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Abstract: Coastal areas are particularly vulnerable to flooding from heavy rainfall, sea storm surge,
or a combination of the two. Recent studies project higher intensity and frequency of heavy rains, and
progressive sea level rise continuing over the next decades. Pre-emptive and optimal flood defense
policies that adaptively address climate change are needed. However, future climate projections have
significant uncertainty due to multiple factors: (a) future CO2 emission scenarios; (b) uncertainties in
climate modelling; (c) discount factor changes due to market fluctuations; (d) uncertain migration
and population growth dynamics. Here, a methodology is proposed to identify the optimal design
and timing of flood defense structures in which uncertainties in 21st century climate projections are
explicitly considered probabilistically. A multi-objective optimization model is developed to minimize
both the cost of the flood defence infrastructure system and the flooding hydraulic risk expressed
by Expected Annual Damage (EAD). The decision variables of the multi-objective optimization
problem are the size of defence system and the timing of implementation. The model accounts for
the joint probability density functions of extreme rainfall, storm surge and sea level rise, as well
as the damages, which are determined dynamically by the defence system state considering the
probability and consequences of system failure, using a water depth–damage curve related to the
land use (Corine Land Cover); water depth due to flooding are calculated by hydraulic model. A
new dominant sorting genetic algorithm (NSGAII) is used to solve the multi-objective problem
optimization. A case study is presented for the Pontina Plain (Lazio Italy), a coastal region, originally
a swamp reclaimed about a hundred years ago, that is rich in urban centers and farms. A set of
optimal adaptation policies, quantifying size and timing of flood defence constructions for different
climate scenarios and belonging to the Pareto curve obtained by the NSGAII are identified for such a
case study to mitigate the risk of flooding and to aid decision makers.

Keywords: climate change; multi-objective optimization; coastal region; pumping plant; flooding

1. Introduction

Flooding due to extreme weather-related events hitting coastal regions has caused
devastating damage worldwide in recent decades [1,2]. The negative impacts of these
events could worsen in the coming decades due to the rapid anthropogenic development
of coastal areas, and due to climate change. The population density in coastal areas is
expected to increase by 25% by 2050 [3]. Furthermore, future climate projections indicate
that coastal regions will be faced with a general increase in the average sea level, as well as
an intensification of extreme meteorological phenomena that can increase the frequency
and/or intensity of flooding [4–6]. Thus, flood protection policies to reduce vulnerability
and exposition of coastal areas and to adapt to above mentioned future changes [7,8] are
necessary. In April 2013, the European Union formally adopted the Adaptation to Climate

Water 2022, 14, 1481. https://doi.org/10.3390/w14091481 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14091481
https://doi.org/10.3390/w14091481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w14091481
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14091481?type=check_update&version=1


Water 2022, 14, 1481 2 of 26

Change Strategy, in which the principles, guidelines and objectives of the Community
policy on adaptation to climate change were defined. Despite the importance of the issue,
methodologies and approaches for long-term planning of adaptation policies are very
challenging since they should be able to identify the best adaptation solutions to adopt and
their right timing given uncertain future climate scenarios.

1.1. Source of Uncertainty in Climate Projections

There are different sources of uncertainty in future climate projections. First, although
different possible mitigation pathways have been hypothesized as Representative Concen-
tration Pathways (RCP) in CMIP5 or Share Social-economic Pathway (SSP) in CMIP6 [9],
there is no assessment of the relative likelihood of these scenarios. This is often considered
a deep uncertainty. A second source of uncertainty is due to the different characteristics of
Global Climate Models (GCMs). Initial condition, parametric and structural uncertainties
affect the GCM simulations which represent climate evolution trajectories that can differ
significantly even for the same mitigation scenario [10]. To overcome that problem, an
ensemble of models is employed to offer a probabilistic representation of climate projec-
tions. Third, in order to explore possible adaptation policies at local or regional scales, the
trends of the hydrological variables such as temperature, rainfall or sea level rise need to be
projected at a finer spatial resolution than that provided by GCMs. Due to the coarse spatial
resolution of GCMs, these hydrological variables are usually biased. For instance, in CMIP5
GCMs, oceanographic processes are simulated with a horizontal resolution coarser than
1 degree of latitude and longitude. This resolution is not sufficient to represent bathymetry
variation affecting local processes like coastal currents [11], or small-scale processes like
eddies [12]. Furthermore, structural errors in models of the sea level components are proba-
ble, as well as, systematic bias caused by missing processes and/or feedback. Ref. [13]. Bias
correction methods are also usually adopted to correct daily or monthly rainfall amount pro-
jections by GCMs and downscaling methods are used to obtain rainfall projections at finer
spatial scale. Both methods add further uncertainties that may be unquantifiable [14–16].
Finally, natural variability at decadal or bidecadal scales, could dominate the climate trends
and makes the identification of adaptation policies timing very difficult [17]. All these
sources of uncertainty are illustrated in Figure 1.

Figure 1. Uncertainties in climate projection due to (a) future CO2 emission scenarios; [18] (b) uncer-
tainties in climate modelling; (c) long period natural cycle [8].

1.2. Metodology Approaches to Adaptation Action Identification

In the literature, a number of methodologies for the identification and the assessment
of adaptive actions and works to cope with hydraulic risks in coastal areas under climate
change have been proposed in the past [19–21]. Among the approaches which explicitly take
into account the elements of uncertainty due to climate change are the resilience “bottom-
up” approach [22] and the predictive “top-down” approach which is the most used.

Bottom-up approaches do not necessary need climate projections by GCMs. Examples
of bottom-up approaches include the policy tipping point [23] and the dynamic adaptive
policy pathways [24]. The dynamic adaptive policy pathways method developed by [24]
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combines some elements of Adaptive Policymaking [25], and Adaptation Pathways [26]
methods, like adaptation tipping point, i.e., the point when a particular action is no longer
adequate and that triggers a specific condition that requires a new action or plane change.
These approaches do not seek to identify the optimal sequence of adaptation actions and
their timing.

Top-down methods use climate projections by GCMs as inputs for designing adapta-
tion strategies which might enhance resilience or reduce vulnerability of specific geographic
areas to climate change [20,27,28]. Specifically, for coastal areas, [29] developed a top-down
type model that integrates multi-objective optimization algorithms and a tree-like decision-
making scheme in order to provide the optimal strategy to cope sea level rising. The
tree-like scheme coupled with a genetic algorithm evaluates the costs associated with each
intervention and the flood risk. The decision tree shows the intervention measures at
each planning horizon time step if a threshold value is reached based on the future sea
level projections.

