−−−−−−−−−−−−−−−−−→ Φ(k)

(E.24)
The dipole-dipole correction to the FCs given by Eqs. (E.22), (E.23) is nonanalytic
at zone center and its q → 0 limit depends on the direction q̂ = q/‖q‖ along which
the limit is performed:

lim
δ→0+

Φ(dd)
st (δq̂) = Φ(dd)

st (0) + Φ(dd-na)
st (q̂) , (E.25)

where
Φ(dd-na)
st (q̂) = 4π

ΩVol

[q̂ ·Z∗s ]⊗ [q̂ ·Z∗t ]
q̂ · ε∞ · q̂

(E.26)

is the nonanalytic zone-center correction term. When a phonon dispersion through
Γ is calculated, the SSCHA code includes the nonanalytic correction term in the
zone center, with the direction given by the followed path [86]. When the SSCHA
code calculate the spectral properties (static or dynamic), it adds the nonanalytic
correction term in the zone center dynamical matrix (necessary for the integral over
the BZ) from a random direction.
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Appendix F

Simulation details phase XI

Whatever the theoretical framework employed to describe the system, the free energy,
Eq. (2.127) and Eq. (2.129) for the QHA and SSCHA respectively, clearly depend on
the number Nq of q points sampled in the Brillouin zone. We employ the supercell
method, which consists in replicating an integer number of times N1 × N2 × N3
the unit cell along the three Cartesian directions and imposing periodic boundary
conditions. In Sec. 3.3.1, we pointed out that the thermodynamic properties in the
QHA are derived from the free energy, while in the SSCHA the pressure has been
used, thanks to the availability of a handy analytical formula (see Eq. 2.19) [57].

Consequently, the converged supercells are chosen by looking at the free energy
in the QHA and at the pressure in the SSCHA. We analyzed the convergence for
the two extremal temperatures, T=0 K and T=300 K, in Fig. F.1. As a general
trend, we notice that thermal fluctuations slow down the convergence of both the
free energy and the pressure. The limited computational cost of the QHA doesn’t
place any limitation on the mesh to use.

Moreover, we have the possibility to interpolate the dynamical matrix to a finer
mesh, as it has been done for the two bigger meshes, namely the 10× 10× 10 and
the 14× 14× 14. So, by looking at Fig. F.1 (b) we decided to sample phonons in
the biggest mesh of the Brillouin zone analyzed.

Conversely, the challenging computational cost of the SSCHA prevents the use of
a big supercell. Fig. F.1 (a) reveals as the 3×3×2 supercell grants at most 3% error
with respect to the converged mesh at high temperature and a discrepancy smaller
than 1% at zero temperature, where most of the results in this work are presented. We
are satisfied with this accuracy level and we compute the thermodynamic properties
in this q-point mesh. Instead, to compute the phonon dispersion of Sec. 3.3.3, a
4x4x4 supercell has been used.

It is well known in literature [97, 151, 185] that very large simulation cells can
be necessary to reproduce the thermodynamic behavior of proton disordered ice,
according to the property of interest. In this perspective, we did a convergence test
for ice Ih considering simulation cells containing up to 432 atoms (64 molecules).
The tests for pressure and free energy are in Fig. F.2. A satisfactory accuracy is
achieved when a simulation cell contains 64 water molecules, in accordance with the
theoretical works cited above.

To simulate the thermodynamic properties, we computed the QHA harmonic
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Figure F.1. Convergence tests in the QHA and SSCHA. a : Pressure within the SSCHA
framework computed as in Eq. (2.19) as a function of the supercell dimension for T=0
K and T = 300 K b : Vibrational term of the QHA free energy in Eq. (2.127) as a
function of the supercell dimension for T=0 K and T = 300 K. Here we use the short
hard notation N1N2N3 to indicate the N1 × N2 × N3 supercell. The dashed lines in
panel a and b are the converged results for the pressure or the free energy at the given
temperature.

free energy (relaxing the atomic position at fixed cell) at 120 volumes. The free
energy is fitted with the Vinet equation of state (EOS) [174] in Eq. (F.1), where
η = (V/V0)1/3, B0 and B′o are the bulk modulus and its derivative with respect to
pressure respectively. In this way, the equilibrium volume and the bulk modulus for
any temperature are readily available.

