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Boltzmann electronic dc transport in multiorbital weakly disordered crystals
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Motivated by the increasing number of systems featuring multiple bands at low energy, we address the
Boltzmann approach to transport in a multiband weakly disordered noninteracting crystal subject to a small
electric field. In general, the multiband structure leads to a considerable complication of the Boltzmann equation.
Indeed, even in the presence of elastic impurity scattering, one needs to compute for each band and momentum
the dressed velocities, which account for scattering events. Here we provide a semianalytical solution to the
Boltzmann equation that reduces such a challenging numerical task to the much simpler numerical computation
of a small tensor whose dimension is set by the number of bands at the Fermi level. This approach further allows
us to discuss the interplay of symmetry and disorder for different impurity types, including those originating
from random-matrix Wigner ensembles. As an example of application, we consider the 2D isotropic Rashba
metal and we discuss, in a full analytical fashion, how different types of disorders may break the exactness of
the relaxation-time approximation and induce transport anisotropy, and may allow one to identify the presence
of spin-orbit coupling as deviations of the conductivity from the Drude behavior.
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I. INTRODUCTION

In the last decades, due to enhanced capabilities in
materials fabrication new classes of materials have been
crafted whose electronic transport properties are challenging
to model as several degrees of freedom and atomic orbitals
take part in the low-energy physics [1–8]. The effect of the
scattering in the transport can be usually computed semian-
alytically by means of either the Boltzmann approach [9,10]
or some kind of diagrammatic Green’s functions expansion
(Matsubara [10], Keldysh [11], supersymmetry or replica trick
[12]) and new techniques have been invented recently re-
lying on quantum master equations [13–17] or holographic
dualities [18–20]. Within the first approach, the attention is
often focused on the difference between quasiparticle and the
transport lifetimes [10,21], with the idea that while evaluating
the transport the scattering events which do not change the
direction of the electronic velocity do not affect the current.
Such a difference is easily seen by solving the problem for
a single-band isotropic system, where the dc conductivity re-
lating the dc electric field and the induced current jx = σxxEx

reads

σxx = 2e2
∑

k

v2
k,xτ

tr
k (−∂ f /∂εk ), (1)

where e is the electronic charge, vk,x is the band velocity at
momentum k and f is the Fermi equilibrium distribution.
The quantity 1/τ tr

k = ∑
k′ Qkk′ (1 − cos θk−k′ ) is the inverse

transport scattering time which is to be compared to 1/τk =∑
k′ Qk,k′ , the inverse quasiparticle lifetime. Whenever the

scattering kernel Qkk′ is momentum independent, as it occurs
for instance for scattering off impurities localized in the unit
cell, τ tr

k coincides with τk and the transport is trivial. At a more

general level, the difference between the two lifetimes should
be rephrased as the difference between the bare electronic
velocities vk ≡ ∂εk/∂k, which are simply determined by the
band dispersion, and the dressed ones wk, which enter the
generalization of Eq. (1) to arbitrary band curvature:

σxx = 2e2
∑

k

vk,xwk,xτk

(
− ∂ f

∂εk

)
, (2)

This language makes it easier to put in correspondence
Boltzmann theory and diagrammatic approaches, where the
difference between w and v is determined by a summation
of ladder diagrams, involving the impurities propagators, at
one of the two current vertices constituting the diagram for
the conductivity, under the Lorentzian approximation of the
electronic Green’s functions [10,21,22].

Strictly speaking, transport lifetimes may be defined only
when all wk and vk are parallel, which happens only for
highly symmetric systems. However, if this is not the case, an
approximation is often made whereby parallelism is enforced,
known as the relaxation time approximation (RTA) [10].

In multiband systems, things are worse. The isotropy of
bands and interactions are not sufficient conditions for the
RTA neither to be exact nor even to be a good approximation,
since also the multiorbital character of the eigenstates and, if
included, of the disorder enter the game. Therefore, within
the Boltzmann approach, it is of the interest to be able to
compute properly wk, a task which requires to go beyond
the RTA and calls for a full numerical treatment, unless other
approximations are done [23,24].

In this paper, we show that an analytical solution exists
for multiorbital systems in the case of scattering induced by
weak and localized disorder which possibly mixes the orbital
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degrees of freedoms. Importantly, it is possible to understand
the different roles of the multiorbital nature of the Bloch
eigenstates and of the impurity type in determining the cur-
rent. Symmetries do play an important role in determining
whether vertex corrections vanish in a system (i.e., wk = vk)
or, more generically, whether the RTA happens to be exact.

As an application we focus our attention a 2D Rashba elec-
tron gas [25]. Such a model has been experimentally realized
in a number of systems such as HgTe quantum wells [26],
layered bismuth tellurohalides [27,28], and interfaces between
complex oxides [29,30]. In Ref. [22], the model was solved
assuming simple intraorbital disorder and it was discovered
that the Rashba physics manifests itself as a departure of the
conductivity formula from the Drude one [10]. Within our ap-
proach, we compute fully analytically the transport quantities,
discuss the exactness of the RTA and go beyond that work by
showing how the different disorder types lead to qualitatively
different results. In particular, with a certain magnetic disorder
the Rasbha conductivity may not feature any departure from
the Drude one.

II. THE BOLTZMANN EQUATION: STATEMENT
OF THE PROBLEM

We are interested in investigating metals or semiconductors
where the electronic bands close to the Fermi surface display
multiorbital character. Let the index b label the electronic
bands, then we define ρb

k as the band-resolved electron occu-
pancy at the momentum k in the 3D Brillouin zone (BZ). If we
aim at describing the linear static response of the material, we
are interested in finding the nonequilibrium time-independent
electronic configuration at small external electric field E. Then
the Boltzmann equation reads

e E · ∇k ρb
r,k =

∑
k′,b′

Qk′,b′
k,b

(
ρb

r,k − ρb′
r,k′

)
, 0 � b � Nb. (3)

The equation states that at equilibrium the push from the elec-
tric field on the momentum of an electron in a specific band
is counteracted exactly by diffusion processes, mixing states
of all bands and momenta. The matrix Qk′,b′

k,b regulates such
diffusion and is referred to as the collision-integral kernel. For
what concerns us, it will include only scattering from onsite
disorder due to impurities and, as usually done, we write it
according to the Fermi golden rule, leading to a treatment
of disorder equivalent to the Born approximation within the
Green’s function formalism [10]:

Qbb′
kk′ = 2π

NL

∣∣∣∣∣〈k, b|
NL∑
i

�c †
i · Vi · �ci |k′, b′〉

∣∣∣∣∣
2

δ(ξk,b − ξk′,b′ ).

(4)

Here, |k, b〉 denotes the Bloch state for the b band, the index
i labels lattice sites, NL is the number of sites, and Vi the
impurity matrix at site i written in the original orbital basis,
such that the lth element of the �ci annihilates the lth orbital
state at site i. Hereafter we set h̄ = 1. Notice that the kernel
couples only states on the same energy shell, since in this
model the impurities do not have internal degrees of freedom
to absorb energy. In the thermodynamic limit, NL → ∞, the

matrix Q becomes an operator and we will refer to it with one
or the other term interchangeably. The quasiparticle scattering
rates �k,b and lifetimes τk,b are defined as

�k,b = 1/τk,b =
∑
k′,b′

Qbb′
kk′ . (5)

At small field E, we can set ρk,b = fεb
k
+ ρE

k,b, where fεb
k

is the temperature-dependent equilibrium Fermi distribution
while the second term is further parametrized through a
vector wk,b as

ρE
k,b = eE · wk,b τk,b ∂εb

k
fεb

k
(6)

with the notation ∂εb
k

:= ∂/∂εb
k
. This term is linear in the

field and is the population correction we ought to find. The
vector w is proportional to the first-order Born-approximated
current dressed with vertex corrections (with the additional
Lorentzian approximation of the internal Green’s functions)
as computed within a fully quantum diagrammatic approach
[10,21,22].

The Boltzmann equation at zeroth order in E is trivially
solved by fεb

k
as it nullifies the right-hand side (r.h.s) of Eq. (3).

Instead the first-order equation leads to the sought equation
for wk,b: ∑

k′,b′

(
δkk′δbb′ − Qbb′

kk′τ
b′
k′

)
wb

k′ = vb
k, (7)

where we define the band velocities as vb
k = ∇kε

b
k.