The identification of adaptation measure timing provides relevant information which
could significantly improve the planning process, and lead to a more efficient use of the
economic resource to cope the adverse effects of climate changes. Moreover, approaches
should able to schedule the best adaptation actions timing in case of sudden or abrupt
climate changes [30].

1.3. The Proposal

In order to address these latter issues, i.e., the need to identify design and timing of
defence constructions taking into account the uncertainties in climate projections, including
abrupt changes of climate forcing, we propose a multi-objective optimization approach
(similar to [29,31]) which integrates hydraulic modelling for simulating flooding and its
consequences, in which the timing of the adaptive actions is taken into account among the
decision variables of the optimization problem and uncertainties in climate projections are
integrated into the definition of objective functions. Multiobjective optimization approach
was chosen on the basis of similar considerations as those proposed [29]. Multiobjective
optimization methods allows decision makers to choose the preferred solutions among a
set (Pareto-optimal set) of trade-off solutions, for example those relative to natural habitat
conservation, which can’t be easily expressed in monetary terms [32]. In the present paper,
the multi-objective optimization model relies on the definition of two optimality criteria:
minimizing the cost of the flood defence infrastructure system and the flooding hydraulic
risk for the entire period of climate projections. The formalization of the last optimality
criteria, i.e., the hydraulic risk associated to flooding events, relies on the definition of the
Expected Annual Damage (EAD) [33]. The EAD accounts for the joint probability density
functions of extreme rainfall, storm surge and sea level rise, and the corresponding damages,
for a given defence system state identified by the water depth–damage curve related to
the land use (CORINE Land Cover) [1]).The uncertainties in future climate projections are
treated through time varying probability density functions (Pdf) and are used to compute
the EAD. A hydraulic model for the assessment of damage is integrated within the multi-
objective optimization algorithm (non-dominated sorting genetic algorithm 2, NSGAII [34]).
A case study is presented for the Pontina Plain (Lazio Italy), a coastal region, originally a
swamp reclaimed about a hundred years ago, that is rich in urban centers and farms. A set
of optimal adaptation policies, belonging to the Pareto curve calculated by the NSGAII, to
mitigate the risk of flooding and to aid decision makers are identified for such a case study.

2. Methods

A sketch of the model system is shown in Figure 2. Figure 2 synthetized methodology
and related algorithms aimed to identify the size and timing of flood defence constructions
to cope with sea level rise, as well as, extreme rainfall regime modification due to climate
change. The methodology considers a multi-objective optimization problem, in which both
hydraulic risk due flooding and construction costs of flood defence system are minimized
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for the entire period of climate projections. Hydraulic models are used to calculate the
hydraulic variables necessary to the flood damage assessment as a functions of climate forc-
ings and of the state of flood defence systems, taking into account uncertainties in climate
projections. Figure 2 also describes decision variables of the multi-objective optimization
problem as well as the input ones.

Figure 2. Sketch of model system.

2.1. Multi-Objective Optimization Problem Formalization

Two optimization criteria are defined: (a) minimization of hydraulic risk associated to
hydrological extremes for the entire climate projection period; (b) minimization of the cost
of the adaptation actions for the same period. Adaptation actions consists of flood defence
constructions, as levees, flood retention basins, spillway canals, other actions aimed to
reduce exposition to hydraulic risk as for instance retreat strategies [35]. Objective functions
for the two optimization criteria are formalized as:

O f1 =
Na

∑
i=1

(
1

(1 + rd)i EADi − EADa)
2 (1)

O f2 =
Ni

∑
k=1

1
(1 + rc)Tk

Cc + (Tk +
−→χk) +

Na

∑
i=1

1
(1 + rc)i Cm

i (
−→χk + ∆Tk) (2)

The flooding hydraulic risk objective function Equation (1) is constructed with refer-
ence to the concept of Expected Annual Damage (EAD). The EAD can be expressed as the
integral of the probability of not exceeding certain dangerous events, multiplied by the
consequences of the event [36]:

EADi(
−→χ ) =

∫
A

∫
E

D(lci (x, y),
−→
ξ ,−→χ )pT

i (
−→
ξ ) dad

−→
ξ (3)

where D(lci (x, y),
−→
ξ ,−→χ ) is the damage depending on: (a) land cover or use characteristics

lci (x, y) being x, y the coordinate of a generic point of the domain representing the region
considered; (b) the probability density pT

i (
−→
ξ ) at the i-th year of the Nc hydrological forcing
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factors
−→
ξ =

−→
ξ1 ,
−→
ξ2 , . . . ,

−→
ξNc , potentially able to cause flooding; (c) the state at the year

i of the ND flooding defence structures−→χ = −→χ1 ,−→χ2 , . . . ,−−→χND . The EAD accounts both
the probability density function of the forcing hydrological factors and the damage due
to flooding associated with them depending on the intensity of extreme events and of
the state of flood defence structures. In Equation (1), EADi is Expected Annual Damage
(i = 1, 2, . . . , Na), Na the number of the years of climate projection, rd and rc are discount
rates related to the first and second objective function respectively, EADa the Acceptable
Expected Annual Damage. We define as acceptable EADa as the maximum value of EAD
that a community can tolerate, in relation to its exposition, vulnerability and hazard. In
principle EADa should be equal to zero, i.e., a community would not want suffer any
kind of damage due to flooding. But since zero risk is unrealistic, a community can bear
exceptionally flooding producing limited damage to things or building, no casualties and
so on. In this sense the acceptable EADa could be thought as a reference acceptable target
for the community, not varying in time. The formalization of the O f1 in Equation (1),
therefore is a metric representing the distance from such target. The formalization of
O f1 by Equation (1) is rather general and could also be used for defining other objective
functions including those related to assess of intangible damage or related to environmental
quality or natural habitat targets which can’t easily expressed in monetary terms [31]. In
Equation (2) Cc is the cost of the ND flood defence constructions and other adaptive actions
−→χ = −→χ1 ,−→χ2 , . . .−−→χND , at the time Tk(k = 1, 2, . . . , Ni) where Ni number of horizon times in
which the climate projection period is divided , Ci

m is the annual maintenance costs of the
flood defense constructions depending on the type of flood defence adopted, and the timing
between two succeeding constructions. ∆Tk = Tk − Tk−1. In the multi-objective problem
formalized in Equations (1)–(3), −→χ = −→χ 1,−→χ 2, . . .−−→χND and TK(K = 1, 2, . . . , Ni) are the
decision variables, lci (x, y) are the state variables,

−→
ξ and pT

i (
−→
ξ ) are the input variables.

