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An integrative in‑silico analysis discloses 
a novel molecular subset of colorectal cancer 
possibly eligible for immune checkpoint 
immunotherapy
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Abstract 

Background:  Historically, the molecular classification of colorectal cancer (CRC) was based on the global genomic 
status, which identified microsatellite instability in mismatch repair (MMR) deficient CRC, and chromosomal instabil-
ity in MMR proficient CRC. With the introduction of immune checkpoint inhibitors, the microsatellite and chromo-
somal instability classification regained momentum as the microsatellite instability condition predicted sensitivity to 
immune checkpoint inhibitors, possibly due to both high tumor mutation burden (TMB) and high levels of infiltrat-
ing lymphocytes. Conversely, proficient MMR CRC are mostly resistant to immunotherapy. To better understand the 
relationship between the microsatellite and chromosomal instability classification, and eventually discover additional 
CRC subgroups relevant for therapeutic decisions, we developed a computational pipeline that include molecular 
integrative analysis of genomic, epigenomic and transcriptomic data.

Results:  The first step of the pipeline was based on unsupervised hierarchical clustering analysis of copy number 
variations (CNVs) versus hypermutation status that identified a first CRC cluster with few CNVs enriched in Hyper-
mutated and microsatellite instability samples, a second CRC cluster with a high number of CNVs mostly including 
non-HM and microsatellite stable samples, and a third cluster (7.8% of the entire dataset) with low CNVs and low 
TMB, which shared clinical-pathological features with Hypermutated CRCs and thus defined Hypermutated-like CRCs. 
The mutational features, DNA methylation profile and base substitution fingerprints of these tumors revealed that 
Hypermutated-like patients are molecularly distinct from Hypermutated and non-Hypermutated tumors and are likely 
to develop and progress through different genetic events. Transcriptomic analysis highlighted further differences 
amongst the three groups and revealed an inflamed tumor microenvironment and modulation Immune Checkpoint 
Genes in Hypermutated-like CRCs.

Conclusion:  Therefore, our work highlights Hypermutated-like tumors as a distinct and previously unidentified 
CRC subgroup possibly responsive to immune checkpoint inhibitors. If further validated, these findings can lead to 
expanding the fraction of patients eligible to immunotherapy.
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Introduction
Colorectal Cancer (CRC) is a major cause of cancer-
related death worldwide, accounting for approximately 
8% of all annually diagnosed cancers [1]. Historically, the 
molecular classification of CRC was based on the global 
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genomic status, which identified three major groups: 
tumors with microsatellite instability (MSI; ~ 15% of all 
CRCs), tumors with chromosomal instability (CIN; ~ 85% 
of all CRCs) and tumors with a CpG island methylator 
phenotype (CIMP; ~ 20% of all CRCs) [2].

In MSI tumors, defects of the mismatch repair (MMR) 
pathway are the leading cause of genetic instability. It 
can be due to inactivating mutations or to epigenetic 
silencing by promoter hypermethylation of DNA MMR 
genes [2], a condition frequently associated to high lev-
els of CpG island methylation and referred to as CIMP-
High (CIMP-H, ~ 70–85% of MSI CRCs). Defective DNA 
MMR (dMMR) leads to reduced restoration of replica-
tion errors resulting in the introduction of a high rate of 
mismatches in microsatellites. The consequent changes 
in microsatellite lengths may be monitored to classify 
different phenotypes as microsatellite stable (MSS) or 
unstable (MSI), which can be further subdivided MSI-
High (MSI-H) or MSI-Low (MSI-L) [2, 3]. Tumors with 
MSI-H typically display a high rate of point mutations 
[4, 5], a state referred to as hypermutation (HM). Besides 
dMMR, the HM phenotype is also related to somatic or 
germline mutations of POLE and POLD1 genes encoding 
DNA polymerase epsilon and delta, respectively [3].

CIN tumors instead bear high frequency of copy num-
ber variations (CNVs). In almost all cases they are MSS 
or MSI-L, usually share low mutation rate, and null or 
low level of CIMP (non-CIMP or CIMP-L) [2, 6].

Over the years, additional molecular classifications 
beyond CIN, MSI and CIMP have been proposed with 
the aim to dissect the heterogeneity of CRC for prog-
nostic and predictive intents [7–11]. In example, the 
Consensus Molecular Subtypes (CMS) Consortium, ana-
lyzing CRC expression profiling data from multiple stud-
ies, converged on the definition of four main CMSs [10]. 
Although CMSs have prognostic and therapeutic impli-
cations, they have not been translated into clinical rou-
tine, yet.

With the introduction of immune checkpoint inhibi-
tors (ICIs) for the treatment of metastatic CRC (mCRC), 
MSI/CIN classification regained momentum as the 
dMMR/MSI-H condition (~ 2–4% of mCRCs) predicted 
sensitivity to ICIs in clinical trials, possibly due to both 
high rate of tumor mutational burden (TMB-H) and high 
levels of infiltrating lymphocytes typically present in 
these tumors [3, 12, 13]. Conversely, pMMR-MSS/MSI-L 
a group, as a whole appears resistant to ICIs therapies.