P (V ) = 3B0
1− η
η2 exp

{3
2(B′0 − 1)(1− η)

}
(F.1)

In contrast, for the SSCHA, we computed the pressure as a function of tempera-
ture for six volumes. For each volume, we relaxed the atomic positions accounting
for quantum and thermal anharmonic effects. We employed ensembles with as many
as 100000 configurations in the converged supercell to reduce the statistical noise.
We evaluated the equilibrium volume and the bulk modulus fitting the P (Ω) curve
with the Vinet EOS at each temperature.

The spectral properties are computed from the dynamical one-phonon interacting
Green function. After checking that high order corrections to the self-energy are
negligible, we restrict to the bubble approximation of Eq. (2.59) and it is computed
through Eq. (2.75). We ran convergence tests on the k integration grid and smearing
factor δse that required a 14x14x14 k-grid and δse = 45cm−1 to achieve convergence.
The same values hold for H2O and D2O ice. Consequently, all the SSCHA spectral
functions are computed with those values of smearing and integration k-grid. Finite
linewidths in the DOS and harmonic model are for presentation purposes only.

The Raman tensor Aabc of Eq. (2.117) is computed ab initio with Quantum
ESPRESSO [86] in the SSCHA average centroid positions within the LDA approxi-
mation. The electronic wave functions were expanded in plane waves up to a cutoff
of 120 Ry (960 Ry for the electronic density), with a uniform grid of 4x4x4 for the
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Figure F.2. Pressure (left) and free energy per molecule (right) at T=0 K for a proton-
disordered realisation of ice Ih as a function of the number of molecules in the simulation
cell. The dashed lines stand for the converged results.

Brillouin zone integrals. The effective charges Zab of Eq. (2.112) are computed ab
initio in Quantum ESPRESSO [86] in LDA approximation. The electronic wave
functions were expanded in plane waves up to a cutoff of 120 Ry (960 Ry for the
electronic density), with a uniform grid of 4x4x4 for the Brillouin zone integrals.
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Appendix G

Phonon dispersion in ice XI

Real phonon dispersion is calculated from the dynamical interacting Green function
of Eq. (2.67). Here, we show the density of states (DOS) and dispersion for H2O ice
at T=200 K and D2O ice at T=140 K and P=0.05 GPa, comparing the harmonic
phonons and the SSCHA auxiliary phonons in Fig. G.1.

The harmonic dynamical matrix is computed with a 5x5x5 q mesh, while for the
SSCHA I employed the 4x4x4 supercell.

As a molecular crystal, the phonon branches are well separated in translational
modes, librations, narrow bending and stretching from low to high energy. In Fig.
G.1 (a), we report the hydrogen and in Fig. G.1 (b) the deuterium.

In the SSCHA, the harmonic translational and rotational modes suffer a blue
shift of the order of 4.2% (3.5%) and 8.2% (7.5%) respectively for H2O (D2O) ice.
Instead, anharmonicity reduces the frequencies of the most energetic modes. Both
the harmonic bending and stretching band are red-shifted of about 3.1% (2.2−2.5%)
in H2O (D2O) ice.

The dispersion of deuterated ice under pressure in Fig. 3.10 was limited to the
Γ-A direction. Here, I include the Γ-K path dispersion in Fig. G.2. In ice XI, we
have 2 inequivalent Γ-K paths originated by the presence of the hydrogen sublattice,
that overturns the perfect equivalence we would obtain in the presence of oxygen
atoms alone.

The projection of the first Brillouin zone of ice XI in the plane is reported in the
inset of Fig. G.2 (a). I show the planar reciprocal vectors, {~b1,~b2} and the three K
points. Notably, the three K points are actually equivalent (the phonon frequencies
are the same) but the modes along the path connecting Γ and K aren’t.

We average the three dispersion and compared the average with the experiment
in Fig. G.2 (b). The matching between theory and experiment is very good.
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Figure G.1. Phonon dispersion and density of states. a H2O ice XI at T=200 K at ambient
pressure.b D2O ice XI at T=140 K and P=0.05 GPa. In both panel a and b, the
harmonic results (red dashed line) are compared with the dispersion and DOS in the
SSCHA framework (black solid lines).
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Figure G.2. Phonon dispersion in the SSCHA framework with the inclusion of the bubble
term in the self-energy correction in the static limit for D2O ice at T=140 K and P = 0.05
GPa. a Phonon dispersion along the three nonequivalent ΓK directions compared to the
experimental measurement (blue circles) [143]. The three K points and the projection
in the plane of the first Brillouin Zone are shown in the inset. b Comparison of the
experiment with the average of the phonon dispersion along the three ΓK directions
(red solid lines).
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Appendix H

Simulation details for
high-pressure ice

In this section, I report all the details of the numerical simulations. The simulation
cell used for the high-pressure phases have been already described in Sec. 4.2, they
all contain 16 water molecules, and the convergence with respect to the number of
molecules for what concerns the thermodynamic properties have been tested and
shown in Fig. 4.12.