Computing the population corrections amounts to inverting
the matrix 1 − Qτ in the grouped indexes (kb) and (k′b′) in
the left-hand side of Eq. (7). Unfortunately, it is impossible
to perform this task exactly in generic systems. Often the
RTA [10] is invoked, which in essence turn the operator Q
into a vector. This approximation might even be exact in
some highly symmetric systems [22] (see Sec. VII) but is
unreliable in most cases. At best, an expansion of Q in terms
of orthogonal polynomials may be performed and truncated to
have a treatable finite-rank matrix [23]. In this manuscript, we
show that in the case of elastic scattering by impurities a finite-
rank matrix can be spotted without making approximations
and the problem can be enormously simplified. Indeed, the
energy conservation in the collision-integral kernel makes the
matrix 1 − Qτ block-diagonal when the k vectors are ordered
in groups belonging to the same energy shell. We will show
that these blocks are finite-rank thus allowing to reduce the
problem to the inversion of a “small” matrix whose size N2

b is
set by number of orbitals. Before jumping on the solution of
the multiband case, it is instructive to present the solution for
the single-band problem.

III. SINGLE-BAND SOLUTION

With a single band we can safely remove band la-
bels in the previous expressions. The square modulus in
Eq. (4) can be expressed as a sum in space: |〈k|∑NL

i c †
i · Vi ·

ci |k′〉|2 = 1
N2

L

∑NL
jl VjVlei(x j−xl )·(k−k′ ), where we used c j =∑

k ckeix j ·k/
√

NL. Let’s assume now that the disorder is made
of NI impurities acting only onsite with strength vI and whose
locations are uniformly random in the sample and uncorre-
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lated to each other, i.e.,

Vi = vI

NI∑
c

δi jc (8)

with jc the random location of an impurity. Then, in the
summation considered above, the product of the impurity
potential at different sites self-averages [10,31,32] in the
thermodynamic limit, i.e., VjVl → 〈VjVl〉V � NIv

2
I δ jl , where

〈·〉V = 1
N

NI
L

∏NI
c

∑NL
jc

(·) denotes the average over spatial loca-

tions and the last equality holds in the limit nI = NI/NL � 1.
Within this model the collision integral is a function of the
energies only:

Qkk′ = κ δ(ξk − ξk′ ), κ = 2πnIv
2
I /NL. (9)

It follows that the rates (and the lifetimes) are also energy
functions:

�
(single)
k = κ N (εk ), (10)

where N (ε) denotes the total density of states per unit energy.
At this point it is straightforward to see that the solution
of Eq. (7) is trivial: wk = vk i.e. no dressing of the current
occurs in the single-band case. In principle, we may add to

the solution any function of the energy, but as will be argued
in the next section, the consistency requirements imply that
this function must be identically zero.

We note that this result is due to the specific isotropic
disorder at hand. Had κ not been a constant function of
momenta then there would have been some dressing. As we
shall see in a moment, this is exactly what will happen in the
multiband case.

IV. MULTIBAND SOLUTION

Multiband systems feature a difference between bare
and dressed velocities even when the disorder potential is
isotropic. Two new ingredients add to the equations as com-
pared to single-band case, namely, the eigenvectors of the
Block states and the orbital character of the disorder. The latter
can be described in general by promoting Eq. (8) to V (mm′ )

i =
vI

∑NI
c W mm′

i δi jc , where m, m′ label orbital indices. We will
assume as before that impurity centers are randomly located
without correlation and that all impurities are of the same na-
ture. We will explore below the consequences of different kind
of disorder ensembles. Then, considering the self-average of
disorder the square modulus in Eq. (4) evaluates as

∣∣∣∣∣〈k, b|
∑

i

�c †
i · Vi · �ci |k′, b′〉

∣∣∣∣∣
2

=
∣∣∣∣∣

NL∑
j

Nb∑
mm′

U †bm
k U m′b′

k′ vIW
mm′
j

eix j ·(k−k′ )

NL
〈k, b| cb †

k cb′
k′ |k′, b′〉

∣∣∣∣∣
2

� v2
I

∑
jl

∑
mm′nn′

〈W mm′
j W ∗nn′

l 〉V
ei(x j−xl )·(k−k′ )

N2
L

P∗mn
k,b Pm′n′

k′,b′

= NIv
2
I

∑
mm′nn′

Dmm′
nn′ P∗mn

k,b Pm′n′
k′,b′ . (11)

In Eq. (11), U is the matrix which performs the rota-
tion from the orbital to the band operators cb

k, such that
cm

j = ∑
k U mb

k cb
keix j ·k/

√
NL. The P are the corresponding

(Hermitian) projectors on the eigenvectors subspace Pmn
k,b =

U mb
k U †bn

k , and we also introduced the dimensionless “disor-
der” tensor

Dmm′
nn′ = W mm′

W ∗nn′
. (12)

Grouping the pair of indices (mn) and (m′n′) as single in-
dices, the summation in the last line of Eq. (11) is equivalent to
the vector-matrix-vector product. We will use the “◦” symbol
to denote this product instead of the “·” symbol, to remind it
is actually a tensor contraction. Then, the multiband collision
integral kernel is concisely written as

Qbb′
kk′ = κ P∗

k,b ◦ D ◦ Pk′,b′ δ(ξk,b − ξk′,b′ ). (13)

Notice that D is always positive when fully contracted with
projectors via the ◦-product. The quasiparticles rates are

�k,b = κ P∗
k,b ◦ D ◦

∑
b′,k′∈S(εb′

k )

Pk′,b′/|vk′,b′ |, (14)

where Sb(ε) denotes the surface of energy ε for the bth band.

Here and later the notation
∑

b,k∈Sb(ε) is a shorthand
for V/(2π )3 ∑

b

∫
Sb(ε) d2k, which has the dimension of a

length. Notice that we have used also the equivalences
δ(ξk,b − ξ ) = δ(εk,b − ε) = ∫

Sb(ε) d2k′ δ(k − k′)/|vk′,b|.
Equation (14) shows the peculiar effect of the multiband
structure: even for localized impurities, which imply
an isotropic, i.e., momentum-independent D tensor [see
Eq. (12)], the rotation from the orbital to the band basis
induces an effective momentum dependence of the scattering
kernel in the band basis, leading in general to both a
momentum-dependent scattering rate and, as we will
see, a finite velocity renormalization, in contrast to the
single-band case. Such a momentum dependence only
disappears when disorder tensor D equals δmnδm′n′ so that
P∗

k,b ◦ D ◦ Pk′,b′ = Tr(P∗
k,b)Tr(Pk′,b′ ) = 1 and one is left with

the same structure (9) of the single-band case. This condition
is realized for GUE disorder, as we will discuss in Sec. IV C
below.

A. Kernel inversion

In order to derive the dressed velocities wb
k from Eq. (7),

we need to invert the operator (1 − Qτ ). Before doing this, let
us first observe that the kernel Qτ has a number of properties.
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From the definition (5) of the scattering rates it is evident that
also in the more general case of inelastic scattering the kernel
Qτ has unit eigenvalue, the right and left eigenfunctions being
wR

k,b = 1/τk,b and wL
k,b = 1, respectively. In the present case

where scattering is elastic, the unit eigenvalue is actually in-
finitely degenerate and the corresponding eigenfunctions can
be labeled by the energy ε:

wR
k,b,ε = δ(εk,b − ε)/τk,b,

wL
k,b,ε = δ(εk,b − ε). (15)

Thus in analogy to solutions of inhomogeneous ODEs, for
each velocity direction α the component wα of w will be writ-
ten as (1 − Qτ )−1vα plus a linear combination of the set {wR

ε }.
The first term, (1 − Qτ )−1vα , may in principle be divergent if
a vα is not orthogonal to wL

ε that is
∑

k,b(v wL
ε )b

k �= 0, how-

ever, one can check this is not the case and w is well-defined
[for the proof of orthogonality see below Eq. (D3)].

For actual calculations, the formal expression (1 − Qτ )−1

needs to be evaluated. Since we are interested in an exact cal-
culation one may naïvely attempt to diagonalize the operator
Qτ . Unfortunately, this task cannot be achieved in a simple
and direct way as for small matrices. Looking at the specific
structure of the operator, we will rely on a mathematical
trick to make progresses. Since the other eigenvalues of Qτ

have generically modulus less than unity [33], we can write
the geometric series expansion (1 − Qτ )−1 = ∑

N�0(Qτ )N .
Writing one by one the terms we observe that the peculiar
sandwich of the tensor D with the matrices P appearing in
Q [see Eq. (13)] allows for the definition of a tensor of size
Nb × Nb × Nb × Nb, we call it Kε, which is a function of the
energy only. Thus we can rewrite (1 − Qτ )−1 as

(
δkk′δbb′ − Qbb′

kk′τ
b′
k′

)−1 =
∑
N�0

((Qτ )N )bb′
kk′ = δkk′δbb′ + P∗

k,b ◦ D ◦
∑
N�0

(Kεk ◦ D)N ◦ Pk′,b′τ b′
k′ δ(ξk,b − ξk′,b′ )

= δkk′δbb′ + P∗
k,b ◦ D ◦ (1 − Kεk )−1 ◦ Pk′,b′ τ b′

k′ δ(ξk,b − ξk′,b′ ), (16)

where 1 = δmm′δnn′ and we defined the dimensionless tensor

(Kε )mm′
nn′ = κ

∑
b,k∈Sb(ε)

(Pk,b)mn τk,b

|vk,b|
(
P∗

k,b ◦ D
)m′n′

(17)

acting on the orbital indices.
Roughly speaking what we did was to trade the inversion

of an operator with the inversion of a tensor thus making an
extremely convenient move. The relation between Qτ and K
resembles the one between a matrix and its dual in the context
of random matrix theory [34]. For instance, dual matrices
are employed when dealing with Wishart matrices and have
been used to obtain the distribution of lifetimes of electrons
in chaotic quantum dots with chiral symmetry [35] or to de-
scribe the topological physics of phonons in isostatic lattices
[36]. When a positive matrix has the form X †X , with X a
rectangular matrix, its dual partner is the matrix XX † which
shares the same nonvanishing eigenvalues. Here we have a
similar structure. Despite the presence of the tensor D, which
however determines only a small technical variation, the role
of the X a,b matrix is played here by the projector P(mn),(kb).
Moreover the eigenvalues and eigenvectors of Qτ and those
of Kε are in one-to-one correspondence, as shown in Sec. D 1.

