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Abstract
Developing strategies to effectively discriminate between different quantum states is a fundamental
issue in quantum information and communication. The actual realization of generally optimal
protocols in this task is often limited by the need of supplemental resources and very complex
receivers. We have experimentally implemented two discrimination schemes in a minimum-error
scenario based on a receiver featured by a network structure and a dynamical processing of
information. The first protocol implemented in our experiment, directly inspired to a recent
theoretical proposal, achieves binary optimal discrimination, while the second one provides a
novel approach to multi-state quantum discrimination, relying on the dynamical features of the
network-like receiver. This strategy exploits the arrival time degree of freedom as an encoding
variable, achieving optimal results, without the need for supplemental systems or devices. Our
results further reveal the potential of dynamical approaches to quantum state discrimination tasks,
providing a possible starting point for efficient alternatives to current experimental strategies.

1. Introduction

Quantum state discrimination (QSD) consists of the ability of distinguishing between the possible states of
a quantum system. This task cannot be achieved in a perfect way in the case of non-orthogonal states. As a

consequence, the quest for general strategies to achieve optimal QSD has become a main issue in Quantum
Information topics, regarding its tight bond with the implementation of secure quantum communication
protocols [1, 2], or its implications in Quantum Foundations [3, 4]. Different approaches can be adopted in
QSD: to discriminate states with the minimum error probability [5], or in a non ambiguous way [6] but
admitting unconclusive results. Other approaches are also possible [7–9].

The quest for effective protocols has led to many results concerning optimal theoretical bounds and
optimal receiver models for binary discrimination in different contexts [5, 10–12]. On the other hand,
regarding the general case of multiple states and dimension D > 2, definitive results have not been achieved

yet; while the optimal one-shot bound has been set [11], many attempts have been done to develop new and
more effective strategies using adaptive protocols [13–16] or auxiliary systems [17]. Other proposals involve
the exploitation of an auxiliary system too [18], in order to increase the dimension of the system to be
discriminated, or consist of encoding the states in a complex modal structure [19]. Since adaptive strategies
have been proved to be effective, although quite expensive in terms of resources, recent theoretical efforts
have been developed to apply neural networks models [20, 21] and machine learning (ML) protocols [22]
to QSD problems. In addition to the attempts mentioned above, a dynamical approach based on
information processing via quantum walks (QWs) has been fancied in the last years [23, 24]. The network

depicted in [21], relying on a generalization of QWs, quantum stochastic walks (QSWs) [25], frames a very
intuitive model of information processing as well as a wide applicability.
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Figure 1. 2r–2r–2 model of the quantum network. The system goes from a superposition state of input layer nodes {1, 2} to one
of {3, 4}, evolving according to the unitary evolution ÛF. Then, the population of the system which has not been trapped in the
sinks evolves through ÛB to a new general state of the input layer nodes, starting a new evolution loop.

In the present work, we implement the first experimental QSD protocol through an optical network,
based on the one proposed in [21], but featuring important extensions. We demonstrate the effectiveness of
a receiver relying on a QSW-like evolution and through the experimental analysis of the information
dynamics in a time-binned extraction protocol, we are able to realize an optimal QSD protocol for a
four-state alphabet in D = 2, exploiting a novel theoretical and experimental approach. Thanks to the
dynamical features of the network, we are able to encode the quantum information about the four states in
the classical observable of detection time, mapping the four different states in four different time-wise
classical probability distributions, thus enhancing their distinguishability.

The discrimination method proposed here may prove useful in different QSD frameworks, from
unambiguous state discrimination to minimum error discrimination (which is the one adopted in this
work), and possibly in hybrid protocols, providing an essentially new approach to the problem, featured by
an evident spare in terms of resources.

2. Theoretical and experimental framework

The first step of our work consists of experimentally reproducing a network featured by a 2r–2r–2 topology
(following to the nomenclature adopted in [21]) and depicted in figure 1: two input nodes, namely {1, 2},
are linked in an undirected way with two nodes in the intermediate layer, namely {3, 4}, which are in turn
linked in a directed way with two output nodes, namely {5, 6}, acting as sink nodes.