To better understand the differences between MSI/
CIN status and eventually discover additional CRC sub-
groups relevant for therapeutic decisions, we developed 
a computational pipeline that include molecular integra-
tive analysis of genomic, epigenomic and transcriptomic 
data of 520 CRC samples downloaded from The Cancer 

Genome Atlas (TCGA) data portal. The results high-
lighted a novel non-CIN, non-MSI and CIMP-L CRC 
subgroup, characterized by KRAS-high/TP53-low muta-
tion rate, distinct mutational signatures and an inflamed 
tumor microenvironment.

Materials and methods
Data collection and processing
We downloaded genomic, transcriptomic and epig-
enomic data from TCGA-COAD and READ projects 
stored on TCGA data portal (https://​portal.​gdc.​can-
cer.​gov/), accessed in November 2020. We performed 
meta-analysis on 520 TCGA-COAD and READ patients 
of which copy number variations (CNVs), whole exome 
sequencing (WES), transcriptomic (RNA-seq), DNA 
methylation and MSI status data were available.

We developed a computational pipeline that includes 
molecular integrative analysis at genomic, epigenomic 
and transcriptomic level to better classify patients 
affected by CRC. The pipeline is subdivided in steps, 
described in Fig. 1.

Step1: molecular‑based CRC subgroups stratification
Tumor mutational burden (TMB) Analysis  Tumor 
mutational burden (TMB) was calculated dividing the 
total number of nonsynonymous mutations of every 
patient per 30 Megabase, which is the average size of 
the exome. Numbers of nonsynonymous mutations are 
derived from MAF files retrieved from TCGA resulting 
from variant analysis of WES experiments on 520 TCGA-
COAD and READ patients. According to [5] patients with 
a TMB higher and lower than 20 per Megabase were clas-
sified as HM or non-HM, respectively.

CNV calling and analysis  We performed CNVs calling 
from segmented mean data employing GISTIC 2.0 which 
identifies genomic regions that are significantly gained 
or lost across the 520 TCGA-COAD and READ tumors 
[14]. For details on how GISTIC calculates focal and 
broad amplification/deletion in chromosome regions and 
how the algorithm was set to our data, refer to Additional 
file 1. The R package copynumber [15] was used to visual-
ize the frequency of gain/loss in the chromosome regions 
among the CRC’s subgroups identified. The association 
between frequency of CNVs events in the chromosome 
regions and the CRC’s subgroups identified was evaluated 
using Fisher’s exact test.

Step 2: molecular characterization of the subgroups 
identified
Mutational data analysis  The R package maftools [16], 
which contains functions to perform most used analyses 
in cancer genomics and to create feature rich customiz-

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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able visualizations, have been used to analyze MAF files of 
the 520 TCGA-COAD and READ tumors and to address 
the mutational signatures. We studied top frequently 
mutated genes discovered in our cohort plus recurrently 
mutated genes defined in the COSMIC database [17]. 
The association between different mutational rates in the 
genes analyzed and HM, HM-like and non-HM groups 
was evaluated using Fisher’s exact test. Further, we per-
formed the analysis of the non-silent mutations existing 
in POLE exonuclease domain from exon 9–14 in the three 
subgroups.

Other algorithms implemented in the maftools pack-
age allowed the extraction of mutational signatures from 
MAF files and to compare them with the validated signa-
ture present in the COSMIC curated database. For details 
on the evaluation of mutational signatures, refer to Addi-
tional file 1.

DNA methylation analysis  Data containing β-values 
from the Illumina Infinium HumanMethylation450 Array 
were available for 382/520 of the patients enrolled in the 
study. In pre-processing steps, we filtered out probes con-
taining Single Nucleotide Polymorphisms (SNPs) and 
designed on X and Y chromosomes. To determine CpG 
Island Methylator Phenotype (CIMP) status, we first iden-
tified the 1000 differentially methylated CpGs between 
the three groups (ANOVA-like test using limma package) 
[18]. Afterwards, we computed an unsupervised hierar-
chical clustering that identified 3 clusters and considered 
the methylome patterns of the clusters we could assign to 
cluster 1 to CIMP-Low (CIMP-L), cluster 2 to CIMP-High 
(CIMP-H) and cluster 3 to non-CIMP (Fig. 3). The hierar-

chical clustering analysis was performed by using “maxi-
mum” as clustering distance and “ward.D2” as clustering 
method.

Step 3: tumor microenvironment inflammation assessment
Weighted gene co-expression network analysis 
(WGCNA) of the transcriptomic data of 520 TCGA-
COAD and TCGA-READ tumors was leveraged by using 
the R package WGCNA [19, 20]. For details on how the 
WGCNA algorithm was implemented, refer to Addi-
tional file 1.

RNA-seq data of the 520 TCGA-COAD and TCGA-
READ patients was leveraged to evaluate the quality and 
quantity of immune infiltrate in the tumoral environ-
ment. Analysis was conducted using ImSig, which is a R 
library that provides functions to study the expression 
and abundance of immune cells in cancer tissue tran-
scriptomics [21]. This approach incorporates immune/
inflammatory cells in 7 major classes (B cells, Inter-
feron, Macrophages, Monocytes, Neutrophils, NK cells, 
T cells) plus 3 additional signatures (Plasma cells, Pro-
liferation and Translation). A correlation cut-off of 0.8 
was used, to remove genes that did not exhibit a strong 
correlation with the ImSig signatures. Furthermore, to 
assess the statistical significance of the difference of the 
mean expression of each immune signature in the multi-
ple comparison of the three groups the Tuckey’s test was 
used, which is a post-hoc test after ANOVA analysis.