B. Dressed velocities

We obtain the dressed velocities by combining expression
(16) with Eq. (7). Such velocities appear naturally as the sum
of the bare ones, due to the first term in the second line of
Eq. (16), a correction due to scattering, due the second term
of the same equation, and a term due to inclusion of the
“homogeneous” solutions wR

ε [as discussed below Eq. (15)]:

wk,b = vk,b + κ P∗
k,b ◦ D ◦ (1 − Kεk )−1 ◦ Fεk + 1

τk,b
λεb

k
.

(18)

Here F represents the on-shell average of the P projector
weighted with the bare velocity and the lifetime of the states
as given by [37]

Fε =
∑

b′,k∈Sb(ε)

(
P τ

v
|v|

)
k′,b′

. (19)

In the third term of Eq. (18), for each velocity direction α,
{λα

ε } is the set of linear combination coefficients for the set
{wR

ε } shown in Eq. (15). λε is an on-shell-averaged vector with
the dimension of a length and its precise value is determined
in Appendix A. This last quantity ensures no variation of
the total electrons density in each energy shell induced by
the electric field. λε vanishes identically in single band sys-
tems and, importantly, in time-reversal symmetric ones (see
Appendix B 2).

Equation (18) is the first major result of the paper. A naïve
strategy to solve Eq. (7) would have been to to discretize the
Brillouin zone and diagonalize Qτ or invert the matrix 1 − Qτ

in the grouped indexes (kb) and (k′b′). This approaches would
be computationally very demanding as the matrix size is NbNk ,
with Nk the number of k points. Roughly speaking, our ap-
proach allowed to fully solve the part involving momenta,
while leaving behind only the inversion in the orbital space
of a matrix of “small” size N2

b .
Since F ∼ τ ∼ 1/κ the second term in Eq. (18) is of the

same order as the first one in the disorder strength κ , there-
fore both contributions are equally relevant in most problems.
However, they manifest fundamentally different physics: the
bare velocities depend on band energies and their symmetry,
while the corrections are controlled by the electronic eigen-
vectors through Pk,b. The condition by which the RTA is
exact, i.e., w ‖ v and the transport is simply controlled by the
lifetimes τ tr , does not yield a physically transparent condition
on K and F , therefore we shall not show it. Notwithstanding,
it is straightforward to see that the conjunction of certain
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symmetries (see Appendix B), rotation and mirror ones for
instance, might force such a collinearity of velocities as we
will see in Sec. VII and even determine the vanishing of the
vertex corrections F = 0.

For the single band case, the on-shell average of the dressed
current wε := (1/N (ε))

∑
b,k∈Sb(ε)(w/|v|)k,b vanishes. Using

the fact that
∑

b,k∈Sb(ε)(P/|v|)k,b is the left eigenmatrix of
K with vanishing eigenvalue, it is possible to generalize
this sum rule. For the multiband case, one has wε = �ελε

where we define the on-shell averaged scattering rate �ε =
(1/N (ε))

∑
b,k∈Sb(ε)(�/|v|)k,b. Interestingly wε does not get

contributions from neither the bare velocity nor the vertex
correction terms. We interpret such a finding as the fact that
direct scattering events (vertex corrections) preserve the sym-
metry of the original system where no preferential direction
exists, whereas the charge redistribution implied by entropy
maximization does not have such symmetry information.

C. Modelling the disorder: statistical ensembles for
heterogeneous impurities

The disorder tensor D is highly material dependent. More-
over, most often impurities are not of the same kind thus
several different matrices W mm′

must be taken into account
in the scattering. The self-averaging of the product WW in
Eq. (11) allows us to assume that each impurity W mm′

is drawn
from a statistical ensemble. This assumption makes sense also
if one is not interested in the effect of a specific impurity
type of disorder but rather in the effect of a generic class of
disorder on a material. Without modifying the randomness
in the location of the impurities, we assume that the matrix
ensemble is Gaussian for each impurity, that is, we upgrade
the average 〈〉V to

〈·〉V = 1

NNI
L

NI∏
c

NL∑
jc

〈·〉Wc (20)

with

〈·〉W =
∫

DW e−TrW 2/(2σ 2
W ).

We will assume that the matrix integration runs
over one of the Wigner random-matrix ensembles, i.e.,
the Gaussian unitary/orthogonal/symplectic ensembles
(GUE/GOE/GSE), or the isotropic intraorbital ensemble
(IIE) whose precise definitions are confined to Appendix
C 1. The rationale behind the use of these ensembles is that
they extend naturally the notion of statistical isotropy in real
space to that in orbital space, as the eigenvectors of each
Wc are uniformly distributed in the corresponding projective
spaces. For real materials, no random sampling of the disorder
configurations is expected to give exactly such ensembles,
however they are suitable for calculations and help having
physical insight on the effect on the combined action of
symmetry and disorder (see Appendix C 1).

Adopting these ensembles, the disorder tensor must also
be redefined as Dmm′

nn′ = 〈W mm′
W ∗nn′ 〉W . For each ensemble,

the integral is easily computed (see Appendix C 2 for the

derivation):

Dmm′
nn′ =σ 2

W

⎧⎨
⎩

1
Nb

δmm′δnn′ IIE
δmnδm′n′ GUE
1
2 (δmnδm′n′ + δmn′δm′n) GOE

,

D(mq)(m′q′ )
(nr)(n′r′ ) =σ 2

W

2
[δmnδm′n′δqrδq′r′ GSE

+δmn′δm′nδqr̄δq′ r̄′ (−1)q+q′

+δmm′δmnδm′n′δq̄q′ (δqr̄δq′ r̄′ − δqrδq′r′ )], (21)

where the labels q, q′, r, r′ = 0, 1 refer to the spinlike degree
of freedom (i.e., the quaternionic one) respectively attached to
the m, m′, n, n′ ones; we denoted x̄ = 1 − x.

At first sight, the “simplest” ensembles are the IIE and the
GUE. In the first case, D acts as an identity with respect to
the ◦-product and the elements of the collision kernel Qbb′

kk′
are simply the square of the overlap of scattered states. In the
second case, things are even simpler as these elements become
functions of the energy shell of the scattered states only (and
not of each momentum and band). Thus the GUE behaves as
a single-band result. In particular �

b (GUE)
k = �

(single)
k and the

velocity vertex corrections always vanish, cf. with Eq. (10)
and see Appendix D 2 for the proof.

V. DC CONDUCTIVITY TENSOR

Since there is no current flowing in the system at E = 0,
at finite field only ρE contributes. This happens because fε
is a function of the energy only and the on-shell average
of the band velocity vanishes. For the same reason also the
contribution from λε vanishes. Finally, for the current density,
defined as J = −e

NLa3

∑
k,b(v ρ)k,b, we have

J = e2

NLa3

∑
k,b

vk,b τk,b (wk,b · E)
(−∂εb

k
fεb

k

)
with a the lattice constant. We can infer the conductivity
tensor, defined as J = s · E, consisting of two different con-
tributions:

σi j = σ bare
i j + σ corr

i j ,

σ bare
i j = e2

NLa3

∫
ε

(−∂ε fε )
∑

b,k∈Sb(ε)

(
vi τ

|v| v j

)
k,b

,

σ corr
i j = e2 κ

NLa3

∫
ε

(−∂ε fε ) F i∗
ε ◦ D ◦ (1 − Kε )−1 ◦ F j

ε . (22)

Here we label the two terms σ bare and σ corr for the analogy
with the usual diagrammatic approach [10,21,22]. The first
term is the sum of the conductivities produced by each single
electronic state, equipped only with its finite lifetime due
to disorder. In the diagrammatic language, it corresponds to
the bubble with insertion of bare velocity operators at each
vertex, and then it is called the bare bubble term. The second
term is a peculiar feature of the multiband models, and it
is equivalent in the diagrammatic language to a correction
due to renormalization of the velocity vertex. It corresponds
to a bubble containing a bare velocity vertex and a dressed
velocity vertex, which originates from the so-called vertex
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corrections [10]. It comes from the disorder-mediated over-
laps between the pairs of electronic eigenstates produced by
the electric field. As opposed to the first term it does not really
contain single-particle contributions but rather two-particles
ones. Thus we stress that it is generically misleading to
interpret the linear response of a multiband system as the mere
sum of the independent contributions of the quasiparticles or
of the bands.