At variance with the theoretical scheme of [21], we propose a model featuring a discrete time evolution
and preventing the permanence of the system in the same state after an evolution step. In conclusion, the
state of the network switches from a superposition state of the input nodes to a superposition of the
intermediate ones, but for the loss of total probability to the sinks, which eventually brings the network
dynamics to vanish. This model shares many interesting features with [21]: in fact, the dynamical
achievement of binary discrimination at the Helstrom bound level remains possible, as well as other
implications related to the exploitation of the time degree of freedom.

The setup works considering the two input nodes 1, 2 as the two basis states of the polarization of a
photon, namely 1 ≡ |H〉 and 2 ≡ |V〉, while the photon itself corresponds to the walker of this quantum
walk-like propagation model. The initial state of the system |ψ〉 is encoded in a superposition state of
photon polarization.

In the experiment, a high brilliance SPDC source S is exploited to generate pairs of photons in a
polarization state |H〉s ⊗ |H〉a ≡ |H, H〉, where the subscript s indicates the system photon, which will evolve
through the network, while the subscript a indicates the ancilla photon, which does not undergo the
network evolution and is exploited as an external trigger for detection. Details about photon source as well
as experimental setup shown in figure 2 are reported in appendix A.1.

Before starting the evolution in the network, the initial state |ψ〉 is prepared by a unitary preparation
stage (ÛP). In our setup, unitary operations are applied through different waveplates sets composed by a
sequence of a quarter waveplate (QWP), a half waveplate (HWP) and a further QWP. This sequence allows
to apply any kind of unitary operator in the polarization degree of freedom, allowing to transform the state
|H〉s into any desired pure |ψ〉 state. After the state preparation, the system can be considered to be in the
input layer of the network. The photon is then subjected to the first evolution stage, applying the operator
ÛF for the evolution from nodes {1, 2} to {3, 4}. The nodes {3, 4}, also referred to as sinker nodes, are
identified with the basis states of the polarization, too. The time degree of freedom allows to discriminate
between states in the nodes {1, 2} and the ones in {3, 4}. A beam splitter (BS) is then placed along the path:
its aim is to redirect the photon to the sink nodes {5, 6} with a given probability ps or to send it into the

2
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Figure 2. Experimental setup realizing the 2r–2r–2 network. The whole unitary operator Û = ÛF · ÛP is actually encoded in a
single QWP–HWP–QWP set, in order to reduce losses and systematic errors. Each of the optical elements imposes a phase shift
φx between the different polarization components. The phase shifts are compensated by the supplemental waveplates sets ÛφA/B

.
One lens, identified by L1, is positioned along the loop to prevent losses due to beam divergence; a second one, L2, is located
along the extraction path to allow photon collection through multi-mode fibers.

network with probability 1 − ps, in order to continue the evolution. In the first case, when the photon
travels towards the sinks, it impinges on a polarizing beam splitter which separates the |H〉 and |V〉
components of the photon state, representing the sink nodes {5, 6}. The population of both sinks is then
measured by single photon detectors. The detection of the s photon is performed in coincidence with the
detection of the a photon, thanks to a preliminary synchronization process. In the second case, i.e. if the
photon is redirected into the network, it passes through another set of QWP–HWP–QWP, which are set to
apply the operator ÛF · ÛB, that is the product of operators ÛB, the operator describing the propagation of
the system from nodes {3, 4} to {1, 2}, and ÛF. In this way the system evolves from a state of nodes {3, 4}
to {1, 2} and then again to nodes {3, 4}.

After that, the walker impinges again on the BS, beginning another loop evolution or being detected into
the sinks. Thus, the setup described above provides an experimental realization of a network featured by a
2r–2r–2 topology. This experimental scheme was at first exploited to demonstrate the protocol proposed
in [21].