In addition, we studied the expression of 79 Immune 
Checkpoint Genes (ICGs) curated by [22], in our cohort. 
A differentially expression analysis was performed using 
the multiple comparison of the three subgroups using 

Fig. 1  Computational pipeline flowchart
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Wald test (Additional file  4: Table  S6) and p-value was 
adjusted according to the Benjamini–Hochberg method. 
Thresholds for FDR < 0.1 and Log2 Fold Change > 0.4 
were used to select significant differentially expressed 
genes.

Results
Classification of the CRC samples according to TMB 
and CNVs
We subjected 520 CRC tumor samples of COAD/READ 
projects to TMB analysis. 78/520 (15%) samples were 
classified as hypermutated (HM: TMB > 20 per 106 bases) 
with a median value of 44.9 mutations per 106 bases 
(range: 26–347 per 106 bases), while 442/520 (85%) sam-
ples were classified as non-HM with a median value of 
3.5 mutations per 106 bases (range: 0.1–24 per 106 bases).

The CNV calling analysis resulted in 29 amplified and 
41 deleted focal regions significantly altered through 
all sets of tumor samples. We then subjected the 520 
tumor samples to an unsupervised hierarchical cluster-
ing analysis of the CNVs which identified two main clus-
ters (Fig. 2): Cluster A (ClA) characterized by few CNV 
events and Cluster B (ClB) with a high number of CNVs 
events. ClA was enriched in HM samples (n = 76/117; 
65%; Fig.  2, yellow bars), while ClB mostly contained 
non-HM samples (n = 401/403; 99.5%; Fig. 2, blue bars). 
Within ClA, we noted a group of 41 samples with low 
CNV profile and very low TMB (median value of 3.9 
mutations per 106 bases, range: 0.1–23 mutations per 106 
bases). Based on their clinical-pathological similarities 
with HM CRCs (as described below) this subset will be 
referred to as HM-like (Fig. 2) and accounted for 7.8% of 
the entire dataset.

The profiles of CNVs amount and distribution among 
chromosomes was clearly distinct between the three sub-
groups. Overall, the HM-like group was characterized 
by a CNV profile more similar to the HM group than to 
the non-HM group (Fig. 3). However, these tumors also 
showed recurrence of gains (chromosomes 7, 9p and 
19q) and losses (chromosome 8p, 10, 11, 15q, 17p and 
18) more typical of non-HM samples (Fig. 3, Additional 
file 1: Tables S1, S2).

As expected, most HM tumors were classified as 
MSI-H (n = 61/78; 78.2%), while non-HM and HM-
like patients were much more frequently MSS stable 
(n = 377/401; 94.0% and n = 34/41; 82.9%, respectively; 
Table 1). Consistent with the results of population stud-
ies [23], POLE exonuclease domain mutation rate was 
2.9% (15/520) in our cohort, and all mutations fell in 
HM-group (15/78; 19.2%), while non-HM and HM-like 
patients showed no POLE alteration (Table 1).

Overall, this analysis suggests that non-HM and HM 
subsets largely comprise CRCs associated with typical 

CIN and MSI/hypermutated phenotypes, respectively, 
while HM-like tumors appear as a distinct entity, with 
rather low CNVs and mutation rates.

Clinical‑pathological features and gene mutation rates 
in HM, HM‑like and non‑HM samples
Clinical-pathological features of HM, HM-like and non-
HM samples are reported in Table 1. No significant asso-
ciations were found with age or gender. As expected, HM 
patients were significantly enriched in early stages and 
in ascending colon localization compared to non-HM 
patients, which were more associated with stage 4 and in 
descending colon localization [11, 24]. Intriguingly, HM-
like patients shared with HM subset a similar enrichment 
in early stages, with only 2.4% (1/41) and 3.8% (3/78) of 
the patients with HM-like and HM profiles in stage 4, 
against a rate of 18.0% (72/401) for non-HM patients 
(P < 0.0001, Fisher’s exact test). Moreover, HM-like 
tumors were more frequently associated with ascend-
ing colon location (21/41; 51.2%) similar to HM (50/78; 
64.1%), in contrast to non-HM tumors which were asso-
ciated with descending colon location (253/401; 63.1%) 
(P < 0.0001, Fisher’s exact test).

To further compare the overall molecular features of 
HM-like versus HM and non-HM subsets we examined 
SNV data. As expected from the literature and accord-
ing to their CIN profile [25] non-HM tumors had higher 
mutation rate in APC (84%), TP53 (69%) and KRAS 
(41%) compared to HM tumors (Table  2). In contrast, 
HM tumors had high mutation rates in genes of the 
WNT signaling, TGF-β, PI3K-AKT and MAPK/ERK 
pathways as well as in ATM, KMT2D and LRP1D [26]. 
Interestingly, HM-like tumors had the highest frequency 
in KRAS (59%) and SOX9 (27%) gene mutations com-
pared to the other groups. Also, they showed the lowest 
TP53 mutation rate (15%) and a rate of APC mutations 
similar to HM samples and significantly lower than non-
HM samples (Table 2).