It is a remarkable fact that the conductivity gets always en-
hanced by the vertex corrections, that is σ corr � 0, whenever
the disorder tensor D is ◦-positive (see Appendix D 3 for the
proof). For instance, this is true with the GUE or any kind
of purely intra-orbital disorder, like the IIE one. In general,
no weak- or weak antilocalization effects [38], let alone the
Anderson localization [39], are expected to be seen within this
model as they emerge only when coherent multiple scattering
is taken into account.

Using the property A ◦ X ◦ B = B ◦ X ∗ ◦ A, with X =
D, K and A, B any two matrices, and the reality of integrand in
σ corr it is easy to show that the Onsager relation [40] σi j = σ ji

is satisfied always irrespectively of whether the system is
time-reversal symmetric or not. The strange robustness of this
relation comes from the exclusion of magnetic field driving
terms in our Boltzmann equation; the terms coming from its
explicit inclusion are expected to lead to the more general
formula σi j (B) = σ ji(−B).

VI. DISORDER ENGINEERING

We have answered so far the question: What are the trans-
port properties of a system given a specific kind of disorder?
We can as well ask ourselves the converse [41,42]: to what
extent can disorder affect transport properties? Can we tailor
specific desired features? First we focus our attention on the
rates. We claim that (i) it exists always a disorder that makes
rates constant at a specific energy shell and (ii) it is always
possible to set to zero the rates at Nb − 1 distinct points of the
Fermi surface. Notice that the second statement may be used
to try to engineer a dc conductance which is anisotropic, for
instance by setting to zero the rates at those momenta at which
velocities in one direction are the highest. Statements about
vertex corrections, instead, are more difficult to establish. The
only general and nontrivial statement that can be easily done is
that for a generic nonsymmetric system if D has no vanishing
◦-eigenvalues then it is impossible to make vertex corrections
to vanish, even for a single direction. All proofs are confined
in Appendix E.

VII. EXAMPLE: 2D RASHBA ELECTRON GAS

As a specific example of multiband system we consider a
2D electron gas with intrinsic spin-orbit coupling ruled by the
so-called Rashba Hamiltonian [21,22,25,43,44]. This system
is quite simple in itself; however, it allows us to discuss in a
full analytical fashion all constituents of the dressed velocity
and the conductivity formulas. The problem was partly ad-
dressed in Ref. [22], where multiorbital effects within both a
quantum and the Boltzmann approaches were discussed for
the IIE type of disorder. Here we provide a full analysis of the
interplay between different disorder realizations, symmetry

FIG. 1. Dispersion of a 2D Rasbha electron gas featuring a Dirac
cone whose energy level E0 is marked by a gray plane. On the right,
a sketch of the Fermi pockets in the Brillouin zone is shown. Label b
refers to the bands (colored in red and light blue) and is used in the
high-density regime while the label s is used to distinguish the two
pockets in the low-density regime.

and the two-orbital character of the Fermi sheets, and we
discuss how transport properties can be used to gain insight
into the nature of spin-orbit interactions. A more compli-
cated and less symmetric system will be presented somewhere
else [45].

Let’s consider a 2D system of area V . The Rashba
Hamiltonian in the vicinity of k = 0 is

H (k) = k2

2m
+ αẑ · k × �σ + E0, (23)

where σ acts on a spin 1/2 degree of freedom and E0 =
p2

0/(2m) = mα2/2 is an energy offset. The Hamiltonian can
be diagonalized as U l�l U l † with (we use polar coordinates
for k):

U (θ )= 1√
2

(
eiθ eiθ

i −i

)
, �=diag

(
(k + p0)2

2m
,

(k − p0)2

2m

)
.

(24)

The system has time-reversal symmetry, continuous rota-
tion symmetry and mirror symmetries about both the x and
y axes (see Sec. B). The two bands are shown in Fig. 1. A
Dirac cone is present in the middle at energy E0 where the
two bands touch. At each energy, the full Fermi surface is
made of two concentric circles, however, we distinguish two
transport regimes characterized by the values of the chemical
potential μ > E0 (high-density regime) and μ < E0 (low-
density regime). The eigenvectors of H (i.e., the columns of
U ) both transform as U· i(θ ) = ∑

j U R
· jUji(0) (i = 1, 2) with

U R a representation of the 2D rotation in C2:

U R =
(

e−iθ 0
0 1

)
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or U· i(θ ) ∝ ∑
j U Mx

· j Uji(−θ ) ∝ ∑
j U

My

· j Uji(π − θ ), (i =
1, 2) and with U Mx,y = σy,x a representation of the mirror
symmetries. Concerning disorder, we consider the IIE, the
GUE and (since the system is spinfull) the GSE, that we call
in the following RMT-disordered systems (where RMT stands
for random-matrix theory). In addition, we also explore the
effect of a disorder characterized by a single-matrix impurity
disorder (SID) W , that we engineer in order to break all
symmetries the Hamiltonian (23). For instance, we will
consider

W =
√

2

3

(
0 1
1 2

)
.

Practically, such a disorder may be caused by a specific kind
of magnetic impurity, able to break not only the time-reversal
symmetry but also the x/y isotropy. Before proceeding we
notice that the GSE coincides with the IIE in this case where
Nb = 2 and we will call both under the label of the latter
ensemble in the following. This coincidence happens because
the Kramers degeneracy [34,46] in the GSE imposes vanish-
ing disorder-induced hopping between different spin species
and forces the diagonal elements of the disorder to be equal,
thus making the matrix proportional to the identity (thus
indistinguishable from IIE matrices). In the following, we
will represent tensors as matrices according to the mapping
T m+Nbn , m′+Nbn′ = T m,m′

n,n′ , where for the sake of brevity we as-
sumed the numbering of the labels are from 0 and Nb − 1. In
particular, the disorder matrices derived from Eqs. (21) and
(12) are

D(GUE) =

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠, D(IIE ) = diag(2, 2, 2, 2);

D(SID) = 2

3

⎛
⎜⎝

0 0 0 1
0 0 1 2
0 1 0 2
1 2 2 4

⎞
⎟⎠.

Here we choose to work with the set of sW ’s in (C2); in the SID
case, the factor 2/3 is there to guarantee indeed an average
disorder strength equal to that of the other ensembles, in the
spirit of the chosen normalization, see Sec. C 3. Notice that
the matrix is semipositive definite for the RMT-disordered
systems, that will guarantee a semipositive definite correction
to the conductance, see Sec. V. Moreover, these matrices
obey the symmetry of the clean system while for the SID,
all symmetries are broken, see Eqs. (B1) and (B4). Thus the
RMT-disordered systems, having the full system mirror and
a rotation symmetry, must lead to dressed velocities parallel
to the bare ones and we expect the RTA to be exact. We are
not interested here in the temperature effects, so we work
at T = 0.

A. High-density regime

We focus first on the case with μ > E0. The Fermi circles
pertain to the two different bands, we label them with b = ±1
(accordingly to the sign of k ± p0 in � in Eq. (24), see also

Fig. 1). We have

vb,θ = vF (cos θ, sin θ ), vF =
√

2μ/m,

kFb = m vF − b p0.

here kFb denotes each Fermi momentum for each circle. Ev-
ery summation over isoenergetic momenta

∑
b,k∈Sb(ε) may be

replaced by V
∑

b

∫ 2π

0 dθ kFb
(2π )2 . The projectors obtained by

Eq. (24) are

Pb,θ = 1

2
(σ0 + b cos θσy + b sin θσx ) = 1

2

(
1 −i beiθ

i be−iθ 1

)

→ �Pb,θ = 1

2

⎛
⎜⎜⎝

1
−i beiθ

i be−iθ

1

⎞
⎟⎟⎠.

In the last step, we mapped P to a vector �P j+Nbi = Pi j (in
analogy with the tensor mapping showed before).