The decision variables are constrained by:

Tk+1 > Tk (4)

Tk+1 − Tk > ∆Tmin (5)

where, ∆Tmin is the minimum temporal interval between two flood defence constructions
(or actions) and their update. We also impose that once a construction is realized at the time
Tk it can’t remove at the time Tk+1 but only update if necessary, except for the case in which
flood defences can be destroyed by the occurrence of a large event as, for instance, that
able to produce an overflow of levees. In the latter case the cost the entire reconstruction of
flood defence is taken into account. The other decision variables are also included within
an interval of reasonableness, for instance the increase of the embankments will be selected
within an predefined range from 0 to a maximum levee crest height.

The probability pT
i (
−→
ξ ) in Equation (3) is a resulting probability density function that

accounts for the probability density of each forcing factor ξ j(j = 1, 2, ...Nc) as well as the
changes in probability functions of the forcing factors associated to the ensemble of GCMs
simulations within a for each future climate scenarios. If the forcing factors are mutually
independent, for a single climate scenario, the probability density function is given by the
product of probability of every single event. If the forcing factors are not independent,
a different methodology could be used to account for the dependence among the different
forcing factors, e.g., bivariate point process method [37]. Furthermore, the probability
density function for an ensemble of GCM simulations, as well as the likelihood of different
RCP or SSP climatic scenarios have to be taken into account in the definition of pT

i (
−→
ξ ).

This allows one to include the uncertainties of future emission scenarios, as well as those in
climate modeling.

2.1.1. Discount Rates

In Equations (1) and (2) two different discount rates rd and rc are considered. In the
context of climate change policy making, they are very important in understanding how
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much society today should invest in trying to protect vulnerable areas, limiting the impacts
of climate change later in the future [38]. Depending on the context, discount rates can
assume different meanings [39]. In the specific case proposed in the present study, rd in
Equation (1) is as a measure of the relative importance of negative consequences produced
by flood events in term of hydraulic risk occurring at different points in time. It therefore
can be thought as how we weight risks due to future events within an intergenerational
pact. Higher is rd, lower is our hydraulic risk assessment at future times for the same
hydrological event; rd equal zero is equivalent to assume a temporal independence of
hydraulic risk assessment.

The discount rate rc in Equation (2), that is related to the flood defence construction
costs, depends on general condition of economy in a more close relation with the market
dynamics. Since our formulation of the multi-objective problem allows to formalize the
objective functions in different measurement units, eventually incommensurable, the
distinction between the two discount rates appears to be appropriate. Furthermore it
allows a more flexible approach to the problem.

2.1.2. Damage Assesment

The term D(lci (x, y),
−→
ξ ,−→χ ) in Equation (3) accounts for the damage due to inundation

depending on the state of land cover and the defence constructions, and on the entity of
forcing factors. The damage D(lci (x, y),

−→
ξ ,−→χ ) is estimated as follows. The direct damage

associated with the physical impacts of a hazard is estimated by unit damage functions
or Stage-Damage functions, which are conceptually similar to the fragility curves used in
other disciplines. In the event of flooding, the damage functions are determined by the use
of a specific relationship between the characteristics of flood and the extent of the economic
damage referred to a specific type of asset exposed [40]. The procedure for estimating
direct damage has 3 components: (1) The characteristics of the assets exposed through the
analysis of the information on land use by satellite data [41]; (2) the characteristics of the
flood represented by depth and extension of the flooding: (3) the combination of the (1)
and (2) with the depth curve-damage in order to stimulate the extent of the damage with
respect to the value of the exposed asset. Vulnerability and exposure of each point of the
considered region is featured by the term lci (x, y) which is assumed to change from year
to year as a consequence of modification of land use or increase/decrease of urbanization
or population. The physical characteristics of the territory and the value of vulnerable
assets (1) are represented by the digital terrain model (DTM) and by the satellite land
use data (CORINE Land Cover), respectively. The extent and depth of the flooding were
obtained by numerical hydraulic simulations, for given rainfall intensities and sea levels.
The data thus obtained are translated into a damage index or the percentage of the value
of the asset that is lost, through the depth-damage curves [42]. Several countries have
developed standardized methods for estimating flood damage. An example is the HAZUS
methodology developed in the USA [43], the guidelines for cost-benefit analysis (CBA)
developed in the UK [44], and Australia (Bureau of Transport Economics, 2001). The model
we chose was HAZUS as it provides an estimate of a large variety of damages, direct and
indirect. For each calculation cell of 100 m2, the damage constitutes in the value in Euro of
the damage caused by type of asset according to the depth of the flooding.

2.1.3. Hydraulic Models

Flood damage assessment requires knowledge of the hydraulic characteristics of the
flooding—water depth, flow velocity, flooding persistence. These are obtained by hydraulic
simulations forced by direct application of rainfall, as well as, boundary conditions due to
storm surge and sea level rise. In this paper, for the study case, two different hydraulic mod-
els are used: (a) a 2D hydraulic model, the USACE Hydrologic Engineering Center’s River
Analysis System (HEC-RAS 5.0.7); (b) a fast simplified hydraulic model. The first model is a
public domain software that meets the minimum requirements of National Flood Insurance
Program as required by FEMA (https://www.fema.gov/hydraulic-numerical-models-

https://www.fema.gov/hydraulic-numerical-models-meeting-minimum-requirement-national-flood-insurance-program
https://www.fema.gov/hydraulic-numerical-models-meeting-minimum-requirement-national-flood-insurance-program
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meeting-minimum-requirement-national-flood-insurance-program). A recent FEMA re-
port (https://www.fema.gov/media-library-data/1561469561757-6fed6a4fd077673f684
920b9ad5a0e53/RapidResponseFloodModelingFinalReport.pdf) shows that the model pro-
duces results with higher precision (standard deviation) and predictive value (correlation)
than other models.

The equations in HEC-RAS are solved using an implicit Finite Volume algorithm.
This algorithm allows the use of a structured or unstructured computational mesh. Local
thickening of computational mesh can be applied by breaklines, added along levees,
buildings, roads, and in abrupt slope change. One of the advantages of using HEC-RAS
is the possibility to simulate the presence of gates, pumping stations, and other hydraulic
devices for flow maneuver. For very large domains, the 2D HEC-RAS code can be coupled
with HEC-HMS which is a physically based and conceptually semi-distributed model
designed to simulate rainfall-runoff processes to provide flood hydrographs generated
externally from the 2D integration domain.The fast simplified hydraulic model [45] models
the hydraulic network and the flooplain using three elements: the main river hydraulic
networks, the storage areas representing the basins, and the ideal channels connecting
the storage areas to points of the rivers belonging to the hydraulic network. The 1D
Saint-Venant equations are used to simulate the flow along the rivers which belong to the
hydraulic networks. The temporal trend of water level over the storage areas is calculated
by the continuity equation, which is a function of the flows entering or going out from the
ideal channels and of the rainfall amount directly falling over the area.