3. Experimental realization of binary quantum state discrimination

Through the experimental apparatus described in the main text, it is possible to implement a
discrimination protocol quite similar to the one proposed in [21], which we exploited as a test bed for the
experimental scheme. Two non-orthogonal states {|ψ1〉, |ψ2 }〉 are encoded in two states of the input layer;
in order to discriminate them, the unitary evolution of the network must be tailored in such a way that the
detection of the system in a sink reveals the presence of a given input state rather than the other one, with
the minimum probability of wrong guess. In the case of binary QSD, the one-shot strategy consisting of
projecting the two states to the orthogonal basis states produces the optimal performance, achieving the
Helstrom bound. The natural generalization of this method to a multi-step strategy is a protocol
performing a Helstrom bound level discrimination at any step, namely an optimal information extraction
each time the system occurs in the sinker nodes (the intermediate layer). The most simple realization of
such a protocol consists of generating an ‘optimal’ output state at the first extraction step, through the
tuning of operator ÛF, and then tailoring ÛB to produce the same state at any extraction step. In
conclusion, ÛF must be the optimally discriminating projector and ÛB must be such that the product
ÛF · ÛB = Î. Such an optimal network will be able to discriminate states up to the Helstrom bound, by the
computation of the cumulative population of the sinks in time. The states experimentally exploited for the
protocol are |ψ1〉 = cos( π

8 )|H〉+ sin( π
8 )|V〉 and |ψ2〉 = cos( π

8 )|H〉 − sin( π
8 )|V〉, setting a strong similarity
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Figure 3. Cumulative curve and output probability in time temporal evolution of the experimental output probability P5(6) in
sink 5(6) for the input state |ψ1〉, together with the experimental average cumulative curve Pright, corresponding to the total
probability of correct discrimination. The experimental results are reported in comparison with the numerical expectations.
Black solid line represents the Helstrom bound computed for the two selected states. A systematic error in the state preparation
leads to an imperfect match of the bound, as the extracted information saturates.

with the case studied in [21]. The optimal unitary matrix for the realization of a suitable dynamical
discrimination protocol was analytically found by maximizing or minimizing the output probability of each
sink with respect to the corresponding input state. The result of this optimization lead to the evolution

matrix U = UF = UB = 1√
2

(
1 1
1 −1

)
, which has some analogy to the one computed in [21], besides some

peculiar property. In fact, exploiting this evolution matrix, the discrimination protocol consists of a
repeated optimal single-shot discrimination protocol: the network periodically brings the system in the state
of the sinker nodes allowing optimal discrimination. In this way, at each loop completion, the information
on the state is optimally extracted, leading to the output probabilities in time P5 and P6 reported in figure 3,
where the sink node 5 is associated to the detection of state |ψ1〉, while sink 6 to the detection of |ψ2〉. It is
now interesting to understand the dynamical behaviour of the probability of correct guess (as well as the
dynamics of the extracted information). To this aim, the cumulative probability of correct discrimination in
time is computed, for both states: C1 =

∑t
τ p(1)

5 (τ), C2 =
∑t

τ p(2)
6 (τ), where p(i)

k (σ) is the population of sink
k, with input state |ψi〉, measured after the σth loop. The curve resulting from the average between C1 and
C2, normalized to the total cumulative probability, is exhibited in figure 3 as Pright, in comparison with the
numerical expectations. The experimental analysis proves the effectiveness of this protocol to achieve
Helstrom level binary QSD in a dynamical context. These positive results pave the way towards the
exploitation of these dynamical features in more complex and powerful protocols, fully taking advantage of
a time-binned extraction of information. The following section clarifies this idea and reports on the results
of the application of the optical network receiver to a four-state quantum discrimination problem in D = 2,
in a minimum error probability scenario.

4. Experimental multi-state discrimination via time-binning protocol

The discrimination of more than two non-orthogonal states in a two-dimensional space is, in general, a task
for which an absolutely optimal strategy is unknown [2]. We have developed a protocol based on
time-binning that can be exploited to discriminate different sets of four states without accessing auxiliary
systems or resources.

4
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Figure 4. Output probability distributions for both states sets. Time-wise output probability of the first four extraction steps
when the geometrically uniform states (top) and the Tetrad (bottom) states circulate in the network.