From Eq. (14), we compute momenta-independent rates

�
(GUE)
b,θ = �

(IIE)
b,θ = κm

π

�
(SID)
b,θ = κm

π

(
1 + 2

3
b sin(θ )

)
(25)

The angle-averaged rate is the same for all kind of disorder
types considered. This feature has to be connected with the
sW -normalization we have chosen. This choice enforces same
strength of the overall disorder rather than same strength per
disorder degree of freedom [normalization (C1)] which, e.g.,
would produce �(GUE) > �(IIE) instead. Moreover, notice that
�(SID) is band dependent, anisotropic and breaks all sym-
metries but the mirror symmetry My. The survival of this
symmetry is accidental in the sense that is due to the specific
angle dependence of the projectors and not to their global
symmetry. Further, from Eq. (19), we find

F(l )
ε = −τ (l ) p0

4π
(σy, σx )

−→ �F (l )
x = τ (l ) p0

4π

⎛
⎜⎝

0
i

−i
0

⎞
⎟⎠, �F (l )

y = τ (l ) p0

4π

⎛
⎜⎝

0
−1
−1
0

⎞
⎟⎠,

�F (SID)
x = 3

(
3 − √

5
)
τ (GUE) p0

8π

⎛
⎜⎝

0
i

−i
0

⎞
⎟⎠,

�F (SID)
y = 3

√
5(3 − √

5) τ (GUE) p0

20π

⎛
⎜⎝

1
−3/2
−3/2

1

⎞
⎟⎠,

where l runs over the ensembles labels. We find as well

K (GUE) = 1

2

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠,
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K (IIE,GSE) = 1

2

⎛
⎜⎝

1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎠,

K (SID) = 1

20

⎛
⎜⎜⎜⎜⎝

2
√

5 5 + √
5 5 + √

5 20 − 10√
5

5 − 3
√

5
√

5 − 5 10 − 20√
5

3
√

5 − 5

5 − 3
√

5 10 − 20√
5

√
5 − 5 3

√
5 − 5

2
√

5 5 + √
5 5 + √

5 20 − 10√
5

⎞
⎟⎟⎟⎟⎠.

Due to the simplicity of the system, in particular the in-
dependence of the eigenstates from the energy, K does not
depend on energy as well. Notice that for the RMT-disordered
systems, the (1,4) and the (2,3) blocks are decoupled both in
D and K . In particular, K has a unit eigenvalue (as expected)
coming from the first block. Importantly F does not have any
component on the (1,4) sector and the renormalized velocities
are readily found by inversion of the (2,3) block alone. More
difficult is the inversion in the SID case but still treatable
analytically. One gets (vertex corrections are the second terms
in the expression):

w(GUE)
b,θ = vb,θ ,

w(IIE)
b,θ = vb,θ − b

p0

mvF
vb,θ ,

w(SID)
b,θ = vb,θ + b

p0

mvF

((
4 − √

5
)

11
vx

b,θ ,

(√
5 − 2

)
3

v
y
b,θ

)
.

(26)

Since for the RMT-disordered systems the renormalized ve-
locities are collinear with the band velocities the RTA is exact
in this regime. In the SID case, the collinearity is lost, but the
dressed velocity retains time-reversal and mirror symmetries.
The conductivity matrix is diagonal (in the RMT-disordered
case with equal diagonal elements):

σ (GUE) = e2

κm
μ,

σ (IIE) = e2

κm
[μ + E0],

σ (SID)
xx = e2

mκ

3

22
[11(3 −

√
5)μ + (7

√
5 − 17)E0],

σ (SID)
yy = e2

mκ

9

10
[(3

√
5 − 5)μ + (33

√
5 − 75)E0], (27)

where the first terms in the square brackets are the bare bubble
contributions while the second ones (absent for the GUE)
come from the current dressing. Notice how the conductivity
corrections in the SID case are negative, which is compatible
with the fact that D is not ◦-positive definite.

B. Low-density regime

In the case μ < E0, there are two Fermi pockets both
pertaining to the second band, we will label them with s = ±1
(using the plus sign for the inner circle, see Fig. 1). We have

vs = −s vF (cos θ, sin θ ), vF =
√

2μ/m,

kFs = p0 − s m vF .

Again every summation over isoenergetic momenta
∑

s,k∈Ss (ε)

may be replaced by V
∑

s

∫ 2π

0 dθ kFs
(2π )2 . The projectors are

only angle dependent: Ps,θ = 1
2 (σ0 − cos θσy − sin θσx ). In

contrast to the other regime, rates are energy dependent and
diverge at the band bottom, where vF → 0:

�
(GUE)
b,θ = �

(IIE)
b,θ = κ p0

πvF
,

�
(SID)
b,θ = �

(GUE)
b,θ

(
1 + 2

3
b sin(θ )

)
. (28)

Concerning F, K , and w, we can simply make the exchange
p0 ↔ mvF and the change b → s. Notice that surprisingly
K stays the same in the two regimes. The conductivities are

σ (GUE) = e2

κm
μ,

σ (IIE) = e2

κm
(μ + μ2

E0
),

σ (SID)
xx = e2

mκ

3

22

[
11(3 −

√
5)μ + (7

√
5 − 17)

μ2

E0

]
,

σ (SID)
yy = e2

mκ

9

10

[
(3

√
5 − 5)μ + (33

√
5 − 75)

μ2

E0

]
.

(29)

In analogy with the other regime, we can easily distinguish
the bare contribution (first term) and the vertex correction one
(second term).

C. Discussion

Full and bare conductivities in Eqs. (27) and (29) as a
function of the chemical potential are shown in Fig. 2(a)
for the different ensembles. The functional dependence on μ

and E0 has the form c1μ + c2E0 in the high-density regime
and c1μ + c2μ

2/E0 in the low-density regime for all disorder
types, the difference among them being only in the values of
the prefactors c1, c2. In addition notice that for a given disor-
der type these prefactors stay the same in the two regimes. We
first observe that the magnitude of the slopes of the different
curves is similar in the range shown. This is a consequence
of the normalization Eq. (C2) for sW . This guarantees the
same norm for the tensor D thus favoring similar rates, as
already discussed, and similar conductivities. Different nor-
malizations choices would have left the shapes unchanged,
since sW enters in σ only as an overall prefactor [see Eqs. (22)
and (21)], leading instead to different slopes. It is hard to
predict which ensemble has the highest conductivity at fixed
μ. However, at high energy, where only the bare bubble term
matters, the SID conductivities (both the one along x and y)
are the highest, due their higher average lifetimes as compared
with those of the other ensembles (N.B. the average rates are
instead the same).

The contributions of the vertex correction terms can be
appreciated from the figure as the difference between the con-
tinuous and the dashed lines. The corrections vanish for the
GUE, are big and positive for the IIE and GSE and negative
for the SID ensemble. The conductivities as a function of the
electron density are shown in Fig. 2(b), where one keeps in
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FIG. 2. DC conductivity of a Rashba metal as a function of the
chemical potential (a) and the electronic density (b). The low-density
regime lies below the values E0 and n0, respectively (grey lines).
Different kinds of disorder are considered and both the bare and
full conductivities are shown. Being the s(SID) anisotropic, both xx
and yy results are shown. The Drude regimes according to formu-
las Eqs. (31) and (32) are indicated respectively with the labels
Druden/μ.

mind the (ensemble-independent) relations

n =
{

m(μ + E0)/π, high density
2m

√
μE0/π, low density

. (30)

In the plot, we have defined the density at E0 as n0 = 2mE0/π .
The IIE result has been derived previously in Ref. [22]. There
it was noticed the remarkable fact that the high-density con-
ductivity coincides with the Drude one for a standard (i.e.,
non-Rashba) metallic parabolic band

s = e2nτ/m. (31)

where for the IIE we can substitute τ → τ IIE = 1/�IIE ≡
π/(κm), see Eq. (25). Moreover, and by contrast, the same
coincidence is not there in the low-density regime where
the dependence in n of the conductivity is nonlinear. Such
a change of the conductivity from following the Drude law
to following an “unconventional” one was ascribed to the
peculiar structure of the Fermi surface in the low-density
regime. Indeed, since the scattering must preserve the
spin some scattering processes are suppressed by the spin-
momentum locking of the Rashba eigenstates. Thus the
change of helicity of the inner pocket at μ < E0 explains the
anomalous behavior of the conductivity in the low-density
regime [22].

The authors pointed out also the interesting fact that, in
determining the Drude regime at high densities, the inclusion
of the velocity corrections (encoded in the quantity 1 − τ/τ tr

in their RTA language) was crucial, as the bare conductivity
would lead again to an unconventional behavior (a “shifted”
Drude law) sbare = e2(n − n0/2)τ IIE/m.

Applying the same analysis to the other ensembles, it is
straightforward to see that the low-density regime still features
unconventional transport. However, differently from the IIE
case, the transport stays unconventional also at high density,
since the prefactors of μ and E0 in Eqs. (27) and (29) are
different [cf. Eq. (30) top row]. It is clear that also the bare
conductivities do not follow the Drude behavior, since the
absence of the term proportional to E0 does not allow to
reconstruct the value of n as given by Eq. (30).