2.1.4. Flood Defence Construction and Maintenance Costs

To evaluate the objective function expressed by Equation (2) construction and main-
tenance costs of flood protection structures have to be evaluated. Such costs include the
construction of fill, columns, flood walls, levees, and flood shields or closures, as well
as, that of auxiliary materials and activities that are required to assure that the primary
flood proofing elements function properly. Examples are the cost for providing access
to buildings on fill, or interior drainage for areas enclosed by levees or floodwalls. We
considered two kind of works: levees in the most critical zones of the hydraulic network,
and the creation of flood expansion areas ruled by weirs. In order to estimate the costs
of raising the banks, reference is made to the study conducted by [46], which estimate
between 4.5–12.4 million Euros per km of length and per meter of raising the embankment
in rural areas. In the present study a unit cost of C = 4.5 million Euros/km per meter of
embankment elevation will be considered.

For every planning horizon the total cost of the riverbanks rise is calculated using the
following equation:

Carg(t, l2) = δt(l2(t) ∗ C ∗ L) (6)

where L is the length of the entire network of embankments, around 35 km. Maintenance
costs, €100,000 per kilometer to be spent every 10 years, were provided by the Reclamation
Consortium Office. The cost of expansion areas was evaluated as lost space to most
productive uses, the amount is €5000 per hectare for each year in which the expansion area
is flooded.

2.1.5. NSGAII Genetic Algorithm

The multi-objective optimization problem of Equations (1)–(5) is solved by the NSGA
II genetic algorithm. Genetic algorithms mimic the Darwin’s theory of natural selection:
a population represents a group of solution points. A generation represents algorithm
iteration. A chromosome is equivalent to a component of the design vector. In accordance
to these definitions genetic algorithm deals with a population of points, and hence multiple
Pareto optimal solutions can be obtained from a population in a single run. Random
number and information from previous iterations are combined to evaluate and improve
a population of points, and then to select non-dominant solutions. In this paper the non-
dominant-sorting genetic algorithm II [47], NSGA II, is used, which has been applied

https://www.fema.gov/hydraulic-numerical-models-meeting-minimum-requirement-national-flood-insurance-program
https://www.fema.gov/hydraulic-numerical-models-meeting-minimum-requirement-national-flood-insurance-program
https://www.fema.gov/media-library-data/1561469561757-6fed6a4fd077673f684920b9ad5a0e53/RapidResponseFloodModelingFinalReport.pdf
https://www.fema.gov/media-library-data/1561469561757-6fed6a4fd077673f684920b9ad5a0e53/RapidResponseFloodModelingFinalReport.pdf
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successfully to many optimization problems. This algorithm uses tournament Goldberg
and Deb [48], simulated binary crossover (SBX) [49], mutation operator and crowding
distance for diversity preservation. The original NSGA II Matlab code has been adapted to
the specific multi-objective optimization problem above described.

2.2. Probability Density of Hydrological Forcing Factors

In order to calculate the EAD of Equation (3) it is necessary to estimate the probability
density function pT

i (
−→
ξ ) taking into account the statistical independence or the possible

statistical dependence among the different hydrological forcing factors. Generally, heavy
daily rainfall amount and storm surge due to wind set-up and low atmospheric pressure are
statistically dependent, while the average sea level rise, as a consequence of climate change,
can be assumed statistically independent from the above cited forcing factors [50,51].
Therefore, in Equation (3) we express the probability density function as:

pT
i
−→
ξ = pT

i (ξ1, ξ2)pT
i (ξ3) (7)

where pT
i (ξ1, ξ2) and pT

i (ξ3) are the probability density functions of the statistical jointly
variables heavy rainfall amount ξ1 and storm surge ξ2 and of the statistical independent
variable sea level rise ξ3.

2.2.1. Heavy Rain and Storm Surge Joint Probability

The estimation of the joint probability of the occurrence of intense rain and storm
surges is extremely important [37] because even a weak dependence can have significant
implications in the estimation of the hydraulic risk [52]). Indeed, heavy rainfall and storm
surge are often caused by similar atmospheric conditions such as, low atmospheric pressure
and strong winds that cause storm surge. Several methods of multivariate statistical
analysis exist to estimate the dependence of such events, including the Point Process
Method [53,54]. For the estimation of the probability distribution p(ξ1, ξ2) the “logistic
model” can be applied [37]:

p(ξ1, ξ2) = exp− (ξ−1/α
1 + ξ−1/α

2 )1/α 0 < α < 1, ξ1 > 0, ξ2 > 0 (8)

where ξ1 and ξ2 represent the extremes of the bivariate vector consisting respectively of
daily rainfall amount and daily storm surge levels, which is assumed to follow the standard
Frechet distribution. The parameter α indicates the dependence between the two extremes
with α → 0 complete dependence and α → 1 independence. The method used involves
identifying the rainfall and storm surge intensity thresholds and estimating the Generalized
Pareto Distribution (GPD) of the margins. Then using GPD parameters, the entire dataset
is transformed to have the standard Fréchet margins [55]. After the transformation of the
Fréchet margins into radial and angular components (r, w), the joint threshold r0 is selected.
The α parameter is estimated through a likelihood function constructed from the spectral
density h(w).

h(w) =
1
2
(α−1 − 1)[w(1− w)]−1−1/α[w−1/α + (1− w)−1/α]α−2 (9)

The inference for the Point Process Method is based on a likelihood function con-
structed from the spectral density h(w):

L(α; (ξ1, ξ2) . . . (ξn, ξn)) = ∏
j|rj>r0

h(wj) (10)

The joint probability of the events will be considered for each year of the time horizon
considered. The model is calibrated using the data relating to the accumulated daily rainfall
for 20 years of records of rainfall stations present in the study area.
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2.2.2. Mean Sea Level Rise Projections

The future mean sea level until 2200 can be derived from [18,56,57]. Using a model
ensemble, ref. [18] provide a method for obtaining probabilistic projections of sea level rise
both on the global scale and on the local scale considering the individual contributions due
to the melting of both the polar ice caps and glaciers. The projections use 3 RCP scenarios,
8.5, 4.5 and 2.6. In order to obtain local sea level rise projections, the model requires the
aggregation of the individual components that influence the sea level change in every
site of interest [58]. Those components are respectively the three ice sheet components
(Greenland, West Antartic and East Antartic): (a) the global mean thermal expansion and
the ocean dynamic effects based upon the CMIP5 [59] and GCM models; (b) the land water
storage evaluated following the approach of [60]; (c) the glacier and ice cap surface mass
balance and tectonics. The non-climatic effects can be approximated as linear trends over
past century and assumed unchanged, using spatiotemporal Gaussian process model [61].
We use the DP16 projections because they included previously omitted processes such as
the hydrofracturing of the ice shelf and structural collapse of high ice cliffs ending at sea,
which have the potential to drive a higher sea level rise. Projections of ice sheets for the
21st century are generated from IPCC AR5 projections (IPCC, 2014), used to characterize
median and likely ranges of sea-level change, while study carried out by [62] is used to
calibrate the shape of the tails. For each RCP, the model employ a multivariate t-distribution
of ice mass change with a mean and covariance estimated from the model results of [63].
To calculate global and local sea level projections the model uses 10,000 Latin hyper–cube
samples from time dependent probability distributions of cumulative contributions of
each individual component [18]. To calculate the probability of increasing of the average
local sea level at site of interest (ξ3), taking into account the different RCP scenarios, we
estimated the probability linked to each level of increase for each year by calculating the
probability distribution function relative to a sample of 30,000 projections, 10,000 for each
RCP scenario considered. Each RCP scenario is assumed as independent from others with
a different temporal varying density probability function.