The pattern of mutational targets and rates support 
the hypothesis that HM-like tumors may represent a 
distinct subgroup of CRCs, which may develop and pro-
gress through a different sequence of genetic events com-
pared to the well-known MSI/hypermutated and MSS/
CIN subsets, while sharing prevalence of early stages and 
ascending colon localization with the HM subset.

Fingerprints of base substitutions in HM, HM‑like 
and non‑HM groups reveals unique mutational signature 
for each group
To further question whether HM-like CRCs are dis-
tinct from MSI/hypermutated and MSS/CIN subsets, 
we searched for the emergence of specific mutational 
signatures in the three subgroups. Indeed, different 
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mutational processes generate unique combinations of 
base changes, termed “Mutational Signatures” which 
can be used as a readout of the biological history of a 

cancer [27]. To define the mutational signatures associ-
ated with HM, HM-like and non-HM groups we per-
formed a classification of base substitutions to include 

Fig. 2  Unsupervised hierarchical clustering analysis based on CNVs data of the 520 CRC patients selected from TCGA-COAD and READ projects. The 
lines in the heatmap represent significant focal alteration. The columns correspond to the 520 patients. HM and non-HM samples are indicated in 
yellow and blue colors, respectively. This analysis identified two main clusters: cluster a (ClA) and cluster b (ClB). ClA (117/520; 22.5%) is characterized 
by a few events of CNVs along the chromosome regions and was enriched in HM samples (n = 76/117; 63.9%). ClB contains samples with a high 
number of CNVs events and it mostly consists of non-HM samples (n = 401/403; 99%). Among ClA, we identified a sub-group of tumors (called 
HM-like; n = 41/520; 7.8%) with a similar CNV profile of ClA, also characterized by a low TMB. To the right-hand side of the figure, a scale indicates the 
color code relative to the log2 segment mean value of CNVs (ranging from − 1 up to 3)
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Fig. 3  Frequency of CNV events along the genome identified in HM, HM-like and non-HM samples. Frequencies (vertical axis, 0–100%) are plotted 
as a function of the chromosome location. Copy number gains and losses are highlighted in red and blue, respectively



Page 7 of 16Sibilio et al. Biology Direct           (2022) 17:10 	

the 3′ and 5′ flanking bases at the mutated site [16]. 
Thus, we extracted 3 mutational signatures from each 
group and compared them to COSMIC Single Base 
Substitution (SBS) Signatures database, a catalog of 

known mutational signatures identified from > 12,000 
samples derived from 40 types of human cancer in 
which additional information for each signature were 
also provided.

Table 1  Clinical-Pathological features of HM, HM-like and non-HM groups

HM 
(n = 78)

HM-like 
(n = 41)

Non-HM 
(n = 401)

P value

Stage I 14 (17.9%) 10 (24.4%) 62 (15.5%) NS

II 45 (57.7%) 16 (39.0%) 123 (30.9%) ***

III 14 (17.9%) 13 (31.7%) 125 (31.2%) *

IV 3 (3.8%) 1 (2.4%) 72 (18.0%) ***

No data 2 (2.6%) 1 (2.4%) 19 (4.7%) ***

Location Ascending 50 (64.1%) 21 (51.2%) 115 (28.7%) ***

Transverse 10 (12.8%) 8 (19.5%) 16 (4.0%) ***

Descending 12 (15.4%) 11 (26.8%) 253 (63.1%) ***

No data 6 (7.7%) 1 (2.4%) 17 (4.2%)

Mutational Burden Median of mutations/
Megabase

44.9 3.9 3.5

MSI-status MSI-H 61 (78.2%) 6 (14.6%) 3 (0.7%) ***

MSS/MSI-L 11 (14.1%) 34 (82.9%) 377 (94.0%) ***

Indeterminate 6 (7.7%) 1 (2.4%) 21 (5.2%) –

Pol-ε exonuclease domain 
mutation

15 (19.2%) 0 0

Table 2  Mutational rate of most frequently altered genes in CRC in HM, HM-like and non-HM group

Genes Pathway HM (%) HM-like (%) Non-HM (%) P value

APC WNT signaling 49 59 84 ***

AMER1 WNT signaling 27 15 9 ***

CTNNB1 WNT signaling 24 12 3 ***

TCF7L2 WNT signaling 24 0 7 ***

FBXW7 WNT signaling 40 32 11 ***

ARID1A WNT signaling 45 5 6 ***

SOX9 WNT signaling 15 27 11 *

TGFBR2 TGF-β signaling 12 7 1 NS

ACVR2A TGF-β signaling 37 15 1 **

SMAD4 TGF-β signaling 15 17 12 NS

PIK3CA PIK3 signaling 40 41 21 ***

PTEN PIK3 signaling 22 10 3 **

FAT4 Hippo signaling pathway 76 24 15 ***

ERBB2 MAPK signaling 15 5 2 ***

ERBB3 MAPK signaling 22 5 2 ***

KRAS MAPK signaling 26 59 41 ***

NRAS MAPK signaling 4 7 7 NS

BRAF MAPK signaling 62 12 3 ***

ATM DNA damage response 50 10 7 ***

TP53 DNA damage response 29 15 69 ***

LRP1B Membrane trafficking 53 5 13 ***

KMT2D Histone methyl transferase 64 15 3 ***
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The top three signatures extracted from the HM 
group were the most similar to COSMIC SBS6, SBS10b 
and SBS44 signatures (Table  3) and that is consistent 
with the “hypermutated” phenotype defining the HM 
group, since SBS10b signature is associated with POLE 
mutations, which outbreaks in a high mutational rate, 
and COSMIC SBS6 and SBS44 are typically associated 
with dMMR.