To delve deeper into this matter about the relation between
the Rashba and the Drude conductivity, and its possible ob-
servation in experiments, it is worth considering not only the
case when the conductivity is measured against the electronic
density (via for instance electronic doping) but also the case
where it is measured with respect to the chemical potential
(for instance, tuning a gate voltage in mesoscopic appara-
tuses). In this case, we should compare our results with the
expected Drude formula for a standard spinfull 2D metal as a
function of the chemical potential, i.e.,

σ = e2μτ/(2π ), (32)

so that the conductivity is simply proportional to the chemical
potential. As can be easily seen from Eqs. (27) and (29),
all ensembles save the GUE feature unconventional behavior
[i.e., different from that of Eq. (32)] at both low- and high-
density regimes. The GUE conductivity surprisingly follows
the Drude formula (32) in both regimes, assuming that we
take for both regimes the same lifetime, i.e., τ → τGUE =
π/(κm) [as defined in Eq. (25)]. So, with GUE disorder the
Rashba physics stays somehow “hidden” from a conductivity
measurement varying the chemical potential: nothing special
happens at the Dirac cone (μ = E0) and, more generally, the
spin-orbit coupling does not affect any quantity involved in
the conductivity formula, as if the system had α = 0. We
may understand sucha phenomenon as follow. The GUE dis-
order fully suppresses the role of the electronic eigenstates
at the Fermi level thus removing any scattering bias due to
spin-momentum locking of helicity eigenstates and reducing
the transport to be dependent only on the geometric shape
of the dispersion as for the single-band case. It is not diffi-
cult to show that if a GUE-disordered system has rotational
symmetry then σ = αe2v2

F /κ with α some real number. The
peculiarity of the Rashba model enters only in the fact that the
relation between the chemical potential and the group velocity
is the same found in a standard metal, i.e., μ = mv2

F /2. So,
after defining τ = απ/(κm), one recovers the Drude law (32).
If one uses instead the density n in the Drude formula rather
than μ, a departure of the GUE conductivity from Eq. (31) is
found as n keeps track of the shape of the bands dispersion
(through Luttinger’s theorem) which is clearly different in a
standard and a Rashba metal.
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VIII. CONCLUSIONS AND PERSPECTIVE

To summarize, we have solved the Boltzmann transport
problem at small electric field and weak impurity-only scat-
tering for a generic multiband system. In doing so we went
beyond the formal solution involving the inverse of the
collision-integral operator and showed that an analytical solu-
tion exists in terms of the inverse of a tensor whose dimension
is set by the number of bands. Such a solution is naturally
expressed as a correction to the bare band velocity, in full
analogy with the vertex-corrections term which appears in the
diagrammatic approach. The resulting corrections to both the
velocity and the dc conductance matrix have the same order
of magnitude as the bare ones.

Much attention has been devoted in treating disorder.
Its effect appears through a tensor that modifies the over-
lap between the scattering eigenstates unless it stems from
a IIE where it simply sets the scattering magnitude. For
such a convenience, this ensemble is the most employed
one [22,43,44,47]. As a specific example we analyzed the
case of a 2D Rashba electron gas, where we also discussed
the topic of “disorder engineering” discovering how a single-
impurity disorder may be tailored to uniform the rates across
the Fermi surfaces at specific energies. We also found that,
quite surprisingly, the conductivity of GUE-disordered model
does not manifest the underlying Rashba physics if it is
measured as a function of a gate voltage instead of the
electronic density.

In perspective, it would be interesting to include in the
model scattering from particle interactions, at least at RTA
level. Such a generalization would open up the possibility to
study at dept the interplay between disorder and interaction.
For instance, in a recent work [47], the temperature depen-
dence of the resistivity of the Rashba gas is shown to have a
different behavior above and below the Dirac point. Thus a
relevant question is whether such a property is robust under
a different disorder ensemble in analogy to what we have
discussed in the case without interactions.

Finally, other possible directions involve the finite-
frequency problem, to make contact with spectroscopic
observables, the generalization to nonlinear regime of the
electric field, though diabatic effects will not be included in
such a semiclassical theory, and the inclusion of magnetic
field, for the study of the Hall effect and magnetoresistance.
The hope is to provide accessible and analytical semiclassical
formulas to facilitate the understanding of more advanced
but often opaque and numerically demanding fully quantum
approaches.
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APPENDIX A: DETERMINATION OF λε

To express the population correction Eq. (6) it is necessary
to fix the quantity λε in Eq. (18) at each energy. In order to do

that we invoke the maximum entropy principle subject to the
total-energy and particle-number constraints in the following
way. The functional to maximize is

F̃[ρk,b, α, β] = −
∑
k,b

[ρk,b ln(ρk,b) + (1 − ρk,b) ln (1 − ρk,b)]

+α

(∑
k,b

ρk,b − nel

)

+δ(E)β

(∑
k,b

εk,bρk,b − h

)
, (A1)

where nel is the electron density which is left invariant by
the action of the electric field otherwise charge would pile up
across the system violating the initial assumptions over the
electric field to be small and constant. The same reasoning
does not apply to the energy density h, which may change at
finite field from its initial value. α and β are two lagrangian
multipliers.

Clearly at zero field the maximization yelds ρε = f (β,μ)
ε ,

with f the Fermi distribution at a certain temperature β and
chemical potential μ = α/β. At finite field, the solution of the
Boltzmann equation is imposed by demanding that the actual
functional to maximize is

F[λε, α, β] = F̃[ fε + E · (λε + λk,b), α, β],

where λk,b = wk,b τk,b ∂εb
k

fεb
k
, including in wk,b only the first

two terms in Eq. (18). Maximizing F and considering the
linear order in E, we get the system of equations{

∂ρε
F = 0

∂αF = 0 ⇒
⎧⎨
⎩

λε = −(∇Eα)/[2N (ε)(1 + cosh(β(ε − μ)))]
−∑

b,k∈Sb(ε) λk,b/N (ε)∫
ε
λε = − ∫

ε

∑
b,k∈Sb(ε) λk,b

.

The solution is found simply by taking ∇Eα = 0 and

λε = − 1

N (ε)

∑
b,k∈Sb(ε)

λk,b. (A2)

We conclude that the chemical potential does not change
with the field while the charges get redistributed within each
energy-shell independently. Such a behavior was expected
since the scattering is elastic and the entropy is additive on
each energy shell. As a consequence also the energy density
is left invariant by the field.

APPENDIX B: SYMMETRIES

1. Role of space-group symmetries

Space group symmetries of a system will manifest in trans-
port if also the disorder has on average the same symmetry.

A clean system with space group symmetries has the prop-
erty H (Rk) = U R H (k)U R†, where R is the representation of
the space group element acting on momenta while U R is the
representation upon the orbital space. The symmetry implies
that for all b, k it exists a b′ such that PRk,b′ = U R Pk,b U R†.
The disorder may have the same symmetry. There would be a
“strong” symmetry if for each impurity W = U R WU R† while
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only a “weak” one (or better, a statistical one) if, using trial
matrices X and Y ,

X ◦ D ◦ Y = (U RXU R†) ◦ D ◦ (U RXU R†). (B1)

Luckily this difference is irrelevant here since all transport
quantities depend on W through D.

Concerning disorder-independent band properties, ener-
gies stay constant over momenta along the same group orbits;
velocities obey vRk,b′ = R̄vk,b, with R̄ the representation on
real space of the group; the norms simply verify vRk,b′ = vk,b.

Transport properties require that disorder be symmetric.
Assuming it be the case, it is not difficult to show that the
scattering times obey �Rk,b′ = �k,b. Instead, the matrix-valued
vector F determining the vertex corrections must satisfy a
compelling equality

Fε = U R (R̄ Fε )U R† (B2)

for all elements of the group. For this reason, it is likely
that vertex corrections vanish for systems with a high degree
of symmetry. As an example, in FeSe, mirror symmetries
with U R = 1 selectively make vertex corrections vanishing
for some pockets along specific directions increasing the
anisotropic transport in the nematic phase [45].

Similarly to D, the K tensor has the property

X ◦ K ◦ Y = (U RXU R†) ◦ K ◦ (U RYU R†). (B3)

As a side remark, this invariance implies that the ◦ eigenvalues
of both K and D are degenerate with multiplicity given by the
dimensions of the irreducible representations of the group.

Finally one has the compelling constraint for the average
renormalized velocities λε = R̄λε [see Eq. (A2)]. Combining
all constraints given by the symmetry, one finally find for the
renormalized velocities wRk,b′ = R̄ wk,b while for dc conduc-
tivity tensor σ = R̄σ R̄T .

The IIE and the GUE are special among the other ones.
Indeed, for all group symmetries D(IIE), being the ◦ identity,
is always symmetric while for the GUE the independence of
rates from momenta and the vanishing vertex corrections (see
Appendix D 2) lead always to symmetric transport quantities.