3. Case Study
3.1. Site Description

The model developed was tested on the southern area of the Pontine Plain, a recovery
area with a surface of 395 km2, originally a swamp, reclaimed in 1920s and located in the
south of Lazio region (Italy). The area is densely populated, with a significant presence
of agriculture and industrial activities. A natural park, Circeo National Park, aimed to
conserve the biotypes and biodiversity typical of wetland environments covers the areas
closer to the coast, with the presence of a long coastal dune and a number of coastal
lagoons [64]. These social, economic, naturalistic and ecological characteristics, together
with the morphological ones, determine a particular vulnerability and exposition of the
zone to extreme hydrological events and sea level rise. In fact, vast areas are below the
sea level, furrowed by a dense network of canals that are mostly artificial and subject
to periodic flooding phenomena due to the concomitance of meteorological phenomena
such as heavy rains and local sea level rises due to storm surge. As shown in Figure 3,
the area is kept dry by pumping water that accumulates in the most depressed areas by
conveying it into a higher altitude network of canals and then discharged into the sea. In
addition, maneuvers are carried out by the network operators, such as opening and closing
mechanical sluice gates, to prevent excessive water from accumulating inside the channels
during emergency periods.
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Figure 3. Hydraulic network of Pontina Plain with maneuvers, pumping stations and gates.

The most important is the Mazzocchio pumping station, which has a maximum
capacity of about 30 m3/s and is used to drain the water that accumulates in the most
depressed area of the Pontine plain, with a minimum altitude of up to−3 m above sea level.
The area upstream the Mazzocchio pumping station has an extension of about 102 km2 and
due to the lower altitude in respect to surrounding basins it results hydraulically connected
with downstream hydraulic network only by the pumping. Therefore changes in flow
rates and flow depths in the rivers downstream from the pumping don’t affect the flow
characteristics of the areas upstream from the pumping station. On contrary the flow rates
lifted by Mazzocchio pumping station affects the flow characteristics of the downstream
area. A previous study by [45] showed, that during heavy precipitation events, higher
pumping flow rates reduce the extension of flooding areas upstream from Mazzocchio
pumping station, but it worsens the flooding of those downstream. In the current study
case, we explore how to increase the resilience to sea level rise of the drainage network
downstream from Mazzoccio pumping station, through both the raising of the embankment
elevation along the most vulnerable part of the drainage network and the construction of
flood expansion areas ruled by weirs along the channels. In this context an analysis has been
conducted with the aim to verify how an increasing of the pumping power of Mazzocchio
station could reduce the extension of the flooding in the areas upstream from the station and
how such increase could affect the flooding in the downstream zones. Therefore simulation
were carried out for two different global pumping power for Mazzocchio station: the
current ones with 6 pumps having a 6 m3/s flowrate and an hypothetical configuration
with the same number of pumps but able to lift up to 9 m3/s.

3.2. Data

The data used in the present study are the amounts of daily rainfall in the study
area, the sea level, the ground level, the land use and the channel network morphological
characteristics. Above mentioned data can be downloaded at github.com/project.
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3.2.1. Rainfall Data

Rainfall data recorded from five rainfall stations present in the study area were used.
Four rain gages, whose coordinates are shown in Table 1, provided daily precipitation
amount from 1 January 1980 to 31 Decmber 2000. The first station, located in the municipal-
ity of Latina (12◦58′12′′ 41◦25′12′′) provided hourly rainfall amount time series for a shorter
period (since 2009). Using the 10 years long hourly rainfall time series, and applying the
method developed by [65], synthetic hyetographs were generated which distribute the
total rainfall amount in 24 h according to a statistical distribution obtained from the hourly
rainfall data. In fact, a previous study [45] has shown that 24-h-long heavy rainfall (with a
daily rainfall amount greater than 100 mm) has, in the past, induced serious flooding in
the examined site. Ref. [45] is reported a detailed description of the methodology used to
construct the hyetographs for the study case. The daily rainfall amount time series were
used to obtain the joint probability between extreme rainfall and storm surge in according
to the method described Section 2.2.1.

Table 1. Coordinates Rain Stations.

Rain Gauge Lon Lat

Latina 12.8313442 414623368
Lenola 13.4401114 41.4051557

Ponte Ferraioli 13.0958461 41.4643082
Terracina 131255395 41.2848763

Mazzocchio (Pontinia) 13.136856 41.397645

3.2.2. Storm Surge Data

Since direct measurements of storm surge along the coast were not available for the
site, we reconstructed the sea level time series from 1 January 1980 to 31 Decmber 2000.
using the time series of the wind speed and direction and sea level pressure for the area
of interest (Lat 39.75–42, Lon 12–14.25). Sea level is a combination of the component due
to the action of the wind (wind set-up), of the astronomical tides (Boon, 2020) and of
the atmospheric pressure acting on the sea free surface. Storm surge levels are calculated
starting from the pressure data on the mean sea level and zonal and southern wind intensity
obtained from the ERA-Interim model [66]. In order to derive the wind set-up, we applied
the relationship and coefficient obtained by [67]:

S =
KpLpU2

g(D− h− S)
ln

D
h + S

(11)

where:

U = wind speed (m/s) at 10 m. over the sea surface;
D = limit depth of the continental shelf (~200 m);
Lp = continental shelf extension (m);
h = depth where storm-surge is calculated (m);
g = gravity acceleration (9.81 m/s2);
kp = coefficient equal to 3× 10−6.