The protocol consists of a redistribution of probability in time by means of the dynamical features of the
network. In order to clarify the exploitation of the time degree of freedom as a supplemental resource for
our QSD protocol, it is necessary to provide a formal discussion of our framework. The 2r–2r–2 network
can be unambiguously described in terms of two subspaces: the first one represents the two indirectly
connected layers, the state of which can be written as a four-dimensional vector, where the first two
dimensions represents the input layer and the second pair represents the intermediate layer, i.e. the sinker
nodes. The state of this subspace evolves in time via unitary operations. The subspace of the sink nodes,
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which we will refer to as the sink space, on the contrary, undergoes measurements and does not feature a
unitary evolution in time. At first, we focus on the evolution of a photon in a state of the first subspace,
which we indicate as the network space. Since in our model a superposition state between the input layer

and the sinker nodes is not allowed, the only possible states have the form

⎛
⎜⎜⎝
α

β
0
0

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

0
0
γ

δ

⎞
⎟⎟⎠. Therefore, the

one-step evolution of the system is described by a 4 × 4 unitary matrix, composed of two antidiagonal

blocks U =

⎛
⎜⎜⎝

0 0 a b
0 0 c d
a′ b′ 0 0
c′ d′ 0 0

⎞
⎟⎟⎠. Indeed, also the permanence of the system in the same layer after an

evolution step is not allowed by our model. The left-bottom block, which we refer to as UF, represents the
forward evolution of the system from input layer nodes {1, 2} towards the sinker nodes {3, 4}, while the
right-top block, which we refer to as UB, represents the backward evolution of the system from sinker nodes
{3, 4} to the input layer nodes {1, 2}. In the actual implementation, both layers are encoded in the
polarization degree of freedom, while they have a different temporal and spatial location. Therefore, we can
practically describe the evolution as an alternate application of operators ÛF and ÛB to the same 2D vector.
These two matrices can be identically or differently set, producing a symmetric or asymmetric network. In
our framework, we are also able to discriminate the extraction time of the photon, i.e. the amount of times
the photon has completed a loop evolution before being sent to the sinks. This supplemental degree of
freedom, which is crucial in our protocol, can be formally addressed as one auxiliary system, featuring two
subspaces: one for the photon travelling through the network, representing the evolution step of the system,
and one for the sinks, representing the extraction time. In the following discussion, we indicate with the
subscript n or s the corresponding subspace of the considered vector, both for the nodes and the time
degree of freedom. The unitary evolution operators ÛF and ÛB, which only act on the network subspace,
will now represent the joint operator ÛF/B ⊗ Îs, being Îs the identity over the sink subspace. Moreover, we
will define as ÎN the identity over the joint space of network and sinks, while the identity over the time
auxiliary system will be It. In conclusion, the evolution of the system in terms of the state in the network
subspace n and in the sink subspace s, besides the time degree of freedom, can be segmented in three
different phases, given the initial state |ψ0〉n,s = (α0|1〉n + β0|2〉n)|t0〉n. In the first one, the initial state
evolves from input to intermediate layer through ÛF:

|ψ(1)
0 〉n,s = (ÛF ⊗ Ît)|ψ0〉n,s = (γ0|3〉n + δ0|4〉n)|t0〉n. (1)

The second step consists of the extraction to the sink nodes, which corresponds to the generation of a
superposition state of the system being in the network or in the sinks at a certain step time, through a
projector from the network to the sinks:

|ψ(2)
0 〉n,s =

[√
T
(
ÎN ⊗ Ît

)
+

√
1 − T

(
|5〉s〈3|n + |6〉s〈4|n

)
⊗
( ∞∑

k=0

|tk〉s〈tk|n

)]
|ψ(1)

0 〉 =

√
T
(
γ0|3〉n + δ0|4〉n

)
|t0〉n +

√
1 − T

(
γ0|5〉s + δ0|6〉s

)
|t0〉s,

(2)

where T is the probability of the system to stay in the network and 1 − T the probability of being extracted
to the sinks. The last step brings again the network in a state of the input layer, while the sinks do not evolve
at all:

|ψ1〉n,s =

(
ÛB ⊗

∞∑
k=0

|tk+1〉n〈tk|n

)
|ψ(2)

0 〉n,s =

√
T
(
α1|1〉n + β1|2〉n

)
|t1〉n +

√
1 − T

(
γ0|5〉s + δ0|6〉s

)
|t0〉s,

(3)

where the ‘time state’ of the network has been updated, because a forward and backward evolution has been
completed. The evolution continues as a repetition of these three steps, leading to a general state, after M
completed loops:

6
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|ψM〉 =
√

T
M (

αM|1〉n + βM|2〉n

)
|tM〉n

+

M∑
k=1

√
T

k−1√
1 − T

(
γk−1|5〉s + δk−1|6〉s

)
|tk−1〉s,

(4)

where αk,βk, γk, δk with k = 0, . . . , M are the coefficients for each basis state of the network after a k steps
evolution. The measurement we are able to perform, in the end, corresponds to a projection on both the
sink state and the corresponding step time, which determines the probability of finding the system in a
given sink σ at a certain time tk:

Pσ (tk) = |〈σ|s〈tk|s|φ〉s|2 (5)

where |φ〉s is a general joint state of the sinks and the associated extraction time. This formalism allows us
to intuitively describe the capability of our setup to exploit time as a further degree of freedom for
discrimination, while the actual realization is implemented through a set of subsequent post-selection
procedures.

The exploitation of a globally asymmetrical network unitary, with UF 
= UB, allows for advanced
applications, such as four state discrimination. In particular, this method is effective for a set of
geometrically uniform states [2], since the network parameters are fixed in time. Indeed, the first observed
application involves a set of geometrically uniform states, which we consider equally likely to be received:

|+〉 = 1/
√

2 (|H〉+ |V〉)

|−〉 = 1/
√

2 (|H〉 − |V〉)

|R〉 = 1/
√

2 (|H〉+ i|V〉)

|L〉 = 1/
√

2 (|H〉 − i|V〉).

(6)

The network unitary is tailored with the aim of producing the most different output probability
distributions as the four different states occur at the input layer. That has been achieved selecting one of the
two sinks and requesting that in each of the first four time bins a different input state had the relative
maximum probability of being extracted. The evolution matrices produced following this method are

UF = 1√
2

(
1 1
1 −1

)
and UB = 1√

2

⎛
⎜⎝

1 + i

2

1 + i

2
1 − i

2

−1 + i

2

⎞
⎟⎠. The product matrix, representing the loop evolution

of the system between two distinct extraction steps, results then UL = UF ◦ UB = 1√
2

(
1 i
i 1

)
. It is worth

noting that U4
L = I, from which the four-periodicity of the output probability distributions derives.

Therefore, the first four time bins contain all of the information on the input state, while the experimental
exploitation of the further ones is only useful for collecting a greater amount of meaningful signal. From a
more analytical point of view, if we consider only one of the two sinks, e.g. the one corresponding to
horizontal light polarization, the measurement at each time step t represents the application of the POVM
Ut

L ◦ |H〉〈H|. Hence, our setup is capable of reproducing the families of POVM identified by the global
unitary of the loops and depending on the step evolution parameter {Ut

L ◦ |H〉〈H|‖t ∈ N} and
{Ut

L ◦ |V〉〈V|‖t ∈ N}, although the actually distinct POVMs for each set are only four. Since the states are
geometrically homogeneous, separated by a π

2 rotation around the same axis, this kind of procedure
produces an optimal output. In fact, without changing the network parameters in time, it is possible to
achieve a Perr = 0.5, which is the analytical bound for a set of four geometrically homogeneous states [11].
This is understandable by looking at figure 4 (top), where the numerical probability of detection in the first
four time bins is displayed for the geometrically uniform set and the normalization is performed without
considering the total signal decrease which the system experiences after every extraction step. Moreover, the
probability distributions are normalized in such a way that, given a certain input state, the total probability
equals to 1. In this way, the error probability of guess can be straightforwardly computed, given the input
state.