The three signatures extracted from non-HM samples 
had the highest similarity with COSMIC SBS1, SBS6 and 
SBS40 signatures (Table 3). SBS1, which was also noted 
in the other subgroups, is related to the spontaneous or 
enzymatic deamination of 5-methylcytosine to thymine 
and is widespread in many tumors. SBS40 signature is 
not clearly associated with a specific etiology, but like 
SBS1 it is widespread in most cancers and shows some 
relationships with the age of patients [28].

The three signatures extracted from HM-like samples 
showed high similarities with SBS1, SBS6 and SBS30. In 
particular, similarity to SBS30 represents a feature unique 
to HM-like samples (Table  3). This signature has been 
recently associated with deficiency in the base excision 
repair and in particular with inactivation of the NTHL1 
gene [29]. Despite some similarities in the mutational 
signatures were shared by two or even all three sub-
groups (i.e. SBS1, SBS6 and SBS15), this analysis further 
evidenced distinct mutational profiles between the HM, 
HM-like and non-HM subgroups.

Different CpG methylation patterns occur in the three CRC 
subgroups
Next, we performed an unsupervised hierarchical clus-
tering analysis for 382 of the TCGA-COAD/READ 

samples for which CpGs methylation data were avail-
able. The hierarchical clustering dendrogram defined 
three distinct tumor groups: CIMP-H (n = 57/382; 14.9%) 
with a high rate of CpGs probes methylated; CIMP-L 
(n = 107/382; 28.0%) with low rate of CpGs probes meth-
ylated and non-CIMP (n = 218/382; 57.1%) characterized 
by the absence of CpGs methylated probes (Fig.  4 and 
Additional file 1: Fig. S1). As expected, most of the HM 
patients belong to the CIMP-H cluster (41/57; 71.9%) and 
most non-HM tumors belong to the non-CIMP cluster 
(214/294; 72.8%), while a small number of HM and non-
HM tumors clustered in the CIMP-L group. Interestingly, 
we revealed that the HM-like samples are mainly asso-
ciated with CIMP-L phenotype (24/31; 77.4%) (Fig.  4; 
Additional file 1: Fig. S2). These results highlighted a dif-
ferent methylome pattern of HM-like tumors compared 
HM and non-HM.

WGCNA analysis supports HM, HM‑like and non‑HM 
tumors as three distinct CRC subgroups
We performed the WGCNA network-based methodol-
ogy on the transcriptomic data of 520 TCGA-COAD/
READ patients. This analysis revealed 12 highly cor-
related modules within the gene correlation network, 
which encompassed genes that were more correlated 
among each other than with other nodes in the net-
work. For each module, through the WGCNA analysis, 
we computed the module eigengene defined as the first 
principal component of that module. By considering as 
external clinical traits the HM, HM-like, and non-HM 
status, we then computed the Pearson correlation coeffi-
cient between the module eigengene of each module and 
these external traits (Fig. 5a). We found (1) three modules 

Table 3  Records of the cosine similarity between the three mutational signatures extracted from each group from the MAF files and 
the three most similar COSMIC mutational signatures

In the table are reported the best matches between the three mutational signatures extracted from the three groups and the COSMIC SBS Signatures database

SBS best match Aetiology Cosine 
similarity

HM

 Signature 1 SBS44 Defective DNA mismatch repair 0.81

 Signature 2 SBS10b Polymerase epsilon exonuclease domain mutations 0.78

 Signature 3 SBS6 Defective DNA mismatch repair 0.90

HM-like

 Signature 1 SBS1 Spontaneous or enzymatic deamination of 5-methylcytosine 0.94

 Signature 2 SBS30 Deficiency in base excision repair due to inactivating mutations in NTHL1 0.83

 Signature 3 SBS6 Defective DNA mismatch repair 0.93

Non-HM

 Signature 1 SBS1 Spontaneous or enzymatic deamination of 5-methylcytosine 0.96

 Signature 2 SBS40 Unknown 0.89

 Signature 3 SBS6 Defective DNA mismatch repair 0.77
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with statistically significant positive correlations with the 
HM status, meaning that genes belonging to these three 
modules were highly expressed in HM patients; (2) two 

modules with statistically significant positive correla-
tions with the HM-like status, whose genes were highly 
expressed in HM-like patients; (3) one module with a 

Fig. 4  Unsupervised hierarchical clustering analysis based on CpGs methylation data of the 382 patients selected from TCGA-COAD and READ 
projects. The lines on the heatmap represent the 1000 most differentially methylated CpGs probes between HM, HM-like and non-HM groups. 
The columns correspond to the 382 patients. Inside the cells of the heatmap are reported the β-values which represent the methylation rate of 
the probes. The HM patients are reported in yellow; the HM-like patients in red while the non-HM patients in blue. The hierarchical clustering 
dendrogram supported three distinct tumour groups: CIMP-H (n = 57) defined by an high rate of CpGs probes methylated; CIMP-L (n = 107) with 
low rate of CpGs probes methylated and non-CIMP (n = 218) characterized by the absence of CpGs probes methylated
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statistically significant positive correlation with the non-
HM status, whose genes were highly expressed in non-
HM patients. All these modules did not overlap among 
the patient status (i.e., HM, HM-like, non-HM), suggest-
ing that these three classes of CRC patients are different 
also with respect to the gene expression data. In order to 
identify specific gene signatures of the three subgroups, 
for each gene we computed the module membership 
(MM) as the correlation between its gene expression pro-
file and the module eigengene and sorted genes within 
their own modules according to the MM (Additional 
file  2: Table  S3). Yet, we considered as representative 
genes of a given module the ones whose MM is greater 
than 0.7.