For the specific coastal zone eastern-southerly winds produce higher storm surges
which increase due to the contribution of sea level pressure and astronomic tide. Usually,
extreme meteorological events in the considered zones last from one to three days, thus
also the maximum tidal amplitude has to be taken into account as a further component
to the storm surge. To calculate the height of the sea due to astronomical tides the model
developed by [68]. The measurements from which we obtained the trend of the astronom-
ical tides refer to the recordings made by the Gaeta tide gauge (LAT 41◦12′35.97′′, LON
13◦35′23.05′′). The range of tidal amplitude in that coastal area result equal to ±200 mm.
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3.3. Sea Level Rise Projections

To obtain the projections for raising the local average sea level, we used the data
recorded in Civitavecchia tide gauge which is located in a zone close to that of the study
case and having very similar morphological characteristics. Two different projections of
mean sea levels were calculated referred to [57] (DP16) and [18] (K14). As shown in Figure 4,
the two projections show a substantial variation of the median sea level rise ,with regard to
the worst-case scenario (RCP 8.5), of more than 1 m in 2100. The two scenarios considered
differ mainly in the contribution of the hydro-fracturing of the Arctic ice sheets introduced
by [57] in the model developed by [18].

Figure 4. Downscaled projections used to calculate the total probability of sea level rise D16 (top)
and K14 (bottom).

4. Results
4.1. Hydraulic Simulations

In order to analyze the hydraulic response of the hydraulic network and of the sur-
rounding floodplains of the area and to identify the critical zones to flooding 2D hydraulic
simulations were carried out. Due to the large dimensions of the catchments feeding the
hydraulic network the integration domain was divided as shown in Figure 5.

Figure 5. Sketch of integration domain.
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Hydrographs at the closing sections of the upstream basins were obtained applying
rainfall runoff models. These hydrographs were applied as inputs to the 2D hydraulic
model. The rainfall-runoff models as well as the 2D hydraulic model were calibrated using
data from the hydrometric and meteorological monitoring system, and Sentinel I satellite
image of flooding, recorded during the event of 25 November 2018. The monitoring system
consists of eleven hydrometric stations and two meteorological stations, which collect
the data and return the hourly averages relating to the water tie, to rainfall, to the wind
intensity and direction, atmospheric pressure, etc.

Figure 6a,b show the hyetograph and the sea level trend recorded during the event of
25 November 2018 respectively, and applied as boundary conditions to the rainfall-runoff
model as well as to 2D shallow water hydraulic model. Rainfall-runoff models for each
of the basins sketched in Figure 5, were calibrated by varying the saturation factor k as
defined by Şen (2008)

dR
dP

= (1− e−kP) (12)

where dR
dP is the runoff rate, being R the runoff and P the precipitation amount. Typically,

the value of k ranges between 2.54 to 12.7 (mm−1) depending on the land cover and of
hydrologic soil group. In the present study case uniform values of k were assumed for the
entire integration domain. Figure 7 shows such comparation.

Figure 6. Hyetograph (top) and the sea level (Bottom) trend recorded during the event of 25 Novem-
ber 2018 respectively.

To calibrate k in the part of the basin simulated by 2D hydraulic model, the fit between
the flooding areas detected by satellite images Aobs and those obtained by simulations Asim
was evaluated by the following index:

I(k) =
Aobs ∩ Asim(k)
Aobs ∪ Asim(k)

(13)
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The best value of the saturation factor k was identified as the one that yields the
maximum value of I(k). In Equation (2) refers only to the flooding areas which are detected
by satellite. Therefore coastal lakes and other water bodies, as well as, vegetate and dense
urbanized areas were removed ([69–71]). After model calibration, a number of simulations
were carried out, forced by the same rainfall of the event 25 November 2018, with different
values of the pumping rates in Mazzocchio station and of the sea level rise, with the goal
to identify the most vulnerable areas to flooding and the type and location of the flood
defence constructions, as levees, dikes or flood expansion areas. In order to calculate the
damage function D(lci (x, y),

−→
ξ ,−→χ ) of Equation (3), related to flooding in the study area,

simulations were carried out using the fast simplified model, which takes into account the
entire domain shown in Figure 5, and whose parameters were calibrated with reference to
same above mentioned heavy rainfall event used in 2D simulations. Hydraulic simulations
were carried out considering rainfall events lasting 24 h. Then, 24 h rainfall amounts were
distributed hourly according to the synthetic hytographs. Hydraulic simulations were
carried out offline to reduce the computation time. Different hydraulic construction states
were considered, raising embarkment level in the range of 0 and 4 m, with longitudinal
weir level ruling flood expansion areas varying between 2 and 6 m above mean sea level.
The scenarios considered consist of five rainfall intensities, five storm surge levels and
five average sea level rise scenarios combined to form 625 different simulations with each
combination of boundary conditions. For the simulations, extreme rains of intensity from
30 mm per day to 150 mm per day, storm surge levels from 20 cm per day to 100 cm per
day and increases in the average marine level from 20 cm to 200 cm were considered. The
most depressed areas of the domain are kept dry by groups of pumping stations whose
flow rates were related to the water level in the upstream storage tank.

(a) (b)

Figure 7. Comparison between flooding areas by Sentinel 1 satellite image (a) and simulated ones (b).
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4.2. Effect of the Increase of Pumping Power at Mazzocchio Station and Identification of Flood
Defence Constructions by 2D Hydraulic Model Simulations

For the event of 25 November 2018, Figure 8 shows the maximum flow depth difference
between the simulated configuration with 9 m3/s pumping flow rate for each pump of the
Mazzocchio Station and with 6 m3/s ones. In simulations the switch-on and switch off of
different group of pumps were considered as a function of different free surface levels in
the tank upstream of the Mazzocchio pumping station. The increase of pumping reduces
the maximum flow depth of about 0.20 m. in the zones upstream from Mazzocchio Station
but increases it in the downstream area up to 0.4 m. in the most depressed zones.

Figure 8. Maximum flow depth difference between configuration with 1.5 increase of pumping flow
rate of each single pump (9 m3/s) at Mazzocchio pumping station and the current one (6 m3/s).

With the aim to identify the areas most prone to flooding, and to define the type
and locations of flood defence constructions, a number of hydraulic simulations for dif-
ferent average sea level rise were carried out, applying the same hyetograph of the event
of 25 November 2018, as well as the same storm surge trend. Figure 9a–d shows the
comparison between the water depth field at the instant of maximum flooding for the
current average sea level and that assuming an average sea level rise equal to m. 0.5. As
shown in Figure 9c there is a notable worsening of flooding conditions, especially in the
urbanized region closer to the coastal line and where there is the convergence of the main
watercourses.
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To defend such a region different kinds of flood disaster risk reduction measures
could be adopted [72]. Here, as shown in Figure 9d, we consider raising the embankment
elevation along the drainage network crossing the most vulnerable areas and the construc-
tion of flood expansion areas, upstream from such areas, ruled by the level of weir along
the channels.