The main feature of these distributions, each of which provides an unambiguous time-signature of a
given input state, is the four-periodicity of the probability trajectory in time; it relies on the network

7
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Figure 5. Step-wise output probability for geometrically uniform states and the Tetrad set. Experimental output probability as a
function of the number of round trips travelled by photons when the geometrically uniform states (top) and the Tetrad (bottom)
states circulate in the network. Normalization of each distribution is performed summing over the total output probability for
each single state, in order to account for the experimental signal decrease as the observed time bin grows. Data are reported in
comparison with corresponding numerical results (dashed lines).

structure of our receiver and is intimately connected to the number of intermediate layers of it. This
particular case of study features two pairs of orthogonal states, providing an intrinsic advantage in
producing maximally different time dependent distributions. The same protocol was also applied to the set
known as Tetrad set [18], consisting of four maximally equidistant states on the Poincaré sphere:

8
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|ψ1〉 = 1/
√

3 (−|H〉+
√

2 e−2πi/3|V〉)

|ψ2〉 = 1/
√

3 (−|H〉+
√

2 e2πi/3|V〉)

|ψ3〉 = 1/
√

3 (−|H〉+
√

2|V〉)

|ψ4〉 = |H〉

(7)

featuring several interesting properties for quantum communication and cryptography. The results of the
theoretical analysis are shown in figure 4 for the Tetrad set. For this latter set, the network optimization was
carried according to the same method, aiming at maximizing the discrimination probability between
different pairs of states at each extraction step. The corresponding evolution matrices, resulting from a
numerical maximization, were

UF =
1√
2

⎛
⎝ 0.953 021 0.302 905

−0.302 905 0.953 021

⎞
⎠

UB =
1√
2

⎛
⎝−0.674 645 + 0.216 571i 0.211 8 − 0.673 121i

−0.211 8 − 0.673 121i −0.674 645 − 0.216 571i

⎞
⎠

which, again, produce a loop evolution UL ∼ 1√
2

(
1 i
i 1

)
. In this case, the method produces a Perr > 0.5, in

this case, the protocol is slightly suboptimal, since the distribution minima are not vanishing (see figure 4
(bottom)), but a more powerful optimization procedure may return more effective results. Nevertheless, as
discussed below, as the number of available copies increases, the error probability scales down
exponentially.

The resulting experimental detection probability distributions in time for both the sets are reported in
figure 5, in comparison with the numerical ones, computed accounting for signal decrease after each
evolution step and experimental parameters. The time dependent distributions show a good agreement with
the numerical expectations computed accounting for actual parameters, demonstrating a reliable procedure
of multi-state discrimination, without the exploitation of any supplementary system, or spreading the states
in multi-mode configurations which require an abundance of detecting devices. Specifically, the probability
of error which can be computed by these distributions are Pcompass = 0.564 and Ptetrad = 0.591. The
discrepancy with the ideal case values can be quite understood in terms of some experimental asymmetries
and non perfect phase-compensation, which produce small but significant polarization rotations, hence
slightly lower maxima and higher minima in the distributions. Another very important source of noise
consists of the background coincidence counts, which are only partially removed by the procedure described
in appendix B. Indeed, according to this scheme, only a single photon-counting detector is needed (the
second one provides complementary information), together with the capability of discriminating the arrival
time of photons with quite loosen precision. In this case, that capability is indeed provided by a
supplemental photon detector which performs coincidence measurements, but, in realistic communication
protocols, the second trigger photon can be replaced by more sophisticated synchronization techniques.

In order to verify the effectiveness of the multi-state discrimination protocol in an actual scenario, we
tuned the photon source depicted above to a low average photon number regime: through this source, it is
not possible to deterministically generate photons, but it is rather possible to set an average rate of
generation of single photons. Nevertheless, through this procedure, it is possible to test the average quality
of the protocol by computing the average error probability Perr as a single copy of the system is available and
how this quantity scales as the average available number of copies grows. The experimental strategy to
compute the average Perr starts by setting the average rate of photon generation per second of the source. An
average rate of 1–2 total observed coincidences per second was set, and a higher average photon number
was straightforwardly obtained by measuring for a longer time. In this regime, the same time-binned
measurements exploited to evaluate the step-wise output distributions can be performed, registering
n-seconds events for different integration time intervals n. We address as n-seconds event a time-binned
measurement performed for n seconds. The events measured in this way have still to be cleaned off the
accidental coincidences, as mentioned in the previous section. Hence, it is not possible to consider single
instances of n-seconds events, but rather an average n-seconds event has to be taken into account, to get the
chance of subtracting background noise (which is only meaningful as an average quantity).