Then, for each patient status, we grouped together the 
representative genes of the modules with the highest cor-
relation and performed a functional enrichment analysis. 
Via this process, we associated putative biomarkers and 
functional pathways to each status (i.e., HM, HM-like, 
non-HM). Also, this analysis confirmed relevant differ-
ences among the three subgroups. In detail, the HM sta-
tus was characterized by high expression of genes mainly 

involved in the inflammatory bowel disease, Toll-like 
receptor signaling pathway, PI3K-Akt signaling pathway 
and JAK-STAT signaling pathways (Fig.  5b, Additional 
file  3: Table  S4). The HM-like status was characterized 
by high expression of genes mainly involved in estrogen 
signaling and pathways related to the immune/inflam-
matory response (Fig. 5c, Additional file 3: Table S4). The 
non-HM status was characterized by high expression of 
genes mainly involved in RNA processing, DNA repair 
and VEGF signaling pathway (Fig.  5d, Additional file  3: 
Table S4).

Rate of immune infiltrate in tumoral microenvironment 
of the three CRC subgroups
dMMR CRC, largely clustering in the HM subgroups, are 
typically associated with immune infiltration and good 
response to ICB therapy [3]. WCGNA analysis indicated 
activation of inflammatory/immune response genes in 
HM and HM-like tumors. Therefore, we set out to deter-
mine the rate of immune/inflammatory infiltration more 
specifically in the three subsets by a computational analy-
sis of tumor transcriptomic data, using the R package 

Fig. 5  WGCNA analysis. a Heatmap of module-trait associations. In the heatmap, each row corresponds to a module eigengene and each column 
to a trait. Each cell contains the corresponding correlation and P value. The table is color-coded by correlation according to the color legend. The 
traits along the columns have been numerically encoded as follows: HM status (no = 1, yes = 2); HM like status (no = 1, yes = 2); non-HM status 
(no = 1, yes = 2). The colour labels of modules with at least one statistically significant correlation were highlighted. b, c KEGG pathways. Results of 
KEGG pathways enrichment analysis for the most representative genes (module membership > 0.9) falling within the modules statistically significant 
correlated with the HM status (b), HM like status (c), and non-HM status (d). The names of genes annotated for the enriched KEGG pathways were 
reported
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ImSig [21]. By this mean, 10 signatures describing the 
relative abundance and statistical analysis of 7 inflamma-
tory/immune cells plus 3 additional signatures were ana-
lyzed. Concerning T and NK lymphocytes, as expected, 
we observed the highest signature representation in the 
HM group, while non-HM have a significantly lower 
degree of immune cell infiltration (P < 0.01) (Fig.  6 and 
Additional file 1: Fig. S3). Interestingly, HM-like tumors 
showed T and NK cell signatures similar to HM samples 
and significantly different than non-HM group (P < 0.01). 
On the other side, HM-like tumors had proliferation, 
macrophage and interferon signatures more similar to 
non-HM than HM tumors. However, some genes belong-
ing to interferon signatures and involved in inflamma-
tory/immune responses shared a similar expression 
between HM-like and HM tumors, while being different 
from non-HM tumors (Additional file 1: Table S5).

Next, we performed a differential expression analysis 
of the 79 ICGs described by [22] expressed in the series 
(Additional file  4: Table  S6). The comparison between 
HM and non-HM samples revealed that 46 ICGs were 
differentially expressed and as expected, most of these 
(29/46; 63.0%) were more expressed in HM group than 
non-HM. These included KIR and HLA genes, possibly 
suggestive of NK and antigen presenting cells infiltration, 
as well as multiple genes directly involved in immune 
checkpoint regulation, including the well-known PD-L1, 
PD1, CTLA4, LAG3, TIM3 and TIGIT (Additional 
file  4: Table  S6 and Fig.  7). Interestingly, 17 genes were 

significantly less expressed in HM compared to non-HM 
samples (Additional file  4: Table  S6). HM-like tumors 
profoundly differed from HM and non-HM samples. 
They showed 13 ICGs significantly more expressed com-
pared to non-HM tumors. KIR genes, TIGIT, PD1 and 
CTLA4 show a similar trend compared to HM samples. 
Differences in the expression of HLA genes did not reach 
statistical significance, while CD96 appears even more 
differentially expressed in this subgroup than in HM 
tumors, comparing with non-HM subset. Remarkably, 
we noticed that 4 genes whose role in immune check-
point regulation is emerging (VTCN1, BTNL9, BTLA 
and CD28) are specifically more expressed in HM-like 
group compared to non-HM samples (Additional file  4: 
Table S6 and Fig. 7). Also, in this comparison we found 
repressed genes (i.e. SIRPA, BTN2A1 and PVR), some 
of which followed the same trend of HM tumors, while 
others where rather specific for this subset (i.e. CD70, 
CD40). Conversely, IDO1, TDO2 and CD40LG expres-
sion trend was completely opposite in HM versus HM-
like subgroups.