Figure 9. (a–d) Comparison of the water depth field at the instant of maximum flooding for the
current average sea level and that assuming an average sea level rise equal to m. 0.5.

4.3. Probability Density Function for Sea Level Rise Scenarios

To calculate the probability of raising the local sea level, 10,000 simulations were
carried out for each RCP emission scenario considered, In the Figure 10a,b the probability
density functions at the year 2050 and 2100 for each RCPs,and the total probability density
function are shown, for the sea level rise scenarios K14 and DP16 respectively. Figures also
show the narrower range of variation of sea level rise in the year 2050 than 2100.

(a) (b)

Figure 10. Probability density functions at the year 2050 and 2100 for each RCPs, for the sea level rise
scenario K14 (a) and Dp16 (b) respectively.
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4.4. Application of Multi-Objective Optimization to Case Study

In order to test the reliability of the multiobjective optimization model for identifying
the sizing and the timing of the flood defence constructions, five scenarios with different
environmental and economic characteristics were taken into into account. These scenarios
are listed in the Table 2. Scenarios refer to: (a) two sea level rise projections previously
discussed capitol k14 and D16; (b) different power of the Mazzocchio pumping station;
(c) two different spatial domains to calculate the objective function of Equation (1), the one
that takes into account both the areas upstream and downstream from the Mazzocchio
pumping station and the one that takes into account only the downstream area; (d) different
values of the discount rates rd and rc. For each of the scenarios considered, Pareto optimal
curves were calculated. Each point of Pareto curves identifies the values of decision
variables, i.e., the sizing of the flood defence construction and timing.

Table 2. Scenarios description.

RCPs
Considered

Mean Sea Level
2100 Projection

Discount
Rate Costs

Discount Rate
Damages

Pumping Rate
for Each Pump

Selcella Basin’s
Damages Accounted

Scenario 1 8.5-4.5-2.6 K14 0 0 6 m3/s yes
Scenario 2 8.5-4.5-2.6 D16 0 0 6–9 m3/s yes
Scenario 3 8.5-2.6 D16 0 0 6 m3/s no
Scenario 4 8.5-4.5-2.6 D16 0.02-0.05-0.07 0 6 m3/s yes
Scenario 5 8.5-4.5-2.6 D16 0.02 0.02-0.07 6 m3/s yes

In the NSGA II algorithm a crowded comparison approach by [47] is used to assure
the convergence to the optimal Pareto set and a good spread of solutions. Such approach
does not require any user-defined parameter for maintaining diversity among population
members. Generally, the algorithm terminates when either a maximum number of genera-
tions has been produced, or a satisfactory fitness level has been reached for the population.
By performing preliminary runs we selected the minimum number of generations needed
to converge to the optimal Pareto set that are reported in Table 3. In carrying out the
multiobjective optimization, 50 generations of 1000 individuals each were assumed. The
Table 2 shows the parameters used in the multi-objective optimization algorithm.

Table 3. NSGA 2 Parameters.

NSGA II Parameters

Generations 50
Population 1000

Crossover percentage 0.7
Mutation percentage 0.4

Mutation rate 0.02

The Pareto set obtained solving the multiobjective optimization problem for the
scenario 1 of Table 1 is shown in Figure 11. The Pareto curve identifies a set of optimal
solutions representing the “best” choices relative to the two objective functions. The curve
shows a clear upward concavity: higher costs of flood defence construction reduce the
hydraulic risk for the entire period.Each optimal solution belonging to the Pareto set (filled
circles) includes the decision variables: size of flood defence works (embankment level
and flood expansion area)and timing of their construction. Figure 12 shows the difference
among the optimal solutions of Pareto set in term of values of decision variables.

In Figure 12 we explore optimal policy sets by looking at the differences between the
safest and most expensive and the most risky and economic ones. The more expensive
solutions are characterized by a higher level of banks and time horizons closer to each
other (yellow) than the riskier policies (blue) characterized by milder and more distant
interventions over time. The solutions (green), positioned in the “elbow” portion of the
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Pareto Set, are characterized by height levels of the intermediate banks with respect to the
solutions that prefer risk or safety.

Figure 11. Pareto set for scenario 1. of Table 2.

Figure 12. Size and timing of Flood defence constructions for the Pareto set optimal solutions.

The second decision variable, that is the level of the drain, presents solutions charac-
terized by an anticipation over time of the more expensive solutions but little variation
in terms of altitude up to 2050; the coincidence of the data is due to the contained rise
in the sea level up to that date resulting from the K14 projection. In this case, a lower
drain level corresponds to higher costs due to a greater portion of land to be allocated
to the expansion area. In Figure 13 the Pareto sets obtained for the scenario 2 of Table 2
are shown. The two curves are obtained for two configurations of Mazzocchio pumping
station, single pump power of 6 m3/s and 9 m3/s. As evidenced in Section 4.2, the increase
in the power of pumps reduces the entity of flooding in the basin upstream of Mazzocchio
station but at the same time makes worse the hydraulic risk in downstream areas. As it
is evident from Figure 13, due to the low economic values of agriculture production in
upstream Mazzocchio region, the reduction of the damages in this part of the watershed
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does not compensate the increased damages in the portion of watershed downstream due
to the higher pumping flowrates from Figure 13, the increase of hydraulic risk (Objective
function 1) at parity of construction costs is made evident from the translation of the curve
associated to the higher values of pumping rates.

Figure 13. Pareto set for scenario 2 of Table 2.

As shown in Figure 14a,b, coherently with the higher weight of damage (Objective
function 1) in the watershed downstream from Mazzocchio station, the optimal solutions
belonging to the Pareto set for 9 m3/s are characterized by higher top level of levees and larger
flood expansion areas than those for 6 m3/s. Furthermore, the construction times of the defence
works in the first case are delayed with respect to the second one. This result suggests to limit
the pumping power of Mazzocchio station at 6 m3/s, since further increase of the pumping
power does not produce significant reduction of hydraulic risk for the entire domain, but it
makes worse the hydraulic risk in the downstream portion of such domain.

Figure 14. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 2 of Table 2.
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In Figure 15 the Pareto sets obtained for different sea level rise scenarios, referred to
RCP 2.6 and RCP 8.5 respectively, are compared. Even if the RCP 2.6 curve presents lower
costs than RCP 8.5 curve at parity of hydraulic risk, as expected, the curves are rather close.
This is due to the fact that the trends of SLR for RCP2.6 and RCP 8.5 diverge significantly
only starting form the 2060. Despite this, the optimal solutions for the two cases are rather
different: for RCP8.5 the levee levels are higher than for RCP 2.6. However, construction
timings are rather coincident (see Figure 16a,b).