We consider the temporal probability distributions sampled in the previous section: for each of the two
sets, we have four time-wise sampled probability distributions Pi(t), one for each of the states in the set,
describing the conditional probability of a photon being extracted at time t, given a certain input state |ψi〉.
We can normalize these probability distributions to 1 without particular consequences, since we consider
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Figure 6. Error probability scaling for both states sets. Scaling of the error probability in function of the number of analyzed
copies of the system, for the geometrically homogeneous states (top) and the Tetrad states (bottom). It is worth noting that, in
our specific framework, experimental asymmetries appear to produce a scaling of the probability of correct detection as the
number of employed photons grow which deviates from theoretical expectations. In addition to the experimental uncertainty
over the y-axis, the photon number n has to be considered as affected by a Poissonian uncertainty equal to

√
n.

the case of equally likely states and we limit observation to only one sink. Hence, if we have an average
m-photon event Ēm, measured as described above and cleaned off the noise, we can compute the probability
of this event, given the input state we set, as P(Ēm|ψi) =

∏
tPi(n(m)

t ) where n(m)
t is the number of photon

detected at time t for the event Ēm. As a consequence, the probability of error in guessing the input state can
be computed as:
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Perr(ψi, m) = 1 − P(ψi|Ēm) = 1 − P(Ēm|ψi)∑
ψj

P(Ēm|ψj)
(8)

exploiting the Bayes’ rule. The resulting trends of Perr in function of the average number of detected
photons, which act as the available amount of copies of the system, are shown in figure 6, for both sets of
states.

5. Discussion and conclusions

In the last two decades genunine quantum features have been often exploited as a catalyst to improve the
efficiency of a number of practical tasks. In this scenario, optimal strategies for QSD of actual quantum
states have a great deal of relevance and a wide range of applications: quantum communication [26],
quantum key distribution [27] and also quantum sensing, in the case of distinguishing different external
fields affecting the system dynamics (such as in NV-center noise spectroscopy [28] or avian
magnetoreception [29]). In recent years the development of actual single-photon protocols for QSD has
been quite rare, while a lot of effort has been spent in developing protocols requiring the exploitation of
coherent states (adaptive strategies, quantum phase shift keying [13–15, 17]). However, it is well known
that the use of coherent states in quantum communication protocols does not grant equal security as
compared to the exploitation of actual quantum states.

In this work, we exploited actual single-photon states and we achieved a nearly optimal protocol
featuring a clear spare of resources, in terms of auxiliary systems and physical measurement devices. The
spare of auxiliary physical systems is achieved thanks to the network structure of our receiver, which allows
us to implement strategies based on time-binning of information extraction, in the case of binary and
multi-state discrimination, without the need for supplemental devices; that is a relevant property when
regarding for applications. This scenario shares some similarities with the weak-measurement framework
developed in [30, 31]; in stark contrast with that, we were able to develop a protocol applying to a higher
number of states, to the problem of minimum error probability and with a completely novel theoretical and
experimental quantum network approach. The exploitation of actual quantum states in this protocol makes
it quite interesting for the application to secure quantum communication tasks and quantum key
distribution, tightly relying on the quantum nature of the implementing platforms for their effective
realization. Our results represent on one side a basic proof of the protocols effectiveness, but they pave the
way to further extensions, such as the adoption of adaptive methods for more general tasks, or the
implementation of more complex networks, in order to increase the maximum possible number of states
which could be discriminated.

Through these improvements, we will be able to turn our simple model in a proper quantum neural
network [32], with a potential which is yet to be uncovered in this field. Noise-robustness of our protocols
needs still to be studied, consistently with the approach of [21], in order to reveal possible usefulness for
quantum computing in NISQ devices. Even ML techniques need to be applied to our framework, aiming at
the development of quantum ML protocols in which quantum information is classified as in classical
supervised deep learning schemes. In addition to that, we are currently working on new experimental
platforms, which may be suitable to extend our approach to systems characterized by a higher
dimensionality. That could be realized exploiting the orbital angular momentum of light [33] or
implementing larger optical networks.