2. Time-reversal symmetric models

For time-reversal invariant systems, there exist an an-
tiunitary operator such that T H (k) T −1 = H (−k). One
can express T = ÛT K̂ with K̂ the complex conjugation
operator and UT a unitary. Systems with broken time-
reversal symmetry are described by version of the Boltzmann
equation that include magnetic driving terms. We may
understand our model, Eq. (3), as describing only those time-
reversal symmetry broken systems where those driving terms
lead to negligible effects.

For what concerns band properties of time-reversal sym-
metric models, we have that for all b, k it exists a b′
such that ξk,b = ξ−k,b′ , vk,b = −v−k,b′ , Pk,b = T P−k,b′T −1 ≡
UT P∗

−k,b′UT †. In analogy with space-group symmetries [see
Sec. (B 1)], if the disorder is time-reversal symmetric on av-
erage then the transport properties have a symmetry. Let’s
assume the disorder is symmetric, i.e., for trial X and Y
matrices,

X ◦ D ◦ Y = [(T XT −1) ◦ D ◦ (T YT −1)]∗, (B4)

where the last step follows by the definition of D. Observ-
ing that the product in Eq. (B4) is positive definite when X
and Y are projectors, it is easy to prove that �k,b = �−k,b′ .
Using the property X ◦ D ◦ Y = Y ◦ D∗ ◦ X , one gets Fε =
−T Fε T −1 ≡ −UT F∗

ε UT †. One can check that the invari-
ance property in Eq. (B4) holds also for K . Quite surprisingly
from these properties one finds λε = 0 for symmetric sys-
tems [see Eq. (A2)]. It follows also wk,b = −w−k,b′ and a
constraint for the integrand of σ corr

i j whose interpretation,
however, is not physically transparent: F i∗

ε ◦ D ◦ (1 − Kε )−1 ◦
F j

ε = (UT F i
ε UT †) ◦ D ◦ (1 − Kε )−1 ◦ (UT F j∗

ε UT †).

APPENDIX C: STATISTICAL ENSEMBLES FOR D

Despite the lack of knowledge of the specific disorder
configuration in a sample, one has often enough information
about the character (structure, symmetry) of the disorder to
opt for a statistical description using a specific matrix en-
semble. In these paper, we describe the ensembles related
to time-reversal symmetry and orbital isotropy. Clearly other
symmetries may be considered but may not be as universally
relevant as these ones.

1. Wigner and IIE ensembles

In the context of random matrix theory [34,46], the Wigner
ensembles consist of three ensembles GUE, GOE, and GSE.
They are vectorial spaces respectively of hermitian, symmet-
ric real, symplectic self-dual (Hermitian with quaternionic
elements) matrices W equipped with a Gaussian probabilis-
tic measure. For our purpose, we add a spatial label to the
matrices Wj and assume that for each impurity there is an
independent distribution. Thus the measure of integration
in Eq. (20) is DWc = C

∏Nb
m�m′ dW mm′

c , where C is some
normalization constant to ensure unit integral of the prob-
ability, dW mm′

j stands for dW mm′
j dW ∗mm′

j in the GUE case

and
∏

q′=0,1 dW (m0)(m′q′ )
j dW ∗(m0)(m′q′ )

j in the GSE case with the
second indices in the brackets labeling the quaternionic degree
of freedom [cf. Eq. (21)]. Notice that intraorbital matrix ele-
ments are statistically greater than the interorbital one as the
Gaussian in Eq. (21) can be written as exp{−(

∑Nb
m |Wmm|2 +

2
∑Nb

m>m′ |W mm′ |2)/2}.
These ensembles refer to a precise symmetry of each

disorder configuration: spinless and time-reversal symmetric
(GOE), spinfull, and time-reversal symmetric (GSE) or having
no symmetries at all (GUE). This means UT = 1 in the GOE
case and UT = iσy acting on the spin sector in the GSE
case (see Appendix B 2 for the definition of the time-reversal
symmetry). A generalization to ensembles with different UT

is trivial. Indeed, in these cases, there is always a unitary trans-
formation that brings such systems to either a GOE-type time
reversal or a GSE-type one [34], and the invariance formula
for D can be easily written down using such a unitary.

We stress that at fixed disorder symmetry there is an in-
finite number of ensembles that are orbital-isotropic. Their
distribution of eigenvectors of W has to be uniformly dis-
tributed (Haar measure), while that of the eigenvalues must
be of the form

∏Nb
i> j |Ei − Ej |β

∏Nb
i f (Ei ) where the first

term is the level repulsion function (from the Vandermonde

235143-11



MARCO MARCIANI AND LARA BENFATTO PHYSICAL REVIEW B 104, 235143 (2021)

determinant) whose strength is given by some positive number
β and f (·) is an arbitrary function fast-decaying at infinity.
Notice that the GUE, the GOE and the GSE have β = 2,
1, 4 respectively and f (·) is a simple Gaussian. Since in
our treatment only products of the form WW appear through
D [see, for instance, Eq. (12)], only the second moment
of the distribution is relevant, justifying the choice of the
Wigner ensembles over more complex ones. Indeed, for the
we have β = 2, 1, 4, respectively, and f (·) is a simple
Gaussian.

By “isotropic intraobital ensemble” (IIE), we denote i.i.d.
matrices of the form Wc = vc1 and a measure DVc = dvc for
real numbers vc. The IIE is the most direct generalization of
the single band disorder. Actually considered the formulas we
use, there is no even need to give the vcs such a Gaussian
probability and taking a fixed value vc = vI would produce
identical results (see, for instance, the disorder treatment in
Ref. [22]). Also this ensemble is eigenvector-isotropic but in
a trivial way and describes the disorder induced by electric-
field fluctuations (as it equally couples to all orbitals without
mixing them, in effect it couples to the total electronic charge).
For this ensemble, β = 0.

2. Derivation of Eq. (21)

To obtain the elements of the tensor D, we simply had to
evaluate Eq. (20) with O = W mm′

j W ∗nn′
i at i = j. Notice that

for the IIE and GUE the evaluation is very simple. We show
here only the derivation of the GOE and GSE.

GOE. In the case m = m′, n = n′ = m must follow in or-
der to have nonzero average. The Gaussian average yields
simply δmm′δnn′δnm. In the case m �= m′, either n = m, and
n′ = m′ would follow, or n = m′, and n′ = m would fol-
low since W is symmetric. The first instance yields average
(1/2)δmnδm′n′ (1 − δmm′ ) where the last factor is to avoid dou-
ble counting of diagonal case above. Similarly the second
instance yields (1/2)δmn′δm′n(1 − δmm′ ). Summing all together
we get the GOE expression in Eq. (21).

GSE. The diagonal element of W consists in the quaternion
asσ0 with as real (s = 1, . . . , Nb). These terms contribute to
the average of W (mq)(m′q′ )W ∗(nr)(n′r′ ) as δmm′δnn′δnmδqq′δrr′/2.
The off-diagonal term at position ss′ is a quaternion whose
matrix representation is ((a, b), (−b∗, a∗))ss′ . This quater-
nion has nontrivial average when it is coupled to itself
or to the quaternion at s′s, which is its conjugate due
to the hermiticity of V . In the first case, the contribu-
tion will be δmnδm′n′δqrδq′r′ (1 − δmm′ )/2, in the second case,
(−1)q+q′

δmn′δm′nδq(1−r)δq′(1−r′ )(1 − δmm′ )/2, where the first
factor comes from the (−b∗) element in the definition of
a quaternion. Summing all together and observing that few
terms cancel out we get the GSE expression in Eq. (21).

With respect to the ◦-product, DGOE > 0, while DGSE has
indefinite signature.

3. Comparison between ensembles: the value of σW

For each ensemble, the variance σW sets the average
strength of the perturbation and does play the same role of vI .
There is a problem when trying to compare different ensem-
bles. Since the ensembles have a different number of degrees

of freedom, it is somewhat arbitrary to claim that fixing equal
values of vI and σW for all ensembles is equivalent to set the
disorders to equal strength. Such an ambiguity is discussed
here. Depending on the needed application, we suggest here
two options to fix consistently the value of σW for the dif-
ferent ensembles, at fixed equal value of vI . (1) The simplest
choice is

σW = 1 all ensembles, (C1)

whereby all degrees of freedom of W , irrespectively of the
ensemble, have the same variance modulo their multiplicity,
i.e., 〈d2〉 = 1/md , for a generic free variable d appearing with
multiplicity md in W . Such a choice may be driven also by
the mathematics of the rates and vertex corrections formulas.
Since D appears always contracted according to the ◦-product,
one may want to force the sum of the ◦-eigenvalues of D to
equal the same value, say Nb, for all ensembles—the specific
value Nb is suggested by Wigner’s semicircular law, by which
eigenvalues of large matrices of size N scale like

√
N [34,46].