The relaxation of the structures in the classical approximation at T=0 K of Sec.
4.4.1 has been performed with LAMMPS [90], by fixing the external pressure and
allowing for a triclinic relaxation. The pressures sample have been discretized with
steps of 10 GPa far from the critical pressure and with a refined sampling close
to the phase transition, where I relaxed the structures each 1 GPa. I used strict
cutoffs(10−18) on the energies and forces. Energies and forces are calculated within
LAMMPS with the use of the DNN described in Sec. 2.9.2, fitted on DFT-PBE.
The relaxation at the ab initio level, using the PBE approximation of DFT are done
within Quantum ESPRESSO [86]. The electronic wave functions were expanded
in plane waves up to a cutoff of 120 Ry (960 Ry for the electronic density), with a
uniform grid of 4×4×4 for the Brillouin zone integrals.

Quantum and thermal effects are included performing the structure relaxation
within the SSCHA framework. Relaxations are done every 2 GPa in the proximity of
the phase transition and steps of 10 GPa are chosen far for the critical pressure. The
choice of such a fine grid allows us to achieve an accuracy that is better than the
typical experimental one and we can assume that the error on the critical pressures
extracted from the simulations is at most 2 GPa. The SSCHA minimizations are
performed by generating ensembles with 25000 configurations to reduce the statistical
noise and the pressure is calculated with Eq. (2.19). The hysteresis cycle is computed
by simulating compression and decompression runs. In the former, the starting guess
for each structure is the result for the previous pressure, while in the latter, it is the
relaxed structure for the immediately higher pressure.

Within the SSCHA simulations, we manage to simulate the classical picture but
with included thermal effects. This is done by substituting the physical masses of the
atomic species with fictitious infinite ones. In practice, this is done by multiplying
the real masses times a 106 factor. The number of configurations generated is the
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same as for the quantum case.
The infrared spectra are simulated within the TD-SSCHA framework by using the

Lanczos algorithm of Sec. 2.7.3. The effective charges have been computed ab initio
with Quantum ESPRESSO using the PBE approximation of DFT. After checking
the convergence, the electronic wave functions were expanded in plane waves up to
a cutoff of 80 Ry (640 Ry for the electronic density), with a uniform grid of 4×4×4
for the Brillouin zone integrals. The absorption spectra are calculated by tracing
over the dielectric function as in Eq. 3.8 to take into consideration all the possible
orientations of the crystal. Most of the spectra are calculated neglecting the position
dependence of the effective charges, whose importance is partially explored in Sec.
2.7.2, where the simulations obtained using the average of the effective charges
(extracted from the calculations on 500 configurations) and the position-independent
ones are compared.

Regarding the Lanczos algorithm. A sub-ensemble with 15000 configurations of
the 25000 generated has been used to compute the Infrared response after checking
the convergence with the number of configurations. In principle, the Lanczos
algorithm gives converged results in the limit of infinite steps and infinitesimal
smearing factor. I found that about 350 Lanczos steps are sufficient to achieve
convergence with a broadening factor of about 15 cm−1. To have smooth curves,
we used a smearing factor of 25 cm−1 for the simulation of classical and quantum
Infrared spectra. As a unique exception, we choose a smearing factor of 40 cm−1 to
compare the TD-SSCHA simulations with the Molecular dynamics spectra and let
the algorithm run for 500 steps.

The IR intensity of each mode described in Fig. 4.20 (a) is computed by using the
polarization vectors eaµ of the Hessian matrix of Eq. 2.59 in the bubble approximation
with the relation in Eq. (H.1).