In conclusion, a new approach in experimental realizations of QSD protocols has been reported in this
work, featuring some practical and theoretical advantages for the applications and leaving a lot of room for
improvement and generalization. It may represent a valuable alternative to established strategies, once its
potential is fully understood.
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Appendix A. Experimental methods

A.1. Setup details
Photon pairs are generated by a high brilliance SPDC source realized according to the model described in
[34]: a PPKTP crystal, embedded in a Sagnac interferometer, pumped by a single mode CW laser radiation
(λp = 405 nm), which generates collinear pair of photons (system and ancilla) with opposite polarization at
a wavelength λi,s = 2λp = 810 nm. The flux rate of pairs of photons generated by the source in one second
is Np s−1 ∼ 100 000 s−1. This means that the mean time between the generation of one photon and the
subsequent one is t = 1 s/100 000 = 10−5 s, corresponding to a space separation between two successive
photon pairs of l = t · c ∼ 3000 m. In this conditions, for a certain length x of the setup, which we set to
x ∼ 2 m, there are on average 1500 steps before another photon passes through the loop. We decided to
observe 20 steps only of the evolution, which, considering a net loss of signal per loop completion
L = 0.057%, we estimated being a good compromise between measurement feasibility and significance of
the data. We can estimate the probability that two photon pairs are generated in the time interval needed to
perform 20 steps of the evolution, which corresponds to (x∗20/c)/t ∼ 0.02. This means that the probability
of having two photon pairs circulating in the setup at the same time is around 2% for all the evolution, a
value low enough to perform the experiment also with our CW source, since the measurements are barely
affected by the presence of spurious coincidences deriving from photons of other generations.

The photons generated by SPDC are both coupled to a pair of optical fibers, but headed to different
outputs: the system photon is injected into the setup and actually undergoes the network evolution, while
the ancilla photon is directly sent to a single-photon detector, acting as a trigger for coincidences. After
collection of both photons, their detection is processed by ID-Quantique time tagger ID800: this device
features the possibility of setting a narrow coincidences window (up to 81 ps), the capability of recording
the relative detection time of a photon, hence the possibility of electronically setting any delay between two
photon counters with the aim of computing coincidences and also to perform high-resolved time scanning
of the delay between two detecting channels. Thanks to these features, we were able to implement the
time-binning discrimination strategy, which is theoretically fancied above. It is worth mentioning that the
first considered extraction step is the second, because of the different extraction probability featured by the
first one: in fact, an unbalanced beamsplitter (BS) was exploited for the extraction step, featuring a
transmittivity T ∼ 70% and a reflectivity R ∼ 30%. Therefore, as understandable from figure 2 of the main
text, the first extraction step features T as extraction probability, while the remaining ones are characterized
by R. Because of that, we chose to neglect the coincidences of photons extracted at the first step.

A.2. Data analysis
The experimental verification of the effectiveness of the time-binning strategy for multi-state discrimination
consisted of the experimental reconstruction of the expected output probability distributions. In our
framework, the reconstruction consisted of recording the amount of photons being extracted in one of the
two sinks after any amount of travelled loops. Since the source generates photon pairs in a
non-deterministic fashion, the only way to be sure the counted photons had travelled the right distance in
the setup consisted of exploiting a coincidence measurement. Thanks to the ID800 by ID-Quantique, it is
possible to count coincidences at any delay between the system and ancilla photon. Therefore, it was
possible to observe the amount of photons extracted at each step by suitably tuning the considered delay,
depending on the path difference between photons generated within the same temporal window. The
measured coincidences had then to be cleaned off the background noise: as described above, the first actual
detection step, not taken into account in the analysis, features a much higher signal with respect to the
subsequent ones. Therefore, it causes a high amount of accidental coincidences for any set delay. A
measurement of the background noise due to the first extraction photons is performed for each delay and
directly subtracted to the time-binned measurements, in order to get time-wise coincidences profiles which
only display proper coincidences. In conclusion, clean step-wise coincidences counts were obtained, for each
input state of both the considered sets. Because of the high amount of detected coincidences, the resulting
output was considered as an average result per se. Therefore, the output probability distributions for each
input states, displayed in the main text, were directly deduced by the normalization of the clean
coincidences profiles.
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