Discussion
The comprehension of the biological processes under-
lying cancer evolution and the molecular stratifica-
tion of tumors is extremely relevant for prognostic and 
therapeutic purposes. To this end, the broad inter/intra-
tumor molecular heterogeneity of CRC has been widely 
explored by NGS-based genomic and transcriptomic 

Fig. 6  Results of immune signatures analysis performed by ImSig. The boxplots (A and B) show the gene expression of T and NK signature genes 
(estimated relative abundance) across the HM, non-HM and HM-like groups. Statistical analysis of data was performed using analysis of variance 
(ANOVA) followed by multiple comparison Tukey’s test. **P < .01, *P < .05
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Fig. 7  Example of ICGs differentially expressed in HM, non-HM and HM-like groups. The Box Plots show A ICGs more expressed in HM group versus 
non-HM, which may (KIR genes) or may not (HLA genes) be significantly more expressed in HM-like vs non-HM tumors; B gene sharing a similar 
trend of expression between HM and HM-like; C gene specifically more expressed in HM-like group (VTCN1 and BTNL9) or with an opposite trend 
of expression in HM versus HM-like (CD40LG). The analysis was performed using the multiple comparison of the three subgroups using Wald test 
and P value was adjusted according to the Benjamini–Hochberg method. Thresholds for FDR < 0.1 and Log2 Fold Change > 0.4 were used to select 
significant differentially expressed genes
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profiling. Reflecting the different biology of CRCs and 
their major molecular differences, several molecular 
classifications with prognostic and predictive value have 
been proposed [7–11].

One major distinction remains between CIN, MSI and 
CIMP-H CRCs, with CIN and MSI being mostly mutu-
ally exclusive, while CIMP-H largely but incompletely 
overlaps with MSI CRCs. Despite extensive investiga-
tions, this classification remained of poor clinical value 
until the introduction of ICIs therapies for the treat-
ment of mCRC. In this frame, MSI/CIN classification 
gained clinical relevance since dMMR/MSI-H CRCs are 
often responsive to ICIs, probably due to both high TMB 
(hypermutation status) and high levels of TILs, which are 
typical hallmarks of these tumors [12, 13]. Indeed, the 
high mutation load of these tumors might lead to genera-
tion of a high number of immunogenic neoantigens [23], 
which in turn could facilitate immune responses against 
cancer cells. Conversely, CIN CRCs usually bear low 
TMB and are mostly resistant to ICIs.

By performing hierarchical clustering analysis of CNVs 
versus hypermutation status exploiting TCGA CRC data-
sets, we identified a third cluster of CRCs (7.8%) charac-
terized by low CNVs and low TMB, distinct from the HM 
and non-HM subsets, which largely match the MSI and 
CIN groups, respectively. Since this new cluster shares 
clinical-pathological features with HM CRCs, it was 
named HM-like subset.

Interestingly, HM-like tumors also showed a distinct 
mutational profile compared with HM and non-HM 
tumors, for which we highlighted profiles essentially in 
line with the literature [11, 30]. In example, the rate of 
APC mutations in HM-like tumors was similar to HM 
samples and significantly lower than non-HM samples, 
while mutations in alternative targets of the WNT and 
TGF-beta pathways were much lower than those occur-
ring in HM samples, suggesting that this tumor subset 
is probably less dependent from WNT activation than 
the other groups. Most importantly, HM-like tumors are 
characterized by the highest rate of KRAS mutation, a 
feature that has been previously noted in CIMP-L CRCs 
[31]. This is a CRC subset with a yet poorly defined clini-
cal relevance, often grouped with the non-CIMP tumors 
in various studies [32] and sharing the majority of meth-
ylation targets with CIMP-H tumors [33]. By methyla-
tion analysis, we found that HM-like tumors had mainly 
a CIMP-L phenotype, at variance with HM and non-HM 
tumors, which were mostly associated with CIMP-H and 
non-CIMP phenotype, respectively [11]. Therefore, our 
data confirm a particularly high recurrence of KRAS 
mutations in a specific subset of CRCs, associated with 
CIMP-L phenotype. While the molecular background 
for this association is not understood yet, recent studies 

seem to indicate that the strong association between 
BRAF mutations and CIMP-H phenotype might be due 
to the need to suppress a senescence-inducing gene 
expression program promoted by mutant BRAF [34]. 
Oncogenic RAS molecules are also known to activate 
senescence in untransformed cells [35, 36]. It is tempting 
to speculate that also the relevant overlap between KRAS 
mutation and the CIMP-L phenotype in the HM-like 
subgroup could be related to the repression of a similar 
senescence-inducing gene expression program. Further 
efforts will be required to formally prove this hypothesis.

HM-like CRCs also showed the highest frequency of 
SOX9 gene mutations and the lowest rate of TP53 muta-
tions. This association has been previously recognized, 
but its functional significance remains ununderstood 
[37].