Figure 15. Pareto set for scenario 3 of Table 2.

Figure 16. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 3 of Table 2.

Thus, the model is able to identify the optimal timing in which to implement the
planned intervention. Analyzing Figure 16b, it is possible to observe how the more precau-
tionary policies but also the more expensive ones (yellow) foresee more substantial rises
of the embankment summits and closer in time, with a maximum time horizon around
2070. The least expensive policies monetary terms but riskier in terms of potential damage
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from flooding (blue) envisage lower river embankments more distant time horizon with a
maximum time horizon of around 2080. In the scenarios 4 and 5 in Table 2, a local projection
of sea level rise more severe one in which the phenomenon of the detachment of large
portions of ice from the Antarctic polar cap takes place was considered (DP16). For this
projection of sea level rise, in scenario 4 in Table 1, the results obtained by varying the
cost discount rate rc—equal to 2%, 5% and 7% respectively—were compared. We also
assume a damage discount rate equal to zero, i.e., the hydraulic risk does not depend
on time. Figure 17a,b shows the Pareto sets relating to such scenario in terms of average
sea level rise (DP16) by varying, as said, the discounting of the intervention costs and
leaving the actualization of the consequent damages unchanged. The main influence of cost
discount rate rc can be inferred comparing Figure 17a,b: greater the cost discount rate is
more delayed the flood construction time horizons are. Indeed defence policies, especially
the more expensive ones that involve a greater rise in the level of the levees, tend to be
anticipated over time by applying the lower cost discount factor rc = 0.02 than policies
in which a greater costal discount factor rc = 0.07 is applied. This is a consequence of the
different way in which the cost are weighted in dependence of construction time horizon.

Figure 17. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 4 of Table 1.

Figure 18a shows the results of the variation of the social discount rate in the case of
the DP16 scenario with rc = 0.02 and rd = 0.02 . Comparing with Figure 18b (same case but
with rd = 0) we observe that, due to the minor weight of the hydraulic risk in future years,
the optimal solutions in the case of rd = 0.02 are characterized by flood defence works of
minor size with construction horizon times anticipated in respect to the case in which rd is
assumed equal to zero.
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Figure 18. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 5 of Table 1.

In conclusion, observing the responses of the model to the variations in the social
discount rate, both as regards only the costs of carrying out the works, and as regards the
associated damages, we note a tendency to anticipate time horizons for the construction of
the defence works DP16. Analogous analysis was conducted also for the projections K14, not
shown here since results were substantially similar to those of D16 projections. The results
presented are intended to offer a tool that the decision maker can rely on to implement
planning based for example on a budget limit or on a long-term goal. The input data can be
updated from year to year in order to monitor and, if necessary, modify the chosen policy.
This is regardless of the RCP scenario that occurs, as the model considers a total probability
for each sea level rise and chooses the optimal policies regardless of the RCP scenario. From
the results it is possible to observe the model’s ability to grasp differences in the projections
of local sea level rise due to a greater contribution from the melting of the Antarctic ice sheet.
This difference in the results for the two different projections indicates the model’s ability
to adapt even to sudden and significant events, such as the rapid rise in the average sea
level due to the fracturing of part of the polar caps with the consequent introduction of
huge quantities of water into the ocean. The model is able to identify the optimal time in
which to implement the planned intervention. Another aspect evident from the results is
the influence of uncertainty on the solutions, it is clear that for modest marine rises and less
affected by uncertainty, in which the difference between the 95th and the 5th percentile is
small, the solutions tend to concentrate in some very precise instants of time (K14), while
with increasing uncertainty (DP16) also the solutions tend to be more varied both as regards
the geometric characteristics and for the temporal horizons of realization.
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5. Summary and Conclusions

We developed a methodology and related algorithms aimed to identify the size and
timing of flood defence constructions to cope with sea level rise, as well as, extreme rainfall
regime modification due to climate change. The methodology considers a multi-objective
optimization problem. The first objective function is related to the hydraulic risk for
the entire climate projection period, while the second one refers to the construction and
maintenance costs. Two relevant aspects of the multi-objective optimization problem
deserve to be highlighted. First, since the construction timing is considered as a decision
variable the projected trend of climate variables, whether it corresponds to uncertain abrupt
or smooth changes or in the case in which natural variability shadows climate trend, can be
addressed. Second, EAD integrates in its definition the uncertainties in climate projections
considering the different RCPs postulated by climate community and for each of these RPCs
the structural, parametric and initial condition model uncertainties in climate projections.
The relative likelihood of each RCP can be specified by the decision maker, including
its possible variation in the future. This way optimism or pessimism as to the ability to
mitigate future climate risk can be incorporated. The application to the study case has
shown the reliability of the proposed approach which has allowed the identification under
different forcing factors of a set of optimal solutions belonging to the Pareto Curve, each
of them defining sizing and timing of the flood defence constructions along the entire
period of climate projections. There are several areas of potential improvement with future
research. First we focused our study just on the flooding over the considered coastal region
due to the concomitant action of heavy rainfall, storm surge and sea level rise (SLR) for
different global warming scenarios. The SLR also has other impacts on coastal regions
which can be equally significant. For instance, coastal erosion that threatens the stability
of the shore and dune-coastal lake systems, salt intrusion in coastal aquifers, alteration of
ecosystem equilibrium as marshes, or lagoons. Further optimality criteria can be added to
the proposed multi-objective optimization scheme without loss of generality. These criteria
are not necessarily in monetary terms, since the multi-objective optimization problem can
be formulated using incommensurable objectives. In the case study we assumed as flood
defences only levees and expansion areas controlled by weirs. Different coastal strategies
and policies could be hypothesized to cope sea level rise within the three different categories
usually considered and referred as retreat, accommodate and protect [72]. More work needs
to be done to assess damages due flooding by hydraulic model simulations to capture the
entire landscape of possible options also using water quality or eutrophication models [73],
groundwater models [74] or coastal erosion models [75]. A further relevant research
suggestion is that proposed by [76], who advocates addressing the unintended negative or
positive effects of disaster risk reduction measures and strategies on drought risk. To better
design disaster risk reduction (DRR) measures and strategies, it is important to consider
interactions between flood and drought which are closely linked hydrological phenomena.
The mutual interaction of disaster risk reduction (DRR) measures and strategies aimed
to cope the two hydrological risk should be investigated and then formalized within the
objective functions. Finally, the proposed approach provides an adaptive and flexible
way moving forward the temporal window and then time updating climate projections
resulting from future improved GCMs. An ideal application would be as part of an adaptive
process where the analysis is updated, for instance, every 5 years with new information
and assumptions reflecting the evolution of the climate as well as socio-economic systems,
and policy variables such as the discount rate.
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