Iµ = 2
∑

α={x,y,z}
|

3N∑
a=1

Zαa
eaµ√
Ma
|2, (H.1)

Then, the area of the dots is the ratio of the IR-intensity of the given mode with
respect to the most intense one.
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Appendix I

Classical phase VII

The phase transition at a classical level at T=0 K, studied through structure
relaxation of the disordered structures at different pressure with LAMMPS [90],
shows the same features as for the ordered phase, as for the quantum case of Sec.
4.4.2. Out of the many possible hydrogen arrangements, I study only five of them to
check if relevant differences arise in the critical pressure according to the configuration
chosen. I report in Fig. I.1 (a) the equation of states for the 5 arrangements, denoted
as Set 1-5, and the order parameter lOO

2 − lOH is in Fig. I.1 (b). Both the EOS
and order parameter of the five structures show some discrepancies below the phase
transition at about P=90 GPa, but, as the pressure increases, they all merge and
reach zero at the same critical pressure, namely Pc = 109 GPa indicated by the red
cross in the figure. The critical pressure is 2 GPa greater than for the ordered phase,
a difference that is anyway negligible compared to the experimental uncertainties.
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Figure I.1. Structure parameters of the disordered phase in the classical approximation at
T=0 K. Five different hydrogen arrangements compatible with the VII phase structure
are shown, denoted as Set1 to Set5. Structure relaxation are performed with LAMMPS
[90] for different pressures, above and below the phase transition. Panel a: Equation of
state for the disordered sets compared to that of the symmetric phase X. The red cross
indicates the phase transition at P=109 GPa. Panel b Order parameter lOO

2 − lOH as a
function of pressure.
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Appendix J

Infrared absorption in
high-pressure ice

The critical pressure in the quantum regime is almost temperature independent. In
Fig. J.1, I report the product of the imaginary part of the dielectric function times
the frequency of the ordered phase that according to Eq. (4.5) is related to the
absorption coefficient. Two temperatures, T=60 K and T=300 K are compared. The
IR spectra are almost unaffected by temperature too. The most relevant differences
can be seen in the low-pressure regime, in phase VIII and, mostly, in the region close
to the phase transition. The slight difference in the critical pressures, Pc(60K) = 52
GPa and Pc(300K) = 54 GPa, is reflected in the simulated spectra, as the strong
intensity increase of the low energy peak is 2 GPa delayed in the high-temperature
spectra.

In some works, [23], it is discussed the importance of including nonlinear effects
in the effective charges for studying high-pressure ice. In all the spectra computed
above, I computed the effective charges in the equilibrium position and the response
function of Eq. (2.114) within the TD-SSCHA framework with the Lanczos algorithm
of Sec. 2.7.3. Here, I include the effect of position dependence of the effective charges.
I compute at the DFT level, within Quantum ESPRESSO [86] with PBE functional
[102] the effective charges for a set of 500 configurations out of the 15000 ones in
the SSCHA ensemble. Then, their average is used in Eq. (2.114) to computed the
Infrared response at T=300 K.

The comparison of the IR spectra with position-dependent and independent
effective charges is in Fig. J.2. I analyzed their effect in different situations, below
the phase transition, in phase VIII, at P=33 GPa, close to critical pressure at
P=52 GPa and in phase X at P=62 GPa. Fig. J.2 clearly reveals the use of the
position-independent effective charges or their average does not affect the IR spectra.

The effect of the nonlinearity in the ionic displacements of the effective charges
can be seen from Eq. (2.113). Unfortunately, a code that includes nonlinearity in
the perturbation is not yet available, but we can make an idea of their importance
by comparing the position-independent effective charges with the second derivative
of the dipole moment, opportunely multiplied by the mean square displacement to
match the effective charges dimension. By doing this, I can see that, on the diagonal
elements, the correction never exceeds 1-2% percent of the leading order.
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Figure J.1. Comparison of the SSCHA spectra for phase VIII at different temperatures
and pressures. The figure reports the product of the imaginary part of the dielectric
function and the frequency ωε2(ω) that is proportional to the absorption coefficient
and the real part of the refractive index as α(ω)n(ω) as in Eq. (4.5). The spectra are
computed within TD-SSCHA with a 16 water molecules simulation cell and a 25 cm−1

smearing factor is applied. Red lines are spectra at 300 K, while for the blue ones
T=60 K. Between the two temperatures there is a 2 GPa shift in the critical pressure,
Pc(60K) = 52 GPa and Pc(300K) = 54 GPa.
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Figure J.2. Effect of the position dependence on the effective charges at T=300 K within
TD-SSCHA. Three sample pressure have been chosen, below the phase transition, in
phase VIII (33 GPa), close to the phase transition (52 GPa) and above, in phase X (72
GPa). The spectra computed with position independent effective charges computed as
in Eq. (2.114) are compared with those where the average of the effective charges is
used.
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