Overall, the genetic marks of HM-like supports the 
hypothesis that may represent a distinct subgroup of 
CRCs, which may arise and progress through a different 
sequence of genetic events compared to the well-known 
MSI/hypermutated and MSS/CIN subsets. This is fur-
ther supported by the analysis of mutational signatures, 
which indicate their unique similarity to the SBS30 pat-
tern. This was recently associated with deficiency in the 
base excision repair and with inactivation of the NTHL1 
gene [29]. Biallelic NTHL1 mutations are responsible 
for the NTHL1-tumor syndrome, a cancer-predisposing 
disease characterized by the occurrence of adenomatous 
polyposis and cancer at different sites, in addition to CRC 
[38]. This specific genetic fingerprint indicates that also 
the pathogenic mechanisms and the etiology underlying 
HM-like CRCs might be distinct from those leading to 
HM and non-HM CRCs. So far, we were unable to pull 
out genomic or transcriptomic alterations in the NTHL1 
gene specifically occurring in the HM-like group, sug-
gesting that functional inactivation of its pathway per-
haps associated to the specific CIMP-L pattern might 
be involved in this respect. Additional studies should be 
implemented to highlight possible genetic/epigenetic 
hits or alternative/parallel pathways to NTHL1 inactiva-
tion, which might end up in eliciting the same molecular 
fingerprints.

The existence of a small group of pMMR/MSS CRCs 
(~ 10%) responsive to ICIs therapies has been inferred 
in several clinical studies [39–41]. Pagès and collabora-
tors observed a high immunoscore in 21% of MSS com-
pared to 45% of MSI [42]. Similar findings were reported 
by Kikuchi et al. which identified a subset of MSI‐L/MSS 
CRCs within the TCGA COAD/READ dataset show-
ing upregulation of the IFN‐γ and CD8 T effector gene 
signatures [43]. They also confirmed the presence of a 
small fraction (~ 12%) of pMMR CRCs positive for PD‐
L1 and p‐STAT1 showing increasing grades of infiltrating 
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CD4(+) or CD8(+) TILs on a population of 219 CRC 
samples.

Our work raised the question whether the HM-like 
group identifies the same CRC subset. Indeed, not only 
WCGNA analysis of the transcriptome evidenced rele-
vant differences among the three groups, but also indi-
cated that the HM-like tumors bore high expression of 
genes associated with immune/inflammatory response. 
To better investigate this latter aspect, we defined the 
immune/inflammatory infiltration signature in the 
three subsets, according to [21]. Intriguingly, we con-
firmed that HM-like tumors showed T and NK cells sig-
natures similar to HM samples which, as widely known, 
are inflamed tumors well responsive to ICI therapies. In 
contrast, proliferation, macrophage and interferon sig-
natures in HM-like tumors were on average more simi-
lar to the non-HM than to HM group.

Data on the differential expressions of the ICGs 
curated by [22] further confirmed the outstanding dif-
ferences among the three groups. Coherently with the 
immune infiltration analysis, HM samples showed a 
high expression of multiple ICGs, confirming the pres-
ence of an immune/inflammatory infiltrate (KIR and 
HLA genes) and differential expression of immune 
response modulators, including those targeted by 
established ICI therapies. KIR genes and ICGs (i.e., 
PD1, CTLA4, CD96 and TIGIT) for which specific tar-
geting therapies have been introduced in the clinical 
practice [3, 44] also showed a higher expression in HM-
like tumors compared to non-HM samples, supporting 
their immune/inflammatory infiltration. Moreover, our 
analysis highlighted ICGs exclusively expressed in HM-
like, e.g. VTCN1, PCDCD1, CD96, BTNL9 and BTLA, 
encoding for important immune regulators of both 
stimulatory and inhibitory pathways, some of which are 
emerging as new promising targets for immunotherapy 
[45, 46]. While these data confirm the presence of an 
immune/inflammatory infiltrate in HM-like tumors 
showing modulation of established and potentially new 
immune checkpoint targets to consider for ICI thera-
pies, remarkable differences emerged between HM-
like and HM group. Among them, the relatively lower 
expression of HLA genes in HM-like samples is in line 
with the poor macrophage signature observed in this 
subgroup compared to HM samples. The significance 
of a potentially lower infiltration by antigen presenting/
dendritic cells and the relevant differences in the pat-
tern of immunomodulating molecules expressed in HM 
and HM-like tumors cannot be easily interpreted at the 
time being and definitely requires further investiga-
tions. These differences, however, do not contrast with 
our hypothesis that HM-like CRCs might be responsive 

to ICI. Of relevance, the strong negative regulation of 
IDO and TDO2 in HM-like compared to both HM and 
non-HM tumors suggest that the formers are possibly 
characterized by a less immunosuppressive microenvi-
ronment caused by the release of tryptophan metabo-
lites. Perhaps this condition might also be related to 
the more frequent association of HM-like tumors with 
early stages CRC and may eventually make them more 
prone to immune reactivation.

Unfortunately, a major limitation of this study is rep-
resented by the lack of a univocal specific molecular 
biomarker/s facilitating the identification of HM-like 
CRC, in clinical settings. To this end, the possibility to 
use CIMP-L phenotype needs to be explored.

Conclusions
Our work indicates the existence of a previously unidenti-
fied CRC subgroup with distinctive features and possibly 
responsive to current or to be defined ICIs. If validated 
by experimental work, these findings can lead to expand-
ing the fraction of patients eligible to ICIs treatment.
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