One can verify that this choice of scaling indeed accommo-
dates such a requirement. Such a choice may be preferable if
one studies transitions between ensembles where an external
field (e.g., a magnetic field) activates some disorder degrees
of freedom without affecting the preexisting ones [48].

(2) The option above creates an unbalance of the total
strength of disorder between ensembles that have more non-
vanishing elements in W than others. Therefore, for some
applications, one may prefer to give vI the meaning of average
strength per degree of freedom of W , disregarding whether
it is allowed or not by symmetry. Given that the number of
degrees of freedom of the symmetry-unconstrained (hermitian
matrix) W is N2

b , for each ensemble we want to find σW

such that
∑

mm′ 〈|W mm′ |2〉W /N2
b ≡ ∑

mm′ Dmm′
mm′/N2

b = 1. Using
Eq. (21), one finds

σW = =

⎧⎪⎪⎨
⎪⎪⎩

Nb IIE
1 GUE√

2Nb/(Nb + 1) GOE√
2Nb/(Nb − 1) GSE

, (C2)

where Nb includes the spin degree of freedom in the GSE case
(so NGSE

b � 2). Notice how σW diverges with increasing Nb in
the IIE case. This divergence is there to compensate for the
small number of nonvanishing elements in the disorder matrix
(located only along the diagonal).

APPENDIX D: PROPERTIES OF OPERATORS AND
TENSORS

1. Structure of Qτ and relation to the tensors Kε

Because of the delta function in energy in Qτ [see
Eq. (13)], the kernel may be seen as a block diagonal matrix
coupling only states with same energy. We prove here that, at
each ε, the nonvanishing eigenvalues at each ε block are the
same as Kε. Thus such blocks are separable operators [49].
Moreover, we show explicitely the one-to-one correspondence
between the eigenfunctions of Qτ and the eigenvectors of Kε.

Let Mε be a right eigenmatrix of Kε i.e., Kε ◦ Mε = λεMε

with λε a scalar. We define aε
k,b = P∗

k,b ◦ D ◦ Mε δ(εk,b −
ε). One has (we use here a compact notation for
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conciseness):

Qτ aε = P∗ ◦ D ◦ Pτ aε

= P∗ ◦ D ◦ Kε ◦ Mε = λεP∗ ◦ D ◦ Mε

= λε aε. (D1)

Thus aε is an eigenfunction of Qτ . Conversely, let ak,b be an
eigenfunction of Qτ . Since Qτ couples only momenta and
bands with the same energies, ak,b has support only on an en-
ergy shell ε. Then we define Mε = ∑

b,k∈Sb(ε)(
P τ a
|v| )k,b. When

Mε �= 0, one has (we neglect here summations and labels),

Kε Mε = PτP ◦ D

|v| ◦ P∗τ aε

= Pτ

|v| Qτ aε = λε

Pτ

|v| aε

= λε Mε. (D2)

Thus the correspondence of the eigenpairs of Qτ and K is
proved. The separability is a consequence, but is also evident
from Eq. (13). After selecting a specific energy shell the
delta function is superfluous and the term P∗

k,b ◦ D ◦ Pk′,b′ is
a finite summation over (N2

b ) products of two functions (P)
respectively of the left and right kernel indexes (momenta and
band number), which is the definition of separability of an
operator.

2. Vanishing vertex corrections with GUE disorder

With the GUE disorder rates depend only on energy,
�

b (GUE)
k = �(single). This happens because D has only one

nonvanishing eigenvalue when eigendecomposed with respect
to the ◦-product and its associated eigenmatrix is the identity
operator (remember that TrPk,b = 1).

Let’s consider again the tensor Kε, one has (Kε )mm′
nn′ =

κ
∑

b,k∈Sb(ε)(P
∗mn τ

|v| )k,b δm′n′ . The tensor structure carries

over to the inverse (1 − Kε )−1 mm′
nn′ = Nmn δm′n′ for some

N matrix, leading to a vertex corrections proportional to the
quantity [cf. Eq. (18)] ∑

b,k∈Sb(ε)

(v/|v|)b
k = 0. (D3)

To see why this term vanishes, we can replace the left-hand
side with

∑
i

∫
Si

d �S, where i labels the Fermi surfaces and �S
is the normalized normal vector of the surface. Multiplying
the quantity by an arbitrary constant vector �a, applying the
divergence theorem to the integral and ∇ · �a = 0, we obtain∫

Si
d �S = 0 for each surface.

3. σcorr > 0 if D is ◦ -positive

We have mentioned that D is always positive while group-
ing together the indexes (mm′) and (nn′). When this happens,
in a nontrivial way, also with the grouping (mn) and (m′n′)
i.e., the ◦-product, then the vertex corrections are strictly
positive. In that case, we can find X such that D = X † ◦ X and
redefine P = X ◦ P and K̃ = X ◦ K ◦ X −1. The tensor K̃ is
manifestly positive with respect to the ◦-product, indeed if we
see it as a matrix K̃ (mn)(m′n′ )

ε = κ
∑

b,k∈Sb(ε)(P̃
mn τ

|v| P̃∗m′n′
)k,b,

being a sum of positive 1-rank matrices. Defining F̃ =

X ◦ F, the vertex correction contribution to the dc con-
ductivity reads as σ corr = κ F̃∗

ε ◦ (1 − K̃ε )−1 ◦ F̃ε, which is
clearly positive at all energies since (1 − K̃ )−1 is a positive
matrix.

APPENDIX E: PROOFS OF THE CLAIMS
IN SEC. VI

We show here the proofs of Sec. VI. Consider Eq. (14). To
prove claim (i), we must find D such that D ◦ Mε ∝ 1, with
Mε = ∑

b′,k′∈S(εb′
k )(P/|v|)k′,b′ , so that the rates will be constant

(or equivalently isotropic) on the shell ε. Suppose we have
only one impurity type then using Eq. (12) and the defini-
tion of ◦-product we have D ◦ Mε = W MεW †. Since these
matrices are Hermitian, we can choose W to be diagonal-
ized by the same unitary O that diagonalizes Mε obtaining
W MεW † = Oεmε|w|2Oε† with mε,w the diagonal eigenvalue
matrices. Fixing |w|2 = m−1

ε (Mε is a positive matrix), we
obtain the desired property. Notice that for such a system
λε = 0. However, despite the constant rates, vanishing vertex
corrections are not a necessary consequence (as it is instead
for systems with GUE disorder).

To prove claim (ii), we observe that we can write �k,b =∑
i

∑
j m j

ε pi|ek,b · Wi · O j
ε|2 where the index i runs over the

different impurities types of the system appearing with proba-
bility pi, O j

ε is the jth eigenvector of Mε and ek,b an electronic
eigenstate. Clearly if Wi ⊥ ek,b that contribution to the sum
will vanish. It is quite evident that, given the positivity of the
sum in pi, a less heterogeneous disorder is always more apt
to make a rate to vanish. So we may restrict to the single-
impurity case. If there is an index j̄ for which mj̄ vanishes it
is clear that a disorder W ‖ Oj̄ will make all rates to vanish,
however, such an eventuality is unlikely to happen because it
is equivalent to say that the eigenstates do not span the whole
orbital space. So assuming all mj > 0, we can choose the
impurity disorder W to have the minimal possible rank, rank 1,
(rank 0 would imply W = 0 which trivialize the problem) and
we can tune it to be orthogonal to at least Nb − 1 electronic
eigenvector at different k, b points.

A desired claim one may like to make about vertex cor-
rections is that it exists always a tensor D that makes them
vanishing. As one may have expected this kind of statements
are difficult to prove. We first notice that Fα

ε = 0(α = x, y, z)
does not hold in a generic nonsymmetric system. Even more,
there are systems where it is nonvanishing independently of
the disorder. This can happen because nothing forbids that
some nondiagonal element of the projectors [see definition
of F Eq. (19)], say Pi j , may have always the same sign
of vα varying k and b. Then since all the other integrands
in F (in particular the rates) are positive one cannot make
the element Fα

i j to vanish by tuning D in these systems.
However since in the vertex correction term F appears in
the term D ◦ (1 − Kεk )−1 ◦ Fα one can hope to tune D and
make the full term vanishing. The tensor (1 − Kεk )−1 can-
not have a zero ◦-eigenvalue by the properties of K (see
Appendix D 1), then the term can vanish only if it exists
a D such that F i is an eigenmatrix of D with vanishing
◦-eigenvalue. To determine this condition one has to solve
a nonlinear system in the elements of D which is hard to
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analyze and may be solved only numerically. Thus the only
conclusion we can safely draw is that for a generic sys-

tem D will not produce vanishing vertex corrections if it is
nonsingular.
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